PHYSICAL REVIEW D 96, 034522 (2017)

Masses and decay constants of pions and kaons in mixed-action
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Lattice QCD calculations with different staggered valence and sea quarks can be used to improve
determinations of quark masses, Gasser-Leutwyler couplings, and other parameters relevant to phenom-
enology. We calculate the masses and decay constants of flavored pions and kaons through next-to-leading
order in staggered-valence, staggered-sea mixed-action chiral perturbation theory. We present the results in
the valence-valence and valence-sea sectors, for all tastes. As in unmixed theories, the taste-pseudoscalar,
valence-valence mesons are exact Goldstone bosons in the chiral limit, at nonzero lattice spacing. The
results reduce correctly when the valence and sea quark actions are identical, connect smoothly to the
continuum limit, and provide a way to control light quark and gluon discretization errors in lattice
calculations performed with different staggered actions for the valence and sea quarks.
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I. INTRODUCTION

The quark masses and Cabibbo-Kobayashi-Maskawa
matrix elements are fundamental parameters of the
Standard Model. To understand their values in terms of
the underlying physics and probe the limits of the Standard
Model, they must be extracted from experiment with
greater precision. In addition, the low-energy couplings
(LECs) of chiral perturbation theory (ChPT) parametrize
the strong interactions at energies smaller than the scale of
chiral symmetry breaking [1-3]. Improving knowledge of
the Standard Model and chiral effective theory parameters
requires improved calculations of strong force contribu-
tions to the relevant hadronic matrix elements.

Mixed-action lattice QCD calculations can be used to
calculate hadronic matrix elements while exploiting the
advantages of different discretizations of the fermion
action. For example, fermions with more desirable features
for a specific physics purpose may be used for the valence
quarks, while fermions more adequate for massive pro-
duction may be used for the sea quarks, to include the
effects of vacuum polarization. The construction of chiral
effective theories for lattice QCD incorporates discretiza-
tion effects, thereby relating the chiral and continuum
extrapolations and improving control of the continuum
limit [4,5].

Staggered ChPT (SChPT) was developed to analyze
results of lattice calculations with staggered fermions [4,6];
it has been used extensively to control extrapolations to
physical light-quark masses and to remove dominant
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light-quark and gluon discretization errors [7]. Mixed-
action ChPT was developed for lattice calculations
performed with Ginsparg-Wilson valence quarks and
Wilson sea quarks [8,9]. The formalism for staggered
sea quarks and Ginsparg-Wilson valence quarks was
developed in Ref. [10]. Mixed-action ChPT for differently
improved staggered fermions was introduced for calcula-

tions of the K® — K mixing bag parameters entering e in
and beyond the Standard Model [11-13] and the K — z£v
vector form factor [14].

We have calculated the pion and kaon masses and
axial-current decay constants in all taste representations
at next-to-leading order (NLO) in mixed-action SChPT.
The results generalize those of Refs. [6,15-17] to the
mixed-action case; the results could be used to improve
determinations of LECs poorly determined by existing
analyses and to improve determinations of light-quark
masses, the Gasser-Leutwyler couplings, and the pion
and kaon decay constants.

In Sec. II we review the formulation of mixed-action
SChPT. Results for the masses are presented in Sec. III,
and for the decay constants, in Sec. IV. In Sec. V, we
conclude.

II. MIXED-ACTION STAGGERED CHIRAL
PERTURBATION THEORY

As for ordinary, unmixed SChPT, the theory is con-
structed in two steps. First one builds the Symanzik
effective continuum theory (SET) for the lattice theory.
Then one maps the operators of the SET into those of ChPT
[4,6,11,18].

© 2017 American Physical Society
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A. Symanzik effective theory
Through NLO the SET may be written

Setr = Sqcp +a*Se + -+ (1)

where Socp has the form of the QCD action, but possesses
taste degrees of freedom and respects the continuum taste
SU(4) symmetry. To account for differences in the masses of
valence and sea quarks in lattice calculations, the SET can be
formulated with bosonic ghost quarks and fermionic valence
and sea quarks [19]. We use the replica method [20] and so
include in the action only (fermionic) valence and sea quarks.

The operators in S¢ have mass-dimension six, and they
break the continuum symmetries to those of the mixed-action
lattice theory. In valence and sea sectors, these symmetries
are identical to those in the unmixed case [4,6], but now there
are no symmetries rotating valence and sea quarks together
[11,18]. As in the unmixed case, only a subset of the
operators in S contributes to the leading-order (LO) chiral
Lagrangian, and they are four-fermion operators respecting
the remnant taste symmetry I';xSO(4) C SU(4). They can
be obtained from those of the unmixed SET by introducing
projection operators P, , onto the valence and sea sectors in
the T, xSO(4)-respecting operators of the unmixed theory
and allowing the LECs in the valence and sea sectors to take
different values [18]. Generically,

cp(ys  Ew(ys ® &)y
= oW (7s ® &P (ys ® & )Py + (v — 0)
+2¢,,0(rs @ )Py, ® &Py, (2)

where y, (£,) is a spin (taste) matrix, and the quark spinors y
carry flavor indices taking on values in the valence and sea
sectors. In Eq. (2), the flavor indices are contracted within
each bilinear. For the action of the projection operators on the
spinors, we may write

(Pw); =0 forieu,
(Poy); =y, fori€o. (3)

(P vW)i =VYi
(PUW)I' =0
In the unmixed case, ¢,, = ¢,, = ¢,, = ¢, and we recover

the operators of the unmixed theory.

B. Leading order chiral Lagrangian

Mapping the SET operators into the chiral theory at LO,
we may write [18]

2 1
Lr0 =5 T0(0,20,2) ~ P Te(vz + M)

+ 2 1) + . @

The first three terms are identical to the kinetic energy,
mass, and anomaly operators of the unmixed theory,
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respectively; the normalization of the anomaly term is
arbitrary, but natural in SU(3) SChPT, for which the mass
of the taste-singlet 5’ approaches my, as my — oo [6]. As in
the unmixed theory, the field X = ¢'#//, where

16
p=> T, (5)
a=1
Ta € {557 igﬂS’ lfyl/(lu < V)? 5}4’51}' (6)

The field ¢ is a matrix in flavor-taste space, and the
Hermitian, 4 x 4 generators of (taste) U(4) T are defined
in terms of the taste matrices £,, which generate the Clifford
algebra; &5 = &£,65, &, = &,6,, and &; = [, the identity in
taste space.

To construct the potential ), the projection operators are
conveniently included in spurions. The result can be written

vV=Uu + Z/[/ - CmiXTr(T3ZT32T), (7)

where the last term is a taste-singlet potential new in the
mixed-action theory, with 73 =P, — P,. It arises from
four-quark operators in which &, = &;; such operators
map to constants in the unmixed case. In the mixed-action
theory, they yield nontrivial chiral operators because the
projection operators P # 1 are included in the taste spu-
rions [18]. In the appendix we present a derivation of the
last term in Eq. (7). The potentials ¢/ and U’ contain single-
and double-trace operators, respectively, that are direct
generalizations of those in unmixed SChPT. The operators
in ") have independent LECs for the valence-valence,
sea-sea, and valence-sea sectors. We write

U=Upy +Usg +Uyg, (8)
U=U, +U .+ U, (9)
where
-U,, = C{'Tr(&5P,ZEsP,2T)
+Covy Tr(E, P, %E,P,xT)

p<v
VY

C
+ 23 Z[Tr<€I/P1)Z§uPLZ) +pC]

v

LS (Te(e,sP, 5, P,%) +pe, (10)

+

2
_uo'a = CT”TI’(55PO_E§5P62T)
+ €Y Tr(€,, P28, PoE)

u<v
cy
+5 > [Tr(&,P,2E,P,E) +pocl

v

CGG
; Z[Tr(é/SPGZéSI/PGZ) + p'C']’ (11)

v

+
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—U,, = C}°[Tr(EP,EESP,ET) + p.c.] + CL°

u<v

WZ [Tr(&,sP,Z5,P, %) + p.c.].

VU vv

_Z’l/m - z Tr gyP 2)TI‘<§DP Z) +P. C

cyy
+ % zy: [Tr(§y5PvZ)Tr(§50P”ZT)] ’

/ 2V

= Tr(¢,P,%)Tr(£,P,5) + p.c.]

Sif Z [Tr(&,P,2)Tr(&, P,2H)] +

/ 2V

i Z [Tr(&,P,Z)Tr(E,P, 1) + p.c.]

where p.c.. indicates the parity conjugate. In the unmixed
case, Cphix = 0, C" = (C°° = C" = C, and the potential V
reduces to that of ordinary SChPT. Restricting attention to
two-point correlators of sea-sea particles yields results of
the unmixed theory, as expected [19].

C. Tree-level masses and propagators

As in the unmixed theory, the potential V' contributes to
the tree-level masses of the pions and kaons, which fall into
irreducible representations (irreps) of I'y;xSO(4). For a
taste ¢ pseudo-Goldstone boson (PGB) ¢}, composed of
quarks with flavors x, y, x # y,

My, = p(m, +my) + a> Ay
teFe{PAT, V,I}, (16)

where F labels the taste I';xSO(4) irrep (pseudoscalar,
axial, tensor, vector, or scalar). The notation here matches
that in our recent papers [16,17] on taste non-Goldstone
pions and kaons in ordinary SChPT. It is also the basis for
the notation in the sections below. The mass splitting A7’
depends on the LEC of the taste-singlet potential (C,;, ), the
LECs in the single-trace potential (({), and the sector
(valence or sea) of the quark flavors x and y. Expanding
the LO Lagrangian through O(¢?), we have

ZC@U

bl

AY = — gghs), (17)

[Tr(£,,P,2E,P,E") +p.c]+ Cy°

—24 Z Tr §L/SP Z>Tr(§5upvz) +p C

Tr(¢,P,X)Tr(E,P,X) + p.c.
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[Tr(§,P X, P,E) + p.c.]

14

(12)

UL

SVZ

r(&,P,2)Tr(£,P,2")]

(13)
CZA Z TI' §D5P Z)Tr<§5up Z) + p-¢. ]
SA Z Tr §DSP Z)Tr(SSUP Z )] (14)
Cue
%Z[Tr(fﬁpvz)’rr(é"bpaz) + pC]
< Z [Tr(&,5P,2)Tr(és, P,ET) + poc], (15)
Ag = Zcmr thabS)’ (18)

b#l

16C
A;’f’— — le Z |: Cw C(m Czo—gtbng i (19)
bl

where the splitting is Ay’ if both quarks are valence quarks
(xy € vv), A% if both quarks are sea quarks (xy € o), and
A}? otherwise. The sub(super)script b and taste ¢ are
indices labeling the generators of the fundamental irrep
of U(4). The numerical constant §’” = +1 if the generators
for ¢t and b commute and —1 if they anticommute. The LEC
C, = C, Cq4, C3, or Cy if b labels a generator correspond-
ing to the P, T, V, or A irrep of T';xSO(4), respectively.

The residual chiral symmetry in the valence-valence
sector, as for the unmixed theory, implies /' = P particles
are Goldstone bosons for a # 0, my, = 0, and therefore
A}’ = 0. The same is not true for the taste pseudoscalar,
valence-sea PGBs, and generically, A}” # 0.

In the flavor-neutral sector, x = y, the PGBs mix in the
taste singlet, vector, and axial irreps. The Lagrangian
mixing terms (hairpins) are

Ui :
—_5 [ 5v1¢/4¢/4 + - 560‘¢ ¢/4 5110 ¢/J¢j

2 I¥ii weJj it JJ
+ (V - A,u — u5), (20)

where i, j are flavor indices; p (15) is a taste index in the
vector (axial) irrep; and we use an overbar (underbar) to
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restrict summation to the valence (sea) sector. The 57 term

is the anomaly term; 5 = 4m8 /3. In continuum ChPT,
taking my — oo at the end of the calculation decouples the
1’ [21]. In SChPT, taking m, — oo decouples the 7}. The
flavor singlets in other taste irreps are PGBs and do not
decouple [6]. The &y'y”" terms are lattice artifacts from
the double-trace potential a*{f’, and the couplings &y/""”
depend linearly on its LECs,

- 164%, , . lea* o

O =~ (CH=CY). oy =5 (Ch=Ci). (21)
f f
164> 16a”

8 =—(C57—C%y), 07 =—75(C55-C%),  (22)
f f
164> 1642 .

8 =——(Ca7—CLy), 80 =—3(Ci5—C).  (23)

f? f?

Although the mass splittings and hairpin couplings are
different in the three sectors, the tree-level propagator can
be written in the same form as in the unmixed case. We
have (k, [ are flavor indices)

8;0;
G (p?) = 5th< i%jk
l,/.,kl(P ) » +m12j.t

+ 6ij5k1D;l> . (24)
where the disconnected propagators vanish (by definition)
in the pseudoscalar and tensor irreps, and for the singlet,
vector, and axial irreps,

Dl = ~ | 5

Ja ..
% , 25
IS 10, ¢ os, OTHEV (25)

-1 <5va)2/5aa
D! F r S — (§ve 2 59
t ItJt(1+57:GUt+F (F)/F

for ij € vo, (26)
where I, = p* +mj,, J,=p*+mj;,, and we use the

replica method to quench the valence quarks [20] and root
the sea quarks [6], so that

1 1 1
6l527p2+m%’t_)1i2/7p2+m%., . (27)

it

The index i’ is summed over the physical sea quark flavors.
As for the continuum, partially quenched case [22], the
factors arising from iterating sea quark loops can be
reduced to a form convenient for doing loop integrations.
For three nondegenerate, physical sea quarks u, d, s, we
have
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1 (PP ma ) (p* +my ) (p* + m )
L4060, (p*+m)(p? +my)(p* +m3)

. (28)

where mio, m} , and mi, are the eigenvalues of the matrices
t t

(for tastes F =1, V, A)

My, + 857 /4 0% /4 0% /4
5% /4 m%,, + 8% /4 5 /4 . (29)
59 /4 50 /4 m, + 8% /4

In the disconnected propagator Dl’»j, an additional piece
appears in the valence-valence sector [Eq. (26)]. As noted
in Refs. [11,18], this piece has the form of a quenched
disconnected propagator, for which o, =0, and the
assumption of factorization leads us to expect its suppres-
sion; by comparing results of analyses with SU(2) and
SU(3) mixed-action SChPT, the authors of Ref. [11]
showed the associated contributions to By were negligible
compared to other uncertainties. In the unmixed case, the
mass splittings and hairpin couplings in the valence and sea
sectors are degenerate, and the propagator reduces.

III. NEXT-TO-LEADING ORDER
CORRECTIONS TO MASSES

For a taste # PGB ¢}, composed of quarks with flavors x,
v, X # y, the mass is defined in terms of the self-energy, as
in continuum ChPT. The NLO mass can be obtained by
adding the NLO self-energy to the tree-level mass,

M)zcy.t = m)zcy,t + ny,t(_m)%y,t)' (30)

2.y consists of connected and disconnected tadpole loops
with vertices from the LO Lagrangian at O(¢*) and tree-
level graphs with vertices from the NLO Lagrangian at
O(¢?*). The tadpole graphs contribute the leading chiral
logarithms, while the tree-level terms are analytic in the
quark masses and the square of the lattice spacing.

We have not attempted to enumerate all terms in the
NLO Lagrangian. It consists of generalizations of the
Gasser-Leutwyler terms [3], as in ordinary, unmixed
SChPT, as well as generalizations of the Sharpe-Van de
Water Lagrangian [23] to the mixed action case. There also
exist additional operators including traces over taste-sin-
glets; such operators vanish in the unmixed theory.

Given the different kinds of operators in the NLO
Lagrangian, the analytic terms at NLO have the same
form as those in the unmixed theory, but with distinct LECs
for valence-valence, sea-sea, and valence-sea PGBs.
Explicitly, we have
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ENLO anal( m2 )

Xy, t xy,t
16
f2 ((2L6 ) (mx + my)
X Zﬂ(mu + my + ms) + (2L8 - LS)[zﬂ(mx + my)]z)
+ e u(my, +my) + c5'a*2u(m, + my + my)
—l—c“ a*, (31)

where the coefficients of the last three terms are linear
combinations of the LECs in the generalized Sharpe-Van de
Water Lagrangian and so depend on the sector of the x and
y quarks: ¢}, = ¢}V, !9, ¢7¢ for valence-valence, valence-
sea, and sea-sea mesons, respectlvely. We note that for the
NLO tree-level diagrams, the symmetry between x and y
quarks x <> y is present, as for the ordinary, unmixed case.

A few operators from the Sharpe-Van de Water
Lagrangian suffice to justify these claims. We introduce
projection operators onto the valence and sea sectors in
these operators, lift the degeneracy of the LECs in the three
sectors, and calculate the analytic contributions to the self-
energies. For example, for the first operator in Table I, we
have

a’C"Tr(P,0,%'&P,0,2E5) + (v = o)
+ a*C"(Tr(P,0,27EsP,0,2E5) + pcl.  (32)

which yield analytic contributions of the form
a’0>Cc? p?, (33)

where the coefficient C*Y = C"?, C°?, C" for xy € vv, o0,
vo, and setting p? = —u(m, + m,) —a*A;’ yields terms
like ¢}, and 3.

Finally, we have calculated the tadpole graphs for the
sea-sea PGBs and find them identical to the results in
the unmixed theory, as expected [19]. Below we consider
the tadpole graphs for the valence-valence and valence-
sea PGBs.

A. Valence-valence sector

For any I'yxSO(4) irrep, the calculation of the valence-
valence PGB self-energies proceeds as for the unmixed

TABLE 1. Examples of operators in the Sharpe-Van de Water
Lagrangian contributing tree-level terms to the masses and decay
constants at NLO. Such operators enter with undetermined LECs
that differ in the valence-valence, valence-sea, and sea-sea
sectors, breaking degeneracies between valence and sea quarks.

Operator Order
Tr(9,Z750,3E5) a’p?
Tr(£,Z7,Z7)Tr(EMT) 4 p.c. a2m
Tr(£5 2652 Tr(5 2455 o
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&

(a) (b)

(i)

FIG. 1. Quark flows for the NLO self-energy tadpoles (a)—(f)
and current-vertex loops (g)—(i). The x and y quarks are
continuously connected to the external lines, closed loops are
sea quarks, and current insertions are represented by crossed
boxes.

case [6,16]. Quark flow diagrams corresponding to the
tadpole graphs are shown in diagrams (a)—(f) of Fig. 1. The
kinetic energy, mass, and {{ vertices yield graphs of types
(a), (c), and (d), and the taste-singlet potential vertices
(x Crix) yield graphs of type (a),

a lex
2 Zf ml’l’ b (34)

where i’ is summed over X, y; i is summed over the
physical sea quarks u, d, s; and £(m?) = m? In(m*/A?) +
8y(mL) is the chiral logarithm, with A the scale of
dimensional regularization and §; the correction for finite
spatial volume [24]. (L is the spatial extent of the lattice.)

Vertices from U’ yield graphs of types (b), (e), and (f).
The hairpin vertex graphs are of types (e) and (f). As in the
unmixed case, they can be combined and eliminated in
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favor of a contribution of type (d). In the mixed-action case, As in the unmixed theory, graphs of type (b) come

the necessary identity is (r € V, A) from vertices « w}” = 16(Cy% + Cib)/f? for F =V, A;

5 v they have the same form as those in the unmixed

- ZD ~(p? +mk Dy (35)  case 11O] . . .

pr+mi mﬁt WY Adding the various contributions and evaluating the

result at p? = —mi_y ,» we have the NLO, one-loop con-

This relation follows from Egs. (25) and (26). tributions to the self-energies of the valence-valence PGBs,
2
_ iLOloop<_ 2 )7 a

Xy, t xy,t

 48(4xf)?

POR ) vo 16lex c
x Z {(AC, — AV — AV + 7 )Zf ml,l, . ( Z D) T Tep (1 4+ 0 ’))f(m%c)]

beV A

1 d*q e e e
+W/7X§;W (AL = A" = ) (D5 + D)

+ [(2(1 _ gct) +pct)q2 + (2(1 + 29ct) +pCt)m)2c_y,5 + 2612Aé1;v + a2(29ctAvb + (2 —I—pC[)AW)]

xy]

(36)

where p¢' = —4(2 + 6") unless ¢ = I, when it vanishes, 7., = Tr(TT*T") is a trace over (a product of) generators of U(4),
and

ALY :f2 D Cyr(5 4 30°00 — 450" — 4P, (37)
b#1
v — w cb bt __ Sb bt __ cb nb5
Al = f2 ZC 1 + 30°09P" — 20500P" — 2009P5), (38)
b#1
V0,00 8 b bt b nb5 w 0Sb nbt
AL E}TZ (9C“+C"")+C“’(3GC 0" — 40°29"5) — AC 0P O | (39)
b#l

The form of Eq. (36) is the same as that in ordinary SChPT [16]; the differences are in the definition of the disconnected
propagators and the LECs of the effective field theory. The reduction to the unmixed case is straightforward.

To illustrate the final results, we consider the pions of the 2 + 1 flavor theory in the fully dynamical case. The theory has
two degenerate light quarks and one strange quark in valence and sea sectors, with valence and sea quark masses equal, for
each flavor. Substituting for the quark masses in Eq. (36), noting the degeneracies within each I';xSO(4) irrep, summing
over the taste index ¢, and performing the loop integrals, we have

1}1 vo

2
NLO I a V0,00 vV A Vo
=X P (=min) :WE :{53}: £(my) + = (20w + £(K7))
B

1 V0,00 VU0V e g 7
+ - 12(4 f) |:2Z 1271'13 6l/VFXV—Cl (A VF +A/ )) (5 ) /5 [Ri“”,,,,nm,,(xv)

(A = B )DS oo (KE(Xy) + 20(8) /5 a(AF = AP RS oo (17 + 57
— (5328160 pt () + (12p — 6wy — (A" + AR )Z (i) + (V - A)

W|OOA

(37p + 2a2 A7) {Z[RS‘T‘Z (X)) + a2(A% = AV)DST . (X)]E(X))

"'y’ .
X

+a?(Af° — AJ)RST o (n;v)?(n;v)H . (40)
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On the right side of Eq. (40), we represent the squares of the
tree-level masses by the names of the respective mesons,

Y = 2um, + a2AY, (41)

Y =2umy + a’AYY, (42)
Ky = u(my + my) + a*Ay, (43)
p = 2umy, (44)

% = 2um, + A, (45)

and we define linear combinations of LECs that are
degenerate within irreps of I';xSO(4),

5@;’“’52 (Zwb TepTenr(1 + 9”)), (46)

ceB beV A

o3 vU,v0 1 6 lex
e = 3 (s - o - a1 100,

ceB

Mg = (Al = A" = A, (48)

cEB

AR =D (AW 4 (07AY + (14 p/2)AL)).  (49)

ceB

The whole number vgg =13~ .c5(1 + 6') counts the taste
matrices in irrep B commuting with the taste matrix &,,
where ¢ € F. The index of summation X runs over the
meson names in the subscripts of the residues, which are
defined as in Ref. [16],

HAjF(AjF - Xr)
[1s,4x,(Bir —XF)’

0
AAs.. A —
Dy, 5,5, (Xp) = = OB

Ry (Xp) = (50)

o5 Rew 5 (Xp). (51)

1
WZ:[(P2 + pu(ms + my) — AL

1 d*
|

—20(p* + q* — pu(ms + m,)) DS, .

PHYSICAL REVIEW D 96, 034522 (2017)

The chiral behavior of the mixed action theory differs
nontrivially from that of the unmixed theory due to incom-
plete cancellation of double poles in the loop integrals. The
chiral logarithm #(m?) = —(In(m?/A?) + 1) + &5(mL),
with the finite volume correction d5 [24], arises from these
loops. Unlike in the ordinary theory, such terms enter here
even though valence and sea quark masses for each flavor are
equal, i.e., in the fully dynamical case.

The valence-valence, taste-pseudoscalar PGBs are true
Goldstone bosons in the chiral limit, m,, my, — 0, a # 0.
Setting t = 5 in Eq. (36) and noting that

16C ix

S (52)
AL = AL, (53)
Al = —g ALY, (54)
AL =0, (55)
we have
_gNLOloop(_ 2y (ms + ms Zghs _Db
Xy5 Xy,5 471'f iy
(56)

which is the generalization of the results of Ref. [6] to the
mixed-action case. As in ordinary SChPT, only graphs of
type (d) contribute. To generalize to the mixed-action theory,
one has only to replace the disconnected propagators D%

with their counterparts in the mixed-action theory.

B. Valence-sea sector
We consider mesons ¢%, with one valence quark ¥ and

one sea quark y. For tadpol_es with vertices from the kinetic

energy and mass terms of the LO Lagrangian [Eq. (4)], we
find graphs of types (a), (c), and (d),

o)+ (P ulms +my) = AZ)E (3, )]

yi',c

+q2+ﬂ(3mx+my))Dg‘+(p +C] +ﬂ(mx+3my)) »y

(57)

where i’ is summed over the physical sea-quark flavors. As for the sea-sea and valence-valence sectors, the qZD;_x and q2D§y

terms can be eliminated in favor of a q2D§ , term. But for the valence-sea mesons, an additional term arises, with the form of

a connected contribution [graph (e) of Fig. 1]. The necessary identities are
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51)0 (61;0)2/500 5;}1

2 4 2umy)DL = DL, — a*AyDL 58

(q + /’tmx> 50-0- (q +m ) )CX a F xx+ q +mXXt ( )
oy

(% +2um, )5, = 5 (6 + ) D, ~*AFD, (59)

which hold for t € F =V, A, I. Applying these identities to the above result gives

4 f 2 Z +/l ms; + my) - CZZAMF)K( ) + ([)2 +/l<m)‘g + m, ) - aZAaa)Lﬂ( yl/c)}

1 VY (el Xofea 1 d4q
_WC;A(éc —(5C )2/5C )f(mi—xc) +WZ/?

x [<p2+ﬂ<mx )= @AIIDE+ (Pl +my) = P AF)DSy

+
51/0' 520‘ 50'0' 61/0' 51}0‘ 50'0'

(60)

From the taste-singlet potential, we find contributions not only from graphs of type (a), as in the valence-valence sector,
but also from graphs of types (c) and (d),

a lex d4q
3f2 4”](‘ QZ[Z Sf mxl’h) + f( yl h)) +4/7<D)€_x +D§j} - 2‘9th£\7)} (61)

From the single-trace potential I/, we have graphs of types (a), (c), and (d),
d'q b b 1 b
4,,sz[2% £(m?,,) + Aol (m? ))+4/ (A" DL+ Ap77 DY, + 2A D )], (62)

where

o 8 :
A7 = B SOy 143070 -y 0" + 0 (63)
b#l
8 9 1 '
AZ?,GU = JTZ CZG (5 _ 49cb9b5> + ECZU + CZG(3190b9ht _ 495!79171) , (64)
ol _
vo,vv v 9 C 1 oo v6 C ]
i = 5| (5400 0 v cyono - aomon)] )
bl L -
/116 Vo 89“ ao‘ 1 cb nb5 Vo cb nbt S5b bt
Aliore — Z (Cy +Ci0)( 5= 070" | + Cir (300" — 206" . (66)
bl

In the unmixed case, A" = A7 = A" = A, A" = Al,, and the contribution from U/ reduces [6,16]. We note
that AZ7°° appears in both connected and disconnected terms.
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From the double-trace potential 2/’, we have, after combining graphs of types (e) and (f) to eliminate those of type (f),

1 3612 Vo QCt m (e d4q ct VU (g
WZ?Z%’%’ 0} + - (0} + @f) | (m fro) t — 4 +mxy5+2(A + A7) ) DS,

oL 1}0’ oo d4 00 | SUO ve | So0) 2 00 | SUC 2 AVV
S o |08 = G oz )+ [ (2= 00 0 50?1 = 020 s + )
ceV,A

+ (1= 81°/827) (2um, + azA‘C"’))D;y} . (67)

The reduction of this expression in the unmixed case is immediate. In the valence-valence sector and unmixed cases, the
graphs of types (e) and (f) can be combined into a graph of type (d). In the valence-sea sector, we eliminate graphs of type
(f) in favor of those of type (d), but a contribution of type (e) remains.

Adding the various contributions and evaluating the sum at p?> = —m? Fy gives, for graphs with connected propagators,

NLO loop,
~Ziys oop,con(_mg )

( 2 Z |:<AZ;7 ve ALG Aba T 128me1x> Zf x[ C
(Avo 00 A’[()' A(m— + 16f(‘jm1x> Zf y, c

ct

3 9 vU (1ol 1 v vo O
3 3 (08 + O 0+ 080 ) 0]+ g 3 0 = G ),

(68)
while for the graphs with disconnected propagators, we have
- at 16C
O loop.disc q V0,0 v ) ixX c
- )'lj;t ’ (_m,%x.t) 47Tf / Z [ (Act —A A+ fm )Dﬁ
6,60 vo o0 1 6Cmix c 5“’ 526 c c
+a2<Act - A AT =g )D KS 3(506+5m>—29t+pt>q2
ao‘ Ct 51/6 Ct ‘
+ ( 3 51—)0 + 26 + 5 ) (2ums) + (4 3% + 20 + 5 )(Zymy) +2a* Al
5 510 ct 32 ZHCtCmix
+ (29%;}6 + (4 3% + %) A 4 (4 3ﬁ +p2 )Agv> - aT] D;J . (69)

The reduction in the unmixed case is straightforward. There is no symmetry under X <> y; when using the replica method,
the valence and sea sectors of the effective theory are distinguished by the operations of partial quenching (the valence
quarks) and rooting (the sea quarks). The taste pseudoscalars are not Goldstone bosons (in the chiral limit) at nonzero lattice
spacing, and the self-energy does not vanish in the chiral limit. In the continuum limit, the symmetry is restored, and the
masses vanish, in accordance with Goldstone’s theorem.

To illustrate the final results, we again consider the pions of the 2 + 1 flavor theory with degenerate valence and sea
quarks. We have
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NLO I V0,06 UO' " Vo BE o0 (4
S ) = ok oty) + S35 ortai) + k) + S8 orta) + k)|
+ 1 (5m (61)0') /5{76)/( m) + (V A) + 1 % 51}(72 26 5l‘7/6 + 566
(4f)>? 1204z |V & s o)t
oy oy Aw " oy /m: vo S0
e (- it
i .
_ﬁ 2Am LV (Aao' AM)Di"q’“’n"’” ,,(XV):| f(XV)
a> AV ”ﬂaszﬁ“Mm Xy)E(Xy) — a® A ((8Y)2 /857 a> (A — AYY)
o0 ) V0 661 2 ( UV 4 V0,0V V6,66
X R pooygor () + 81 = (817)? /81 (n}) + (V — A) = 3 [(2(3”P + @A) + @’ AR)

X ZR o (XDE(Xp) + A7 (AF7 — A") {Rﬁii’ o

ZDﬁ”"” oo (X))E(X))

2A“”’”ZR,, rr (X1 )] } (70)
The new linear combinations of LECs are
V6,06 1 o'’ 1 ct( UV oo
o E_ZZ Z Tebe\ Py +§9 (0" + @57) | (71)
€B beV A
. 128C i«
INEEDS ( LT AL AL ) (72)
f?
16C
Agtl::,w = (Aw 66 Afo' A(yo' + mlx) ’ (73)
f?
Vo, 0V V6,0V V6 o 16(jmix
AL = (AU — AV — AP 4 7 ) (74)
- 50‘0 pct A(m 5UU pct 16ectc .
A/La,uf = A/vg Nilos 4 3 Zc C 4 3 “c _ mix 75
BF CGZB|: < 51/0_'—2) 2 ( 566+2 f2 ’ ( )

and we use the identity A" =1 (A;7" + Aj77) to
simplify the disconnected loops in the taste singlet channel.
As for the valence-valence masses, the chiral behavior
differs nontrivially from that of the ordinary unmixed
theory. Even in the fully dynamical theory, double poles
do not completely cancel from the loop integrals.

IV. NEXT-TO-LEADING ORDER CORRECTIONS
TO DECAY CONSTANTS

As for continuum and ordinary SChPT, the decay con-
stants are defined by matrix elements of the axial currents,

lfxy tpy <0|]xyt|¢xy< )> (76)

|
The NLO corrections are the same types of diagrams that
appear in continuum and unmixed SChPT. We have one-
loop wave function renormalization contributions [graphs
(a), (c), and (d) of Fig. 1], one-loop graphs from insertions of
the O(¢?) terms of the LO current [graphs (g), (h), and (i) of
Fig. 1], and terms analytic in the quark masses and squared
lattice spacing, from the NLO Lagrangian [15]. As for the
NLO analytic corrections to the masses, the NLO analytic
corrections to the decay constants have the same form as in
the unmixed theory, with distinct LECs for the valence-
valence, sea-sea, and valence-sea sectors.

Turning to the one-loop corrections, we note that the LO
current is determined by the kinetic energy vertices of the
LO Lagrangian; these vertices are the same in mixed-action
and unmixed SChPT. Therefore, the LO current in the
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mixed-action case is the same as the LO current in unmixed
SChPT. Likewise, the NLO wave function renormalization
corrections are determined by self-energy contributions
from tadpoles with kinetic energy vertices from the LO

PHYSICAL REVIEW D 96, 034522 (2017)

Therefore, to generalize the one-loop graphs of the
unmixed case, we have only to replace the propagators
with those of the mixed-action theory. The results hold for
all sectors of the mixed-action theory (valence-valence, sea-

Lagrangian. Moreover, nothing in the calculation of the
relevant part of the self-energies or the current-vertex loops
is sensitive to the sector of the external quarks.

sea, and valence-sea). Including the analytic contributions,
we have

NLO

Xy, dq c c ct ryc
}t B 2Z|: Zf( tzc / (DXXJ’_D —-20 th)’)

16
f2 Lyu(my, +mg+ my) + 7
where the coefficient ¢;” = c??, c/°, ¢9° for valence-valence, valence-sea, and sea-sea mesons, respectively. The form of
this result is the same as that in the unmixed theory [17], and the reduction in the unmixed case is immediate. As for the
masses, the form of the NLO analytic terms can be verified by considering a few operators in the generalized Sharpe-Van de
Water Lagrangian and calculating the resulting contributions. In addition to the wave function renormalization
contributions, there are those from the NLO current. But the latter cannot change the form of the results, and considering
the wave function renormalization suffices.

To illustrate the loop corrections, we begin with the valence-valence pions in the 2 4 1 flavor, fully dynamical theory. We
have

Lsu(m +m,) +a*cy’, (77)

fZ]TO loop 1 N ; ( 1-0VF / 4) . .
P = Taaagy AR AR + L S O e )
+ @ (DY = AY)DEL oo e (Xv))E(Xy) + [(87)2/ 857 0P (AF = AYIRED, oo (7))
+ (51‘//1/ _ (51)5) 50‘0):| f(ﬂ1 17)} + (V — A), (78)

where gz =5 51 and OBF =57 .6, as for the unmixed case. For the valence-sea pions in the 2 + 1 flavor, fully
dynamical theory, we have

fNLO loop

vo 1 1 s @VF
T - _ A (K - Sve Vo= RS’”’ (X
= T o)+ k) + 5 57 (o (- O et
(5“6) g oo VU i o i
G T AP e 00) ) EK) 57D R e (K1) EXY)

(8257 (AT A )RS,

AVRSS () + (58 — (5@6)2/5;5)];@%] (VoA

71 70 o0 vV 4 oo
6(477:f)2 [;(_Rg“n’"’(xl) + ClZ(A —Aj )Dimrlan ”1)1 X] + ZRS o, 00 XI )
+ (A — AJ")RS (nyv)z?(n;”)] : (79)

As for the masses, we observe that double poles do not completely cancel in the loop integrals, and the chiral behavior
differs nontrivially from the behavior in the ordinary, unmixed theory. The associated chiral logarithms and residues are
multiplied by combinations of LECs that vanish when valence and sea quark actions are the same.
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V. CONCLUSION

In mixed-action SChPT, we have calculated the NLO
loop corrections to the masses and decay constants of pions
and kaons in all taste irreps. We have cross-checked all
results by performing two independent calculations and
verifying the results reduce correctly when valence and sea
quark actions are the same. Each quantity was calculated by
each of two authors, working individually. The results were
compared, and the calculations were corrected individually
by each responsible author. In addition, the method we use
simplifies the calculations, by avoiding the task of explic-
itly enumerating the vertices. This method is explained in
Appendix C of Ref. [16].

In the valence-valence sector, the taste pseudoscalars are
Goldstone bosons in the chiral limit, at nonzero lattice
spacing, as in ordinary, unmixed SChPT. The NLO analytic
corrections arise from tree-level contributions of the (NLO)
Gasser-Leutwyler and generalized Sharpe-Van de Water
Lagrangians. They have the same form as in the unmixed
case, with independent LECs in the valence-valence, sea-
sea, and valence-sea sectors. The NLO loop corrections to
the self-energies of the valence-valence pions and kaons are
given in Eq. (36); those for the valence-sea pions and kaons
are given in Eqs. (68) and (69); and those for the decay
constants are given in Eq. (77). Taking the same action for
valence and sea quarks, these results straightforwardly
reduce to those of the ordinary, unmixed theory. They
are also useful for deriving results in various cases of
interest. As given in Egs. (36), (77), the results for the decay
constants and valence-valence masses have the same form
as the results in ordinary, unmixed SChPT; they differ from
the results of the unmixed theory in the values of the LECs
and the definitions of the disconnected propagators, which
contain terms like those in quenched (or partially
quenched) theories. These lead to additional terms in the
final results, exemplified by Egs. (40), (78), and (79), for
the pions of a 2 4 1 flavor theory. The corresponding chiral
logarithms are of the same kind as those entering for
quenched (and partially quenched) theories; they arise from
double poles in the loop integrals. However, no new loop
integrals enter the calculations for the mixed-action theory;
the techniques developed for unmixed, partially quenched
theories are sufficient to write down the final results for
various cases of interest. The results in Egs. (68) and (69),
for the valence-sea masses, have additional corrections that
vanish in the ordinary, unmixed case. These are expected to
be small, and analyses in the literature to date have been
performed by neglecting them. The corresponding final
results for the pions of a 2+ 1 flavor theory are given
in Eq. (70).

To summarize, the results for the mixed-action case are
similar to those for the unmixed case, and in principle no
new challenges arise in using these results in data analyses.
In practice, the utility of these results arises from the
advantages to be gained by using different species of

PHYSICAL REVIEW D 96, 034522 (2017)

improved staggered fermions for the valence and sea
quarks. For example, one could use a more highly
improved, computationally more expensive, action for
the valence quarks, to attack systematic errors due to
light-quark and gluon discretization effects, while at the
same time attacking statistical errors by using a less
computationally expensive formulation for the sea quarks,
to include the effects of vacuum polarization. Our results
explicitly parametrize the discretization effects of valence
and sea actions, and can be used to assess the advantages of
mixed-action calculations. In closing we remark also that
the large valence sector of the staggered formulation of
lattice QCD has yet to be exploited to increase statistics on
existing gauge field ensembles.
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APPENDIX

Here we present a derivation of the taste-singlet potential
in Eq. (7). The analysis is the same as for the ordinary,
unmixed case, except that the spurion fields carry factors of
the projection operators P, .

Consider the bilinears in Eq. (2). Noting that the
staggered U(1), symmetry implies that {y, ® &,
¥s ® &} = 0, we see that taste-singlet bilinears, for which
&, =&, =1, must have vector or axial spin structure,
Ys = Yu» ivuYs- The taste structure of the associated four-
fermion operators may be written [4]

iZ[V_IR(yﬂ ® Frlwr £WL(r, ® F)w. ], (Al)
"

where the positive (negative) signs apply for vector (axial)
spin, and the spurion fields Fy — XFXXT forX=L, RE€
SU(3) ensure that the operators are invariant under
SU(3), x SU(3), transformations.

Enumerating all chiral singlets that are quadratic in the
spurions and invariant under parity, there exists only a
single nontrivial operator [4],

Tr(F, ZFRE"). (A2)
For the unmixed theory, setting F'; = Fr = I for the taste
singlet operators yields only a trivial operator. But in the
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mixed case, we have F;p=P,,[, and there are
four nontrivial operators invariant under the chiral sym-
metry [18]:

Tr(P, 2P, X%), Tr(P,ZP,X"),

Tr(P,£P, %), Tr(P,ZP,%7). (A3)

Introducing LECs, adding the results, and demanding
parity invariance gives [18]
Cy'Tr(P,ZP,X") + C{°Tr(P,ZP,X")

+ C°[Tr(P,ZP,27) + Tr(P,ZP,Z1)], (A4)

PHYSICAL REVIEW D 96, 034522 (2017)

where the equality of the coefficients of the last two
operators follows from parity.

Noting P, + P, =1 (the identity in flavor space),
defining 73 = P, — P, eliminating P,, in favor of 73
and 1, and collecting nontrivial operators, we have

Conix Tr(7327321), (AS)

where C i = % (Cy" 4+ Cg° —2C°). In the unmixed case,
Cy" = C3° = Ci?, Cyix = 0, and we recover the correct

(trivial) result.
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