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We calculate the parameters describing elastic I ¼ 1, P-wave ππ scattering using lattice QCD with 2þ 1

flavors of clover fermions. Our calculation is performed with a pion mass of mπ ≈ 320 MeV and a lattice
size of L ≈ 3.6 fm. We construct the two-point correlation matrices with both quark-antiquark and two-
hadron interpolating fields using a combination of smeared forward, sequential and stochastic propagators.

The spectra in all relevant irreducible representations for total momenta jP⃗j ≤ ffiffiffi
3

p
2π
L are extracted with two

alternative methods: a variational analysis as well as multiexponential matrix fits. We perform an analysis
using Lüscher’s formalism for the energies below the inelastic thresholds, and investigate several phase
shift models, including possible nonresonant contributions. We find that our data are well described by
the minimal Breit-Wigner form, with no statistically significant nonresonant component. In determining the
ρ resonance mass and coupling we compare two different approaches: fitting the individually extracted
phase shifts versus fitting the t-matrix model directly to the energy spectrum. We find that both methods
give consistent results, and at a pion mass of amπ ¼ 0.18295ð36Þstat obtain gρππ ¼ 5.69ð13Þstatð16Þsys,
amρ ¼ 0.4609ð16Þstatð14Þsys, and amρ=amN ¼ 0.7476ð38Þstatð23Þsys, where the first uncertainty is

statistical and the second is the systematic uncertainty due to the choice of fit ranges.

DOI: 10.1103/PhysRevD.96.034525

I. INTRODUCTION

One of the most fascinating phenomena of QCD is the
hadronic spectrum: a complex set of composite particles
arising from the interactions between quarks and gluons. If
we neglect the electromagnetic and weak interactions, we
can distinguish hadrons that are stable, i.e., those that do
not decay via the strong interaction (for example the pion),
and hadrons that are unstable, such as the ρ meson.
The ρ meson is an isotriplet of short-lived hadronic

resonances with quantum numbers JPC ¼ 1−−, which has
been observed in multiple decay modes, including ππ (with
a branching ratio of 99.9%), ππππ, KK̄, and πγ [1]. The
two most important parameters of the ρ meson are its
resonant mass mρ and its decay width Γρ→ππ . Both have
been studied extensively with lattice QCD [2–18], but
many questions remain open, concerning for example the
detailed dependence on the quark masses, the effects of

Nf ¼ 2þ 1 versus Nf ¼ 2 sea quarks, the coupling to the
KK̄ channel, and the size of discretization errors for
different lattice actions.
The ρ resonance corresponds to a pole in the I ¼ 1

P-wave ππ scattering amplitude. This scattering amplitude
plays an important role in many standard model processes,
and its energy dependence must be determined accurately
as part of lattice calculations of matrix elements involving
the ρ [19], such as πγ → ρð→ππÞ [20,21] and B →
ρð→ππÞlν̄l.
In this work, we use the Lüscher method to study the ρ

resonance in ππ scattering with lattice QCD. The energy
levels of a two-hadron system in a finite volume are shifted
by the interactions between the hadrons. These energy
shifts are related to the infinite-volume scattering matrix via
the Lüscher quantization condition [22]. The Lüscher
method was initially derived for the scattering of spin-0
particles in the rest frame [22], and was extended to moving
frames for the case of scattering of two particles with equal
mass in Refs. [23–25]. Further generalizations to coupled
channels, particles of unequal mass, arbitary spin, and
three-particle systems were given in Refs. [26–30]. Other
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methods that have been used to study resonances are the
Hamiltionian effective field theory approach [31], which is
similar to the Lüscher method, the HALQCD approach
[32], where the Nambu-Bethe-Salpeter wave function is
calculated and used to determine a potential between two
hadrons, and the method of Refs. [33–35], which uses a
perturbative interpretation of the mixing of nearby states.
We construct two-point correlation matrices with two

different types of interpolating fields: quark-antiquark
interpolators, and two-pion-scattering interpolators. From
these correlation matrices, we extract the energy spectrum
below the KK̄ and ππππ thresholds using two different
analysis methods: (1) the variational approach, also known
as the generalized eigenvalue problem, and (2), multi-
exponential fits directly to the correlation matrix. We care-
fully compare the results from both methods and estimate
the systematic uncertainties associatedwith the choice of the
fit range.
In our Lüscher analysis of the elastic ππ scattering, we

again compare two different methods: (1) mapping each
individual energy level to a corresponding scattering phase
shift, and then fitting Breit-Wigner-like models to the
results, and (2) fitting the models for the t-matrix directly
to the energy spectrum, as was proposed in Ref. [36].
In constructing the models, we also allow for a possible
nonresonant contribution.
Our calculation includes Nf ¼ 2þ 1 dynamical quark

flavors, implemented with a clover-improved Wilson action.
We use a single ensemble of gauge configurations on a
323 × 96 lattice with a ≈ 0.114 fm, corresponding to a large
physical volume of ð3.6 fmÞ3 × ð10.9 fmÞ. The calculation
is performed in the isospin limit with a light-quark mass
corresponding to a pion mass of approximately 320 MeV.
The paper is organized as follows: We begin by briefly

reviewing the continuum description of elastic ππ scatter-
ing in Sec. II. Section III contains our lattice parameters
and includes an analysis of the pion dispersion relation. Our
choice of interpolating fields and the construction of the
two-point correlation matrices are described in Sec. IV, and
the analysis of the energy spectrum is reported in Sec. V.
The formalism of the Lüscher analysis is reviewed in
Sec. VI, while the numerical results for the scattering phase
shifts and resonance parameters are discussed in Sec. VII.
In Sec. VII we also present a detailed comparison with
previous lattice calculations and discuss systematic uncer-
tainties. We conclude in Sec. VIII.

II. ABOUT ππ SCATTERING

In this section we briefly review the formalism describ-
ing elastic ππ P-wave scattering in the IðJPCÞ ¼ 1ð1−−Þ
channel in the continuum [37].
We express the 1 × 1 elastic scattering “matrix” as

SlðsÞ ¼ 1þ 2itlðsÞ; ð1Þ

where tl is the t-matrix (also known as the scattering
amplitude), which depends on the invariant mass s of the
system, and l is the partial wave of the scattering
channel. The tl matrix is related to the scattering phase
shift δl via

tlðsÞ ¼
1

cot δlðsÞ − i
: ð2Þ

A resonant contribution to tlðsÞ can be described1 by a
Breit-Wigner (BW) form,

tlðsÞ ¼
ffiffiffi
s

p
ΓðsÞ

m2
R − s − i

ffiffiffi
s

p
ΓðsÞ ; ð3Þ

which corresponds to the phase shift

δlðsÞ ¼ arctan
ffiffiffi
s

p
ΓðsÞ

m2
R − s

: ð4Þ

In this work, we consider two different forms for the
l ¼ 1 decay width ΓðsÞ:

(i) BW I: P-wave decay width:

ΓIðsÞ ¼
g2ρππ
6π

k3

s
; ð5Þ

where gρππ is the coupling between the ππ scattering
channel and the ρ resonance, and k is the scattering
momentum defined via

ffiffiffi
s

p ¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþk2
p

. This form
was used in most previous lattice QCD studies.

(ii) BW II: P-wave decay width modified with Blatt-
Weisskopf barrier factors [39]:

ΓIIðsÞ ¼
g2ρππ
6π

k3

s
1þ ðkRr0Þ2
1þ ðkr0Þ2

; ð6Þ

where kR is the scattering momentum at the reso-
nance position and r0 is the radius of the centrifugal
barrier.

In certain cases, for example in P-wave Nπ scattering,
the phase shift is known to receive both resonant and
nonresonant (NR) contributions [40]. We also allow for this
possibility in our analysis of ππ scattering and write the full
P-wave phase shift as

δ1ðsÞ ¼ δBW1 ðsÞ þ δNR1 ðsÞ: ð7Þ

We investigate three different models for a nonresonant
background contribution δNR1 :

1Note that a typical Breit-Wigner model does not work for very
broad resonance such as the σ and κ scalar resonances [38].
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(i) NR I: a constant nonresonant phase A:

δNR1 ðsÞ ¼ A: ð8Þ

(ii) NR II: a nonresonant phase depending linearly on s:

δNR1 ðsÞ ¼ Aþ Bs; ð9Þ

where A and B are free parameters.
(iii) NR III: zeroth order nonresonant effective-range

expansion (ERE):

δNR1 ðsÞ ¼ arccot
2a−11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sthres

p ; ð10Þ

where a−11 is the inverse scattering length and
sthres ¼ 4m2

π is the ππ threshold invariant mass.

III. LATTICE PARAMETERS

A. Gauge ensemble

The parameters of the lattice gauge-field ensemble
are given in Table I. The gluon action is a tadpole-improved
tree-level Symanzik action [41–44]. We use the same clover-
improved Wilson action [45,46] for the sea and valence
quarks. The gauge links in the fermion action are smeared
using one level of stout smearing [47] with staple weight
ρ ¼ 0.125 (the smearing smoothes out short-distance

fluctuations and alleviates instabilities associated with low
quark masses). The lattice scale reported in Table I was
determined from the ϒð2SÞ −ϒð1SÞ splitting [48,49] cal-
culated with NRQCD [50] at the physical b-quark mass. The
strange-quark mass is consistent with its physical value as
indicated by the “ηs” mass [48,51].

B. The pion mass and dispersion relation

To determine the ρ resonance parameterswith theLüscher
method we need to know the pion dispersion relation. We
performed a fit of the pion energies using the form ðaEÞ2 ¼
ðamπÞ2 þ c2ðapÞ2 in the range 0 ≤ p2 ≤ 3ð2π=LÞ2, which
yields amπ ¼ 0.18295ð36Þ and c2 ¼ 1.0195ð86Þ, as shown
in Fig. 1. Given that c2 is consistentwith 1within 2%,we use
the relativistic dispersion relation ðaEÞ2 ¼ ðamπÞ2 þ ðapÞ2
in the subsequent analysis.

IV. INTERPOLATING FIELDS
AND TWO-POINT FUNCTIONS

The Lüscher quantization condition relates the infinite-
volume ππ scattering phase shifts to the finite-volume
energy spectrum [22]. The first step in our calculation is
therefore to determine this energy spectrum from appro-
priate two-point correlation functions.
If there were no interactions between the two pions, the

discrete energy levels of the two-pion system in a cubic
lattice of size L would be equal to

EP⃗
non−int ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jk⃗1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jk⃗2j2
q

; ð11Þ

where

k⃗1 ¼
2π

L
d⃗1; k⃗2 ¼

2π

L
d⃗2; d⃗1; d⃗2 ∈ Z3; ð12Þ

and the total momentum is P⃗ ¼ k⃗1 þ k⃗2. In the presence
of interactions, the individual momenta k⃗1 and k⃗2 are no

TABLE I. Details of the gauge-field ensemble. NL and NT
denote the number of lattice points in the spatial and time
directions. The lattice spacing, a, was determined using the
ϒð2SÞ −ϒð1SÞ splitting. The ensemble was generated with
Nf ¼ 2þ 1 flavors of sea quarks with bare masses amu;d and
ams, which lead to the given values of amπ , amN , and amηs . The
ηs is an artificial pseudoscalar ss̄ meson that can be used to tune
the strange-quark mass [48,51]. The uncertainties given here are
statistical only.

C13

N3
L × NT 323 × 96

β 6.1
Nf 2þ 1

csw 1.2493097
amu;d −0.285
ams −0.245
Nconfig 1041

a [fm] 0.11403(77)
L [fm] 3.649(25)
amπ 0.18295(36)
amN 0.6165(23)
amηs 0.3882(19)

mπL 5.865(32)

FIG. 1. Pion dispersion relation. The π mass and speed of light
determined from the dispersion relation are consistent with a
relativistic dispersion relation with the rest frame π energy.
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longer good quantum numbers, but the total momentum
still is, and takes on the values

P⃗ ¼ 2π

L
d⃗; d⃗ ∈ Z3: ð13Þ

We denote the interacting energy levels as

EP⃗
n ; ð14Þ

where n denotes the nth state with the given total
momentum (and any other relevant quantum numbers).
We relate these energies to the corresponding center-of-
mass energies

EP⃗
n;CM ¼

ffiffiffiffiffi
sP⃗n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEP⃗

n Þ2 − P⃗2

q
; ð15Þ

and define the scattering momentum kP⃗n via

ffiffiffiffiffi
sP⃗n

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðkP⃗n Þ2
q

: ð16Þ

Note that kP⃗n is not a lattice momentum, and can take on
continuous (possibly even imaginary) values. The interact-
ing energy levels, and hence the scattering momenta,
depend on the scattering phase shifts, the lattice size L,
and the symmetries of the two-particle system, as described
by the Lüscher quantization condition and its generaliza-
tion to moving frames [22,24,25].
We aim to determine the values of the scattering phase

shift δ1ðsÞ for many values of s near the ρ resonance mass.
The fairly large lattice volume we use (L ≈ 3.6 fm) allows
us to obtain a sufficient number of energy levels in the
region of interest from only the single volume combined
with multiple moving frames, P⃗. In this work, we use the
moving frames and irreducible representations (Λ) listed in
Table II.

A. Interpolating fields

The spectra in the frames and irreps listed in Table II are
obtained from two-point correlation functions constructed
using two different types of interpolating fields: local
single-hadron quark-antiquark interpolating fields fOq̄qg,
and two-hadron interpolating fields fOππg. We choose the
quantum numbers JPC ¼ 1−− and I ¼ 1; I3 ¼ 1 (corre-
sponding to the ρþ resonance2), and write

Oq̄qðt; P⃗Þ ¼
X
x⃗

d̄ðt; x⃗ÞΓuðt; x⃗ÞeiP⃗·x⃗; ð17Þ

Oππðt; p⃗1; p⃗2Þ ¼
1ffiffiffi
2

p ðπþðt; p⃗1Þπ0ðt; p⃗2Þ

− π0ðt; p⃗1Þπþðt; p⃗2ÞÞ; ð18Þ

where P⃗ ¼ p⃗1 þ p⃗2, and the single-pion interpolators are
given by

πþðt; p⃗Þ ¼
X
x⃗

d̄ðt; x⃗Þγ5uðt; x⃗Þeip⃗·x⃗

π0ðt; p⃗Þ ¼
X
x⃗

1ffiffiffi
2

p ðūðt; x⃗Þγ5uðt; x⃗Þ − d̄ðt; x⃗Þγ5dðt; x⃗ÞÞeip⃗·x⃗:

We do not include quark-antiquark interpolators with
derivatives, as past calculations have shown that such
interpolators do not improve the determination of the
spectrum near the ρ resonance mass region [9].
In Eq. (17), we use two different Γi matrices, namely γi

and γ0γi, to obtain overlap with the IðJPCÞ ¼ 1ð1−−Þ
quantum numbers. The single-hadron interpolators are
projected to the finite-volume irreps Λ of the little group
LGðP⃗Þ for the momentum P⃗ using

OΛ;P⃗
q̄q ðtÞ ¼ dimðΛÞ

NLGðP⃗Þ

X
R̂∈LGðP⃗Þ

χΛðR̂ÞR̂Oq̄qðt; P⃗Þ; ð19Þ

where dimðΛÞ is the dimension of the irrep, NLGðP⃗Þ is the

order of the little group, and χΛðR̂Þ is the character of
R̂ ∈ LGðP⃗Þ [53].
The second interpolator type, Eq. (18), is built from

products of two single-pion interpolators, each separately
projected to a definite momentum. In this case, the projection
proceeds through the formula given in Ref. [7]:

TABLE II. The reference frames (i.e., total momenta P⃗),
associated little groups, and irreducible representations used to
determine the multihadron spectrum in the IðJPCÞ ¼ 1ð1−−Þ
channel. For the little groups and irreps with give both the
Schönflies notation and the subduction notation. Due to a
reduction in symmetry, the little group irreps Λ contain not only
JP ¼ 1− states, but also higher J, starting with J ¼ 3. In the
channel we investigate, the J ¼ 3 contributions have been shown
to be negligible [12,52].

P⃗ ½2πL � Little Group Irrep Λ J

(0, 0, 0) Oh T−
1 1−; 3−;…

(0, 0, 1) D4h (Dic4) A−
2 (A1) 1−; 3−;…

(0, 0, 1) D4h (Dic4) E− (E) 1−; 3−;…
(0, 1, 1) D2h (Dic2) B−

1 (A1) 1−; 3−;…
(0, 1, 1) D2h (Dic2) B−

2 (B1) 1−; 3−;…
(0, 1, 1) D2h (Dic2) B−

3 (B2) 1−; 3−;…
(1, 1, 1) D3d (Dic3) A−

2 (A1) 1−; 3−;…
(1, 1, 1) D3d (Dic3) E− (E) 1−; 3−;…

2Due to the exact isospin symmetry in our lattice QCD
calculation all three isospin components ρþ; ρ−, and ρ0 have
the same properties.
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OΛ;P⃗
ππ ðtÞ

¼ dimðΛÞ
NLGðP⃗Þ

X
R̂∈LGðP⃗Þ

χΛðR̂Þðπþðt; P⃗=2þ R̂p⃗Þπ0ðt; P⃗=2− R̂p⃗Þ

−π0ðt;P⃗=2þ R̂p⃗Þπþðt; P⃗=2− R̂p⃗ÞÞ; ð20Þ

where

p⃗ ¼ P⃗
2
þ 2π

L
m⃗; m⃗ ∈ Z3: ð21Þ

(An alternative method to construct the interpolators is the
subduction method [54–56], which gives the same types of
interpolators as we find with the projection method.)
In the following, we use the schematic notation O1

for quark-antiquark interpolators with γi, O2 for quark-
antiquark interpolators with γ0γi, and O3, O4 for two-pion
interpolators with the smallest and second-smallest pos-
sible p⃗ in the given irrep.

B. Wick contractions

The correlation matrix CΛ;P⃗
ij ðtÞ is obtained from the

interpolators defined above as

CΛ;P⃗
ij ðtf − tiÞ ¼ hOΛ;P⃗

i ðtfÞOΛ;P⃗
j ðtiÞ†i; ð22Þ

where ti is the source time and tf is the sink time. The
correlation matrix elements are expressed in terms of quark
propagators by performing the Wick contractions (i.e., by
performing the path integral over the quark fields in a given
gauge-field configuration). The resulting quark-flow dia-
grams are shown in Fig. 2 (for the case I ¼ 1 considered
here, further disconnected diagrams cancel due to exact
isospin symmetry). In this section, we use the generic
notation q̄q for the i ¼ 1, 2 interpolators and ππ for the
i ¼ 3, 4 interpolators to describe our method.
The diagrams in Fig. 2 are obtained from point-to-all

propagators (labeled f), sequential propagators (labeled

seq) and stochastic timeslice-to-all propagators (labeled st).
In detail, these propagator types are given as follows:

(i) Point-to-all propagator: Writing the quark and anti-
quark fields as ψðtf; x⃗Þaα and ψ̄ðti; x⃗iÞbβ , where α, β
are spin indices and a, b are color indices, the point-
to-all propagator Sf from the fixed initial point xi ¼
ðti; x⃗iÞ to any final point xf ¼ ðtf; x⃗fÞ on the lattice
is the matrix element of the inverse of the lattice
Dirac operator D:

ð23Þ

(ii) Sequential propagator: The sequential propagator
describes the quark flow through a vertex of a given
flavor and Lorentz structure. It is obtained from a
point-to-all propagator by a second (sequential)
inversion on a source built from the point-to-all
propagator with an inserted vertex at time slice tseq
with spin structure Γ and momentum insertion p⃗:

ð24Þ

(iii) Stochastic time slice-to-all propagator: The stochas-
tic time slice-to-all propagator is defined as the
inversion of the Dirac matrix with a stochastic time
slice momentum source:

ð25Þ

where

ϕr
ti;p⃗i

¼D−1ξrti;p⃗i
and ξrti;p⃗i

ðt; x⃗Þ¼ δt;tie
ip⃗i·x⃗ξrtiðx⃗Þ:

For each r ¼ 1;…; Nsample, ξrti is a spin-color time
slice vector with independently distributed entries
for real and imaginary part, ξrtiðt; x⃗Þaα ∼ Z2 × iZ2, so

FIG. 2. The Wick contractions corresponding to the correlation
matrix elements of type Cq̄q−q̄q, Cππ−q̄q, Cdirect

ππ−ππ and Cbox
ππ−ππ .
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that the expectation values with respect to the
stochastic noise, denoted as E½ �, satisfy

E½ξrtiðt; x⃗Þaα� ¼ 0; ð26Þ

E½ξr1ti1 ðx⃗1Þ
a1
α1ðξr2ti2 ðx⃗2Þ

a2
α2Þ��

¼ δr1;r2δti1 ;ti2 δx⃗1;x⃗2 ; δα1;α2δ
a1;a2 : ð27Þ

This technique provides a good way to efficiently
evaluate the box (and boxlike) diagrams with rea-
sonable cost. In addition to time-dilution of the
stochastic momentum source, we also apply spin-
dilution to make use of the efficient one-end-trick
[57] in our contractions. In this case the stochastic
sources read

ξrti;p⃗i;α
ðt; x⃗Þbβ ¼ δt;tiδα;βe

ip⃗i·x⃗ξrtiðx⃗Þb; ð28Þ
and the color time slice vectors ξrti have expectation
values analogous to those in Eqs. (26) and (27).

(iv) Smearing: To enhance the dominance of the lowest
lying states contributing to a correlator we apply
source and sink smearing to the propagator types
listed above: for all inversions of the Dirac matrix
we replace D−1 → W½UAPE�D−1W½UAPE�†, where
W½UAPE� denotes the Wuppertal-smearing operator
[58] using an APE-smeared gauge field [59] with the
parameters n ¼ 25, αAPE ¼ 2.5. Since the source
and sink smearing is always understood, we will not
denote it explicitly.

(v) Coherent sequential sources: In order to increase
the available statistics for a fixed number of gauge
configurations we calculate all correlators for 8
equidistant source locations separated in time by
T=8 and with spatial source coordinates independ-
ently and uniformly sampled over the spatial lattice.
We then take results from all source locations and
average over them.
To reduce the computational cost for the sequen-

tial propagators, we insert 2 point-to-all propagators
into a single sequential source before inverting the
Dirac matrix on the latter:

Sseq ¼ D−1ξseq; ð29Þ

ξseqðt; x⃗Þ ¼ Γeip⃗·x⃗ðδ
t;tð0Þi

Sfðtð0Þi ; x⃗; tð0Þi ; x⃗iÞ

þ δ
t;tð1Þi

Sfðtð1Þi ; x⃗; tð1Þi ; x⃗iÞÞ; ð30Þ

where tð1Þi ¼ tð0Þi þ T=2 mod T.
The correlation matrix is then built from the

propagators listed above as follows:
(a) q̄q − q̄q correlators: The typical 2-point

correlator with a single-hadron interpolator at

source and sink is constructed using point-to-all
propagators:

Cq̄q−q̄qðtf − ti; p⃗f;Γf; p⃗i;ΓiÞ
¼ −

X
x⃗f

Trððγ5Sfðtf; x⃗f; ti; x⃗iÞγ5Þ~†

× ΓfSfðtf; x⃗f; ti; x⃗iÞΓiÞeip⃗f ·x⃗fþip⃗i·x⃗i : ð31Þ

Above, ðÞ~† denotes the Hermitian adjoint with
respect to only spin-color indices. We use the
convention p⃗f ¼ −p⃗i.
The direct diagram of the Cππ−ππ correlation

function is the product of two of the previous
correlators with Γi ¼ γ5 ¼ Γf. However, trans-
lational invariance allows only one of the x⃗i to be
fixed. To perform the sum over x⃗i, we use the
one-end-trick and define

Cq̄q−q̄q;oetðtf − ti;Γf; p⃗f;Γi; p⃗iÞ
¼ −

X
α;β

X
x⃗f

ðΓiγ5Þαβϕti;0;βðtf; x⃗fÞ~†γ5Γf

× ϕti;p⃗i;αðtf; x⃗fÞeip⃗f ·x⃗f ; ð32Þ

where ϕti;0;β and ϕti;p⃗i;α are the spin-diluted
stochastic time slice-to-all propagators from
Eqs. (25) and (28). The stochastic-sample index
r is suppressed for brevity.

(b) ππ − q̄q correlators: The only contribution to
the I ¼ 1 correlators with a two-pion interpola-
tor at the source and a single-hadron interpolator
at the sink reads

Cq̄q−ππðtf − ti;Γf; p⃗f; p⃗i1 ; p⃗i2Þ
¼ −

X
x⃗f

TrðSfðtf; x⃗f; ti; x⃗i1Þ~†γ5Γf

× Sseqðtf; x⃗f; ti; p⃗i2 ; ti; x⃗i1ÞÞeip⃗f ·x⃗fþip⃗i1
·x⃗i1 ;

ð33Þ

where Sseq is the sequential propagator from
Eq. (24).

(c) ππ − ππ correlators: The direct diagram in the
lower right panel of Fig. 2 is obtained as the
product of two q̄q − q̄q correlators as

Cdirect
ππ−ππðtf − ti; p⃗f1 ; p⃗f2 ; p⃗i1 ; p⃗i2Þ
¼ Cq̄q−q̄qðtf − ti; γ5; p⃗f1 ; γ5; p⃗i1Þ
× Cq̄q−q̄q;oetðtf − ti; γ5; p⃗f2 ; γ5; p⃗i2Þ: ð34Þ

The box-type diagram in the lower right panel
of Fig. 2 requires point-to-all, sequential, and
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stochastic propagators and is calculated in two
steps:

Cbox
ππ−ππðtf − ti; p⃗f1 ; p⃗f2 ; p⃗i1 ; p⃗i2Þ

¼ −
1

Nsample

XNsample

r¼1

X
α;a

ηrϕðtf; ti; p⃗f1 ; x⃗i1Þaα

× ηrξðtf; ti; p⃗f2 ; p⃗i2 ; x⃗i1Þaαeip⃗i1
·x⃗i1 ; ð35Þ

where

ηrξðtf; ti; p⃗f2 ; p⃗i2 ; x⃗i1Þ
¼
X
x⃗f2

ξrtfðtf; x⃗f2Þ~†γ5

× Sseqðtf; x⃗f2 ; ti; p⃗i2 ; ti; x⃗i1Þeip⃗f2
·x⃗f2 ð36Þ

and

ηrϕðtf; ti; p⃗f1 ; x⃗i1Þ ¼
X
x⃗f1

Sfðtf; x⃗f1 ; ti; x⃗i1Þ~†

× ϕr
tf;0

ðtf; x⃗f1Þeip⃗f1
·x⃗f1 :

ð37Þ

In Eqs. (35), (36) and (37) we used γ5-Hermiticity
of the quark propagator as well as Γi1=2 ¼ γ5 ¼
Γf1=2 .
The ππ-ππ elements of the correlation matrix

are constructed as

Cππ−ππðtf − ti; p⃗f1 ; p⃗f2 ; p⃗i1 ; p⃗i2Þ

¼ 1

2
Cdirect
ππ−ππðtf − ti; p⃗f1 ; p⃗f2 ; p⃗i1 ; p⃗i2Þ

− Cbox
ππ−ππðtf − ti; p⃗f1 ; p⃗f2 ; p⃗i1 ; p⃗i2Þ: ð38Þ

V. SPECTRUM RESULTS

We extract the energy levels EΛ;P⃗
n from the correlation

matrices using two alternative methods. The first method,
discussed in Sec. VA, is the variational analysis, also
known as the generalized eigenvalue problem (GEVP). The
second method, discussed in Sec. V B, employs multi-
exponential fits directly to the correlation matrix.

A. Variational analysis

The generalized eigenvalue problem is defined as

CΛ;P⃗
ij ðtÞunj ðtÞ ¼ λnðt; t0ÞCΛ;P⃗

ij ðt0Þunj ðtÞ; ð39Þ

where t0 is a reference time [60–63]. At large t, the
eigenvalues λnðt; t0Þ, which are also referred to as principal
correlators, behave as

λnðt; t0Þ ¼ e−E
Λ;P⃗
n ðt−t0Þ: ð40Þ

To determine the energies EΛ;P⃗
n , we fit the eigenvalues

either with the single-exponential form of Eq. (40) or with
the two-exponential form

λnðt; t0Þ ¼ ð1 − BÞe−EΛ;P⃗
n ðt−t0Þ þ Be−E

0Λ;P⃗
n ðt−t0Þ; ð41Þ

which perturbatively includes a small pollution from

higher-lying excited states with energies E0Λ;P⃗
n [61,62].

We checked the GEVP spectrum for t0=a ∈ ½2; 9� and
found that the central values are independent of t0 within
statistical uncertainties. We set t0=a ¼ 3 for our main
analysis, which minimizes the overall statistical noise.
The chosen fit types, fit ranges, corresponding χ2 values,
the energies, and other derived quantities are presented in
Table III. The operator basis used is O1234 in all irreps
except E, where we only use O123 because the energy level
dominantly overlapping with O4 is too far above the region
of interest.
For each quantity y, the first uncertainty given is the

statistical uncertainty, obtained from single-elimination
jackknife. The second uncertainty is the systematic uncer-
tainty, estimated using the prescription

σsysy ¼ max
�
jy0avg − yavgj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jσ02y − σ2yj

q �
; ð42Þ

where yavg and σy are the central value and statistical
uncertainty for the chosen fit range specified in Table III,
and y0avg, σ0y are the central value and statistical uncertainty
obtained with tmin=a increased by 1.

B. Matrix fit analysis

The spectral decomposition of the correlation matrix
(neglecting the finite time extent of the lattice) reads

CΛ;P⃗
ij ðtÞ ¼

X∞
n¼1

h0jOijn;Λ; P⃗ihn;Λ; P⃗jO†
j j0ie−E

Λ;P⃗
n t; ð43Þ

where jn;Λ; P⃗i is the nth energy eigenstate with the given
quantum numbers. We defined the interpolating fields Oi

such that the entire correlation matrix CΛ;P⃗
ij ðtÞ is real-valued

(in the infinite- statistics limit); this is possible because
of charge-conjugation symmetry. Consequently, the over-
lap factors Zi;n ¼ h0jOijn;Λ; P⃗i can also be chosen as
real-valued. In the matrix fit analysis, we directly fit the
correlation matrix for tmin ≤ t ≤ tmax using the model
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CΛ;P⃗
ij ðtÞ ≈

XNstates

n¼1

Zi;nZj;ne−E
Λ;P⃗
n t; ð44Þ

where tmin has to be chosen large enough such that
contributions from n > Nstates become negligible. For an
m ×m correlation matrix, this model has Nstates × ðmþ 1Þ
parameters. To ensure that the energies returned from
the fit are ordered, we used the logarithms of the

energy differences, lΛ;P⃗n ¼ ln ðaEΛ;P⃗
n − aEΛ;P⃗

n−1Þ, instead of

aEΛ;P⃗
n (for n > 1) as parameters in the fit. To simplify the

task of finding suitable start values for the iterative χ2-
minimization process, we also rewrote the overlap param-
eters as Zi;n ¼ Bi;nZi with Bi;n ¼ 1 for n equal to the state
with which Oi has the largest overlap. Good initial guesses
for Zi can then be obtained from single-exponential fits of

the form ZiZie−E
Λ;P⃗
n t to the diagonal elements CΛ;P⃗

ii ðtÞ in an
intermediate time window in which the nth state dominates,
and the start values of Bi;n can be set to zero. An example
matrix fit is shown in Fig. 3.
In the matrix fits, we excluded the interpolating fields

O2, which are very similar toO1 and did not provide useful
additional information. For each ðΛ; P⃗Þ, we performed
either 3 × 3 matrix fits (including O1, O3, O4) with

Nstates ¼ 3 or 2 × 2 matrix fits (including O1 and O3) with
Nstates ¼ 2. We set tmax ¼ 20 and varied tmin. The matrix fit

results for aEΛ;P⃗
n are shown as the black diamonds in the

right panels of Figs. 4 and 5. We observe that the results for
all extracted energy levels stabilize for tmin ≳ 8.

TABLE III. GEVP results for the energy levels. We set t0=a ¼ 3 and use the one-exponential form in Eq. (40) to fit the principal

correlators. Also shown are the corresponding center-of-mass energy
ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
and extracted phase shift δ1ð

ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
Þ. The last column

indicates whether the energy level is used our global analysis of ππ scattering (see Sec. VII).

L
2π jP⃗j Λ Basis n Fit range χ2

dof aEΛ;P⃗
n a

ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
δ1 ½°� Included

0 T1 O1234 1 8-18 0.82 0.4588(16)(12) 0.4588(16)(12) 86.0(1.6)(1.2) Yes
0 T1 O1234 2 8-18 0.66 0.5467(16)(9) 0.5467(16)(9) 166.5(2.1)(1.3) Yes
0 T1 O1234 3 7-15 1.54 0.6713(41)(104) 0.6713(41)(104) 172.9(4.7)(168.1) No
1 A2 O1234 1 8-18 0.61 0.44536(73)(23) 0.39974(82)(25) 2.81(25)(9) Yes
1 A2 O1234 2 8-18 1.04 0.5124(20)(17) 0.4732(22)(18) 131.3(1.9)(1.6) Yes
1 A2 O1234 3 9-16 0.69 0.5983(31)(37) 0.5652(33)(39) 6.1(7.1)(8.3) No
1 E O123 1 8-18 1.43 0.5004(18)(14) 0.4603(20)(16) 93.7(1.7)(1.3) Yes
1 E O123 2 8-17 1.37 0.6136(25)(24) 0.5813(27)(26) 166.3(2.8)(2.7) Yesffiffiffi
2

p
B1 O1234 1 8-18 1.23 0.5041(13)(10) 0.4207(16)(12) 8.84(89)(68) Yesffiffiffi

2
p

B1 O1234 2 8-17 1.09 0.5557(26)(27) 0.4814(30)(31) 144.9(2.3)(2.4) Yesffiffiffi
2

p
B2 O1234 1 8-18 0.56 0.5189(15)(11) 0.4384(18)(13) 19.9(1.7)(1.2) Yesffiffiffi

2
p

B2 O1234 2 8-18 1.18 0.5634(26)(23) 0.4902(30)(27) 152.0(2.6)(2.4) Yesffiffiffi
2

p
B2 O1234 3 8-16 1.28 0.6717(40)(49) 0.6116(44)(54) 158(14)(17) Noffiffiffi

2
p

B3 O1234 1 9-18 0.97 0.5376(38)(34) 0.4603(45)(39) 99.1(3.5)(3.1) Yesffiffiffi
2

p
B3 O1234 2 9-18 1.15 0.6573(43)(49) 0.5958(48)(54) 174(15)(172) Noffiffiffi

2
p

B3 O1234 3 8-14 0.82 0.6780(67)(88) 0.6185(74)(96) 167.0(5.6)(6.9) Noffiffiffi
3

p
A2 O1234 1 8-18 0.68 0.5538(35)(49) 0.4371(44)(62) 15.5(3.4)(4.8) Yesffiffiffi

3
p

A2 O1234 2 8-16 1.41 0.5905(35)(39) 0.4827(43)(48) 149(11)(13) Yesffiffiffi
3

p
A2 O1234 3 8-16 1.10 0.6093(49)(50) 0.5055(59)(60) 156.5(7.5)(14.4) Noffiffiffi

3
p

E O123 1 8-16 0.71 0.5641(37)(41) 0.4501(47)(50) 44.4(5.0)(5.3) Yesffiffiffi
3

p
E O123 2 7-16 0.72 0.6195(33)(54) 0.5178(39)(64) 160.6(3.3)(5.4) Yes

FIG. 3. Sample matrix fit with Nstates ¼ 3 for jP⃗j ¼ 2π
L ;Λ ¼ A2

in the range between tmin=a ¼ 8 and tmin=a ¼ 20.
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C. Comparison between GEVP and MFA

The results obtained from the GEVP and the MFA
are compared in Figs. 4 and 5. The left panels show the
effective energy

aEn
effðtÞ ¼ ln

λnðt; t0Þ
λnðtþ a; t0Þ

ð45Þ

of the GEVP principal correlators, while the right panes
show the fit results aEn

fit from both the GEVP and the
MFA as a function of tmin (we did not find any significant
dependence on tmax). For the GEVP, we show both one- and
two-exponential fits using Eqs. (40) and (41). We find that
the one-exponential GEVP fit results are very similar (both
in central value and uncertainty) to the MFA results, except
for the n ¼ 3 energy level of the jP⃗j ¼ ffiffiffi

2
p

2π
L ;Λ ¼ B1

FIG. 4. Comparison between MFA and GEVP for the momentum frames and irreps L
2π jP⃗j ¼ 0; 1;

ffiffiffi
2

p
and Λ ¼ T1; A2; E; B1,

respectively. The green circles on the left panel show the effective energies En
eff determined from the principal correlators. In the right

panel we present the fitted energies as they depend on the choice of tmin. Black diamonds are obtained from MFA, red squares are
obtained from the single exponential fits to the principal correlator [see Eq. (40)], and blue circles are from two-exponential fits to the
principal correlator [see Eq. (41)]. Note that not all two-exponential fits are shown, as they can become unstable. The red horizontal
bands give the 1σ statistical-uncertainty ranges of the selected one-exponential GEVP fits listed in Table III.
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correlation matrix where the principal correlator obtained
from the GEVP with the basis O1234 does not show a
plateau and we do not extract this energy level.
Surprisingly, we found that removing the second quark-
antiquark operator O2 from the basis yields a stable plateau
and stable fit results for the n ¼ 3 energy level, as shown in
Fig. 6. Note thatO2 ∼ q̄γ0γiq has a very similar structure as
O1 ∼ q̄γiq. For n ¼ 1 and n ¼ 2, the one-exponential fit
results for the chosen tmin=a ¼ 8 change by less than 0.5σ
when removing O2. We also performed additional GEVP
fits with the reduced basis in all other irreps, and found that
none of the fitted energies changed significantly (in fact, the

reduced basis gives slightly larger uncertainties in most
cases). Given that the n ¼ 3 energy in the B1 irrep is above
the 4π and KK̄ thresholds, we do not use this energy level
in our further analysis.
Finally, we note that the two-exponential fits to the

GEVP principal correlators find plateaus at much smaller
tmin but are significantly noisier compared to the MFA and
one-exponential GEVP fits. Overall, we have shown that
the MFA and GEVPmethods are equivalent, and we use the
one-exponential GEVP fit results given in Table III in our
further analysis. These results are also indicated with the
red bands in Figs. 4 and 5.

FIG. 5. As in Fig. 4, but for L
2π jP⃗j ¼

ffiffiffi
2

p
;
ffiffiffi
3

p
and Λ ¼ B2; B3; A2; E.
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VI. THE LÜSCHER ANALYSIS: FORMALISM

Even though we have some energy levels with quite large
invariant mass (see Table III), we limit our energy region of
interest below 0.55a−1 where we are safely away from the
4π (≈0.73) and KK̄ (≈0.6) thresholds [64] and can safely
perform the elastic scattering analysis of the Lüscher
method.
The quantization condition for elastic ππ scattering is

detð1þ itlðsÞð1þ iMP⃗ÞÞ ¼ 0; ð46Þ

where tlðsÞ is the infinite-volume scattering amplitude,
which is related to the infinite-volume scattering phase shift

δlðsÞ via Eq. (2). The matrix MP⃗ has the indices MP⃗
lm;l0m0 ,

where l, l0 label the irreducible representations of SOð3Þ
and m, m0 are the corresponding row indices. For the case
of P-wave ππ scattering, F-wave and higher contributions
are highly suppressed, as was shown in a previous lattice
study [12] and in an analysis of experimental data [52].

Neglecting these contributions, the matrix MP⃗ takes
the form

MP⃗ ¼
00

10

11

1 − 1

00 10 11 1 − 10
BBBBB@

w00 i
ffiffiffi
3

p
w10 i

ffiffiffi
3

p
w11 i

ffiffiffi
3

p
w1−1

−i
ffiffiffi
3

p
w10 w00 þ 2w20

ffiffiffi
3

p
w21

ffiffiffi
3

p
w2−1

i
ffiffiffi
3

p
w1−1 −

ffiffiffi
3

p
w2−1 w00 − w20 −

ffiffiffi
6

p
w2−2

i
ffiffiffi
3

p
w11 −

ffiffiffi
3

p
w21 −

ffiffiffi
6

p
w22 w00 − w20

1
CCCCCA

; ð47Þ

where the indices lm and l0m0 are indicated next to the matrix. The functions wlm are equal to

wP⃗
lmðk; LÞ ¼

ZP⃗
lmð1; ðkL=ð2πÞÞ2Þ

π3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
γðkL

2πÞlþ1
; ð48Þ

where ZP⃗
lmð1; ðkL2πÞ2Þ is the generalized zeta function as defined for example in Appendix A of Ref. [27], and γ ¼ E=

ffiffiffi
s

p
is the

Lorentz boost factor. The matrixMP⃗ can be further simplified by taking into account the symmetries for a given little group
(P⃗) and its irrep Λ [27]. The quantization condition (46) then reduces to the following equations for each P⃗ and Λ:

P⃗ ¼ 0; Λ ¼ T1∶ cot δ1
�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
P⃗ ¼ 2π

L
ð0; 0; 1Þ; Λ ¼ A2∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
þ 2w2;0

�
kΛ;P⃗n ; L

�
P⃗ ¼ 2π

L
ð0; 0; 1Þ; Λ ¼ E∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
− w2;0

�
kΛ;P⃗n ; L

�
P⃗ ¼ 2π

L
ð0; 1; 1Þ; Λ ¼ B1∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
þ 1

2
w2;0

�
kΛ;P⃗n ; L

�
þ i

ffiffiffi
6

p
w2;1

�
kΛ;P⃗n ; L

�

−
ffiffiffi
3

2

r
w2;2

�
kΛ;P⃗n ; L

�
P⃗ ¼ 2π

L
ð0; 1; 1Þ; Λ ¼ B2∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
þ 1

2
w2;0

�
kΛ;P⃗n ; L

�
− i

ffiffiffi
6

p
w2;1

�
kΛ;P⃗n ; L

�

−
ffiffiffi
3

2

r
w2;2

�
kΛ;P⃗n ; L

�
P⃗ ¼ 2π

L
ð0; 1; 1Þ; Λ ¼ B3∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
− w2;0

�
kΛ;P⃗n ; L

�
þ

ffiffiffi
6

p
w2;2

�
kΛ;P⃗n ; L

�

P⃗ ¼ 2π

L
ð1; 1; 1Þ; Λ ¼ A2∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
− i

ffiffiffi
8

3

r
w2;2

�
kΛ;P⃗n ; L

�
−

ffiffiffi
8

3

r �
Re
h
w2;1

�
kΛ;P⃗n ; L

�i
þ Im

h
w2;1

�
kΛ;P⃗n ; L

�i�
P⃗ ¼ 2π

L
ð1; 1; 1Þ; Λ ¼ E∶ cot δ1

�
sΛ;P⃗n

�
¼ w0;0

�
kΛ;P⃗n ; L

�
þ i

ffiffiffi
6

p
w2;2

�
kΛ;P⃗n ; L

�
: ð49Þ
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The scattering analysis can be performed in two different
ways, and in this work we present a comparison between
the methods:

(i) In the first approach, Eqs. (49) are used to map each

individual energy level (sΛ;P⃗n ) to the corresponding

value of the scattering phase shift δ1ðsΛ;P⃗n Þ. One then
fits a phase-shift model to the extracted values

of δ1ðsΛ;P⃗n Þ.
(ii) In the second approach, a model for the t-matrix is

fitted directly to the spectrum via the quantization
condition [36]. This method has proven to be quite
successful in recent years [12,13,55,65–68]. Unlike
the first approach, the t-matrix fit method is also
well-suited for more complicated coupled-channel
analyses.

VII. THE LÜSCHER ANALYSIS: RESULTS

A. Direct fits to the phases

The discrete P-wave phase shifts determined for several
P⃗;Λ are listed in Table III next to the invariant masses.
The first uncertainty given is the statistical uncertainty
determined using single-elimination jackknife. The second
uncertainty given is the systematic uncertainty resulting
from the choice of tmin in the fits to the GEVP principal
correlators; it is computed by repeating the extraction of δ
with tmin þ a, and then applying Eq. (42) to the two phase
shift results.

We then fit the models described in Sec. II to the phase
shift points.
To correctly estimate the uncertainties of the model

parameters, we include the uncertainties in both
ffiffiffi
s

p
and δ1

in the construction of the χ2 function. To this end, we define

χ2 ¼
X
P⃗;Λ;n

X
P⃗0;Λ0;n0

X
i∈f

ffiffiffiffiffiffi
sΛ;P⃗n

p
;δ1ðsΛ;P⃗n Þg

X
j∈f

ffiffiffiffiffiffiffiffi
sΛ

0 ;P⃗0
n0

q
;δ1ðsΛ

0 ;P⃗0
n0 Þg

ðyavgi − fiÞ

× ½C−1�ijðyavgj − fjÞ; ð50Þ

where i and j are generalized indices labeling both the data
points for

ffiffiffi
s

p
and δ1. The covariance matrixC is therefore a

2N × 2N matrix, where N ¼ 15 is the total number of
energy levels included in the fit (see the last column of
Table III). For i corresponding to a

ffiffiffi
s

p
data point, the

function fi is equal to a nuisance parameter
ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
; for i

corresponding to a δ1 data point, the function fi is equal to
the phase shift model evaluated at the correspondingffiffiffiffiffiffiffiffi
sΛ;P⃗n

q
. The total number of parameters in the fit is thus

equal to N plus the number of parameters in the phase
shift model.
When constructing the covariance matrix, we included

the correlations between all invariant-mass values and the
correlations between all phase-shift values. We found
that the covariance matrix becomes ill-conditioned when
including also the cross-correlations between

ffiffiffi
s

p
and δ1

as expected when dealing with fully correlated data. We
therefore neglect these contributions in the evaluation of χ2.
The cross-correlations are nevertheless accounted for in our
estimates of the parameter uncertainties, which are obtained
by jackknife resampling.
The fit of the simplest possible model, BW I, is shown as

the blue curve in Fig. 7 and the resulting parametersmρ and

FIG. 6. Comparison between MFA and GEVP for the B1 irrep
with jP⃗j ¼ ffiffiffi

2
p

2π
L as in Fig. 4, but withO2 removed from the basis

for the GEVP. The reduced basis gives a better extraction of aE3

compared to the full basis only in this irrep.

FIG. 7. Comparison of fitting Breit-Wigner model BW I versus
fitting Breit-Wigner model BW II to the phase shift data. The
bands indicate the 1σ statistical uncertainty.
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gρππ are given in the first row of Table IV. As before, the
first uncertainty given is statistical, and the second uncer-
tainty is the systematic uncertainty arising from the choice
of tmin. To obtain the latter, we repeated the Breit-Wigner fit
for the phase shifts extracted with tmin þ a for all energy
levels, and then applied Eq. (42) to mρ and gρππ . We follow
the same procedure for all other models.
We then investigate the effect of adding the Blatt-

Weisskopf barrier factors [39] to the decay width appearing
in the Breit-Wigner parametrization of δ1ðsÞ, which leads to
model BW II. The resulting fit is shown as the red curve in
Fig. 7 (alongside the blue BW I curve) and the resulting
parameters are given in the second row of Table IV. The
BW II model appears to give a slightly better description of
the data at high invariant mass, but the paramaters mρ and
gρππ are essentially unchanged. Furthermore, the centrifugal
barrier radius r0 is consistent with zero at the 1.1σ level,
indicating that it is not a very significant degree of freedom.
We note that this could be related to the high pion mass used
in our calculation, which limits the phase space available for
the decay and suppresses the centrifugal barrier effect.

We continue by investigating whether there is a
nonresonant contribution to the scattering phase shift.
We first add a nonresonant contribution to the resonant
model BW I. In Fig. 8 we compare the resonant-only fit
(blue curve) with the full fits for three different forms
of the nonresonant contributions (red curves). For clarity
we also show the nonresonant contributions obtained
from the full fits separately (orange curves). The fit
results are given in Table V. We find that the parameters
of each of the three parametrizations NR I (constant
phase), NR II (a nonresonant phase depending linearly
on s), and NR III (zeroth-order ERE) are consistent with
zero, and the results for mρ and gρππ also do not change
significantly.
Performing the analoguous analysis for the resonant

model BW II gives the phase shift curves shown in Fig. 9
and fit parameters in Table VI. Again, the parameters of the
nonresonant contribution are consistent with zero, and mρ

and gρππ do not change significantly. When adding the
nonresonant contributions to the BW II model, the uncer-
tainty of the centrifugal barrier parameter r0 increases
substantially.
Overall, we find that the minimal resonant model BW I is

sufficient for a good description of our results for the elastic
I ¼ 1 ππ P-wave scattering.

B. Fitting a t-matrix to the spectrum

For the t-matrix fit to the spectrum, we define the χ2

function as

TABLE IV. Comparison of the parameters for the resonant
Breit-Wigner models I and II.

Model χ2

dof amρ gρππ ðar0Þ2
BW I 0.571 0.4599(19)(13) 5.76(16)(12)
BW II 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)

FIG. 8. Contribution of nonresonant background models as described in Sec. II to the resonant Breit-Wigner BW I. None of the
background phase shift models shows a strong sign of deviation away from 0.
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χ2 ¼
X
P⃗;Λ;n

X
P⃗0;Λ0;n0

 ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q ½avg�
−

ffiffiffiffiffiffiffiffi
sΛ;P⃗n

q ½model�
!

× ½C−1�P⃗;Λ;n;P⃗0;Λ0;n0

� ffiffiffiffiffiffiffiffiffiffi
sΛ

0;P⃗0

n0

q ½avg�
−

ffiffiffiffiffiffiffiffiffiffi
sΛ

0;P⃗0

n0

q ½model��
;

ð51Þ

where the invariant-mass values
ffiffiffiffiffiffiffiffiffiffi
sΛ

0;P⃗0

n0

q ½model�
are obtained

by solving the inverse Lüscher problem, i.e., determining
the finite-volume spectrum from a given t-matrix model
[12,36]. Above, C is the matrix of covariances between all
invariant-mass values labeled by P⃗;Λ; n (in our case, this is
a 15 × 15 matrix). The only fit parameters in this approach
are the parameters of the t matrix (for example, amρ and
gρππ for the BW I model).
When fitting the t-matrix directly to the spectrum we

consider only the two resonant models, as results from
Sec. VII A show no indication of a nonresonant phase
contribution. The parameters obtained from the t-matrix
fits are compared to the parameters of the direct fits to the

phase shifts in Table VII. The plots of the models with
parameters from the two different fit approaches are
compared in Fig. 10. The central values and uncertainties
obtained with the two methods are consistent, which
confirms previous findings [12,36] that the two
approaches are equivalent not only theoretically but
also in practice. We note that the values of χ2=dof are
generally quite small. We have tested for the presence of
autocorrelations in the data using binning, but found no
significant effect.

C. Final result for the ρ resonance parameters

Given the discussion in the previous sections, we choose
to quote the results of the t-matrix fit with the resonant
Breit-Wigner model BW I as our final values of amρ and
gρππ for the ensemble of gauge configurations used here
[with amπ ¼ 0.18295ð36Þ and amN ¼ 0.6165ð23Þ]:

amρ ¼ 0.4609ð16Þð14Þ
gρππ ¼ 5.69ð13Þð16Þ

�
1.0 0.326

1.0

�
: ð52Þ

TABLE V. Parameters of the phase shift model combining the resonant Breit-Wigner model BW I and various
nonresonant models.

Model χ2

dof amρ
gρππ

NR I 0.586 0.4600(19)(13) 5.74(17)(14) A ¼ 0.16ð31Þð18Þ°
NR II 0.488 0.4602(19)(13) 5.84(21)(20) A ¼ −2.9ð2.7Þð3.4Þ° a−2B ¼ 19.2ð16.6Þð20.1Þ°
NR III 0.552 0.4601(19)(13) 5.74(16)(13) aa−11 ¼ −19.8ð27.4Þð98.1Þ

FIG. 9. Contribution of nonresonant background models as described in Sec. II to the resonant Breit-Wigner model BW II. None of the
background phase shift models shows a strong sign of deviation away from 0.
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The phase shift curve of our chosen fit is shown in Fig. 11.
Above, the first uncertainties given are statistical, and the
second uncertainties are the systematic uncertainties related
to the choice of tmin in the spectrum analysis. Also given in
Eq. (52) is the statistical correlation matrix for amρ and
gρππ . The exponentially suppressed finite-volume errors in
mρ and gρππ are expected to be of order Oðe−mπLÞ ≈ 0.3%.
Given that we have only one lattice spacing, we are unable
to quantify discretization errors (except in the pion
dispersion relation, Sec. III B, where we find c2 to be
consistent with 1 within 2%). Using the lattice spacing
determined from the ϒð2SÞ −ϒð1SÞ splitting (see Table I),
we obtain

mπ ¼ 316.6ð0.6Þstatð2.1Þa MeV;

mρ ¼ 797.6ð2.8Þstatð2.4Þsysð5.4Þa MeV;

gρππ ¼ 5.69ð13Þstatð16Þsys: ð53Þ

It is important to note that the lattice spacing uncertainty
given here is statistical only. As a consequence of the
heavier-than-physical pion mass and lattice artefacts, differ-
ent quantities used to set the scale of an individual
ensemble yield different results for a and hence for mπ

and mρ in units of MeV. We therefore prefer to report the
dimensionless ratios

TABLE VI. Parameters of the phase shift model combining the resonant Breit-Wigner model BW II and various
nonresonant models.

Model χ2

dof amρ gρππ

NR I 0.586 0.4600(19)(13) 5.74(17)(14) A ¼ 0.16ð31Þð18Þ°
NR II 0.488 0.4602(19)(13) 5.84(21)(20) A ¼ −2.9ð2.7Þð3.4Þ° a−2B ¼ 19.2ð16.6Þð20.1Þ°
NR III 0.552 0.4601(19)(13) 5.74(16)(13) aa−11 ¼ −19.8ð27.4Þð98.1Þ

TABLE VII. Comparison of t-matrix fits with direct fits to the phase shifts.

Fit type χ2

dof amρ gρππ ðar0Þ2
BW I Fit to δ1 0.571 0.4599(19)(13) 5.76(16)(12)
BW I t-matrix fit 0.374 0.4609(16)(14) 5.69(13)(16)
BW II Fit to δ1 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)
BW II t-matrix fit 0.318 0.4603(16)(14) 5.77(13)(13) 9.6(5.9)(3.7)

FIG. 10. Comparison of t-matrix fit and fit to the phase shifts for Breit-Wigner models I and II.
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amπ

amN
¼ 0.2968ð13Þstat;

amρ

amN
¼ 0.7476ð38Þstatð23Þsys; ð54Þ

in which the lattice scale cancels.
In Fig. 12 we compare our results for the ρ coupling and

mass with the results of previous studies performed by the
CP-PACS collaboration (CP-PACS ’07) [4], the ETMC
collaboration (ETMC ’10) [7], the PACS-CS collaboration
(PACS-CS ’11) [10], Lang et al. (Lang et al. ’11) [9],
the Hadron Spectrum collaboration (HadSpec ’12 and
HadSpec ’15) [12,13], Pellisier et al. (Pellisier et al. ’12)
[11], the RQCD collaboration (RQCD ’15) [14], Guo et al.
(Guo et al. ’16) [17], Bulava et al. (Bulava et al. ’16) [15],
and Fu et al. (Fu et al. ’16) [18]. In the right half of the
figure, we use the values of mπ and mρ in MeVas reported
in each reference. In the left half of the figure, we instead
use the dimensionless ratios amπ=amN and amρ=amN ,
where amπ and amN are the pion and nucleon masses in
lattice units computed on the same ensemble as amρ. The
nucleon masses were obtained from Refs. [69–76].
We find that our value for the coupling gρππ is in good

agreement with previous studies both as a function of mπ

and amπ=amN . Furthermore, it is consistent with the
general finding that gρππ has no discernible pion-mass
dependence in the region between mπ;phys and approxi-
mately 3mπ;phys.
Concerning the results for the ρ mass, the left and right

panels of Fig. 12 show very different behavior. This
discrepancy arises from the different methods used to set
the lattice scale on a single ensemble, which can lead to
misleading conclusions. To avoid the substantial

ambiguities associated with the scale setting, we only
consider the dimensionless ratio amρ=amN in the following
discussion.
The Nf ¼ 2þ 1 results for amρ=amN obtained with

Wilson-Clover-based fermion actions all approximately lie
on a straight line leading to the experimental value (shown
as the filled green circle in Fig. 12). The Nf ¼ 2þ 1 data
points using staggered fermions (Fu et al. ’16) are con-
sistent with that line except for one outlier.
The Nf ¼ 2 results are dispersed around the Nf ¼ 2þ 1

values in both directions. The discrepancies between the
different results could arise from any of several systematic
effects, such as excited-state contamination in the deter-
mination of the ππ spectrum or the nucleon mass, various
potential issues in fitting the data, and discretization
errors which manifest themselves for example in deviations
from the relativistic continuum dispersion relation for the
single-pion energies. Additionally, the Lüscher method
only addresses power-law finite volume effects and does
not take into account the exponentially suppressed finite-
volume effects which are estimated to scale asymptotically
asOðe−mπLÞ. Note that for some of the studies, these can be
as high as Oð10%Þ and it is thus not clear whether the
asymptotic regime is reached. An example for systematics
associated with the pion dispersion relation can be seen in
the CP-PACS ’07 study, where the two different results for
amρ at the same pion mass were obtained using either the
relativistic continuum dispersion relation or a free-boson
lattice dispersion relation. An example of systematic effects
that might be associated with the data analysis can be seen
when comparing the Pellisier et al. ’12 results with the Guo
et al. ’16 results at amπ=amN ≈ 0.3. Both studies used the
same ensemble, but arrive at significantly different values
for the ρ resonance parameters.
Keeping these caveats in mind, it is nevertheless inter-

esting to note that our Nf ¼ 2þ 1 results for both
amρ=amN and gρππ agree well with the recent Nf ¼ 2

results from Guo et al. ’16 at almost the same pion mass.
This suggests that the effects of the dynamical strange
quark are small at mπ ≈ 320 MeV. The HadSpec ‘15 study,
which explicitly included the KK̄ channel in their valence
sector, provides further evidence that the strange quark
does not play a major role in the ρ resonance mass.

VIII. SUMMARY AND CONCLUSIONS

We have presented a (2þ 1)-flavor lattice QCD calcu-
lation of I ¼ 1, P wave ππ scattering at a pion mass of
approximately 320 MeV. The calculation was performed in
a large volume of ð3.6 fmÞ3 × ð10.9 fmÞ and utilized all
irreps of LGðP⃗Þ with total momenta up to jP⃗j ≤ ffiffiffi

3
p

2π
L .

Using a method based on forward, sequential, and stochas-
tic propagators that scales well with the volume, we have
achieved high statistical precision (0.35% for amρ and
2.3% for gρππ).

FIG. 11. Final result of fitting the resonant model BW I to the
spectrum via the t-matrix fit. The gray data points are the results
of the individual phase shift extractions for each energy level, and
are not used in the t-matrix fit.
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We compared two different methods to determine the
energy spectrum: the generalized eigenvalue problem
(GEVP), and multiexponential direct matrix fits to the
correlation matrices (MFA). A careful investigation of the
dependence on the fit ranges showed that both approaches
are equally powerful and give consistent results.
After determining the elastic scattering phase shifts

from the spectrum, we analyzed several different models
for the energy dependence of the ππ scattering amplitude.
We investigated two different Breit-Wigner forms, one
with added Blatt-Weisskopf barrier factors, and found
that the addition of this degree of freedom was not
necessary to describe our data. This could be due to
the higher-than-physical pion mass used in this work.
Additionally, we examined whether there is a nonreso-
nant contribution to the scattering phase shift, finding
that it is consistent with zero within our statistical
uncertainties.

Regarding the technical aspects of the analysis, we
also compared two different ways of determining the
scattering parameters: extracting the discrete phase shift
points from each individual energy level (which is only
feasible for elastic scattering) versus fitting the parameters
of the t-matrix directly to the spectrum (as is also done in
multichannel studies). We have demonstrated numerically
that both methods are equivalent.
In summary, we found that the I ¼ 1, P-wave ππ

scattering at mπ ≈ 320 MeV is well described in the elastic
energy region by the minimal resonant Breit-Wigner model
BW I (defined in Sec. II) with the parameters given in
Eq. (52). A comparison with previous lattice results, shown
in Fig. 12, revealed that (i) it is important to use dimen-
sionless ratios such as amρ=amN and amπ=amN to avoid
scale setting ambiguities, and (ii) there are signs of
significant systematic errors whose origins are difficult
to disentangle without additional dedicated calculations.

FIG. 12. Comparison of our results for the ρ mass and coupling with previous lattice QCD calculations. In the two left panels, we use
the dimensionless ratios amρ=amN and amπ=amN , while in the two right panels we use mπ and mρ in MeV as reported by each
collaboration (with different scale setting methods; the error bars do not include the scale-setting ambiguities). The open red symbols
mark calculations withNf ¼ 2 gauge ensembles, while the filled blue symbols denote calculations withNf ¼ 2þ 1 sea quarks; the only
study so far that explicitly included the KK̄ channel, HadSpec ’15, is presented as a purple upward facing triangle. The results of our
present work are shown with filled black hexagons. In the left-hand plots, the HadSpec ’15 results are offset horizontally by −1.8% so
that they do not overlap with the result of Bulava et al. ’16. In the right-hand plots, we offset our results by −8 MeV to avoid overlap
with Guo et al. ’16. The experimental values [1], where gρππ was calculated from Γ using Eq. (5), are shown with filled green circles.
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