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Lattice QCD calculations with different staggered valence and sea quarks can be used to improve
determinations of quark masses, Gasser-Leutwyler couplings, and other parameters relevant to phenom-
enology. We calculate the masses and decay constants of flavored pions and kaons through next-to-leading
order in staggered-valence, staggered-sea mixed-action chiral perturbation theory. We present the results in
the valence-valence and valence-sea sectors, for all tastes. As in unmixed theories, the taste-pseudoscalar,
valence-valence mesons are exact Goldstone bosons in the chiral limit, at nonzero lattice spacing. The
results reduce correctly when the valence and sea quark actions are identical, connect smoothly to the
continuum limit, and provide a way to control light quark and gluon discretization errors in lattice
calculations performed with different staggered actions for the valence and sea quarks.
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I. INTRODUCTION

The quark masses and Cabibbo-Kobayashi-Maskawa
matrix elements are fundamental parameters of the
Standard Model. To understand their values in terms of
the underlying physics and probe the limits of the Standard
Model, they must be extracted from experiment with
greater precision. In addition, the low-energy couplings
(LECs) of chiral perturbation theory (ChPT) parametrize
the strong interactions at energies smaller than the scale of
chiral symmetry breaking [1–3]. Improving knowledge of
the Standard Model and chiral effective theory parameters
requires improved calculations of strong force contribu-
tions to the relevant hadronic matrix elements.
Mixed-action lattice QCD calculations can be used to

calculate hadronic matrix elements while exploiting the
advantages of different discretizations of the fermion
action. For example, fermions with more desirable features
for a specific physics purpose may be used for the valence
quarks, while fermions more adequate for massive pro-
duction may be used for the sea quarks, to include the
effects of vacuum polarization. The construction of chiral
effective theories for lattice QCD incorporates discretiza-
tion effects, thereby relating the chiral and continuum
extrapolations and improving control of the continuum
limit [4,5].
Staggered ChPT (SChPT) was developed to analyze

results of lattice calculations with staggered fermions [4,6];
it has been used extensively to control extrapolations to
physical light-quark masses and to remove dominant

light-quark and gluon discretization errors [7]. Mixed-
action ChPT was developed for lattice calculations
performed with Ginsparg-Wilson valence quarks and
Wilson sea quarks [8,9]. The formalism for staggered
sea quarks and Ginsparg-Wilson valence quarks was
developed in Ref. [10]. Mixed-action ChPT for differently
improved staggered fermions was introduced for calcula-

tions of the K0 − K0 mixing bag parameters entering εK in
and beyond the Standard Model [11–13] and the K → πlν
vector form factor [14].
We have calculated the pion and kaon masses and

axial-current decay constants in all taste representations
at next-to-leading order (NLO) in mixed-action SChPT.
The results generalize those of Refs. [6,15–17] to the
mixed-action case; the results could be used to improve
determinations of LECs poorly determined by existing
analyses and to improve determinations of light-quark
masses, the Gasser-Leutwyler couplings, and the pion
and kaon decay constants.
In Sec. II we review the formulation of mixed-action

SChPT. Results for the masses are presented in Sec. III,
and for the decay constants, in Sec. IV. In Sec. V, we
conclude.

II. MIXED-ACTION STAGGERED CHIRAL
PERTURBATION THEORY

As for ordinary, unmixed SChPT, the theory is con-
structed in two steps. First one builds the Symanzik
effective continuum theory (SET) for the lattice theory.
Then one maps the operators of the SET into those of ChPT
[4,6,11,18].
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A. Symanzik effective theory

Through NLO the SET may be written

Seff ¼ SQCD þ a2S6 þ � � � ; ð1Þ

where SQCD has the form of the QCD action, but possesses
taste degrees of freedom and respects the continuum taste
SU(4) symmetry. To account for differences in the masses of
valence and sea quarks in lattice calculations, the SET can be
formulated with bosonic ghost quarks and fermionic valence
and sea quarks [19]. We use the replica method [20] and so
include in the action only (fermionic) valence and sea quarks.
The operators in S6 have mass-dimension six, and they

break the continuum symmetries to those of themixed-action
lattice theory. In valence and sea sectors, these symmetries
are identical to those in the unmixed case [4,6], but now there
are no symmetries rotating valence and sea quarks together
[11,18]. As in the unmixed case, only a subset of the
operators in S6 contributes to the leading-order (LO) chiral
Lagrangian, and they are four-fermion operators respecting
the remnant taste symmetry Γ4⋊SOð4Þ ⊂ SUð4Þ. They can
be obtained from those of the unmixed SET by introducing
projection operators Pv;σ onto the valence and sea sectors in
the Γ4⋊SOð4Þ-respecting operators of the unmixed theory
and allowing the LECs in the valence and sea sectors to take
different values [18]. Generically,

cψ̄ðγs ⊗ ξtÞψψ̄ðγs ⊗ ξtÞψ
→ cvvψ̄ðγs ⊗ ξtÞPvψψ̄ðγs ⊗ ξtÞPvψ þ ðv → σÞ
þ 2cvσψ̄ðγs ⊗ ξtÞPvψψ̄ðγs ⊗ ξtÞPσψ ; ð2Þ

where γs (ξt) is a spin (taste) matrix, and the quark spinors ψ
carry flavor indices taking on values in the valence and sea
sectors. In Eq. (2), the flavor indices are contracted within
each bilinear. For the action of the projection operators on the
spinors, we may write

ðPvψÞi ¼ ψ i ðPσψÞi ¼ 0 for i ∈ v;

ðPvψÞi ¼ 0 ðPσψÞi ¼ ψ i for i ∈ σ: ð3Þ
In the unmixed case, cvv ¼ cσσ ¼ cvσ ¼ c, and we recover
the operators of the unmixed theory.

B. Leading order chiral Lagrangian

Mapping the SET operators into the chiral theory at LO,
we may write [18]

LLO ¼ f2

8
Trð∂μΣ∂μΣ†Þ − 1

4
μf2TrðMΣþMΣ†Þ

þ 2m2
0

3
½TrðϕIÞ�2 þ a2V: ð4Þ

The first three terms are identical to the kinetic energy,
mass, and anomaly operators of the unmixed theory,

respectively; the normalization of the anomaly term is
arbitrary, but natural in SU(3) SChPT, for which the mass
of the taste-singlet η0 approaches m0 as m0 → ∞ [6]. As in
the unmixed theory, the field Σ ¼ eiϕ=f, where

ϕ ¼
X16
a¼1

ϕa ⊗ Ta; ð5Þ

Ta ∈ fξ5; iξμ5; iξμνðμ < νÞ; ξμ; ξIg: ð6Þ
The field ϕ is a matrix in flavor-taste space, and the
Hermitian, 4 × 4 generators of (taste) U(4) Ta are defined
in terms of the taste matrices ξμ, which generate the Clifford
algebra; ξμ5 ≡ ξμξ5, ξμν ≡ ξμξν, and ξI ≡ I, the identity in
taste space.
To construct the potential V, the projection operators are

conveniently included in spurions. The result can be written

V ¼ U þ U 0 − CmixTrðτ3Στ3Σ†Þ; ð7Þ
where the last term is a taste-singlet potential new in the
mixed-action theory, with τ3 ≡ Pσ − Pv. It arises from
four-quark operators in which ξt ¼ ξI; such operators
map to constants in the unmixed case. In the mixed-action
theory, they yield nontrivial chiral operators because the
projection operators P ≠ 1 are included in the taste spu-
rions [18]. In the appendix we present a derivation of the
last term in Eq. (7). The potentials U and U 0 contain single-
and double-trace operators, respectively, that are direct
generalizations of those in unmixed SChPT. The operators
in Uð0Þ have independent LECs for the valence-valence,
sea-sea, and valence-sea sectors. We write

U ¼ Uvv þ Uσσ þ Uvσ; ð8Þ
U 0 ¼ U 0

vv þ U 0
σσ þ U 0

vσ; ð9Þ
where

−Uvv ¼ Cvv
1 Trðξ5PvΣξ5PvΣ†Þ

þ Cvv
6

X
μ<ν

TrðξμνPvΣξνμPvΣ†Þ

þ Cvv
3

2

X
ν

½TrðξνPvΣξνPvΣÞ þ p:c:�

þ Cvv
4

2

X
ν

½Trðξν5PvΣξ5νPvΣÞ þ p:c:�; ð10Þ

−Uσσ ¼ Cσσ
1 Trðξ5PσΣξ5PσΣ†Þ

þ Cσσ
6

X
μ<ν

TrðξμνPσΣξνμPσΣ†Þ

þ Cσσ
3

2

X
ν

½TrðξνPσΣξνPσΣÞ þ p:c:�

þ Cσσ
4

2

X
ν

½Trðξν5PσΣξ5νPσΣÞ þ p:c:�; ð11Þ
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−Uvσ ¼ Cvσ
1 ½Trðξ5PvΣξ5PσΣ†Þ þ p:c:� þ Cvσ

6

X
μ<ν

½TrðξμνPvΣξνμPσΣ†Þ þ p:c:� þ Cvσ
3

X
ν

½TrðξνPvΣξνPσΣÞ þ p:c:�

þ Cvσ
4

X
ν

½Trðξν5PvΣξ5νPσΣÞ þ p:c:�; ð12Þ

−U 0
vv ¼

Cvv
2V

4

X
ν

½TrðξνPvΣÞTrðξνPvΣÞ þ p:c:� þCvv
2A

4

X
ν

½Trðξν5PvΣÞTrðξ5νPvΣÞ þ p:c:� þCvv
5V

2

X
ν

½TrðξνPvΣÞTrðξνPvΣ†Þ�

þCvv
5A

2

X
ν

½Trðξν5PvΣÞTrðξ5νPvΣ†Þ�; ð13Þ

−U 0
σσ ¼

Cσσ
2V

4

X
ν

½TrðξνPσΣÞTrðξνPσΣÞ þ p:c:� þ Cσσ
2A

4

X
ν

½Trðξν5PσΣÞTrðξ5νPσΣÞ þ p:c:�

þ Cσσ
5V

2

X
ν

½TrðξνPσΣÞTrðξνPσΣ†Þ� þ Cσσ
5A

2

X
ν

½Trðξν5PσΣÞTrðξ5νPσΣ†Þ�; ð14Þ

−U 0
vσ ¼

Cvσ
2V

2

X
ν

½TrðξνPvΣÞTrðξνPσΣÞ þ p:c:� þ Cvσ
2A

2

X
ν

½Trðξν5PvΣÞTrðξ5νPσΣÞ þ p:c:�

þ Cvσ
5V

2

X
ν

½TrðξνPvΣÞTrðξνPσΣ†Þ þ p:c:� þ Cvσ
5A

2

X
ν

½Trðξν5PvΣÞTrðξ5νPσΣ†Þ þ p:c:�; ð15Þ

where p.c.. indicates the parity conjugate. In the unmixed
case, Cmix ¼ 0, Cvv ¼ Cσσ ¼ Cvσ ¼ C, and the potential V
reduces to that of ordinary SChPT. Restricting attention to
two-point correlators of sea-sea particles yields results of
the unmixed theory, as expected [19].

C. Tree-level masses and propagators

As in the unmixed theory, the potential V contributes to
the tree-level masses of the pions and kaons, which fall into
irreducible representations (irreps) of Γ4⋊SOð4Þ. For a
taste t pseudo-Goldstone boson (PGB) ϕt

xy composed of
quarks with flavors x, y, x ≠ y,

m2
xy;t ¼ μðmx þmyÞ þ a2Δxy

F ;

t ∈ F ∈ fP; A; T; V; Ig; ð16Þ

where F labels the taste Γ4⋊SOð4Þ irrep (pseudoscalar,
axial, tensor, vector, or scalar). The notation here matches
that in our recent papers [16,17] on taste non-Goldstone
pions and kaons in ordinary SChPT. It is also the basis for
the notation in the sections below. The mass splitting Δxy

F
depends on the LEC of the taste-singlet potential (Cmix), the
LECs in the single-trace potential (U), and the sector
(valence or sea) of the quark flavors x and y. Expanding
the LO Lagrangian through Oðϕ2Þ, we have

Δvv
F ¼ 8

f2
X
b≠I

Cvv
b ð1 − θtbθb5Þ; ð17Þ

Δσσ
F ¼ 8

f2
X
b≠I

Cσσ
b ð1 − θtbθb5Þ; ð18Þ

Δvσ
F ¼16Cmix

f2
þ 8

f2
X
b≠I

�
1

2
ðCvv

b þCσσ
b Þ−Cvσ

b θtbθb5
�
; ð19Þ

where the splitting is Δvv
F if both quarks are valence quarks

(xy ∈ vv), Δσσ
F if both quarks are sea quarks (xy ∈ σσ), and

Δvσ
F otherwise. The sub(super)script b and taste t are

indices labeling the generators of the fundamental irrep
of U(4). The numerical constant θtb ¼ þ1 if the generators
for t and b commute and −1 if they anticommute. The LEC
Cb ¼ C1, C6, C3, or C4 if b labels a generator correspond-
ing to the P, T, V, or A irrep of Γ4⋊SOð4Þ, respectively.
The residual chiral symmetry in the valence-valence

sector, as for the unmixed theory, implies F ¼ P particles
are Goldstone bosons for a ≠ 0, mq ¼ 0, and therefore
Δvv

P ¼ 0. The same is not true for the taste pseudoscalar,
valence-sea PGBs, and generically, Δvσ

P ≠ 0.
In the flavor-neutral sector, x ¼ y, the PGBs mix in the

taste singlet, vector, and axial irreps. The Lagrangian
mixing terms (hairpins) are

1

2
δijI ϕ

I
iiϕ

I
jj þ

1

2
δvvV ϕμ

ii
ϕμ

jj
þ 1

2
δσσV ϕμ

iiϕ
μ
jj þ δvσV ϕμ

ii
ϕμ
jj

þ ðV → A; μ → μ5Þ; ð20Þ

where i, j are flavor indices; μ (μ5) is a taste index in the
vector (axial) irrep; and we use an overbar (underbar) to
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restrict summation to the valence (sea) sector. The δijI term
is the anomaly term; δijI ≡ 4m2

0=3. In continuum ChPT,
taking m0 → ∞ at the end of the calculation decouples the
η0 [21]. In SChPT, taking m0 → ∞ decouples the η0I . The
flavor singlets in other taste irreps are PGBs and do not
decouple [6]. The δvv;σσ;vσV;A terms are lattice artifacts from
the double-trace potential a2U 0, and the couplings δvv;σσ;vσV;A

depend linearly on its LECs,

δvvV ¼16a2

f2
ðCvv

2V−Cvv
5VÞ; δvvA ¼16a2

f2
ðCvv

2A−Cvv
5AÞ; ð21Þ

δσσV ¼16a2

f2
ðCσσ

2V −Cσσ
5VÞ; δσσA ¼16a2

f2
ðCσσ

2A−Cσσ
5AÞ; ð22Þ

δvσV ¼16a2

f2
ðCvσ

2V −Cvσ
5VÞ; δvσA ¼16a2

f2
ðCvσ

2A−Cvσ
5AÞ: ð23Þ

Although the mass splittings and hairpin couplings are
different in the three sectors, the tree-level propagator can
be written in the same form as in the unmixed case. We
have (k, l are flavor indices)

Gtb
ij;klðp2Þ ¼ δtb

�
δilδjk

p2 þm2
ij;t

þ δijδklDt
il

�
; ð24Þ

where the disconnected propagators vanish (by definition)
in the pseudoscalar and tensor irreps, and for the singlet,
vector, and axial irreps,

Dt
ij ≡ −1

ItJt

δijF
1þ δσσF σt

for ij∉vv; ð25Þ

Dt
ij ≡ −1

ItJt

�ðδvσF Þ2=δσσF
1þ δσσF σt

þ δvvF − ðδvσF Þ2=δσσF
�

for ij ∈ vv; ð26Þ

where It ≡ p2 þm2
ii;t, Jt ≡ p2 þm2

jj;t, and we use the
replica method to quench the valence quarks [20] and root
the sea quarks [6], so that

σt ≡
X
i

1

p2 þm2
ii;t

→
1

4

X
i0

1

p2 þm2
i0i0;t

: ð27Þ

The index i0 is summed over the physical sea quark flavors.
As for the continuum, partially quenched case [22], the
factors arising from iterating sea quark loops can be
reduced to a form convenient for doing loop integrations.
For three nondegenerate, physical sea quarks u, d, s, we
have

1

1þ δσσF σt
¼ ðp2 þm2

uu;tÞðp2 þm2
dd;tÞðp2 þm2

ss;tÞ
ðp2 þm2

π0t
Þðp2 þm2

ηtÞðp2 þm2
η0t
Þ ; ð28Þ

where m2
π0t
, m2

ηt , and m
2
η0t
are the eigenvalues of the matrices

(for tastes F ¼ I, V, A)

0
B@

m2
uu;t þ δσσF =4 δσσF =4 δσσF =4

δσσF =4 m2
dd;t þ δσσF =4 δσσF =4

δσσF =4 δσσF =4 m2
ss;t þ δσσF =4

1
CA: ð29Þ

In the disconnected propagator Dt
ij, an additional piece

appears in the valence-valence sector [Eq. (26)]. As noted
in Refs. [11,18], this piece has the form of a quenched
disconnected propagator, for which σt ¼ 0, and the
assumption of factorization leads us to expect its suppres-
sion; by comparing results of analyses with SU(2) and
SU(3) mixed-action SChPT, the authors of Ref. [11]
showed the associated contributions to BK were negligible
compared to other uncertainties. In the unmixed case, the
mass splittings and hairpin couplings in the valence and sea
sectors are degenerate, and the propagator reduces.

III. NEXT-TO-LEADING ORDER
CORRECTIONS TO MASSES

For a taste t PGB ϕt
xy composed of quarks with flavors x,

y, x ≠ y, the mass is defined in terms of the self-energy, as
in continuum ChPT. The NLO mass can be obtained by
adding the NLO self-energy to the tree-level mass,

M2
xy;t ¼ m2

xy;t þ Σxy;tð−m2
xy;tÞ: ð30Þ

Σxy;t consists of connected and disconnected tadpole loops
with vertices from the LO Lagrangian at Oðϕ4Þ and tree-
level graphs with vertices from the NLO Lagrangian at
Oðϕ2Þ. The tadpole graphs contribute the leading chiral
logarithms, while the tree-level terms are analytic in the
quark masses and the square of the lattice spacing.
We have not attempted to enumerate all terms in the

NLO Lagrangian. It consists of generalizations of the
Gasser-Leutwyler terms [3], as in ordinary, unmixed
SChPT, as well as generalizations of the Sharpe-Van de
Water Lagrangian [23] to the mixed action case. There also
exist additional operators including traces over taste-sin-
glets; such operators vanish in the unmixed theory.
Given the different kinds of operators in the NLO

Lagrangian, the analytic terms at NLO have the same
form as those in the unmixed theory, but with distinct LECs
for valence-valence, sea-sea, and valence-sea PGBs.
Explicitly, we have
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ΣNLO;anal
xy;t ð−m2

xy;tÞ

¼ 16

f2
ðð2L6 − L4Þμðmx þmyÞ

× 2μðmu þmd þmsÞ þ ð2L8 − L5Þ½2μðmx þmyÞ�2Þ
þ cxy1;ta

2μðmx þmyÞ þ cxy2;ta
22μðmu þmd þmsÞ

þ cxy3;ta
4; ð31Þ

where the coefficients of the last three terms are linear
combinations of the LECs in the generalized Sharpe-Van de
Water Lagrangian, and so depend on the sector of the x and
y quarks: cxyi;t ¼ cvvi;t , c

vσ
i;t , c

σσ
i;t for valence-valence, valence-

sea, and sea-sea mesons, respectively. We note that for the
NLO tree-level diagrams, the symmetry between x and y
quarks x ↔ y is present, as for the ordinary, unmixed case.
A few operators from the Sharpe-Van de Water

Lagrangian suffice to justify these claims. We introduce
projection operators onto the valence and sea sectors in
these operators, lift the degeneracy of the LECs in the three
sectors, and calculate the analytic contributions to the self-
energies. For example, for the first operator in Table I, we
have

a2CvvTrðPv∂μΣ†ξ5Pv∂μΣξ5Þ þ ðv → σÞ
þ a2Cvσ½TrðPv∂μΣ†ξ5Pσ∂μΣξ5Þ þ p:c:�; ð32Þ

which yield analytic contributions of the form

a2θt5Cxyp2; ð33Þ
where the coefficient Cxy ¼ Cvv, Cσσ, Cvσ for xy ∈ vv, σσ,
vσ, and setting p2 ¼ −μðmx þmyÞ − a2Δxy

t yields terms
like cxy1;t and cxy3;t.
Finally, we have calculated the tadpole graphs for the

sea-sea PGBs and find them identical to the results in
the unmixed theory, as expected [19]. Below we consider
the tadpole graphs for the valence-valence and valence-
sea PGBs.

A. Valence-valence sector

For any Γ4⋊SOð4Þ irrep, the calculation of the valence-
valence PGB self-energies proceeds as for the unmixed

case [6,16]. Quark flow diagrams corresponding to the
tadpole graphs are shown in diagrams (a)–(f) of Fig. 1. The
kinetic energy, mass, and U vertices yield graphs of types
(a), (c), and (d), and the taste-singlet potential vertices
(∝ Cmix) yield graphs of type (a),

a2Cmix

3f2ð4πfÞ2
X
ī0i0b

lðm2
ī0i0;bÞ; ð34Þ

where ī0 is summed over x̄, ȳ; i0 is summed over the
physical sea quarks u, d, s; and lðm2Þ≡m2 lnðm2=Λ2Þ þ
δ1ðmLÞ is the chiral logarithm, with Λ the scale of
dimensional regularization and δ1 the correction for finite
spatial volume [24]. (L is the spatial extent of the lattice.)
Vertices from U 0 yield graphs of types (b), (e), and (f).

The hairpin vertex graphs are of types (e) and (f). As in the
unmixed case, they can be combined and eliminated in

TABLE I. Examples of operators in the Sharpe-Van de Water
Lagrangian contributing tree-level terms to the masses and decay
constants at NLO. Such operators enter with undetermined LECs
that differ in the valence-valence, valence-sea, and sea-sea
sectors, breaking degeneracies between valence and sea quarks.

Operator Order

Trð∂μΣ†ξ5∂μΣξ5Þ a2p2

TrðξμΣ†ξμΣ†ÞTrðΣM†Þ þ p:c: a2m

Trðξ5Σξ5Σ†ÞTrðξ5Σξ5Σ†Þ a4

FIG. 1. Quark flows for the NLO self-energy tadpoles (a)–(f)
and current-vertex loops (g)–(i). The x and y quarks are
continuously connected to the external lines, closed loops are
sea quarks, and current insertions are represented by crossed
boxes.
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favor of a contribution of type (d). In the mixed-action case,
the necessary identity is (t ∈ V, A)

δvvF
p2 þm2

xx;t

þ δvσF
4

X
i0
Dt

x̄i0 ¼ −ðp2 þm2
yy;tÞDt

xy: ð35Þ

This relation follows from Eqs. (25) and (26).

As in the unmixed theory, graphs of type (b) come
from vertices ∝ ωvv

t ≡ 16ðCvv
2F þ Cvv

5FÞ=f2 for F ¼ V, A;
they have the same form as those in the unmixed
case [16].
Adding the various contributions and evaluating the

result at p2 ¼ −m2
xy;t, we have the NLO, one-loop con-

tributions to the self-energies of the valence-valence PGBs,

−ΣNLO loop
xy;t ð−m2

xy;tÞ ¼
a2

48ð4πfÞ2

×
X
c

��
Δvv;vσ

ct − Δvv
t − Δvσ

c þ 16Cmix

f2

�X
ī0i0

lðm2
ī0i0;cÞ þ

3

2

� X
b∈V;A

ωvv
b τcbtτcbtð1þ θctÞ

�
lðm2

xy;cÞ
�

þ 1

12ð4πfÞ2
Z

d4q
π2

×
X
c

½a2ðΔvv
ct − Δvv

t − Δvv
c ÞðDc

x̄x þDc
yyÞ

þ ½ð2ð1 − θctÞ þ ρctÞq2 þ ð2ð1þ 2θctÞ þ ρctÞm2
xy;5 þ 2a2Δ0vv

ct þ a2ð2θctΔvv
t þ ð2þ ρctÞΔvv

c Þ�Dc
xy�;
ð36Þ

where ρct ≡ −4ð2þ θctÞ unless c ¼ I, when it vanishes, τcbt ≡ TrðTcTbTtÞ is a trace over (a product of) generators of U(4),
and

Δvv
ct ≡ 8

f2
X
b≠I

Cvv
b ð5þ 3θcbθbt − 4θ5bθbt − 4θcbθb5Þ; ð37Þ

Δ0vv
ct ≡ 8θct

f2
X
b≠I

Cvv
b ð1þ 3θcbθbt − 2θ5bθbt − 2θcbθb5Þ; ð38Þ

Δvv;vσ
ct ≡ 8

f2
X
b≠I

�
1

2
ð9Cvv

b þ Cσσ
b Þ þ Cvσ

b ð3θcbθbt − 4θcbθb5Þ − 4Cvv
b θ5bθbt

�
: ð39Þ

The form of Eq. (36) is the same as that in ordinary SChPT [16]; the differences are in the definition of the disconnected
propagators and the LECs of the effective field theory. The reduction to the unmixed case is straightforward.
To illustrate the final results, we consider the pions of the 2þ 1 flavor theory in the fully dynamical case. The theory has

two degenerate light quarks and one strange quark in valence and sea sectors, with valence and sea quark masses equal, for
each flavor. Substituting for the quark masses in Eq. (36), noting the degeneracies within each Γ4⋊SOð4Þ irrep, summing
over the taste index c, and performing the loop integrals, we have

−ΣNLO loop
πvvt

ð−m2
πvvt
Þ ¼ a2

ð4πfÞ2
X
B

�
δvv;vvBF lðπvvB Þ þ Δvv;vσ

BF

24
ð2lðπvσB Þ þ lðKvσ

B ÞÞ
�

þ 1

12ð4πfÞ2
�
2
X
X

ð12πP − 6νVFXV − a2ðΔvv;vv
VF þ Δ0vv;vv

VF ÞÞ × ðδvσV Þ2=δσσV ½RSσσ
πvvησση0σσðXVÞ

þ a2ðΔσσ
V − Δvv

V ÞDSσσ
πvvησση0σσ ;πvvðXVÞ�lðXVÞ þ 2½ðδvσV Þ2=δσσV a2ðΔσσ

V − Δvv
V ÞRSσσ

πvvησση0σσ ðπvvV Þ þ δvvV

− ðδvσV Þ2=δσσV �ð6νVFlðπvvV Þ þ ð12πP − 6νVFπ
vv
V − a2ðΔvv;vv

VF þ Δ0vv;vv
VF ÞÞ ~lðπvvV ÞÞ þ ðV → AÞ

−
8

3
ð3πP þ 2a2Δvv;vv

IF Þ
�X

X

½RSσσ
πvvησσ ðXIÞ þ a2ðΔσσ

I − Δvv
I ÞDSσσ

πvvησσ ;πvvðXIÞ�lðXIÞ

þ a2ðΔσσ
I − Δvv

I ÞRSσσ
πvvησσðπvvI Þ ~lðπvvI Þ

��
: ð40Þ
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On the right side of Eq. (40), we represent the squares of the
tree-level masses by the names of the respective mesons,

πvvB ≡ 2μml þ a2Δvv
B ; ð41Þ

πvσB ≡ 2μml þ a2Δvσ
B ; ð42Þ

Kvσ
B ≡ μðml þmsÞ þ a2Δvσ

B ; ð43Þ

πP ≡ 2μml; ð44Þ

SσσB ≡ 2μms þ a2Δσσ
B ; ð45Þ

and we define linear combinations of LECs that are
degenerate within irreps of Γ4⋊SOð4Þ,

δvv;vvBF ≡X
c∈B

1

32

� X
b∈V;A

ωvv
b τcbtτcbtð1þ θctÞ

�
; ð46Þ

Δvv;vσ
BF ≡X

c∈B

�
Δvv;vσ

ct − Δvv
t − Δvσ

c þ 16Cmix

f2

�
; ð47Þ

Δvv;vv
BF ≡X

c∈B
ðΔvv

ct − Δvv
t − Δvv

c Þ; ð48Þ

Δ0vv;vv
BF ≡X

c∈B
ðΔ0vv

ct þ ðθctΔvv
t þ ð1þ ρct=2ÞΔvv

c ÞÞ: ð49Þ

The whole number νBF ≡ 1
2

P
c∈Bð1þ θctÞ counts the taste

matrices in irrep B commuting with the taste matrix ξt,
where t ∈ F. The index of summation X runs over the
meson names in the subscripts of the residues, which are
defined as in Ref. [16],

RA1A2…Ak
B1B2…Bn

ðXFÞ≡
Q

AjF
ðAjF − XFÞQ

BiF≠XF
ðBiF − XFÞ

; ð50Þ

DA1A2…Ak
B1B2…Bn;Bi

ðXFÞ≡ −
∂

∂BiF
RA1A2…Ak
B1B2…Bn

ðXFÞ: ð51Þ

The chiral behavior of the mixed action theory differs
nontrivially from that of the unmixed theory due to incom-
plete cancellation of double poles in the loop integrals. The
chiral logarithm ~lðm2Þ≡ −ðlnðm2=Λ2Þ þ 1Þ þ δ3ðmLÞ,
with the finite volume correction δ3 [24], arises from these
loops. Unlike in the ordinary theory, such terms enter here
even thoughvalence and sea quarkmasses for each flavor are
equal, i.e., in the fully dynamical case.
The valence-valence, taste-pseudoscalar PGBs are true

Goldstone bosons in the chiral limit, mx, my → 0, a ≠ 0.
Setting t ¼ 5 in Eq. (36) and noting that

Δvv;vσ
c5 ¼ Δvσ

c −
16Cmix

f2
; ð52Þ

Δvv
c5 ¼ Δvv

c ; ð53Þ

Δ0vv
c5 ¼ −θc5Δvv

c ; ð54Þ

Δvv
5 ¼ 0; ð55Þ

we have

−ΣNLO loop
xy5 ð−m2

xy;5Þ ¼
μðmx̄ þmȳÞ
2ð4πfÞ2

X
b

θb5
Z

d4q
π2

Db
x̄ ȳ;

ð56Þ

which is the generalization of the results of Ref. [6] to the
mixed-action case. As in ordinary SChPT, only graphs of
type (d) contribute. To generalize to themixed-action theory,
one has only to replace the disconnected propagators Dt

xy

with their counterparts in the mixed-action theory.

B. Valence-sea sector

We consider mesons ϕt
x̄ y with one valence quark x̄ and

one sea quark y. For tadpoles with vertices from the kinetic
energy and mass terms of the LO Lagrangian [Eq. (4)], we
find graphs of types (a), (c), and (d),

1

48ð4πfÞ2
X
c;i0

½ðp2 þ μðmx̄ þmyÞ − a2Δvσ
c Þlðm2

x̄i0;cÞ þ ðp2 þ μðmx̄ þmyÞ − a2Δσσ
c Þlðm2

yi0;cÞ�

þ 1

12ð4πfÞ2
X
c

Z
d4q
π2

½ðp2 þ q2 þ μð3mx̄ þmyÞÞDc
x̄ x̄ þ ðp2 þ q2 þ μðmx̄ þ 3myÞÞDc

yy

− 2θctðp2 þ q2 − μðmx̄ þmyÞÞDc
x̄ y�; ð57Þ

where i0 is summed over the physical sea-quark flavors. As for the sea-sea and valence-valence sectors, the q2Dc
xx and q

2Dc
yy

terms can be eliminated in favor of a q2Dc
x̄ y term. But for the valence-sea mesons, an additional term arises, with the form of

a connected contribution [graph (e) of Fig. 1]. The necessary identities are
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ðq2 þ 2μmx̄ÞDt
xx ¼

δvσF
δσσF

ðq2 þm2
yy;tÞDt

x̄ y − a2Δvv
F Dt

xx þ
ðδvσF Þ2=δσσF − δvvF

q2 þm2
xx;t

; ð58Þ

ðq2 þ 2μmyÞDt
y y ¼

δσσF
δvσF

ðq2 þm2
x̄x;tÞDt

x̄ y−a2Δσσ
F Dt

y y; ð59Þ

which hold for t ∈ F ¼ V, A, I. Applying these identities to the above result gives

1

48ð4πfÞ2
X
c;i0

½ðp2 þ μðmx̄ þmyÞ − a2Δvσ
c Þlðm2

x̄i0;cÞ þ ðp2 þ μðmx̄ þmyÞ − a2Δσσ
c Þlðm2

yi0;cÞ�

−
1

12ð4πfÞ2
X
c∈V;A

ðδvvc − ðδvσc Þ2=δσσc Þlðm2
xx;cÞ þ

1

12ð4πfÞ2
X
c

Z
d4q
π2

×

�
ðp2 þ μðmx̄ þmyÞ − a2Δvv

c ÞDc
x̄ x̄ þ ðp2 þ μðmx̄ þmyÞ − a2Δσσ

c ÞDc
yy

þ
�
−2θctp2 þ

�
δvσc
δσσc

þ δσσc
δvσc

− 2θct
�
q2 þ

�
δσσc
δvσc

þ θct
�
ð2μmx̄Þ þ

�
δvσc
δσσc

þ θct
�
ð2μmyÞ þ a2

�
δvσc
δσσc

Δσσ
c þ δσσc

δvσc
Δvv

c

��
Dc

x̄ y

�
:

ð60Þ

From the taste-singlet potential, we find contributions not only from graphs of type (a), as in the valence-valence sector,
but also from graphs of types (c) and (d),

a2Cmix

3f2ð4πfÞ2
X
b

�X
i0
ð8lðm2

x̄i0;bÞ þ lðm2
yi0;bÞÞ þ 4

Z
d4q
π2

ðDb
xx þDb

yy − 2θbtDb
x̄ yÞ

�
ð61Þ

From the single-trace potential U, we have graphs of types (a), (c), and (d),

a2

48ð4πfÞ2
X
b

�X
i0
ðΔvσ;vσ

bt lðm2
x̄i0;bÞ þ Δvσ;σσ

bt lðm2
yi0;bÞÞ þ 4

Z
d4q
π2

ðΔvσ;vv
bt Db

xx þ Δvσ;σσ
bt Db

yy þ 2Δ0vσ;vσ
bt Db

x̄ yÞ
�
; ð62Þ

where

Δvσ;vσ
ct ≡ 8

f2
X
b≠I

½4Cvv
b þ Cσσ

b ð1þ 3θcbθbtÞ − 4Cvσ
b ðθ5bθbt þ θcbθb5Þ�; ð63Þ

Δvσ;σσ
ct ≡ 8

f2
X
b≠I

�
Cσσ
b

�
9

2
− 4θcbθb5

�
þ 1

2
Cvv
b þ Cvσ

b ð3θcbθbt − 4θ5bθbtÞ
�
; ð64Þ

Δvσ;vv
ct ≡ 8

f2
X
b≠I

�
Cvv
b

�
9

2
− 4θcbθb5

�
þ 1

2
Cσσ
b þ Cvσ

b ð3θcbθbt − 4θ5bθbtÞ
�
; ð65Þ

Δ0vσ;vσ
ct ≡ 8θct

f2
X
b≠I

�
ðCvv

b þ Cσσ
b Þ

�
1

2
− θcbθb5

�
þ Cvσ

b ð3θcbθbt − 2θ5bθbtÞ
�
: ð66Þ

In the unmixed case, Δvσ;vσ
ct ¼ Δvσ;σσ

ct ¼ Δvσ;vv
ct ¼ Δct, Δ0vσ;vσ

ct ¼ Δ0
ct, and the contribution from U reduces [6,16]. We note

that Δvσ;σσ
ct appears in both connected and disconnected terms.
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From the double-trace potential U 0, we have, after combining graphs of types (e) and (f) to eliminate those of type (f),

1

12ð4πfÞ2
X
c

�
3a2

8

X
b∈V;A

τcbtτcbt

�
ωvσ
b þ θct

2
ðωvv

b þ ωσσ
b Þ

�
lðm2

x̄ y;cÞ þ
Z

d4q
π2

ρct
�
q2 þm2

x̄ y;5 þ
a2

2
ðΔvv

c þ Δσσ
c Þ

�
Dc

x̄ y

�

þ 1

3ð4πfÞ2
X
c∈V;A

�
ðδvvc − ðδvσc Þ2=δσσc Þlðm2

xx;cÞ þ
Z

d4q
π2

ðð2 − δσσc =δvσc − δvσc =δσσc Þq2 þ ð1 − δσσc =δvσc Þð2μmx̄ þ a2Δvv
c Þ

þ ð1 − δvσc =δσσc Þð2μmy þ a2Δσσ
c ÞÞDc

x̄ y

�
: ð67Þ

The reduction of this expression in the unmixed case is immediate. In the valence-valence sector and unmixed cases, the
graphs of types (e) and (f) can be combined into a graph of type (d). In the valence-sea sector, we eliminate graphs of type
(f) in favor of those of type (d), but a contribution of type (e) remains.
Adding the various contributions and evaluating the sum at p2 ¼ −m2

x̄ y;t gives, for graphs with connected propagators,

−ΣNLO loop;con
x̄ y;t ð−m2

x̄ y;tÞ ¼
a2

48ð4πfÞ2
X
c

��
Δvσ;vσ

ct − Δvσ
t − Δvσ

c þ 128Cmix

f2

�X
i0
lðm2

x̄i0;cÞ

þ
�
Δvσ;σσ

ct − Δvσ
t − Δσσ

c þ 16Cmix

f2

�X
i0
lðm2

yi0;cÞ

þ 3

2

X
b∈V;A

τcbtτcbt

�
ωvσ
b þ θct

2
ðωvv

b þ ωσσ
b Þ

�
lðm2

x̄ y;cÞ
�
þ 1

4ð4πfÞ2
X
c∈V;A

ðδvvc − ðδvσc Þ2=δσσc Þlðm2
xx;cÞ;

ð68Þ

while for the graphs with disconnected propagators, we have

−ΣNLO loop;disc
x̄ y;t ð−m2

x̄ y;tÞ ¼
1

12ð4πfÞ2
Z

d4q
π2

X
c

�
a2
�
Δvσ;vv

ct − Δvσ
t − Δvv

c þ 16Cmix

f2

�
Dc

xx

þ a2
�
Δvσ;σσ

ct − Δvσ
t − Δσσ

c þ 16Cmix

f2

�
Dc

yy þ
��

8 − 3

�
δvσc
δσσc

þ δσσc
δvσc

�
− 2θct þ ρct

�
q2

þ
�
4 − 3

δσσc
δvσc

þ 2θct þ ρct

2

�
ð2μmx̄Þ þ

�
4 − 3

δvσc
δσσc

þ 2θct þ ρct

2

�
ð2μmyÞ þ 2a2Δ0vσ;vσ

ct

þ a2
�
2θctΔvσ

t þ
�
4 − 3

δσσc
δvσc

þ ρct

2

�
Δvv

c þ
�
4 − 3

δvσc
δσσc

þ ρct

2

�
Δσσ

c

�
−
32a2θctCmix

f2

�
Dc

x̄ y

�
: ð69Þ

The reduction in the unmixed case is straightforward. There is no symmetry under x̄ ↔ y; when using the replica method,
the valence and sea sectors of the effective theory are distinguished by the operations of partial quenching (the valence
quarks) and rooting (the sea quarks). The taste pseudoscalars are not Goldstone bosons (in the chiral limit) at nonzero lattice
spacing, and the self-energy does not vanish in the chiral limit. In the continuum limit, the symmetry is restored, and the
masses vanish, in accordance with Goldstone’s theorem.
To illustrate the final results, we again consider the pions of the 2þ 1 flavor theory with degenerate valence and sea

quarks. We have
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−ΣNLO loop
πvσt

ð−m2
πvσt
Þ ¼ a2

ð4πfÞ2 ×
X
B

�
δvσ;vσBF lðπvσB Þ þ Δvσ;vσ

BF

48
ð2lðπvσB Þ þ lðKvσ

B ÞÞ þ Δvσ;σσ
BF

48
ð2lðπσσB Þ þ lðKσσ

B ÞÞ
�

þ 1

ð4πfÞ2 ðδ
vv
V − ðδvσV Þ2=δσσV ÞlðπvvV Þ þ ðV → AÞ þ 1

12ð4πfÞ2 ×
�
δvσV

X
X

�
2

�
6

�
δσσV
δvσV

þ δvσV
δσσV

�
πP

− 6

�
νVF þ

�
δσσV
δvσV

þ δvσV
δσσV

− 2

��
XV − a2

�
Δvσ;vv

VF

2

δvσV
δσσV

þ Δ0vσ;vσ
VF

��
RSσσ
πvvησση0σσ ðXVÞ

−
δvσV
δσσV

a2Δvσ;vv
VF × a2ðΔσσ

V − Δvv
V ÞDSσσ

πvvησση0σσ ;πvvðXVÞ
�
lðXVÞ

− a2Δvσ;σσ
VF δσσV

X
X

RSσσ
πσσησση0σσ ðXVÞlðXVÞ − a2Δvσ;vv

VF ½ðδvσV Þ2=δσσV a2ðΔσσ
V − Δvv

V Þ

× RSσσ
πvvησση0σσ ðπvvV Þ þ δvvV − ðδvσV Þ2=δσσV � ~lðπvvV Þ þ ðV → AÞ − 4

3

�
ð2ð3πP þ a2Δvσ;vv

IF Þ þ a2Δvσ;σσ
IF Þ

×
X
X

RSσσ
πvvησσ ðXIÞlðXIÞ þ a2Δvσ;vv

IF a2ðΔσσ
I − Δvv

I Þ
�
RSσσ
πvvησσ ðπvvI Þ ~lðπvvI Þ þ

X
X

DSσσ
πvvησσ ;πvvðXIÞlðXIÞ

�

þ a2Δvσ;σσ
IF

X
X

RSσσ
πσσησσ ðXIÞlðXIÞ

��
: ð70Þ

The new linear combinations of LECs are

δvσ;vσBF ≡ 1

32

X
c∈B

X
b∈V;A

τ2cbt

�
ωvσ
b þ 1

2
θctðωvv

b þ ωσσ
b Þ

�
; ð71Þ

Δvσ;vσ
BF ≡X

c∈B

�
Δvσ;vσ

ct − Δvσ
t − Δvσ

c þ 128Cmix

f2

�
; ð72Þ

Δvσ;σσ
BF ≡X

c∈B

�
Δvσ;σσ

ct − Δvσ
t − Δσσ

c þ 16Cmix

f2

�
; ð73Þ

Δvσ;vv
BF ≡X

c∈B

�
Δvσ;vv

ct − Δvσ
t − Δvv

c þ 16Cmix

f2

�
; ð74Þ

Δ0vσ;vσ
BF ≡X

c∈B

�
Δ0vσ;vσ

ct þ θctΔvσ
t þ Δvv

c

2

�
4 − 3

δσσc
δvσc

þ ρct

2

�
þ Δσσ

c

2

�
4 − 3

δvσc
δσσc

þ ρct

2

�
−
16θctCmix

f2

�
; ð75Þ

and we use the identity Δ0vσ;vσ
IF ¼ 1

2
ðΔvσ;vv

IF þ Δvσ;σσ
IF Þ to

simplify the disconnected loops in the taste singlet channel.
As for the valence-valence masses, the chiral behavior
differs nontrivially from that of the ordinary unmixed
theory. Even in the fully dynamical theory, double poles
do not completely cancel from the loop integrals.

IV. NEXT-TO-LEADING ORDER CORRECTIONS
TO DECAY CONSTANTS

As for continuum and ordinary SChPT, the decay con-
stants are defined by matrix elements of the axial currents,

−ifxy;tpμ ¼ h0jjμ5xy;tjϕt
xyðpÞi: ð76Þ

The NLO corrections are the same types of diagrams that
appear in continuum and unmixed SChPT. We have one-
loop wave function renormalization contributions [graphs
(a), (c), and (d) of Fig. 1], one-loop graphs from insertions of
theOðϕ3Þ terms of the LO current [graphs (g), (h), and (i) of
Fig. 1], and terms analytic in the quark masses and squared
lattice spacing, from the NLO Lagrangian [15]. As for the
NLO analytic corrections to the masses, the NLO analytic
corrections to the decay constants have the same form as in
the unmixed theory, with distinct LECs for the valence-
valence, sea-sea, and valence-sea sectors.
Turning to the one-loop corrections, we note that the LO

current is determined by the kinetic energy vertices of the
LO Lagrangian; these vertices are the same in mixed-action
and unmixed SChPT. Therefore, the LO current in the
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mixed-action case is the same as the LO current in unmixed
SChPT. Likewise, the NLO wave function renormalization
corrections are determined by self-energy contributions
from tadpoles with kinetic energy vertices from the LO
Lagrangian. Moreover, nothing in the calculation of the
relevant part of the self-energies or the current-vertex loops
is sensitive to the sector of the external quarks.

Therefore, to generalize the one-loop graphs of the
unmixed case, we have only to replace the propagators
with those of the mixed-action theory. The results hold for
all sectors of the mixed-action theory (valence-valence, sea-
sea, and valence-sea). Including the analytic contributions,
we have

fNLOxy;t

f
¼ 1 −

1

8ð4πfÞ2
X
c

�
1

4

X
ī0i0

lðm2
ī0i0;cÞ þ

Z
d4q
π2

ðDc
xx þDc

yy − 2θctDc
xyÞ

�

þ 16

f2
L4μðmu þmd þmsÞ þ

8

f2
L5μðmx þmyÞ þ a2cxyt ; ð77Þ

where the coefficient cxyt ¼ cvvt , cvσt , cσσt for valence-valence, valence-sea, and sea-sea mesons, respectively. The form of
this result is the same as that in the unmixed theory [17], and the reduction in the unmixed case is immediate. As for the
masses, the form of the NLO analytic terms can be verified by considering a few operators in the generalized Sharpe-Van de
Water Lagrangian and calculating the resulting contributions. In addition to the wave function renormalization
contributions, there are those from the NLO current. But the latter cannot change the form of the results, and considering
the wave function renormalization suffices.
To illustrate the loop corrections, we begin with the valence-valence pions in the 2þ 1 flavor, fully dynamical theory. We

have

fNLO loop
πvvt

f
¼ −

1

16ð4πfÞ2
X
B

gBð2lðπvσB Þ þ lðKvσ
B ÞÞ þ ð1 − ΘVF=4Þ

ð4πfÞ2
�X

X

ðδvσV Þ2=δσσV ðRSσσ
πvvησση0σσ ðXVÞ

þ a2ðΔσσ
V − Δvv

V ÞDSσσ
πvvησση0σσ ;πvvðXVÞÞlðXVÞ þ ½ðδvσV Þ2=δσσV a2ðΔσσ

V − Δvv
V ÞRSσσ

πvvησση0σσ ðπvvV Þ

þ ðδvvV − ðδvσV Þ2=δσσV Þ
�
~lðπvvV Þ� þ ðV → AÞ; ð78Þ

where gB ≡P
c∈B1 and ΘBF ≡P

c∈Bθ
ct, as for the unmixed case. For the valence-sea pions in the 2þ 1 flavor, fully

dynamical theory, we have

fNLO loop
πvσt

f
¼ −

1

16ð4πfÞ2
X
B

gBð2lðπvσB Þ þ lðKvσ
B ÞÞ þ 1

2ð4πfÞ2
�X

X

�
δvσV

�
δvσV
δσσV

−
ΘVF

2

�
RSσσ
πvvησση0σσ ðXVÞ

þ ðδvσV Þ2
δσσV

a2ðΔσσ
V − Δvv

V ÞDSσσ
πvvησση0σσ ;πvvðXVÞ

�
lðXVÞ þ δσσV

X
X

RSσσ
πσσησση0σσ ðXVÞlðXVÞ

þ ½ðδvσV Þ2=δσσV a2ðΔσσ
V − Δvv

V ÞRSσσ
πvvησση0σσðπvvV Þ þ ðδvvV − ðδvσV Þ2=δσσV Þ� ~lðπvvV Þ

�
þ ðV → AÞ

þ 1

6ð4πfÞ2
�X

X

ð−RSσσ
πvvησσ ðXIÞ þ a2ðΔσσ

I − Δvv
I ÞDSσσ

πvvησσ ;πvvðXIÞÞlðXIÞ þ
X
X

RSσσ
πσσησσðXIÞlðXIÞ

þ a2ðΔσσ
I − Δvv

I ÞRSσσ
πvvησσ ðπvvI Þ ~lðπvvI Þ

�
: ð79Þ

As for the masses, we observe that double poles do not completely cancel in the loop integrals, and the chiral behavior
differs nontrivially from the behavior in the ordinary, unmixed theory. The associated chiral logarithms and residues are
multiplied by combinations of LECs that vanish when valence and sea quark actions are the same.
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V. CONCLUSION

In mixed-action SChPT, we have calculated the NLO
loop corrections to the masses and decay constants of pions
and kaons in all taste irreps. We have cross-checked all
results by performing two independent calculations and
verifying the results reduce correctly when valence and sea
quark actions are the same. Each quantity was calculated by
each of two authors, working individually. The results were
compared, and the calculations were corrected individually
by each responsible author. In addition, the method we use
simplifies the calculations, by avoiding the task of explic-
itly enumerating the vertices. This method is explained in
Appendix C of Ref. [16].
In the valence-valence sector, the taste pseudoscalars are

Goldstone bosons in the chiral limit, at nonzero lattice
spacing, as in ordinary, unmixed SChPT. The NLO analytic
corrections arise from tree-level contributions of the (NLO)
Gasser-Leutwyler and generalized Sharpe-Van de Water
Lagrangians. They have the same form as in the unmixed
case, with independent LECs in the valence-valence, sea-
sea, and valence-sea sectors. The NLO loop corrections to
the self-energies of the valence-valence pions and kaons are
given in Eq. (36); those for the valence-sea pions and kaons
are given in Eqs. (68) and (69); and those for the decay
constants are given in Eq. (77). Taking the same action for
valence and sea quarks, these results straightforwardly
reduce to those of the ordinary, unmixed theory. They
are also useful for deriving results in various cases of
interest. As given in Eqs. (36), (77), the results for the decay
constants and valence-valence masses have the same form
as the results in ordinary, unmixed SChPT; they differ from
the results of the unmixed theory in the values of the LECs
and the definitions of the disconnected propagators, which
contain terms like those in quenched (or partially
quenched) theories. These lead to additional terms in the
final results, exemplified by Eqs. (40), (78), and (79), for
the pions of a 2þ 1 flavor theory. The corresponding chiral
logarithms are of the same kind as those entering for
quenched (and partially quenched) theories; they arise from
double poles in the loop integrals. However, no new loop
integrals enter the calculations for the mixed-action theory;
the techniques developed for unmixed, partially quenched
theories are sufficient to write down the final results for
various cases of interest. The results in Eqs. (68) and (69),
for the valence-sea masses, have additional corrections that
vanish in the ordinary, unmixed case. These are expected to
be small, and analyses in the literature to date have been
performed by neglecting them. The corresponding final
results for the pions of a 2þ 1 flavor theory are given
in Eq. (70).
To summarize, the results for the mixed-action case are

similar to those for the unmixed case, and in principle no
new challenges arise in using these results in data analyses.
In practice, the utility of these results arises from the
advantages to be gained by using different species of

improved staggered fermions for the valence and sea
quarks. For example, one could use a more highly
improved, computationally more expensive, action for
the valence quarks, to attack systematic errors due to
light-quark and gluon discretization effects, while at the
same time attacking statistical errors by using a less
computationally expensive formulation for the sea quarks,
to include the effects of vacuum polarization. Our results
explicitly parametrize the discretization effects of valence
and sea actions, and can be used to assess the advantages of
mixed-action calculations. In closing we remark also that
the large valence sector of the staggered formulation of
lattice QCD has yet to be exploited to increase statistics on
existing gauge field ensembles.

ACKNOWLEDGMENTS

We thank Claude Bernard for sharing his unpublished
notes on mixed-action staggered chiral perturbation theory.
We also thank the referee for helpful comments and
suggestions. The research of W. L. was supported by the
Creative Research Initiatives Program (No. 20160004939)
of the National Research Foundation of Korea (NRF)
funded by the Korean government (MEST). J. A. B. is
supported by the Basic Science Research Program of the
National Research Foundation of Korea (NRF) funded by
the Ministry of Education (No. 2015024974).

APPENDIX

Here we present a derivation of the taste-singlet potential
in Eq. (7). The analysis is the same as for the ordinary,
unmixed case, except that the spurion fields carry factors of
the projection operators Pv;σ.
Consider the bilinears in Eq. (2). Noting that the

staggered Uð1Þϵ symmetry implies that fγs ⊗ ξt;
γ5 ⊗ ξ5g ¼ 0, we see that taste-singlet bilinears, for which
ξt ¼ ξI ¼ I, must have vector or axial spin structure,
γs ¼ γμ; iγμγ5. The taste structure of the associated four-
fermion operators may be written [4]

�
X
μ

½ψ̄Rðγμ ⊗ FRÞψR � ψ̄Lðγμ ⊗ FLÞψL�2; ðA1Þ

where the positive (negative) signs apply for vector (axial)
spin, and the spurion fields FX → XFXX† for X ¼ L, R ∈
SUð3Þ ensure that the operators are invariant under
SUð3ÞL × SUð3ÞR transformations.
Enumerating all chiral singlets that are quadratic in the

spurions and invariant under parity, there exists only a
single nontrivial operator [4],

TrðFLΣFRΣ†Þ: ðA2Þ

For the unmixed theory, setting FL ¼ FR ¼ I for the taste
singlet operators yields only a trivial operator. But in the
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mixed case, we have FL;R ¼ Pv;σI, and there are
four nontrivial operators invariant under the chiral sym-
metry [18]:

TrðPvΣPvΣ†Þ;TrðPvΣPσΣ†Þ;
TrðPσΣPvΣ†Þ;TrðPσΣPσΣ†Þ: ðA3Þ

Introducing LECs, adding the results, and demanding
parity invariance gives [18]

Cvv
0 TrðPvΣPvΣ†Þ þ Cσσ

0 TrðPσΣPσΣ†Þ
þ Cvσ

0 ½TrðPvΣPσΣ†Þ þ TrðPσΣPvΣ†Þ�; ðA4Þ

where the equality of the coefficients of the last two
operators follows from parity.
Noting Pv þ Pσ ¼ 1 (the identity in flavor space),

defining τ3 ¼ Pσ − Pv, eliminating Pv;σ in favor of τ3
and 1, and collecting nontrivial operators, we have

CmixTrðτ3Στ3Σ†Þ; ðA5Þ

where Cmix ≡ 1
4
ðCvv

0 þ Cσσ
0 − 2Cvσ

0 Þ. In the unmixed case,
Cvv
0 ¼ Cσσ

0 ¼ Cvσ
0 , Cmix ¼ 0, and we recover the correct

(trivial) result.
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