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We investigate the spectrum and IR properties of the SU(3) “sextet” model with two Dirac fermions in
the two-index symmetric representation via lattice simulations. This model is a prime candidate for a
realization of walking technicolor, which features a minimal matter content and it is expected to be inside
or very close to the lower boundary of the conformal window. We use the Wilson discretization for the
fermions and map the phase structure of the lattice model. We study several spectral and gradient flow
observables both in the bulk and the weak coupling phases. While in the bulk phase we find clear signs of
chiral symmetry breaking, in the weak coupling phase there is no clear indication for it, and instead the
chiral limit of the model seems compatible with an IR-conformal behavior.
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I. INTRODUCTION

The discovery of a new scalar state in 2012 was a
tremendous success for the Large Hadron Collider and
for the Standard Model. The properties of this new scalar
state have since been studied by the ATLAS and CMS
Collaborations and they are in general agreement with the
SM prediction for an elementary Higgs boson.
Although it is an economical description, from a theo-

retical standpoint the Higgs sector is unappealing. In fact,
the Higgs sector is by many regarded as a model of
spontaneous electroweak (EW) symmetry breaking, rather
than a true dynamical explanation. Moreover, the electro-
weak scale is not protected against quantum corrections,
which makes the model unnaturally fine-tuned.
The discovery of the Higgs boson, with properties closely

resembling the SM elementary Higgs, excludes a large
number of BSM models, such as the “Higgsless models,”
and the traditional technicolor theories, based on QCD-like
dynamics. However, a wide class of composite Higgs
theories, in which EW symmetry is broken dynamically by
a new strong force, are still compatible with the experiments.
The two most interesting realizations of composite Higgs

models are walking technicolor (WTC) [1–13] and pseudo–
Nambu-Goldstone boson (pNGB) Higgs models [14–19].
In such models the Higgs is regarded as the pNGB of an
approximate global symmetry, which explains the little
hierarchy between the mass of the Higgs and the other
resonances of the strong sector. This extra symmetry is a
global flavor symmetry in the case of pNGB Higgs models,
or an approximate scale invariance symmetry in the case of
walking technicolor.
Walking technicolor models are asymptotically free mod-

els which can be considered as a small deformation of a

conformal field theory in the infrared. Such models share
several important features, which makes them good candi-
dates for a composite Higgs model. This includes the
possible emergence of a light 0þþ scalar state, associated
with the approximate scale invariance, that can play the role
of theHiggs boson,with a lightmass and couplings similar to
the SMHiggs. The strong couplingmight evolve slowlywith
the energy scale (i.e. it walks), and if the model also has a
large mass anomalous dimension γ ∼ 1–2, SM fermion
masses could be generated without large flavor-changing
neutral currents. Furthermore, models with only two EW
gauged fermions are favored as they have a smaller
S-parameter and do not violate constraints on EW precision
tests [12].
Another reason to consider WTC models is that any

four-dimensional fundamental realization of the composite
pNGB Higgs admits a technicolorlike limit and fine-tuning
is needed to align the vacuum in the Goldstone Higgs
direction [20].
Here we study the so-called “sextet model,” a WTC

model based on an SU(3) gauge theory with a doublet of
Dirac fermions in the two-index symmetric (sextet) repre-
sentation. From perturbation theory this model is expected
to be inside the conformal window [21], although the large
anomalous dimension could trigger chiral symmetry break-
ing, pushing the model outside [12].
Nonperturbative calculations are required to settle this

issue and confirm or exclude this model as being phenom-
enologically viable. If the model is chirally broken, a
nonperturbative determination of the mass of the lightest
scalar state and the spin-1 resonances will provide crucial
input for searches at the LHC. If the theory is conformal,
the existence of four-fermion interactions can drive the
theory away from conformality [22–24].
The sextet model has been studied previously by several

groups [25–38]. The nonperturbative β-function for the
model has been calculated, in similar schemes, both using
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staggered fermions [33] and improvedWilson fermions [32].
The results for the two kind of discretizations are in tension,
with the Wilson fermion simulations pointing to the exist-
ence of an IR fixed point. Results for the nonperturbative
β-function in (near) IR conformalmodel should, however, be
takenwith extreme care. In fact, close to an (approximate) IR
fixed point very large volumes are needed for a reliable
continuum extrapolation, as pointed out in [39,40].
Recent studies of the spectrum with improved rooted

staggered fermions have a preference towards chiral sym-
metry breaking [34,35,37,38]. Several states in the spec-
trum were studied, including the Goldstone sector, the
vector and axial vector mesons, the nucleon, and both the
isosinglet and isotriplet scalars.
A striking property of the spectrum is that, while hadron

masses and decay constants depend strongly on the quark
mass, ratios likemX=fPS, wheremX is the mass of a hadron
and fPS is the pseudoscalar decay constant, appear to be
approximately independent of the quark mass. This would
indicate an IR-conformal behavior. However it was shown
that the numerical data for the spectrum is not well
described by the leading-order scaling behavior expected
in the IR-conformal hypothesis [34].
On the other hand, it seems possible to fit the observed

Goldstone spectrum by using rooted staggered chiral
perturbation theory [37] and the spectral density of the
Dirac operator shows a plateau at small eigenvalues
[37,41]. However it is unclear if the value of the chiral
condensate from the GMOR relation and the one from the
Banks-Casher relation are compatible.
A light 0þþ scalar state is present in the spectrum, which

is in fact lighter than the would-be Goldstone boson over
the entire range of light quark masses explored. This casts
doubts about the applicability of chiral perturbation theory
to model the numerical data.
Not many studies for the spectrum of the model are

available which use the Wilson discretization. Given the
tension between studies with staggered and Wilson
fermions, we started a more thorough investigation of
the spectrum with Wilson fermions [42,43].
Here we present our final results for the spectrum. In

Sec. II we describe our lattice setup for the numerical
computation. In Sec. III we report our findings for the phase
structure of the lattice model and we discuss the behavior
of spectral observables in different phases. In Sec. IV we
present results from large volume simulations in the weak
coupling phase used to study the chiral limit of the model.
In particular, we fit the spectrum to the expected behavior
of an IR-conformal model, as well as a model with chiral
symmetry breaking, and test which of the two scenarios
best describe the data.

II. LATTICE FORMULATION

The nonperturbative simulations are performed after
introducing a UVand IR cutoff in the form of a space-time

lattice of finite extent L3 × T. The Euclidean formulation of
the theory is used and the path integral is thus reduced to an
ordinary integral over a large number of degrees of freedom.
In this section we outline our simulation strategy, the
simulated action, and the calculated observables.

A. Action

The choice of a discretized action on the lattice is not
unique, nor is the use of boundary conditions. For the gauge
field we use the standard plaquette action [44]

SG½U� ¼ −
β

Nc

X
x

X
μ<ν

ReTrPμνðxÞ; ð2:1Þ

where Nc is the number of colors and β ¼ 2Nc=g2 is the
inverse bare coupling. The elementary plaquette PμνðxÞ in
the (μ,ν)-plane at position x is defined as

PμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð2:2Þ
We impose periodic boundary conditions on the gauge field
in all directions. For the fermions we use the unimproved
Wilson-Dirac operator [44]

DW ½UR� ¼ m0 þ
1

2

X
μ

fγμð∇μ þ∇�
μÞ − a∇�

μ∇μg; ð2:3Þ

wherem0 is the bare quark mass and a is the lattice spacing.
The operators ∇μ and ∇�

μ are the discretized forward and
backward covariant derivatives, respectively,

∇μψðxÞ ¼ UR
μ ðxÞψðxþ μ̂Þ − ψðxÞ ð2:4Þ

∇�
μψðxÞ ¼ ψðxÞ −UR

μ ðx − μ̂Þ†ψðx − μ̂Þ: ð2:5Þ
In these definitions UR

μ ðxÞ is the parallel transporter (link)
from a site x to its neighbor at xþ μ̂ in the representation R.
In the case of two mass degenerate flavors, the fermion
action can be written as

SF½UR; ψ̄ ;ψ � ¼ a4
X2
f¼1

X
x

ψ̄fðxÞDW ½UR�ψf: ð2:6Þ

For the fermions we impose periodic boundary conditions
in the spatial directions and antiperiodic boundary con-
ditions in the temporal direction.
With this choice of discretization, the action only

depends on two bare parameters: the inverse gauge
coupling β and the (dimensionless) quark mass am0.
While the link variables UμðxÞ appearing in the gauge
action are in the fundamental representation of the gauge
group, the links in the Wilson-Dirac operator UR

μ ðxÞ are in
the same representation R as the fermion fields.
For the two-index symmetric representation, the map-

ping between the fundamental and the represented links is
given by
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ðURÞab ¼ Tr½eaUebUT �; ð2:7Þ
where feag is the orthonormal basis for the representation
(see Appendix A).

B. Algorithm

The results presented in this work are obtained using our
own simulation code first described in [45]. The algorithm
used is the standard hybrid Monte Carlo algorithm [46]
together with various improvements, such as even-odd
preconditioning [47], mass preconditioning [48], a second-
order Omelyan-Mryglod-Folk integrator [49], and chrono-
logical inversion [50].
For some of the simulations we use a GPU accelerated

version of the code, however, because the GPU imple-
mentation lacks support for parallelism its use has been
limited to smaller volumes and/or heavy masses.

C. Observables

We report in this section the definition of the observables
used when studying the model. The simplest observable
measured is the average value of the plaquette PμνðxÞ over
all space-time points and possible orientations

hPi ¼ 1

6NcV

X
x

X
ν<μ

ReTrPμνðxÞ: ð2:8Þ

1. Mesons

To extract the masses of the isotriplet mesons, their
decay constants, and the quark mass as defined from the
partially conserved axial current (PCAC) relation, we
consider two-point functions at zero momentum,

CΓΓ0 ðtÞ ¼
X
x

hðO†
Γðx; tÞOΓ0 ð0Þi: ð2:9Þ

The interpolating operator is given by OΓðx; tÞ ¼
ψ̄1ðx; tÞΓψ2ðx; tÞ where ψ1 and ψ2 represent two different
flavors of mass-degenerate fermion fields, and Γ is a
generic matrix in the Clifford algebra. For the hadronic
quantities used in this work, Γ and Γ0 range over the choices
fγ5; γ0γ5; γk; γ5γkg for the pseudoscalar, axial, vector, and
axial-vector currents, respectively. After Wick contracting
the fields, the correlator can be written as

CΓΓ0 ðtÞ ¼ −
X
x

Trfγ5ΓSðx; tÞΓ0γ5S†ðx; tÞg; ð2:10Þ

where Sðx; tÞ ¼ D−1ðx; tÞ is the propagator from (0,0)
to ðx; tÞ.
Numerically we use point-to-all propagators to estimate

the two-point functions with the noise-reduction technique
described in [51] by taking a stochastic average over the
volume of the point source. This method has the additional
advantage that spin dilution can be used to calculated all

channels with only four inversions. Masses and decay
constants for the isotriplet mesons are extracted from the
asymptotic behavior of the correlators CΓΓ0 at large
Euclidean time as described in [52].
For the two-point correlators we furthermore apply a

trick to cancel the backward-propagating states [53]. In
practice this allows us to double the extent of the corre-
lators, at the cost of doing an additional set of inversions for
each source. With this method we define the propagator as

S�ðx; yÞ ¼ SAðx; yÞ � SPðx; yÞ; ð2:11Þ

such that the correlator reads

C�
ΓΓ0 ðtÞ ¼ −

X
x

Trfγ5ΓS�ðx; tÞΓ0γ5S†�ðx; tÞg: ð2:12Þ

The propagator SPðx; yÞ is calculated with periodic boun-
dary conditions in time and SAðx; yÞ with antiperiodic
boundary conditions in time. With these definitions the
first correlator Cþ

ΓΓ0 ðtÞ gives the forward-propagating part
from 0 to T and the second correlator C−

ΓΓ0 ðtÞ gives the
backward-propagating part from 2T to T.
We apply this method because our effective masses in

some cases decay too slowly to reach a proper plateau. With
the extended correlators the results are significantly better,
but a proper plateau might still not be fully reached. For this
reason we always calculate the effective masses in twoways.
(1) Fit a “possible” plateau for the effective mass to a

constant.
(2) Fit the effective mass to the function mðtÞ ¼ m∞ þ

ae−bt and use m∞ as the result.
With the extended correlators both methods generally agree
within errors. However, the second method usually returns a
slightly smaller value, affected by larger uncertainties, such
that the difference between the two methods is statistically
insignificant.
In the case of the decay constants fPS and fV , we use the

second method above, as this results in smaller systematic
errors from finite volume effects (see Sec. IVA below). For
all other observables we use the first method.
All the spectral quantities considered in this work are

bare (i.e. not renormalized) quantities.

2. Baryons

To extract the mass of the lightest baryon state, we use
the following interpolating operator for the spin-1=2 baryon
with positive parity:

ON ¼ ξabcfuaCγ5dbguc: ð2:13Þ

Here C ¼ γ0γ2 is the charge conjugation matrix. The
contraction symbol ξabc is defined in Eq. (A.9) in
Appendix A, but the operator is otherwise identical to
the one used in QCD.

SU(3) SEXTET MODEL WITH WILSON FERMIONS PHYSICAL REVIEW D 96, 034518 (2017)

034518-3



Because the color contractions are symmetric for this
model, the operator formally describes a baryon belonging
to the mixed-symmetric (MS) flavor representation, as
opposed to QCD, where the equivalent operator describes
a baryon in the mixed-antisymmetric (MA) flavor repre-
sentation. This distinction is, however, not important
because the operator describes the same state regardless
of the flavor representation.
To calculate the baryon correlators we use ordinary point

sources, which require 24 inversions for each propagator.
The correlator is defined as

C�ðtÞ ¼
X
x

TrfP�hŌNðx; tÞONð0Þig; ð2:14Þ

where P� ¼ 1
2
ð1� γ0Þ projects onto positive and negative

parity states. Space-time reflection symmetries of the action
and the antiperiodic boundary conditions in the temporal
direction for the quark fields imply, for zero-momentum
correlators, that CþðtÞ ¼ −C−ðT − tÞ. Therefore, in order
to decrease errors we average correlators in the forward and
backward direction

CðtÞ ¼ 1

2
½CþðtÞ − C−ðT − tÞ�: ð2:15Þ

In the following we only consider the positive parity state,
as the negative parity state is too noisy to be accurately
determined.

3. Gradient flow

Following [54] we consider the gradient flow for the
gauge field. Formally the gradient flow is defined through
the equation

∂tBμðt; xÞ ¼ DνGνμðt; xÞ; ð2:16Þ
where Gμν ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν� is the field strength
tensor and Dμ ¼ ∂μ þ ½Bμ; ·� is the covariant derivative.
The initial condition is Bμðt; xÞjt¼0 ¼ AμðxÞ. The fictitious
flow time t should not be confused with Euclidean time.
For the Wilson action, the discretized flow equation reads

d
dt

Vμðt; xÞ ¼ −g2f∂x;μSGðVÞgVμðt; xÞ; ð2:17Þ
with the initial condition Vμðt; xÞjt¼0 ¼ UμðxÞ. While the
gradient flow has several advantages, we will simply use it
to measure how the lattice spacing changes as a function of
the bare parameters. In literature, two related scale-setting
observables [54,55] have been introduced,

EðtÞ ¼ ht2EðtÞi ð2:18Þ

WðtÞ ¼ t
dEðtÞ
dt

: ð2:19Þ

Here E ¼ 1
4
Ga

μνGa
μν is the action of the flowed gauge field.

On the lattice we use the symmetric clover discretization for
this observable. In both cases the scale setting is performed
by choosing a fixed reference value, such that

Eðt0Þ ¼ Eref ; ð2:20Þ
Wðw2

0Þ ¼ Wref : ð2:21Þ
Keeping the reference value fixed, the change in t0 and w0

is then related to the change in lattice spacing as a function
of the change in the bare parameters.

III. PHASE STRUCTURE

In this section we discuss the phase structure of the
lattice model. In particular we compare the behavior of the
model when simulated in the weak and strong coupling
phase, respectively.
To properly understand the lattice model and reveal its

nontrivial phase structure, we performed an extensive scan,
comprising more than 200 simulations, in the parameter
space of the bare coupling β and the bare quark mass m0.
For this scan we use either 84 or 163 × 32 lattices,
depending on the observable. To check for finite volume
effects, some of the simulations have been repeated on
243 × 48 lattices. We show in Fig. 1 an overview of the
simulations used for scanning the ðβ; m0Þ plane.
From the scan we are able to determine different phases

of the lattice model. In Fig. 2 we show the resulting phase
diagram, where we identify four different regions separated
by either first-order transitions (dashed lines) or continuous
transitions (solid lines).
On the figure, the solid blue line is a continuous

crossover identified by looking at the peak of the plaquette
susceptibility, as a function of the bare coupling, in the
region of positive PCAC mass. This line separates the
“weak coupling phase” from the “strong coupling phase.”
The plaquette susceptibility is defined as

χP ¼ ∂hPi
∂β : ð3:1Þ

3 3.5 4 4.5 5 5.5 6
−2.5

−2

−1.5

−1

−0.5

0

β

FIG. 1. Overview the simulations used for scanning the lattice
phase diagram. Some parameters have been simulated twice with
different initial configurations (random or unit).
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We plot in Fig. 3 the plaquette susceptibility for three
different values of the bare mass. The susceptibility shows a
clear peak, whose maximum value increases when decreas-
ing the bare masse, i.e. when approaching the limit of
vanishing quark mass. The maximum of the plaquette
susceptibility seems to be volume independent, which
indicates that the transition is a smooth crossover which
becomes sharper at lower quark masses.
At strong coupling a line of first-order transition is

present (the dashed red line in Fig. 2) with an endpoint
around β ≈ 5.1 as indicated by the black point. This
transition line is identified by discontinuous jumps in the
average value of the plaquette. We show in Fig. 4 an
overview of the average plaquette for different values of β

in the strong and weak coupling phases. A discontinuity is
clearly visible indicating the first-order transition.
The hysteresis cycles on Fig. 4 appear in simulations

started from different initial configurations. All data points
on this figure have been obtained from independent
simulations started from either a unit configuration (blue
points) or a random configuration (red points). At very
strong coupling we are unable to run simulations for bare
masses below m0 ≈ −1.9, which is why the hysteresis
cycles in topmost panel are not closed.
As we approach the weak coupling region, the hysteresis

cycles disappear, as seen in the panel at the bottom. At
β ¼ 5.2 one can still observe a small signal for the
transition, while at β ¼ 5.3 it is absent.
For the study of hysteresis cycles, we used small 84

lattices, since the presence of strong metastabilities on large
lattices makes it difficult to perform numerical simulations
across the transition. To check for the persistence of the
first-order transition, we have repeated the simulation at
β ¼ 5.0 and m0 ¼ −1.5 on the three volumes 84, 163 × 32,
and 243 × 48 and confirmed that the average plaquette
value is independent of the lattice volume.
The line of first-order transition continues as a continu-

ous transition line (solid red line in Fig. 2) in the weak
coupling regime. This line is identified as the line where the
PCAC mass vanishes, when approaching from positive
bare mass.
Finally we identify one more line (solid green line in

Fig. 2) in the phase diagram. This line is defined as the
point where the slope of the PCAC mass changes sign. We
discuss the significance of this line in subsection III A.
The outlined phase diagram shares a number of features

with the phase diagram of the SU(2) gauge theory with two
Dirac fermions in the adjoint representation, first studied in
[56], which is a model known to be inside the conformal
window [45,56–68].
The common features includes a first-order phase

transition at strong coupling, with an endpoint which then
becomes a continuous transition line where the quark mass
vanishes. We will show below that similar behaviors of the
spectral quantities both at strong and weak coupling are
also observed.
In simulations with many fundamental flavors, the same

first-order phase transition at strong coupling is also
observed [69], indicating that this might be a general
feature for Wilson fermions for models inside or close to
the conformal window.

A. Spectrum

Having understood the phase structure of the discretized
latticemodel, we now turn our attention to several interesting
observables, starting from the light meson spectrum.
In Fig. 5 we show how the PCAC, pseudoscalar, and

vector mass change as a function of the bare quark mass
across different phases. In the strong coupling region at

β
4 4.5 5 5.5 6 6.5

−2

−1.5

−1

−0.5

0

FIG. 2. Phase diagram for the lattice model showing four
different regions. Region I is a strong coupling bulk phase,
regions II and III are weak coupling phases with positive and
negative PCACmass, respectively, and region IV is an unphysical
artifact region.

4.6 4.8 5 5.2 5.4 5.6 5.8
0.1

0.2

0.3

0.4

0.5

0.6

β

χ P

 

 

FIG. 3. Plaquette susceptibility for positive PCAC mass at three
different values of m0. The location of peak determines the
crossover transition line between the “weak coupling phase” and
the “strong coupling phase” (solid blue line in Fig. 2).
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FIG. 4. Hysteresis cycles around the first-order phase transition. The red (blue) points indicate simulations started from a random
(unit) configuration. At strong coupling we are unable to run simulations for bare masses below m0 ≈ −1.9. As we approach the weak
coupling phase, the first-order transition disappears.
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β ¼ 4.8 (left panel), where a first-order transition is visible,
we observe a hysteresis region and discontinuous jumps
for the masses. In the figure, the lines extending furthest to
the left (right) are from simulations started from a unit
(random) configuration. In particular the PCAC mass
jumps from a positive to a negative value across the
transition, implying that the chiral limit cannot be reached
in the strong coupling region I.
In the right panel of Fig. 5 we show the same observables

for β ¼ 5.5 in the weak coupling phase. As the transitions
separating the different regions in phase space are all
continuous at this weaker coupling, we observe no jumps
in the measured observables. The PCAC mass smoothly
approaches zero and becomes negative before its slope
changes sign around m0 ≈ −1.42 to increase again until it
vanishes for a second, more negative, value of the bare quark

mass. The border between regions III and IV is defined at the
point when the slope of the PCAC mass changes sign. This
defines region III as the part of the phase diagram at weak
coupling where the chiral transition line can be approached
from negative PCAC masses and where we observe a
qualitatively similar behavior for the meson masses when
compared to the positive PCAC mass case in region II.
In the rest of this paper we will focus our attention only

on regions I and II, where one can approach the chiral line
from positive PCAC mass values.
In Fig. 6 we show how the ratio mV=mPS changes when

moving from region I (the strong coupling phase) to region II
(the weak coupling phase) as a function of the PCAC mass.
In the strong coupling phase (Fig. 6, left panel), where
hysteresis exists, we show the ratio of masses as obtained
from simulations starting from random configurations. This
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FIG. 5. Left: Behavior ofmV ,mPS, andmPCAC when crossing the first-order transition at β ¼ 4.8. The lines extending furthest the right
(left) are simulations in region I (region IV). We observe that the slope of the PCAC mass has the opposite sign in region IV. Right: At
β ¼ 5.5 there is a continuous transition between regions II, III, and IV, and we clearly see that the slope of the PCAC mass changes sign
around m0 ≈ −1.42.
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FIG. 6. The ratio mV=mPS as a function of the PCAC mass and inverse coupling β. Left: Inside the bulk phase (region I) the ratio
diverges in the chiral limit, as expected from chiral symmetry breaking. The gray line is a fit to the data at β ¼ 3.0 and β ¼ 4.0. Right: In
the weak coupling phase (region II) the ratio is constant in the chiral limit, as expected in a conformal model.
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ratio clearly increases towards the chiral limit andweobserve
a clear splitting between the vector and pseudoscalar meson
masses, which is consistent with the expectation of chiral
symmetry breaking. This is not surprising, as lattice artifacts
always break chiral symmetry at strong coupling. We also
note that, since the first-order transition becomes stronger
and the metastable states are more stable at stronger
couplings, we are able to reach much lower positive
PCAC masses for stronger couplings.
When moving to weak couplings in region II (Fig. 6,

right panel) we observe that the ratio becomes almost
constant towards the chiral limit and the two states remain
almost degenerate over the entire range of quark masses
investigated here. Most of the results in the right panel of
Fig. 6 are obtained on a 163 × 32 lattice volume, but we
also include our data from large volume simulations at
β ¼ 5.4 and β ¼ 5.5 which we use later in the paper for a
more detailed analysis of the spectrum at weak coupling.
There is a small difference in the ratios obtained over the
two volumes, due to finite-size effects.
If persisting to arbitrarily small quark masses and weak

couplings, this flat behavior would indicate the absence
of spontaneous chiral symmetry breaking and it would be
consistent with the expected hyperscaling behavior of an
infrared conformal model [63,70,71]. This drastic change in
the qualitative behavior of themodel shows a sharp transition
between the strong and the weak coupling phases.

B. Gradient flow

As our scan of the parameter space includes many
different values of the bare coupling, in order to understand
how the lattice spacing changes, we measure the scale
setting observables introduce in Sec. II C. The reference
values used in this work are Eref ¼ Wref ¼ 1 and 0.15,

which, although different from the usual values used in
QCD, give a reasonable definition in the sextet model.
We choose two, quite different, values to show that any
reasonable choice of the reference values gives the same
qualitative behavior.
In Fig. 7 we show EðtÞ and the determination of t0 for a

range of bare masses at β ¼ 4.0 in the strong coupling phase
(left panel) and β ¼ 5.3 in the weak coupling phase (right
panel). As before, results in the strong coupling phase are
obtained from simulations starting from a random gauge
configuration. From the comparison between the two, it is
evident that, while EðtÞ in the strong coupling region shows
an almost negligible small quark-mass dependence down to
the smallest quark mass which is possible to reach, at weak
coupling a very strong quark-mass dependence is observed.
In particular the value of t0 seems to divergewhen approach-
ing the chiral limit. A very similar behavior is also observed
for the w0 observable.
This divergent behavior is shown in Fig. 8 where we plotffiffiffiffi
t0

p
and w0 as a function of t0m2

PS (left panel) and w2
0m

2
PS

(right panel). In the strong coupling region the extrapolation
towards the chiral limit is mild, as expected from previous
studies in QCD. In contrast, in the weak coupling phase the
strong quark-mass dependence of the two quantities w0 and
t0 is clearly seen as a turnaround of the curves in Fig. 8 for
β ≳ 5.0. This indicates that t0 andw2

0 are diverging faster than
1=m2

π when approaching the chiral limit.
The observed behavior is clearly in contrast to the

expectations in a chirally broken model [72]. We also
observe that the measure of t0 and w0 is not affected by
finite-volume effects. This is illustrated in Fig. 8, where for
one of the masses at β ¼ 5.2 we included a comparison
with a larger 243 × 48 volume (the cross symbols in the
figure).
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FIG. 7. Determination of the t0 observable for two different bare couplings. The left panel at β ¼ 4.0 is in the strong coupling region
(region I), while the right panel at β ¼ 5.3 is in the weak coupling region (region II). The observable has a negligible quark-mass
dependence in region I, but a very strong quark-mass dependence in region II. The dashed horizontal lines are the reference values
Eref ¼ 1 and Eref ¼ 0.15. The quark-mass dependence in the two regions is not influenced by the choice of reference value.
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IV. WEAK COUPLING PHASE

Having studied the lattice phase diagram of the model,
we focus here on the weak coupling phase and, in
particular, on the light quark-mass region. The qualitative
features which emerged from the phase diagram indicate
that in the weak coupling phase no clear signs of chiral
symmetry breaking are visible. The aim of this section is to
understand in more detail if the model shows signs of
conformal scaling instead of chiral symmetry breaking in
the massless limit. We know from the numerous previous
numerical studies of near conformal models that the many
systematic effects which are necessarily present in a lattice
simulations can easily obscure the expected behavior, both
in the case of IR conformal and chirally broken models.
One should therefore always try to control all the system-
atics in the best possible manner.
The strategy that we use, is to look at the infinite-volume

limit of all observables considered; i.e. at each given quark
mass we use a large-enough volume so that finite-volume
corrections are under control. A preliminary comment is in
order. In the weak coupling phase and at light masses, the

sextet model considered here is known to be affected by a
severe topological freezing problem. We report our results
for the topology in Appendix C; see also e.g. [35] for
simulations with staggered fermions. The weak coupling
results presented in this section for light masses are
obtained from simulations at zero topological charge.
We consider the fixed topology as an additional source
of finite-volume corrections.
All the data used in this section were obtained at bare

coupling β ¼ 5.4 on lattice volumes of either 243 × 40 or
323 × 48 for the two lightest quark masses.

A. Finite-volume effects

We have studied the finite-volume effects for the
observables considered in this work. We show in Fig. 9
the finite-volume effects on mPCAC, fPS, mPS, fV , and mV
for the second-lightest point considered in this section,
corresponding to a pseudoscalar meson mass of
mPS ¼ 0.293ð1Þ. To quantify the finite-volume effects we
use three different spatial volumeswithL ¼ f16; 24; 32g and
the temporal extent fixed to T ¼ 48 in all cases. To
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FIG. 8. Behavior of t0 and w0 as a function of t0m2
PS (left panel) and w2

0m
2
PS (right panel) respectively. The observed turnaround is

caused by the very strong quark-mass dependence of both t0 and w0 in the weak coupling region. Finite-size effects are negligible on
both t0 and w0, as can be seen in the figure by looking at the cross symbols which are obtained on a larger lattice volume of 243 × 48.
The top and bottom rows are the results for two different choices of the reference scale.

SU(3) SEXTET MODEL WITH WILSON FERMIONS PHYSICAL REVIEW D 96, 034518 (2017)

034518-9



parametrize the finite-volume corrections we use an expo-
nential function of the form

mðLÞ ¼ m∞ þ a expð−bLÞ; ð4:1Þ

with fm∞; a; bg as free parameters. As seen in Fig. 9, on the
largest volume, the finite-volume effects are negligible and in

all cases much smaller than the statistical errors.We also note
that, in the case of the pseudoscalar decay constant, the finite-
volume corrections have an opposite sign when compared to
the expected behavior of a chirally broken theory. From these
results we conclude that the systematic errors stemming from
the finite simulation volume are under control for the spectral
quantities considered in this section.
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FIG. 9. Measure of finite-volume effects at β ¼ 5.4 on the second-lightest point available for this study. All finite-volume effects are
controllably small on the largest lattice used 323 × 48.
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B. Spectrum

It is in principle possible to distinguish between the two
scenarios by studying the particle spectrum in the chiral
limit. The most dramatic difference between the two
scenarios is that in the IR conformal case all meson masses
and decay constants will vanish in the chiral limit, while in
the more familiar chirally symmetric broken case only the
mass of the Nambu-Goldstone bosons will become zero.
In both cases analytical predictions are available for the
behavior of meson masses and decay constants, which will
be reported below. Because both predictions are perturba-
tive expansions around the quark mass, they are only
expected to work sufficiently close to the chiral limit.
Here we analyse the spectral quantities fPS, mPS, fV ,

mV , mA, and mN as a function of mPCAC. We show in
Fig. 10 an overview of all the quantities considered here
(left panel) and the same quantities normalized to fPS. The
numerical values obtained in our simulations are reported
in Tables I and II in Appendix B.
As noted previously in Sec. III A, we observe that all the

spectral quantities considered have a strong dependence on
the quark mass and the ratios to fPS seem to converge to a
finite value in the chiral limit. In particular this is also the
case for the ratiomPS=fPS which slightly increases towards
the chiral limit. This kind of behavior has been observed
in all previous studies of conformal and near conformal
models, such as e.g. the SU(3) model with nf ¼ 8

fundamental Dirac fermions [73,74] and the sextet model
considered here [37].
If such a behavior would persist for arbitrarily small

quark masses, the theory would be IR conformal. On the
other hand, if the mass of mPS vanishes while all the other
spectral quantities remain finite, the theory would be
chirally broken. As all the quantities show a strong
dependence on the quark mass, a careful analysis is
required to distinguish between the two cases.

As we will show below, similarly to all other numerical
studies of (near) IR conformal models, the expected
leading-order behavior for both scenarios is only attained
for very small quark masses. Therefore corrections to the
leading-order behavior must be included in the analysis.
We now study how well each of the two hypotheses for

the chiral behavior of the model fit our data.

C. Test of conformal scaling

We first consider the case of an IR conformal model. In
an IR conformal theory the renormalization group equa-
tions can be used to show that all masses Mx and decay
constants Fx scale in the same way as a function of the
quark mass [63,70,71], in a neighborhood around the IR
fixed point. The scaling behavior is described by a hyper-
scaling relation of the form1

Mx ¼ Axm1=ð1þγÞ þ ~Axmω;

Fx ¼ Bxm1=ð1þγÞ þ ~Bxmω; ð4:2Þ
where m is the quark mass, x is a label for a specific
channel, and γ is the anomalous dimension of the mass at
the IR fixed point which is related to the universal leading
scaling exponent. The second term in each expression is
the dominant subleading correction to scaling, where the
dominant subleading exponent ω is also universal and
bigger than 1=ð1þ γÞ. In particular, this scaling behavior
predicts that the ratio of any two observables is constant up
to higher-order corrections and that all particles are mass-
less in the chiral limit.
We show in Fig. 11 the result of the combined fit to all

the channels available in this study. The fit to Eq. (4.2)
(solid line in the figure) describes the data well over a range
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FIG. 10. Left: Overview of the spectral quantities considered for the analysis in Sec. IV B. Right: The same quantities normalized to fPS.

1For the decay constants we only consider fPS and fV , which
have the same scaling exponents as the masses.
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of quark masses up to mPCAC ∼ 0.10 with a χ2=d:o:f: ¼
7.04=16 ¼ 0.44. The fitted value for the anomalous dimen-
sion of the mass is γ ¼ 0.25ð3Þ and the subleading
exponent is ω ¼ 2.71ð76Þ. We note that in this case
subleading corrections are crucial to obtaining a good
fit, mainly because they give a large contribution to the
decay constants.
We also show the result of the best fit to the leading-order

behavior (dashed line in the Fig. 11), where we reduce the
range of masses included in the fit to mPCAC < 0.05. Over
this reducedmass range the fit to leading-order behavior also
provides a good description of our data with χ2=d:o:f: ¼
4.62=11 ¼ 0.42. The best-fit value for the mass anomalous
dimension extracted from this fit is γ ¼ 0.27ð3Þ, which is in
very good agreement with the value obtained considering
corrections to scaling. This is an indication that subleading
corrections are indeed a small correction at small quark
masses, which we also verified explicitly. We have also
investigated the stability of the fit to Eq. (4.2) when changing
the range of masses included in the fit. We found that
including heavier points makes the subleading corrections
dominant even at small quark masses, which we consider
unacceptable. On the other hand, if we reduce the range of
fitted masses, the fit remains stable.

D. Test of chiral symmetry breaking

We now turn to the case of spontaneous chiral symmetry
breaking. The Callan-Coleman-Wess-Zumino formalism
can be used to write down an effective low-energy
Lagrangian in the chiral limit, as done in chiral perturbation
theory. Because the sextet representation is complex, the
pattern of chiral symmetry breaking is SUð2ÞL×SUð2ÞR→
SUð2ÞV ; i.e. the same as in two-flavor QCD. The quark-
mass dependence of the pion mass and the pion decay
constant has been calculated to next-to-next-to-leading
(2-loop) order in [75],

M2
π ¼M2

�
1þM2

F2
ðaMLþbMÞþ

M4

F4
ðcML2þdMLþeMÞ

�
;

Fπ ¼F
�
1þM2

F2
ðaFLþbFÞþ

M4

F4
ðcFL2þdFLþeFÞ

�
:

ð4:3Þ

Here M2 ¼ 2Bm is the leading-order pion mass from the
GMOR relation, F is the leading-order pion decay constant,
and L is shorthand notation for the chiral logs,

L ¼ 1

16π2
log

�
M2

μ2

�
: ð4:4Þ

The coefficients faM; aF; cM; cFg are known in the con-
tinuum limit and have values

aM ¼ 1

2
; aF ¼ −1; cM ¼ 17

8
; cF ¼ −

5

4
;

ð4:5Þ

but the remaining coefficients are combinations of
unknown low-energy constants. On the lattice, the coef-
ficients faM; aF; cM; cFg will receive OðaÞ corrections.
On a qualitative level, chiral perturbation theory predicts

massless pions in the chiral limit (they are the Goldstone
bosons) but with a nonzero decay constant. The remaining
particles in the spectrum are expected to have a finite mass.
The chiral perturbative expansion is expected to work in the
regime where the pion is the lightest state in the model and
it is expected to converge in the limit of small expansion
parameter M2=ð4πFÞ2 ≪ 1.
We stress that the applicability of chiral perturbation

theory to our data is questionable since over the entire range
of quark masses explored in our study the mass of the vector
meson is almost the same as the “pion.” Additionally, in all
other studies of (near) IR conformal models, such as the
ones previously cited, it has been shown that a light scalar
resonance, analogous to the f0ð500Þ in QCD, is present,
which can be as light (or even lighter) than the pion.
Despite these problems, we try to use Eq. (4.3) to fit our

numerical results. We find that the expected next-to-leading-
order (NLO) behavior with the coefficients aM and aF fixed
to their continnum values does not fit the numerical data.
Instead, we perform two other fits which provide a good

description of our results: a next-to-leading order fit with
aM and aF as free coefficients, and a next-to-next-to-
leading-order (NNLO) fit with the coefficients in Eq. (4.5)
fixed. We show in Fig. 12 the resulting best fit for both the
next-to-leading (top row) and the next-to-next-to-leading
(middle row) formula. In both cases the same mass range
mPCAC ≤ 0.17 for the fit is used. In the NLO case, the fit
has a χ2=d:o:f: ¼ 5.76=6 ¼ 0.96 and we find F ¼
0.027ð10Þ and B ¼ 0.20ð1Þ. For the NNLO case we
obtain χ2=d:o:f: ¼ 2.08=4 ¼ 0.52 with F ¼ 0.036ð20Þ
and B ¼ 0.29ð6Þ. The values obtained from the two fits
for F are in good agreement, while, in the case of B, the
poorer agreement reflects the very large uncertainty on the
leading-order behavior of the data.
By changing the fitted mass range, we find that the

values for F are relatively stable around F ≈ 0.03with large
errors, while B seems to decrease, also significantly, if we
reduce the mass range to smaller quark masses.
Finally we tried a modified version of Eq. (4.3) in which

we introduce an Oða2Þ shift in the leading order pion mass
squared, M2 ¼ 2Bmþ δ. This functional form is inspired
byWilson chiral perturbation theory (WChPT). We show in
Fig. 12 (bottom row) the result of the fit which describes
our data well. In this case we also obtain a value of F ¼
0.039ð8Þ which is compatible with the values above, while
the best-fit value of B is, not surprisingly, substantially
increased to B ¼ 0.88ð12Þ.
In Fig. 12 we also show the size of the different loop

order terms to mPS and fPS. It is clear, given the large size
of higher-order corrections, that the perturbative series is
not convergent in the fitted mass range. Even for our best
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fit, inspired by WChPT, the NLO terms are clearly
dominating the LO terms over the whole range of mass
explored. Therefore, even if one believes that Eq. (4.3) give
a correct description of the system, our numerical data are
not within its range of applicability.
In view of these results, although it is possible to use a

functional form inspired by chiral perturbation theory to
describe our numerical data, we conclude that little physical
meaning can be extracted from this analysis. If the model
is chirally broken, substantially lighter quark masses are
needed to make contact with ChPT.

V. CONCLUSIONS

We presented a detailed study of the SU(3) “sextet”
model with two Dirac fermions in the two-index symmetric
representation of the gauge group. The main phenomeno-
logical motivation to consider such a model stems from the
possibility that it is a realistic candidate for a walking
technicolor model if it sits just below the sill of the
conformal window. The precise location of the conformal
window is also an interesting theoretical question, which
many groups have investigated on the lattice. For the sextet
model this issue is still controversial [34–37,76].
In this paper we studied the infrared properties of the

model by focusing on the physical spectrum. The most
precise results for the spectrum of the model have, so far,
been obtained with the use of the staggered fermion
discretization. In this work we chose the Wilson discreti-
zation for a comparison.
Wemapped out the phase diagram of the lattice model and

located several distinct regions in the parameter space, see
Fig. 2, which show qualitatively very different behaviors. In
particular, we locate a strong coupling “bulk” phase inwhich
the model shows the qualitative features expected from
spontaneous chiral symmetry breaking, such as a significant
splitting between the would-be Goldstone boson mass and
the vector meson mass. However, in this strong coupling
phase, vanishing pionmasses cannot be reached because of a
first-order transition that occurs at small quark masses.
At weak couplings this first-order line disappears, so that

one can identify a chiral line where the quark mass
vanishes. However in this weak coupling phase, we do
not observe the qualitative features expected from a chirally
broken model; e.g. the ratio between the pseudoscalar and
vector meson masses remains close to 1 and constant over
the entire range of masses explored in this study.
A similar abrupt change in behavior is seen in the scale

setting observables t0 and w0, which are almost insensitive
to the quark mass in the strong coupling phase, but strongly
depend on it in the weak coupling phase where they seem to
diverge in the chiral limit.
We have checked that these qualitative features are free of

finite-volume effects and they would imply that the model
is IR conformal, if they persist to vanishingly small quark
masses. We therefore studied in more detail the chiral limit
of the model in the weak coupling phase. We performed

simulations at eight different quark masses and measured
fPS, mPS, fV , mV , mA, and mN and studied the behavior of
these observables as a function of mPCAC. We compare our
numerical data to the predicted behavior for both the case of
an IR conformal and a chirally broken model.
We find that it is possible to fit our data to the functional

forms predicted in both cases. However, in the case of IR
conformality the best-fit function is consistent with the
theoretical expectations that subleading terms are small
compared to the leading-order scaling behavior. In particu-
lar, a fit to the simple leading-order scaling behavior near
the chiral limit is consistent with the fit which includes
scaling corrections on a larger mass range. In contrast, for
the case of the chiral symmetry breaking, although we used
several functional forms inspired by chiral perturbation
theory, which describe our numerical data well, in all cases
higher-order corrections to the leading behavior are very
dominant over the whole range of masses explored. This
implies that the use of ChPT is questionable and signifi-
cantly smaller quark masses are needed to observe a
possible breaking of chiral symmetry. The validity of
ChPT is also questioned by the presence of a “light” vector
resonance and possibly an even lighter scalar resonance, as
shown by studies with staggered fermions.
We conclude that the simplest interpretation of our data

is that the model is IR conformal. The possibility remains
that the model is “walking” and it will eventually show
signs of chiral symmetry breaking at much lighter quark
masses than the ones used here.
In the future we plan to use an improved Wilson fermion

setup to repeat the numerical study in the light quark region.
This will allow for the use of coarser lattices and larger
physical volumes, which are the main limiting factor in
exploring the chiral limit of “walking” or IR conformal
models.
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APPENDIX A: SEXTET REPRESENTATION

Fermions in the two-index symmetric representation can
be written as

ψcd ¼ ð ~ψaeaÞcd; ðA1Þ
where f ~ψag are the six Grassmann-valued degrees of
freedom and feag is the orthonormal basis for all real
and symmetric 3 × 3matrices. For simplicity we only write
the color indices, since the spinor indices are independent
of the representation. Because this a symmetric represen-
tation we necessarily have ψab ¼ ψba and for this reason
the spinor field must transform as
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ψ → UψUT ðA2Þ
whereU is an element of SU(3) in the two-index symmetric
representation. An interesting feature of this model is the
existence of a baryon spectrum analogous to that of QCD.
This can be seen by working out the color structure of a
three-quark state, which contains a neutral color singlet,

6 ⊗ 6 ⊗ 6 ¼ 1 ⊕ 2 × 8 ⊕ 10 ⊕ 1̄0 ⊕ 3

× 27 ⊕ 28 ⊕ 2 × 35:

The flavor structure for the baryons is equivalent to the
flavor structure in QCD, and it results in two doublets with
mixed symmetry and a symmetric quadruplet,

2 ⊗ 2 ⊗ 2 ¼ 2 × 2 ⊕ 4:

The quadruplet corresponds to the spin-3=2 baryons, the
equivalents of the Δ baryons,�

3

2
;
3

2

���� ¼ uuu

�
3

2
;
1

2

���� ¼ uudþ uduþ duuffiffiffi
3

p
�
3

2
;−

1

2

���� ¼ dduþ dudþ uddffiffiffi
3

p
�
3

2
;−

3

2

���� ¼ ddd: ðA3Þ

The two doublets are equivalent representations of the spin-
1=2 baryons. The first doublet is the MA representation�

1

2
;
1

2

���� ¼ udd − dudffiffiffi
2

p ;

�
1

2
;−

1

2

���� ¼ udu − duuffiffiffi
2

p ; ðA4Þ

and the second doublet is the MS representation,

�
1

2
;
1

2

���� ¼ uddþ dud − 2dduffiffiffi
6

p ;

�
1

2
;−

1

2

���� ¼ −
duuþ udu − 2uudffiffiffi

6
p : ðA5Þ

With the group-theoretical knowledge of the model we
can construct gauge invariant meson and baryon states. The
meson states are constructed by contracting color indices
with two Kronecker deltas,

δacδbdψ̄abψcd → δacδbdU�aa0U�bb0Ucc0Udd0 ψ̄a0b0ψc0d0

¼ ðU†UÞa0c0 ðU†UÞb0d0 ψ̄a0b0ψc0d0

¼ δa
0c0δb

0d0 ψ̄a0b0ψc0d0 : ðA6Þ

The baryon states can similarly be constructed by con-
tracting the color indices with two Levi-Civita tensors.

ϵaceϵbdfψabψcdψef → ϵaceϵbdfUaa0Ubb0Ucc0Udd0Uee0Uff0

× ψa0b0ψc0d0ψe0f0

¼ detU detUϵa
0c0e0ϵb

0d0f0ψa0b0ψc0d0ψe0f0

¼ ϵa
0c0e0ϵb

0d0f0ψa0b0ψc0d0ψe0f0 : ðA7Þ

For convenience we work out the baryon color structure in
terms of the fermionic degrees of freedom,

ϵabcϵa
0b0cψaa0ψbb0ψcc0

¼ ϵabcϵa
0b0c0 ð ~ψ ieiÞaa0 ð ~ψ jejÞbb0 ð ~ψkekÞcc0

¼ ½ϵabcϵa0b0c0 ðeiÞaa0 ðejÞbb0 ðekÞcc0 � ~ψ i ~ψ j ~ψk

≡ξijk ~ψ i ~ψ j ~ψk: ðA8Þ

Here we define a new contraction symbol ξijk with
fi; j; kg ¼ 1…6. This tensor is symmetric in all indices
and it has four independent elements,

ξijk ¼ ϵabcϵa
0b0c0 ðeiÞaa0 ðejÞbb0 ðekÞcc0 : ðA9Þ

APPENDIX B: NUMERICAL RESULTS

We show in Tables I and II the numerical results for the
large volume simulations at β ¼ 5.4.

TABLE I. Bare quantities from the large volume simulations at β ¼ 5.4.

−m0 L3 × T mPCAC mPS fPS mV fV mA mN

1.2750 243 × 40 0.2268(1) 1.0157(4) 0.483(8) 1.095(1) 0.67(1) 1.47(3) 1.80(1)
1.3000 243 × 40 0.1613(2) 0.8401(6) 0.348(12) 0.905(1) 0.48(3) 1.15(2) 1.45(1)
1.3125 243 × 40 0.1269(4) 0.727(2) 0.272(13) 0.781(3) 0.38(3) 0.99(2) 1.26(1)
1.3250 243 × 40 0.0909(2) 0.586(1) 0.200(10) 0.629(2) 0.28(1) 0.78(2) 1.00(1)
1.3325 243 × 40 0.0682(2) 0.481(2) 0.150(10) 0.514(3) 0.20(2) 0.66(2) 0.85(2)
1.3400 243 × 40 0.0436(3) 0.350(3) 0.101(9) 0.369(6) 0.14(2) 0.46(3) 0.63(2)
1.3425 323 × 48 0.0351(1) 0.293(1) 0.081(5) 0.308(2) 0.11(1) 0.40(3) 0.52(2)
1.3450 323 × 48 0.0266(1) 0.235(1) 0.071(4) 0.249(2) 0.10(1) 0.35(2) 0.43(2)
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APPENDIX C: TOPOLOGY

As mentioned in the paper, in the weak coupling phase
this model suffers from topological freezing to a much
larger extent than QCD. In Fig. 13 we show the history of

the topological charge for the four heaviest masses in the
large volume simulations at β ¼ 5.4. For sufficiently heavy
masses we do observe some fluctuation in the topological
charge, but as we approach the chiral limit, the topological
charge freezes completely.

TABLE II. Derived quantities from the large volume simulations at β ¼ 5.4.

−m0 mPS=fPS mV=fPS mA=fPS mN=fPS fV=fPS mV=mPS mA=mPS mPSL

1.2750 2.10(4) 2.27(4) 3.01(11) 3.73(3) 1.38(3) 1.078(2) 1.45(3) 24.4
1.3000 2.41(7) 2.59(9) 3.24(13) 4.16(3) 1.39(8) 1.077(3) 1.36(2) 20.2
1.3125 2.68(16) 2.88(17) 3.64(19) 4.62(4) 1.39(13) 1.075(6) 1.37(2) 17.6
1.3250 2.94(15) 3.14(14) 3.84(21) 5.00(7) 1.41(9) 1.073(4) 1.34(3) 14.1
1.3325 3.21(23) 3.40(24) 4.30(33) 5.65(13) 1.36(15) 1.068(7) 1.37(4) 11.5
1.3400 3.41(30) 3.60(34) 4.32(35) 6.18(19) 1.37(18) 1.056(17) 1.31(2) 8.4
1.3425 3.58(19) 3.75(20) 4.71(23) 6.45(22) 1.34(11) 1.052(8) 1.36(3) 9.4
1.3450 3.28(18) 3.44(22) 4.61(45) 5.98(26) 1.39(13) 1.059(11) 1.47(6) 7.5
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FIG. 13. History of the topological charge for the four heaviest masses in the large volume simulations at β ¼ 5.4. For all lighter
masses, the topological charge is always zero.
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In the strong coupling phase, this does not appear to be a
problem. In Fig. 14 we show the history of the topological
charge for the lightest available mass at three different bare

couplings. This is again an indication that something
drastic happens when moving from the strong to the weak
coupling phase.
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