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Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter.
A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the
existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons
and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of
QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical
potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables
in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the
well-established states are not enough in order to have agreement with the lattice results. Additional states,
either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark
model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and
the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those
included in the HRG model are needed to reproduce the lattice QCD results.
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I. INTRODUCTION

The precision achieved by recent lattice simulations of
QCD thermodynamics allows us to extract, for the first
time, quantitative predictions which provide a new insight
into our understanding of strongly interacting matter.
Recent examples include the precise determination of the
QCD transition temperature [1–4], the QCD equation of
state at zero [5–7] and small chemical potential [8–10] and
fluctuations of quark flavors and/or conserved charges near
the QCD transition [11–13]. The latter are particularly
interesting because they can be related to experimental
measurements of particle multiplicity cumulants, thus
allowing us to extract the freeze-out parameters of
heavy-ion collisions from first principles [14–18].
Furthermore, they can be used to study the chemical
composition of strongly interacting matter and identify
the degrees of freedom which populate the system in the
vicinity of the QCD phase transition [19–21].
The vast majority of lattice results for QCD thermody-

namics can be described, in the hadronic phase, by a
noninteracting gas of hadrons and resonances which
includes the measured hadronic spectrum up to a certain

mass cutoff. This approach is commonly known as the
hadron resonance gas (HRG) model [22–26]. There is
basically no free parameter in such a model, the only
uncertainty being the number of states, which is determined
by the spectrum listed in the Particle Data Book. It has been
proposed recently to use the precise lattice QCD results on
specific observables, and their possible discrepancy with
the HRG model predictions, to infer the existence of higher
mass states [27–29], not yet measured but predicted by
quark model (QM) calculations [30,31] and lattice QCD
simulations [32]. This leads to a better agreement between
selected lattice QCD observables and the corresponding
HRG curves. However, for other observables the agreement
with the lattice gets worse, once the QM states are included.
Amongst experimentally measured hadronic resonances

within the Particle Data Group (PDG) list, there are
different confidence levels on the existence of individual
resonances. The most well-established states are denoted
by **** stars whereas * states indicate states with the least
experimental confirmation. Furthermore, states with the
fewest stars often do not have the full decay channel
information known nor the branching ratios for different
decay channels.
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In Fig. 1we compare, for several particle species, the states
listed in the PDG2016 (including states with two, three and
four stars) [33]; in the PDG2016þ (including also states with
one star) [33]; and those predicted by the original quark
model [30,31] and amore recent hypercentral version (hQM)
[34]. The latter contains fewer states than the ones found in
Refs. [30,31], due to inclusion of an interaction term between
the quarks in the bound state, and the decay modes are listed
for most of the predicted states. No mass cutoff has been
imposed. The total number of measured particles and
antiparticles, excluding the charm and the bottom sector,
increases from the 2016 to the 2016þ listing: considering
particles and antiparticles and their isospin multiplicity we
get 608 states with two, three and four stars and 738 states
when we also include the one star states. In the QM
description the overall increase is much larger: in total there
are 1517 states when merging the nonrelativistic QM states
[30,31] with the PDG2016þ and 985 in the list which adds
the hQM states [34,35] to the ones listed in the PDG2016þ.
The QM predicts such a large number of states because they
arise from all possible combinations of different quark-
flavor, spin and momentum configurations. However, many
of these states have not been observed in experiments so far;
also, the basic QM description does not provide any
information on the decay properties of such particles. As

alreadymentioned, the hQM reduces the number of states by
including an interaction term between quarks in a bound
state. A more drastic reduction can be achieved by assuming
a diquark structure [34,36,37] as part of the baryonic states,
although experiments and lattice QCD may disfavor such a
configuration [38].
In this paper, we perform an analysis of several strange-

ness-related observables, by comparing the lattice QCD
results to those of the HRG model based on different
resonance spectra: the PDG 2016 including only the more
established states (labeled with two, three and four stars);
the PDG 2016 including all listed states (also the ones with
one star); and the PDG 2016 with the inclusion of addi-
tional quark model states. This is done in order to
systematically test the results for different particle species,
and get differential information on the missing states, based
on their strangeness content. The observables which allow
the most striking conclusions are the partial pressures,
namely the contribution to the total pressure of QCD from
the hadrons, grouped according to their baryon number and
strangeness content. The main result of this paper is a lattice
determination of these partial pressures. This is a difficult
task, since the partial pressures involve a cancellation of
positive and negative contributions (see the next section),
and they span many orders of magnitude, as can be seen in
Fig. 2. From this analysis a consistent picture emerges: all
observables confirm the need for not yet detected, or at least
not yet fully established, strangeness states. The full
PDG2016 list provides a satisfactory description for most
observables, but for some of them the QM states are needed
in order to reproduce the lattice QCD results. Moreover, all
hadronic lists currently available underestimate the partial
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FIG. 1. Comparison of hadronic states, grouped according to
the particle species, experimentally established in the PDG2016
(green), PDG2016 including also one star states (red) [33] and
predicted by the QM (blue) [30,31] and the hQM (magenta)
[34,35].
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FIG. 2. Logarithmic plot illustrating the many orders of
magnitude the values of the partial pressures studied in this
paper cover. The total pressure is taken from Ref. [6]. Note that
the value for the B ¼ 0, jSj ¼ 1 sector is not a proper continuum
limit; it is a continuum estimate based on the Nt ¼ 12 and 16
lattices. For all other cases, the data are properly continuum
extrapolated. In all cases, the solid lines correspond to the HRG
model results based on the PDG2016 spectrum.
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pressure for strange mesons. This might mean that, in this
sector, even more states, in addition to the ones predicted
by the QM, are missing or that an additional attractive
interaction beyond the one included in the HRG model is
needed to reproduce the lattice QCD data [39,40].

II. HRG AND THE STRANGENESS SECTORS

The HRG model provides an accurate description
of the thermodynamic properties of hadronic matter
below Tc. This is especially true for global observables
such as the total pressure and other collective thermody-
namic quantities. However, it was recently noticed that
more differential observables which are sensitive to the
flavor content of the hadrons show a discrepancy between
the HRG model and lattice results [29]. An example of
such a discrepancy is shown in Fig. 3 and will be
explained below.
Such observables involve the evaluation of susceptibil-

ities of conserved charges in the system at vanishing
chemical potential:

χBQS
lmn ¼

� ∂lþmþnPðT; μB; μQ; μSÞ=T4

∂ðμB=TÞl∂ðμQ=TÞm∂ðμS=TÞn
�

μ¼0

: ð1Þ

Cumulants of net-strangeness fluctuations and correlations
with net-baryon number and net-electric charge have
been evaluated on the lattice in a system of (2þ 1) flavors
at physical quark masses and in the continuum limit
[13,16,41].
The same quantities can be obtained within the HRG

model. In this approach, the total pressure in the thermo-
dynamic limit for a gas of noninteracting particles in the
grand-canonical ensemble is given by

PtotðT;μÞ¼
X
k

PkðT;μkÞ¼
X
k

ð−1ÞBkþ1
dkT
ð2πÞ3

Z
d3p⃗

×ln

 
1þð−1ÞBkþ1 exp

"
−

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þm2

k

q
−μk

�
T

#!

ð2Þ

where the sum runs over all the hadrons and resonances
included in the model. Here the single particle chemical
potential is defined with respect to the global conserved
charges (baryonic B, electric Q and strangeness S) as
μk ¼ BkμB þQkμQ þ SkμS. More details on the HRG
model used here can be found in Ref. [42]. In order to
describe the initial conditions of the system occurring
during a heavy-ion collision, we require strangeness
neutrality and the proper ratio of protons to baryons
given by the colliding nuclei, nQ ¼ Z

A nB ≃ 0.4nB. These
conditions yield μS and μQ as functions of μB; their
specific dependence on μB is affected by the amount of
strange particles and charged particles included in the
model. To leading order in μB, the ratio μS=μB reads
[15,16]

�
μS
μB

�
LO

¼ −
χBS11
χS2

−
χQS
11

χS2

μQ
μB

: ð3Þ

The inclusion of a larger number of heavy hyperons, such
as Λ and Ξ, and the constraint of strangeness neutrality
are reflected by a larger value of the strange chemical
potential μS as a function of temperature and baryochem-
ical potential. In Fig. 3 this ratio is shown as a function of
the temperature: our new, continuum extrapolated lattice
results are compared to the HRG model calculations
based on the 2012 version of the PDG and on the quark
model states (as done in Ref. [29]). One should expect
agreement between the HRG model and lattice calcula-
tions up to the transition temperature which has been
determined independently on the lattice to be ∼155 MeV
[1–4]. The HRG model based on the QM particle list
yields a better agreement with the lattice data within error
bars, while the HRG results based on the PDG2012
spectrum underestimate the data. However, for other
observables such as χS4=χ

S
2 and χus11 (see the two panels

of Fig. 4), the agreement between the HRG model and
lattice results is spoiled when including the QM states.
The QM result overestimates both χS4=χ

S
2 and χus11; χ

S
4=χ

S
2 is

proportional to the average strangeness squared in the
system: the fact that the QM overestimates it means that it
contains either too many multistrange states or not
enough jSj ¼ 1 states. Moreover, the contribution to
χus11 is positive for baryons and negative for mesons: this
observable provides the additional information that the
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FIG. 3. Ratio μS=μB at leading order as a function of the
temperature. The HRG results are shown for different hadronic
spectra, namely by using the PDG2012 (black solid line) and the
QM (dashed red line).
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QM list contains too many (multi)strange baryons or not
enough jSj ¼ 1 mesons.
In this paper, we try to solve this ambiguity, even though

we are aware that it might be difficult to resolve the
contribution of high mass particles in our simulations. We
separate the pressure of QCD as a function of the temper-
ature into contributions coming from hadrons grouped
according to their quantum numbers. This is done by
assuming that, in the low temperature region we are
interested in, the HRG model in the Boltzmann approxi-
mation yields a valid description of QCD thermodynamics.
If this is the case, the pressure of the system can be written
as [18,20]

Pðμ̂B; μ̂SÞ ¼ PBS
00 þ PBS

10 coshðμ̂BÞ þ PBS
01 coshð−μ̂SÞ

þ PBS
11 coshðμ̂B − μ̂SÞ þ PBS

12 coshðμ̂B − 2μ̂SÞ
þ PBS

13 coshðμ̂B − 3μ̂SÞ; ð4Þ

where μ̂i ¼ μi=T, and the quantum numbers can be under-
stood as absolute values. These partial pressures are the
main observables we study. Notice that we do not dis-
tinguish the particles according to their electric charge
content.
Equation (4) is a truncation of the virial expansion in

the fugacity parameters eμB=T and eμS=T , which will break
down at high temperatures (the deconfined phase), due to
the appearance of higher virial coefficients, corresponding
to contributions from e.g. the jBj ¼ 2 or jSj ¼ 4 sectors of
the Hilbert space. When using only the observables χSi
with i ¼ 1, 2, 3, 4, as in this paper, the appearance of the
jSj ¼ 4 sector can potentially spoil the χ2 for our fits using
the ansatz given by Eq. (4). On the other hand, the
appearance of the jBj ¼ 2 sector will not be visible in the
χ2 values, but can be observed by using different observ-
ables. For example, the baryonic sectors PBS

1i , with i ¼ 1,
2, 3, can be extracted either from χS1 and its derivatives or
χBS11 and its derivatives. If Eq. (4) does not hold, the two
results will not agree, because of the appearance of sectors
with higher quantum numbers. One could study decon-
finement in terms of these higher virial coefficients. For
the purpose of this paper, we restrict our attention to the
confined phase, where Eq. (4) can safely be assumed
to hold.
Assuming this ansatz for the pressure, the partial pressures

PBS
ij can be expressed as linear combinations of the suscep-

tibilities χBSij . An example of one such formula is

PBS
01 ¼ χS2 − χBS22 ; ð5Þ

which gives the strange meson contribution to the pressure.
Thismeans that in principle one could determine these partial
pressures directly from μ ¼ 0 simulations, by evaluating
linear combinations of the χBSij directly. This can be done on
the lattice, by calculating fermion matrix traces, that can be
evaluated with the help of random sources [13,43]. This
directmethodgives access to the temperature atwhichEq. (4)
breaks down as well [20].
This is not the approach we pursue here, since the noise

level in the calculation would be too high, certainly for the
S ¼ 2 or 3 sectors, but as Fig. 6 (bottom) shows, probably
already for S ¼ 1. The higher order fluctuations are already
quite noisy, because they involve big cancellations between
positive and negative contributions [13]. In addition, when
we take linear combinations to calculate the partial pres-
sures, we introduce extra cancellations between the sus-
ceptibilities. Therefore we propose to use an imaginary
strangeness chemical potential and extract the partial
pressures from the ImμS dependence of low order suscep-
tibilities. For earlier works exploiting imaginary chemical
potentials, see [44–50]. A more recent work that uses
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FIG. 4. Upper panel: Ratio χS4=χ
S
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imaginary chemical potentials to estimate higher order
susceptibilities is [51].

III. LATTICE METHOD

Our lattice simulations use the same 4stout staggered
action as [9,13,52,53]. We generate configurations at μB ¼
μS ¼ μQ ¼ 0 as well as μB ¼ μQ ¼ 0 and ImμS > 0, in the
temperature range 135 MeV ≤ T ≤ 165 MeV. All of our
lattices have an aspect ratio of LT ¼ 4. We run roughly
1000–2000 configurations at each simulation point, sepa-
rated by 10 HMC trajectories. For the determination of the
strangeness sectors we use the HRG ansatz of Eq. (4) for
the pressure. With the notation μS ¼ iμI we obtain by
simple differentiation

ImχB1 ¼ −PBS
11 sinðμIÞ−PBS

12 sinð2μIÞ−PBS
13 sinð3μIÞ;

χB2 ¼ PBS
10 þPBS

11 cosðμIÞ þPBS
12 cosð2μIÞ þPBS

13 cosð3μIÞ;
ImχS1 ¼ ðPBS

01 þPBS
11 Þ sinðμIÞ þ 2PBS

12 sinð2μIÞ
þ 3PBS

13 sinð3μIÞ: ð6Þ

Similar terms can be derived for χS2, χS3 and χS4 . The
advantage of the imaginary chemical potential approach
is that, even though it is based on the exact same
assumption as the direct evaluation of linear combinations
[see e.g. Eq. (5) where the linear combinations were already
derived from Eq. (4)], it reduces the errors considerably.
The lower derivatives already contain the information on
the higher strangeness sectors; therefore this reduction in
errors is achieved without introducing extra assumptions
compared to the linear combination method [54]. We
further note that simulations at imaginary chemical poten-
tial are not hampered by the sign problem, so the evaluation
of the lower order susceptibilities at ImμS > 0 is not any
harder than at μ ¼ 0.
To obtain the Fourier coefficients (PBS

01 þ PBS
11 ), P

BS
12 and

PBS
13 , we perform a correlated fit with the previous ansatz for

the observables χS1 , χ
S
2 , χ

S
3 and χS4 at every temperature. To

obtain PBS
10 we fit χB2 ; to obtain PBS

11 we fit χB1 . We note that
PBS
11 could be deduced from χB2 as well, but with consid-

erably higher statistical errors. To get PBS
01 we just take the

difference ðPBS
01 þ PBS

11 Þ − PBS
11 . As an illustration that the

HRG based ansatz fits our lattice data we include an
example of the correlated fit for χS1, χ

S
2 , χ

S
3 and χS4 in Fig. 5.

For statistical errors, we use the jackknife method. For
the continuum limit we use Nt ¼ 10, 12 and 16 lattices. To
estimate the systematic errors we repeat the analysis in
several different ways: to connect the lattice parameters to
physical temperatures we use two different scale settings,
based on w0 and fπ . More details on the scale setting can be
found in [13]. For each choice of the scale settings we use

two different spline interpolations for the temperature
dependence of the PBS

ij . Both of these describe the data
well. For each of these four choices we do the continuum
limit in four different ways, by applying tree level improve-
ment or not, and by using a straight aþ b=N2

t and a rational
function 1=ðaþ b=N2

t Þ ansatz for the continuum limit.
These 16 different results are then weighted with the
AKAIKE information criterion [55] using the histogram
method [56]. Examples of linear continuum limit extrap-
olations are included in Fig. 6 (top). For the B ¼ 0, S ¼ 1
sector, which includes a large contribution from kaons, the
continuum extrapolation could not be carried out using
these lattices. For this case we obtain a continuum estimate,
based on the assumption that only Nt ¼ 10 is not in the
scaling regime, therefore using only the Nt ¼ 12 and Nt ¼
16 lattices, and the same sources of systematic error as
before, but now with uniform weights.
Finally, as a comparison we show in Fig. 6 (bottom) one

of the partial pressures determined with both methods for
Nt ¼ 16, using the same action. The figure shows that
using imaginary chemical potential improved the accuracy
drastically already in the S ¼ 1 sector. In the S ¼ 2,
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3 sectors, the direct method would be too noisy to plot,
while the imaginary μ method allows for a quite accurate
determination of the strangeness sectors.
At the highest temperature, T ¼ 160 MeV, the

new method and the linear combination method do not
agree any longer, which is not surprising, since at
this temperature the system is already beyond the pseu-
docritical temperature, and therefore Eq. (4) is not
expected to hold anymore. Our conclusions about the
phenomenology are not affected, as this data point was not
used in our HRG comparisons with the lattice. The
method for the precise detection of the breakdown of the
ansatz is discussed in the paragraph after Eq. (4). For this
highest temperature point our fit quality is χ2=ndof ¼
30.248=31.

IV. RESULTS AND THEIR INTERPRETATION

We evaluate the contributions to the total QCD pressure
from the following sectors: strange mesons, nonstrange
baryons, and baryons with jSj ¼ 1, 2, 3. For each sector, we
compare the lattice QCD results to the predictions of the

HRG model using the PDG2016, PDG2016þ, hQM and
QM spectra.
In Figs. 7 and 8 we show our results. Figure 7 shows the

contribution of strange mesons, while Fig. 8 shows the
contribution of nonstrange baryons (upper left), jSj ¼ 1
baryons (upper right), jSj ¼ 2 baryons (lower left) and
jSj ¼ 3 baryons (lower right).
We observe that, in all cases except the nonstrange

baryons, the established states from the most updated
version of the PDG are not sufficient to describe the
lattice data. For the baryons with jSj ¼ 2, a considerable
improvement is achieved when the one star states from
PDG2016 are included. The inclusion of the hQM states
pushes the agreement with the lattice results to higher
temperatures, but one has to keep in mind that the crossover
nature of the QCD phase transition implies the presence
of quark degrees of freedom in the system above
T ≃ 155 MeV, which naturally yields a deviation from
the HRGmodel curves. Notice that, in the case of jSj ¼ 1, 3
baryons, it looks like even more states than PDG2016þ
with hQM are needed in order to reproduce the lattice
results: the agreement improves when the resonances
predicted by the QM [30,31] are added to the spectrum.
Figure 2 shows the relative contribution of the sectors to the
total pressure. Notice that three orders of magnitude
separate the jSj ¼ 1 meson contribution from the jSj ¼ 3
baryon one. The method we used for this analysis, namely
simulations at imaginary μS, was crucial in order to extract a
signal for the multistrange baryons.
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As for strange mesons, we point out that the PDG2016
and 2016þ coincide since there is no star ranking for
mesons. In this sector, it was not possible to perform a
continuum extrapolation for the data, since apparently they
are not in the scaling regime. However, there is a clear trend
in the Nt ¼ 10, 12, 16 data that makes it very natural to
assume that the continuum extrapolated results will lie
above the HRG curves. We also include a continuum
estimate of this quantity, based on only the Nt ¼ 12 and 16
lattices, which is clearly above the HRG curves. This might
mean that, for strange mesons, the interaction between
particles is not well mimicked by the HRG model in the
Boltzmann approximation, or that we need even more
states than the ones predicted by the QM. This was already
suggested in Ref. [57], based on a different analysis. In
general, one should keep in mind that here we use a version
of the HRG model in which particles are considered stable
(no width is included). Any width effects on the partial
pressures can be considered in future work. Besides, our
previous lattice QCD results did not show indications of

finite volume effects for the total pressure. These effects
have not been checked for the partial pressures presented
here.
Our analysis shows that, for most hadronic sectors, the

spectrum PDG2016 does not yield a satisfactory descrip-
tion of the lattice results. All sectors clearly indicate the
need for more states, in some cases up to those predicted by
the original quark model. One has to keep in mind that
using the QM states in a HRG description will introduce
additional difficulties in calculations used in heavy ion
phenomenology, as the QM does not give us the decay
properties of these new states. The HRG model is success-
fully used to describe the freeze-out of a heavy-ion
collision, by fitting the yields of particles produced in
the collision and thus extracting the freeze-out temperature
and chemical potential [58–60], which are known as
“thermal fits.” To this purpose, one needs to know the
decay modes of the resonances into the ground state
particles which are reaching the detector. As of yet, the
QM decay channels are unknown so predictions for their
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decay channels are needed first, before one can use them in
thermal fit models.
In conclusion, we recalculate the two observables which

triggered our analysis, namely ðμS=μBÞLO and χS4=χ
S
2, with

the updated hadronic spectra. They are shown in the two
panels of Fig. 9. The upper panel shows ðμS=μBÞLO as a
function of the temperature: the lattice results are compared

to the HRG model curves based on the PDG2016,
PDG2016þ and PDG2016þ with the inclusion of the
states predicted by the hQM. The two latter spectra yield a
satisfactory description of the data up to T ≃ 145 MeV. In
the case of χS4=χ

S
2 , all three spectra yield a good agreement

with the lattice results. Our analysis shows that the original
QM overestimates these quantities because it predicts too
many jSj ¼ 2 baryons and not enough jSj ¼ 1 mesons. In
the context of future experimental measurements this study
gives guidance to the RHIC, LHC and the future JLab
experiments on where to focus their searches for as-of-yet-
undetected hadronic resonances.
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