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We determine the contribution to the anomalous magnetic moment of the muon from the α2QED hadronic
vacuum polarization diagram using full lattice QCD and including u=d quarks with physical masses for the
first time. We use gluon field configurations that include u, d, s and c quarks in the sea at multiple values
of the lattice spacing, multiple u=d masses and multiple volumes that allow us to include an analysis of

finite-volume effects. We obtain a result for aHVP;LOμ of 667ð6Þð12Þ × 10−10, where the first error is from the
lattice calculation and the second includes systematic errors from missing QED and isospin-breaking
effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the
experimental determination of aμ and the Standard Model of 3σ.
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I. INTRODUCTION

The muon’s gyromagnetic ratio gμ is known experi-
mentally with extremely high accuracy: Its magnetic
anomaly aμ ≡ ðgμ − 2Þ=2 has been measured to 0.5 ppm
[1] and a new experiment aims to reduce that uncertainty to
0.14 ppm [2]. By comparing these results with Standard
Model predictions, we can use the muon’s anomaly to
search for indirect evidence of new physics beyond the
mass range directly accessible at the Large Hadron
Collider. There are tantalizing hints of a discrepancy
between theory and experiment—the difference is cur-
rently 2.2(7) ppm [3]—but more precision is needed. In
particular the Standard Model prediction, which currently
is known to about 0.4 ppm [3], must be substantially
improved in order to match the expected improvement
from experiment.
The largest theoretical uncertainty in aμ comes from the

vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Fig. 1. This contribution has been
estimated to a little better than 1% (which is 0.6 ppm of aμ)
from experimental data on eþe− → hadrons and τ decay
[4–8], but much recent work [9–18] has focused on
a completely different approach, using Monte Carlo sim-
ulations of lattice QCD [19], which promises to deliver
smaller errors in the future.
In an earlier paper [14], we introduced a new technique

for the lattice QCD analyses that allowed us to calculate

the s quark’s vacuum polarization contribution from Fig. 1
with a precision of 1% for the first time. Here we extend
that analysis to the much more important (and difficult to
analyze) case of u and d quarks, allowing us to obtain the
complete contribution from hadronic vacuum polarization
at α2QED. We achieve a precision of 2%, for the first time
from lattice QCD. A large part of our uncertainty is from
QED, isospin breaking and quark-line disconnected effects
that were not included in the simulations but will be in
future simulations. The remaining systematic errors add up
to only 1%. A detailed analysis of these systematic errors
allows us to map out a strategy for reducing lattice QCD
errors well below 1% using computing resources that are
substantial but currently available.

FIG. 1. The α2QED hadronic vacuum polarization contribution to
the muon anomalous magnetic moment is represented as a shaded
blob inserted into the photon propagator (represented by a wavy
line) that corrects the pointlike photon-muon coupling at the top
of the diagram.

*christine.davies@glasgow.ac.uk
†http://www.physics.gla.ac.uk/HPQCD

PHYSICAL REVIEW D 96, 034516 (2017)

2470-0010=2017=96(3)=034516(15) 034516-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.96.034516
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD


II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Fig. 1: the photon creates a quark and
antiquark which propagate, while interacting with each
other, and eventually annihilate back into a photon. Here
we analyze the case where the photon creates either a uū or
dd̄ pair; we calculated contributions from heavier quarks in
[14,20,21]. Disconnected diagrams, where the quarks and
antiquarks created by the photons annihilate into gluons
rather than photons, give much smaller contributions
[22,23]; we will discuss these at the end of this paper.
In Sec. II A, we describe how we extract aμ from a single

configuration set. Unlike in our previous analysis with s
quarks [14], the light-quark vacuum polarization becomes
very noisy at large t for physical masses. We introduce a
simple procedure for improving the signal-to-noise ratio in
this calculation.
In Sec. II B, we examine the largest systematic errors in

our lattice analysis. These come from finite-volume effects,
and, more importantly, from mass splittings between dif-
ferent tastes of pion in our highly improved staggered quark
(HISQ) formalism. We address these errors in two ways.
First we use chiral perturbation theory to calculate

corrections, including contributions from the leading term
and the largest corrections to it. We also calculate con-
tributions from a variety of other higher-order corrections
in order to assess their impact on aμ.
The second way in which we address our systematic

errors is to extract values for aμ from simulations with
much larger light-quark masses—approximately 2.5 and 5
times the physical mass—where systematic errors from
finite volumes and staggered pions become negligible. As
discussed in [13], most of the light-quark mass dependence
of aμ can be removed by rescaling the vacuum polarization
with appropriate powers of mlatt

ρ =mexpt
ρ . Here we show that

rescaled results from large masses are consistent with the
corrected results from physical masses, giving us confi-
dence in both types of result. We combine all of our results
into a single global fit from which we extract a final result.

A. Extracting aμ
The leading-order contribution to the muon anomalous

magnetic moment from the HVP is obtained by inserting
the quark vacuum polarization into the photon propagator
[24,25]. Ignoring disconnected contributions, the vacuum
polarization separates into distinct contributions for each
quark flavor f:

aHVP;LOμ ðfÞ ¼ α

π

Z
∞

0

dk2fðk2Þð4παÞΠ̂fðk2Þ; ð1Þ

where α≡ αQED is the QED fine structure constant and k is
the (Euclidean) momentum carried by the virtual photons.

fðk2Þ is a kinematic factor that diverges as k2 → 0,
where the renormalized vacuum polarization function
Π̂ðk2Þ≡ Πðk2Þ − Πð0Þ vanishes. The resulting integrand
is peaked around k2 ≈m2

μ. Note that Π̂ðk2Þ includes a factor
of Q2

f , where Qf is the electric charge of quark f in units of
the proton’s charge. This is a change to the convention that
we used in [14].
Lattice QCD is used to calculate the vacuum polarization

function Π̂ðk2Þ. In [14] we developed an accurate method
for evaluating Eq. (1) by defining Π̂ðk2Þ in terms of its
Taylor expansion,

Π̂ðk2Þ ¼
X∞
j¼1

k2jΠj; ð2Þ

where the Taylor coefficients Πj are determined from time
momentsG2j of the vector current-current correlator at zero
spatial momentum:

G2j ≡
X
t

X
x⃗

t2jZ2
Vhjiðx⃗; tÞjið0Þi;

Q2
fG2j ¼ ð−1Þj ∂

2j

∂k2j k
2Π̂ðk2Þj

k2¼0

¼ ð−1Þjð2jÞ!Πj−1: ð3Þ

Here ZV renormalizes the lattice vector current, and1

t ∈ ð0; 1; 2;…T=2 − 1; 0;−T=2þ 1;…;−2;−1Þ: ð4Þ

We replace the Taylor series by its ½n; n� and ½n; n − 1� Padé
approximants for the integral in Eq. (1). The approximants
provide an accurate approximation for both the low and
high k2 regions in the integral, and results converge to
better than 1% by n ¼ 2, with the exact result bracketed by
results from the ½n; n� and ½n; n − 1� approximants for each
n [14]. We evaluate the integral numerically.
Signal and noise in lattice QCD (Monte Carlo) evalu-

ations of vector correlators degrades exponentially as the
time separation t between source and sink increases. This
increases the uncertainties in theΠj from Eq. (3), especially
as j increases. The noise problem is particularly acute for
correlators made of u=d quarks, because the ρ (which
controls the signal) is much more massive than the π (which
controls the noise) [26]. The values that a correlator can
take at large t, however, are constrained by its values at
smaller t and the known form of the correlator. Thus we
reduce the noise in our Taylor coefficients by replacing the
correlator at large t with its value determined from a
standard multiexponential fit (to data at all t’s, large and
small). We use

1We drop the midpoint t ¼ �T=2 for simplicity. Its contribu-
tion is exponentially suppressed and so has no effect on the
results presented here (see Appendix A for more details).
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GðtÞ ¼
�
GdataðtÞ; t ≤ t�;

GfitðtÞ; t > t�;
ð5Þ

and test that our results are stable on varying t�. We find aμ
to be independent of t� to better than �0.5% for t� values
ranging between 0.5 and 1.5 fm (our default value since
larger values lead to larger statistical errors). Fig. 2 shows
the position of the default t� in our correlator data. To
further improve our results, we calculate a 2 × 2 matrix of
vector correlators that combines the local operator we need
for the time moments [Eq. (3)] with a smeared operator that
overlaps more strongly with the ground-state vector meson
(the ρ). Using the fit at large t also allows us to correct for
the finite temporal length of the lattice.
We present more details on this noise-reduction strategy

in Appendix A. Therewe show that this strategy introduces a
new uncertainty into our analysis, due to low-energy (<mρ)
ππ states in the simulations. We estimate this uncertainty
using chiral perturbation theory. We also show that the
uncertainty is bounded by the variation of aμ as t� is changed
from 0.5 to 1.5 fm. Our estimate is consistent with the
variation in aμ mentioned above, so we include an uncer-
tainty of�0.5% in our error budget to allow for these effects.
We work on ensembles of gluon field configurations that

have an improved discretization of the gluon action [27]
and sea u, d, s, and c quarks using the HISQ action [28,29].
They were generated by the MILC Collaboration [30]. We
have results for three lattice spacings, for u=d quark masses
ranging from ms=5 down to the physical value, and for
three lattice volumes, for one combination of masses and
lattice spacing. These results allow us to test and correct
for the most important systematic errors in our simulations.
We approximate mu ¼ md ≡ml, using the same masses

for valence and sea quarks. The ensembles are described in
Table I.
A by-product of the fits to our lattice QCD correlators are

values for the ρ mass and decay constant for a variety of
u=d quark masses. Our results agree with experiment to
within errors for realistic quark masses (see Appendix A).
This is an important test of the correlators we use to
calculate aHVP;LOμ .
The local vector current that we use is not the conserved

vector current for this quark action and so must be
renormalized. We do this nonperturbatively by demanding
that the vector form factor for this current be 1 between
two equal mass mesons at rest (q2 ¼ 0) [35]. We use
pseudoscalar mesons made of s quarks to do this, on the
ml=ms ¼ 0.2 ensembles at each lattice spacing and give
values in Table I. We ignore the mass dependence of the
ZV’s since it is less than 0.1% [Oððams=πÞ2αsÞ] and
therefore negligible compared to our statistical errors.

B. Correcting aμ
The Taylor coefficients Πj from each of our u=d-quark

vector correlators are listed in Table II. We introduce two
corrections, one after the other, before calculating aHVP;LOμ

in order to minimize our systematic errors:
(1) Reduce lattice artifacts.—We correct our results for

errors caused by the finite spatial volume of the
lattice and by artifacts from using (HISQ) staggered
quarks (mass splittings between pions of different
taste). We do this with an effective theory, derived
from chiral perturbation theory, that couples ρ’s,
πþπ− pairs, and γ’s. We use the theory to calculate
the Πj for both the continuum and our lattice
QCD calculation, and we correct our lattice QCD

TABLE I. Here we use gluon field configurations from the MILC Collaboration [30,31]. β ¼ 10=g2 is the QCD gauge coupling, and
w0=a [32] gives the lattice spacing a, in terms of the Wilson flow parameter w0 [33]. We take w0 ¼ 0.1715ð9Þ fm fixed from fπ [32].
The lattice spacings are approximately 0.15 fm for sets 1–3, 0.12 fm for sets 4–8, and 0.09 fm for sets 9 and 10. L and T are the spatial
and temporal dimensions, respectively, of the lattice. aml, ams and amc are the masses in lattice units of light (ml ≡mu ¼ md), strange,
and charm quarks, respectively, in the sea, with amphys

s giving the correct ms value on that ensemble [34]. Valence quark masses equal
ml except for set 4, where amval

l ¼ 0.01044 is slightly different from aml. amπ and amρ give the corresponding masses for the π and ρ
mesons; fρ is the lattice result for the ρ’s leptonic decay constant. ZV;s̄s gives the vector current renormalization factor (calculated for s
quarks) obtained nonperturbatively [35]. The number of configurations is given in the final column; we use 16 time sources on each and
average over the spatial polarizations for the vector current. We tested for autocorrelations by binning configurations but found no effect.

Set β w0=a aml ams amc amphys
s amπ amρ fρ=ðmρZV;s̄sÞ ZV;s̄s L=a × T=a ncfg

1 5.8 1.1119(10) 0.013 0.065 0.838 0.0700(9) 0.23643(9) 0.6679(15) 0.2659(9) 0.9887(20) 16 × 48 9947
2 5.8 1.1272(7) 0.0064 0.064 0.828 0.0686(8) 0.16617(7) 0.6128(47) 0.2677(19) 0.9887(20) 24 × 48 1000
3 5.8 1.1367(5) 0.00235 0.0647 0.831 0.0677(8) 0.10172(4) 0.5968(45) 0.2776(16) 0.9887(20) 32 × 48 997
4 6.0 1.3826(11) 0.0102 0.0509 0.635 0.0545(7) 0.18938(8) 0.5276(35) 0.2635(23) 0.9938(17) 24 × 64 1053
5 6.0 1.4029(9) 0.00507 0.0507 0.628 0.0533(7) 0.13492(8) 0.4938(82) 0.2625(63) 0.9938(17) 24 × 64 1020
6 6.0 1.4029(9) 0.00507 0.0507 0.628 0.0533(7) 0.13415(5) 0.4866(49) 0.2635(34) 0.9938(17) 32 × 64 1000
7 6.0 1.4029(9) 0.00507 0.0507 0.628 0.0534(7) 0.13401(6) 0.4850(46) 0.2652(31) 0.9938(17) 40 × 64 331
8 6.0 1.4149(6) 0.00184 0.0507 0.628 0.0527(6) 0.08162(4) 0.4730(27) 0.2771(11) 0.9938(17) 48 × 64 998
9 6.3 1.9006(20) 0.0074 0.037 0.44 0.0378(5) 0.14062(10) 0.3854(37) 0.2626(29) 0.9944(10) 32 × 96 1000
10 6.3 1.9330(20) 0.00363 0.0363 0.43 0.0366(5) 0.09850(10) 0.3508(42) 0.2683(33) 0.9944(10) 48 × 96 298
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moments with the differences. The corrections δΠj

for each moment and configuration set are given in
Table IV of Appendix B 3. The largest corrections
for aμ are for our lightest pions and turn out to be
around þ7%. They are an order of magnitude
smaller for our heaviest pions. These corrections
lead to an uncertainty of �0.7% in our final aμ.
Chiral perturbation theory is well suited to our

analysis because our moments are calculated at
q2 ¼ 0, where chiral perturbation theory is valid.
The dominant finite-volume and staggered-pion
corrections come from leading-order pion vacuum
polarization, γ → πþπ− → γ, as discussed in [36].
This correction can be calculated quite accurately
because it is determined by the (well-measured)
charge and mass of the pion. We find that it is 5 times
larger than the other corrections. The next largest
contribution comes from corrections to the γ–ππ
vertex due to the pion’s charge radius. We include
both of these corrections in our final result, together
with a variety of the other higher-order corrections
that allow us to explore the rate of convergence of
chiral perturbation theory. See Appendix B 3 for
more details.

(ii) Reduce ml dependence.—We rescale ml to its
physical value in the ππ and ρ contributions to aμ
(80% of the total) to reduce aμ’s strong dependence
on ml. We do this in three steps, modifying and
extending a method introduced in [13]:
(a) We remove the vacuum polarization contribu-

tion to aμ due to γ → πþπ− → γ using the con-
tinuum effective field theory with the pion mass set
equal to the simulation result for the Goldstone pion.
(b) We rescale the resulting Πj by ðmlatt

ρ =mexpt
ρ Þ2j.

This reduces ml dependence because the ρ meson
pole dominates the vacuum polarization, especially
once the πþπ− contribution is removed. Rescaling

has a large impact for our heavier-than-physical ml
values but has little effect for physical ml where the
simulation’s mρ agrees with experiment. We apply
the Padé approximants at this stage to generate
estimates for aHVP;LOμ , since they converge more
quickly without the πþπ− contribution (which is
restored in the next step).
(c) We reintroduce the πþπ− contribution re-

moved in step 2(a), but with the pion mass set equal
to mπþ (139.6 MeV) rather than the pion masses
from the simulations. Again this has little impact for
our configurations with physical ml values.

Our results, using different Padé approximants, are shown
in Table II. Our final result for each configuration is
obtained by taking a value half way between results from
the [2, 2] and [2, 1] Padé approximants, with an associated
error equal to half the difference [14]. Our statistics do not
permit the use of higher-order approximants.
Our corrected results are plotted in Fig. 3, together with

the results without corrections (labeled “raw”). The sum of
all the corrections is a little less than 5.5% for our lowest
pion mass on the 0.12 fm lattice. The corrected results are
nearly independent of ml, as expected. Residual depend-
ence comes from other hadronic channels in the vacuum
polarization beyond the πþπ− and ρ contributions. The
corrected results also show smaller a2 and volume depend-
ence, as is particularly clear from the points for δml=ms
just above 0.05.
The final step in our analysis is correct our results for

residual effects from the nonzero lattice spacing and the
mistuned quark masses used in the simulations. We do this
by fitting the corrected results from our ten ensembles to a
function of the form

aHVP;LOμ

�
1þ cl

δml

Λ
þ cs

δms

Λ
þ ~cl

δml

ml
þ ca2

ðaΛÞ2
π2

�
;

ð6Þ

TABLE II. Columns 2–5 give the uncorrected Taylor coefficients Πj [Eq. (2)], in units of 1=GeV2j, for each of the lattice data sets in
Table I. The errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0; the latter error
largely cancels in our analysis. Estimates of the connected contribution from ud quarks to aHVP;LOμ are given for each of the [1, 0], [1, 1],
[2, 1] and [2, 2] Padé approximants in columns 6–9; results are multiplied by 1010. These estimates are obtained after correcting the
moments, as discussed in the text. The final estimate for aHVP;LOμ is given in the last column.

Set Π1 Π2 Π3 Π4 ½1; 0� × 1010 ½1; 1� × 1010 ½2; 1� × 1010 ½2; 2� × 1010 aHVP;LOμ × 1010

1 0.0624 (7) −0.0760ð17Þ 0.102 (3) −0.138 ð6Þ 660.1 (3.2) 590.7 (2.8) 593.3 (2.9) 592.2 (2.9) 592.7 (3.0)
2 0.0729 (11) −0.1028ð31Þ 0.159 (8) −0.250ð16Þ 663.8 (6.0) 591.7 (5.2) 595.8 (5.5) 593.6 (5.5) 594.7 (5.6)
3 0.0796 (13) −0.1182ð39Þ 0.190 (10) −0.311ð21Þ 689.9 (9.2) 604.4 (8.9) 618.3 (11.3) 609.1 (10.5) 613.7 (11.5)
4 0.0638 (8) −0.0803ð21Þ 0.111 (5) −0.157ð9Þ 650.0 (5.7) 582.5 (4.9) 585.0 (4.9) 584.0 (4.9) 584.5 (4.9)
5 0.0715 (13) −0.0992ð41Þ 0.151 (11) −0.236ð24Þ 653.4 (14.1) 583.4 (11.8) 587.4 (12.0) 585.3 (11.9) 586.4 (11.9)
6 0.0736 (11) −0.1052ð33Þ 0.166 (9) −0.267ð19Þ 650.8 (8.3) 581.5 (7.0) 585.4 (7.2) 583.4 (7.1) 584.4 (7.2)
7 0.0744 (11) −0.1075ð34Þ 0.171 (9) −0.277ð20Þ 652.9 (7.8) 583.5 (6.6) 587.2 (6.8) 585.2 (6.7) 586.2 (6.8)
8 0.0811 (12) −0.1239ð36Þ 0.206 (9) −0.345ð21Þ 675.1 (7.6) 593.6 (7.5) 606.9 (9.6) 597.9 (8.9) 602.4 (10.0)
9 0.0625 (9) −0.0778ð25Þ 0.107 (6) −0.151ð11Þ 640.1 (7.3) 574.2 (6.2) 576.6 (6.2) 575.7 (6.2) 576.2 (6.2)
10 0.0755 (13) −0.1109ð41Þ 0.178 (11) −0.292ð25Þ 652.1 (8.4) 583.4 (7.2) 586.7 (7.3) 585.0 (7.2) 585.8 (7.2)
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where δmf ≡mf −mphys
f and Λ≡ 5ms is of order the QCD

scale (0.5 GeV). The fit parameters have the following
priors:

cl ¼ 0ð1Þ; cs ¼ 0.0ð3Þ; ~cl ¼ 0.00ð3Þ; ca2 ¼ 0ð1Þ
ð7Þ

together with prior 600ð200Þ × 10−10 for aHVP;LOμ . This fit
corrects for mistuned quark masses and the finite-lattice
spacing. The first two correction terms allow for residual
dependence on ml and (slight) mistuning in the s quark’s
mass. We expect smaller corrections from the latter because
it enters only through the quark sea. The last term in Eq. (6)
corrects for the finite-lattice spacing. Note that our analysis
is quite insensitive to uncertainties in the lattice spacing
because the leading dependence on the lattice spacing
cancels when we rescale our moments with the lattice result
for the rho mass (step 2 in our analysis).
The δml=ml correction in Eq. (6) is associated with

steps 2(a) and 2(c) in our analysis, where we replace
the (continuum) γ → ππ → γ contribution to aμ corre-
sponding to the simulation’s pion mass with the same
contribution evaluated at the physical pion mass. The Π1

Taylor coefficient dominates aμ (see the [1, 0] entries in
Table II) and therefore Eq. (B25) in Appendix B implies
that aμ’s dependence on the light-quark mass ml is given
approximately by

aμðmlÞ ≈ a0

�
1þ dl

mphys
l

ml

�
; ð8Þ

where a0 and dl depend weakly onml,m
phys
l is the physical

value forml, and the physical value for aμ is approximately
a0ð1þ dlÞ. The bulk of the dl term comes from γ → ππ →
γ vacuum polarization, with dl ≈ 0.1. So steps 2(a) and 2(c)
in our analysis procedure have the effect of replacing ml by
mphys

l , thereby bringing aμðmlÞ closer to its physical value.
About a quarter of dl comes from sources other than the
simple ππ vacuum polarization—the most important is from
γ → ρ → ππ → γ. Thus our analysis steps 2(a) and 2(c)
do not fully correct the ml in Eq. (8). There is a residual
piece of order a0 × 0.2dlδml=ml that we account for with
the δml=ml correction in our fit formula. In practice the
contribution from this term is comparable to our statistical
errors and so has marginal impact on our final result.
We tested our fit by adding higher-order terms in the

various corrections and cross terms. None of these varia-
tions changed our final results by more than a small fraction
of the final uncertainty.
We also tested our fit by dropping various configuration

sets. Dropping the configuration sets with the heaviest
pions (sets 1, 4 and 9) shifts our final result for aμ by less
than a fifth of a standard deviation and leaves the total error
unchanged. Dropping the sets with physical pion masses
(sets 3 and 8) shifts the final result by a standard deviation
and increases the final error by 30%. Each variation is
consistent, within errors, with the full analysis.
Our final result from the fit for the connected contribu-

tion from u=d quarks is aHVP;LOμ ¼ 599ð6Þð8Þ × 10−10,

FIG. 3. Our results for the connected u=d contribution to
aHVP;LOμ as a function of the u=d quark mass (expressed as its
deviation from the physical value in units of the physical s quark
mass). The lower curve shows our uncorrected data; the upper
curve includes correction factors discussed in the text and is used
to obtain the final result. Data come from simulations with lattice
spacings of 0.15 (purple triangles), 0.12 (blue circles), and
0.09 fm (red squares). The gray bands show the �1σ predictions
of our model [Eq. (7)] after fitting it to the data. The dashed lines
show the results from the fitting function for each lattice spacing
(colored as above) and extrapolated to zero lattice spacing
(black). The χ2 per degree of freedom was 1.0 and 0.6 for the
upper and lower fits, respectively.

FIG. 2. Monte Carlo data for the current-current correlator on
configuration set 8 from Table II compared with the fit function
Gfit that replaces the data for t > t�. Gfit is obtained from a
multiexponential fit to all the data shown, above and below t�,
together with additional data for correlators with smeared
sources. Its uncertainty is of order the width of the line at large
t, and smaller at small t. The oscillations at small t are an artifact
of staggered quarks whose contribution to aμ is small and
vanishes with the lattice spacing.
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where the first error comes from the lattice calculation and
fit and the second is due to missing contributions from
QED and isospin breaking (mu ≠ md), each of which we
estimate to enter at the level of 1% of the u=d piece of
aHVP;LOμ . These estimates are supported by more detailed
studies: The key isospin-breaking effect of ρ − ω mixing is
estimated in [37] to make a 3.5 × 10−10 contribution (0.6%)
and the QED effect of producing a hadron polarization
bubble consisting of π0 and γ is estimated in [38] to make a
4.6 × 10−10 contribution (0.8%). The leading contributions
to our final uncertainty are listed in Table III. Note that our
final result is 3.5% above the extrapolated result from
the raw data shown in Fig. 3; most of that shift comes
from corrections to the ππ vacuum polarization in chiral
perturbation theory.
We tested the validity of the least-squares fit that

determines our aHVP;LOμ ðu=dÞ by replacing the fit with a
Bayesian expectation value (a 16-dimensional numerical
integration) over the distributions of the input data and
priors. The results, in Fig. 4, show that the least-squares fit

(dashed line) agrees well with the probability distribution
from the corresponding Bayesian analysis (bars).

III. DISCUSSION AND CONCLUSIONS

Adding results from our earlier calculations for other
quark flavors [14,21], the connected contributions to
aHVP;LOμ are

aHVP;LOμ jconn × 1010 ¼

8>>><
>>>:

599ð11Þ from u=d quarks;

53.4ð6Þ from s quarks;

14.4ð4Þ from c quarks;

0.27ð4Þ from b quarks :

ð9Þ

We combine these results with our recent estimate [22] of
the contribution from disconnected diagrams involving u, d
and s quarks, taking this as 0ð9Þ × 10−10. This agrees with,
but has a more conservative uncertainty than, the value
obtained in [23]. We then obtain an estimate for the entire
contribution from hadronic vacuum polarization:

aHVP;LOμ ¼ 667ð6Þð12Þ × 10−10: ð10Þ

This agrees well with the only earlier u=d=s=c lattice QCD
result, 674ð28Þ × 10−10 [13], but has errors from the lattice
calculation reduced by a factor of 4. It also agrees with
earlier nonlattice results using experimental data, ranging
from (×1010): 694.9(4.3) [5] to 681.9(3.2) [7]. These are
separately more accurate than our result but have a spread
comparable to our uncertainty. New results from BESIII
[39] may resolve this.
It is also useful to compare our result to the expectation

from experiment. Assuming there is no new physics
beyond the Standard Model, experiment requires aHVP;LOμ

to be 720ð7Þ × 10−10. This value is obtained by subtracting
from experiment the accepted values of QED [40], electro-
weak [41], higher-order HVP [5,42] and hadronic light-by-
light contributions [43]:

aHVP;LO;no new physics
μ ¼ aexptμ − aQEDμ − aEWμ

− aHVP;HOμ − aHlbl
μ : ð11Þ

Figure 5 compares our results with others from previous
continuum and lattice analyses. We also compare with
results expected from experiment if there is no new physics
contributing to aμ. The “no-new-physics” value is roughly
3.5σ away from our result [Eq. (10)], but we need
significantly smaller theoretical errors before we can make
a case for new physics.
From Table III we see that uncertainties can be reduced

by improving the calculation of the quark-line disconnected
contribution [23] and from new simulations with mu ≠ md;
this is straightforward. Adding QED effects to a simulation
is more difficult (see, for example, [44]), but it is particu-
larly simple here because the hadronic system is electrically

FIG. 4. Bayesian probability distribution for aHVP;LOμ ðu=dÞ
(bars) compared with results from the least-squares fit (dashed
line).

TABLE III. Error budget for the connected contributions to the
muon anomaly aμ from vacuum polarization of u=d quarks.

aHVP;LOμ ðu=dÞ
QED corrections 1.0%
Isospin-breaking corrections 1.0%
Staggered pions, finite volume 0.7%
Correlator fits (t�) 0.5%
ml extrapolation 0.4%
Monte Carlo statistics 0.4%
Padé approximants 0.4%
a2 → 0 extrapolation 0.2%
ZV uncertainty 0.2%
Correlator fits 0.2%
Tuning sea-quark masses 0.2%
Lattice spacing uncertainty <0.05%
Total 1.8%
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neutral, so there are no infrared divergences to be dealt
with.2

The remaining uncertainties are together only about 1%
of our answer. The largest (0.7%) is caused by αsa2

differences in mass between pions of different taste with
HISQ quarks. Reducing the lattice spacing to 0.06 fm at the
physical pion mass would cut this uncertainty in half. The
remaining errors would all be reduced by smaller lattice
spacings and higher statistics, both of which are feasible on
time scales commensurate with the schedule for the new
experiments an aμ.
From our results we also obtain the total HVP contri-

bution to the electron: aHVP;LOe ¼ 0.01779ð39Þ × 10−10, to
be compared to 0.01846ð12Þ × 10−10 from eþe− data [8].
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APPENDIX A: CORRELATOR FITS

We construct a 2 × 2 matrix of meson propagators using
all combinations of two meson operators, with zero three
momentum, for the source and sink. One meson operator
(“loc”) is the local vector current. The other (“sm”) is a
vector current but with smearing applied to the quark field,
using operator �

1þ r20D
2

4n

�
n

; ðA1Þ

where D2 is the covariant Laplacian operator and r0 is a
width parameter. Since we are using staggered quarks and
require current-current correlators of a specific staggered
taste, we use the stride-2 D2 operator here, with the
difference operator defined for grid spacing 2a (rather
than a). We choose r0 ¼ 3a, 3.75a, and 4.5a for lattices
spacings 0.15, 0.12, and 0.09 fm, respectively, with n ¼ 20,
30, and 40.
The result is a matrix of correlators, Gij, where i labels

the source and j the sink. Each of i, j is either loc for the
local vector operator or sm for the smeared vector operator.
We fit Gij to the form

GijðtÞ ¼ a3
XN−1

k¼0

bðkÞi bðkÞj ðe−EðkÞt þ e−E
ðkÞðT−tÞÞ

− ð−1Þta3
XN−1

k¼0

dðkÞi dðkÞj ðe− ~EðkÞt þ e− ~EðkÞðT−tÞÞ;

ðA2Þ
where k labels the energy eigenvalues appearing in the
correlator and T is the temporal extent of the lattice. The
first sum is over 1−− vector states that couple to the vector
operators. The second is over opposite-parity states that
arise here because of our use of staggered quarks; this
term oscillates in sign as t increases, which helps the fit
distinguish between it and the first term. We use a Bayesian
approach to the fitting [46] with the following fit param-
eters and broad priors (in units of GeV):

logðEð0ÞÞ ¼ logð0.75ð38ÞÞ;
logðEðkÞ − Eðk−1ÞÞ ¼ logð1.0ð5ÞÞ ðk > 0Þ;

logðbð0ÞlocÞ ¼
�
logð0.14ð14ÞÞ ðk ¼ 0Þ;
logð0.42ð42ÞÞ ðk > 0Þ;

bð0Þsm ; bðkÞsm ¼ 0.01ð1Þ ðA3Þ

for the first sum, and the analogous parameters and priors
for the second sum but with

logð ~Eð0ÞÞ ¼ logð1.2ð6ÞÞ ðA4Þ

to reflect the higher mass of the lowest opposite-parity
state. To avoid lattice artifacts (from the HISQ action) at

FIG. 5. Our final result for aHVP;LOμ from lattice QCD compared
to an earlier lattice result (also with u, d, s and c quarks) from the
ETM Collaboration [13] and to recent results using experimental
cross-section information [5–8]. We also compare with the result
expected from the experimental value for aμ assuming that there
are no contributions from physics beyond the Standard Model.

2There are higher-order QED effects where the photon
interacts with both μ and hadrons (the “hadronic light-by-light”
contribution) which are more complicated—lattice QCD also
shows promise here [45].
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very small times, we fit the correlators only for t values
larger than 0.5–0.7 fm. We used N ¼ 5 but get identical
results with larger values of N. The fits were all excellent,
with χ2 per degree of freedom ranging between 0.6 and 1.1
in different fits. The use of a smeared operator improves the

fit results for Eð0Þ and bð0Þloc (from which we obtain our
values for mρ and fρ) by an amount commensurate with its
numerical cost.
As discussed in the main text, we use a combination of

data and fit results when computing moments of the local
current-current correlator G≡Gloc;loc:

GðtÞ ¼
�
GdataðtÞ t ≤ t�;

GfitðtÞ t > t�;
ðA5Þ

where we define

GfitðtÞ ¼ a3
XN−1

k¼0

bðkÞlocb
ðkÞ
loce

−EðkÞt

− ð−1Þta3
XN−1

k¼0

dðkÞlocd
ðkÞ
loce

− ~EðkÞt ðA6Þ

with the best-fit values for the parameters. Gfit is the same
as Gloc;loc from Eq. (A2) but with T → ∞, thereby
correcting for the finite temporal extent of the lattice.
Note that about 80% of our final result for aμ comes from
t ≤ t� (¼ 1.5 fm), where we use simulation data rather than
our fit.
The sum over states in Gfit (above) includes vector

mesons like the ρ and also multihadron states, which enter
as discrete energy eigenstates because of the finite spatial
volume of our lattice. The lowest-energy states are ππ states
for configurations with physical pion masses, but our fits do
not pick up these states—the dominant contribution comes
from the ρ meson. This is unsurprising since these states
only dominate the correlator at large t, where our corre-
lators become quite noisy. Such terms are further sup-
pressed by the finite-lattice volume since then there are few
ππ states below the ρ mass, and their contribution is
multiplied by a factor of 1 over the lattice volume [see
Eq. (B33) below].3

The contribution of the low-energy ππ states coming
from t ≤ t� is included in our calculation, since we use
the Monte Carlo results in that region. The contribution
from t > t�, however, is underestimated or missing.
That contribution can be calculated using the chiral
formalism developed below. We find that the low-energy
ππ contribution from t > t� should be 3 × 10−10 when

t� ¼ 1.5 fm (our default value), and so we include an
uncertainty of �3 × 10−10 in our error budget for aμ to
account for these states. This estimate is for configu-
ration set 8 in Table I, where the uncertainty is largest,
so it is probably an overestimate of the impact on the
entire calculation.
The t > t� contribution from low-energy ππ states would

be twice as large had we chosen t� ¼ 0.5 fm, and therefore
the difference

δaμ ≡ aμðt� ¼ 0.5Þ − aμðt� ¼ 1.5Þ ðA7Þ

provides an upper bound on the possible error caused by
omitting these states fromGfit. Redoing our full analysis for
t� ¼ 0.5 fm, we find that δaμ ¼ 0� 3 × 10−10, which is
consistent with our direct estimate from chiral perturbation
theory.
An important check on the quality of our correlators and

fit is that the ρ mass and decay constant agree with
experiment when the light quarks have their physical
values. This is illustrated by Fig. 6, which shows the mass
and decay constants from each of our configuration sets.

FIG. 6. Results for the ρ meson mass (upper plot) and decay
constant (lower plot) from the vector correlators used to deter-
mine the u=d connected contribution to aHVP;LOμ . Results are
shown for different u=d masses, as indicated by the correspond-
ing values of m2

π (the lightest being the physical value). Data
come from simulations with lattice spacings of 0.15 (purple
triangles), 0.12 (blue circles), and 0.09 fm (red squares).
Experimental results for the mass (dashed line) and decay
constant (gray band) are shown as well. A comparison of our
results with those of [11,13] is given in [48].

3It is possible to see coupled ρ and ππ states in lattice QCD
calculations: See, for example, [47] for an analysis with pions that
are much heavier (391 MeV) than our physical pions. These
techniques are not currently practical for our problem, however.
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Theory and experiment agree to within errors for physical
quark masses.4

APPENDIX B: FINITE VOLUME AND
STAGGERED PIONS

We use chiral perturbation theory to correct systematic
errors in our lattice results caused by the finite volumes of
our lattices and by mass splittings between the different
tastes of pion generated by our (staggered-quark) HISQ
discretization. Our general strategy is to identify terms in
the chiral expansion that are sensitive to the volume and to
pion masses (i.e., loops with pions). We calculate these
terms without and with lattice artifacts and then add the
difference to the lattice results.
The only relevant contribution from zeroth order in

the chiral expansion is the πþπ− vacuum polarization
[Fig. 7(a)]. As expected, we find that it provides most of
the correction.
There are three types of higher-order correction beyond

this term. The first two involve corrections (from, for
example, tadpole diagrams) to the leading vacuum polari-
zation diagram that are suppressed by powers of either the
strange or the light-quark masses. Such corrections are
typically of order 10% the leading contribution for s quarks
and 1% for u=d quarks. We include a extra 10% uncertainty
in our corrections to account for such contributions.
The third type of correction involves terms suppressed

by powers of q2=Λ2, where Λ is the chiral scale (≈1 GeV).
Such terms are easily analyzed in our formalism, because it
relies on moments. They enter in first order as corrections
to the γ-ππ vertex due to the pion’s charge radius [Fig. 7(b)]
:ππ scattering [Fig. 7(c)] also enters at this order but is
much less important, as we shall see. Second-order and
higher contributions come from further corrections to the
vertices, iterations of the leading diagrams, and so on.
These give small contributions compared with our errors.
Our analysis is simplified by using an extended version

of standard chiral perturbation theory that includes γ’s, π’s,
and ρ’s [49,50]. Such a theory is particularly useful here
because γ-ρ mixing accounts for the bulk of the vacuum
polarization contribution to the muon anomaly. In the next
section we examine γ-ρ0-πþπ− mixing to all orders in the
leading interactions that couple these channels. This
analysis includes all of the contributions illustrated in
Fig. 7, as well as all iterations of these diagrams. It also
includes an infinite number of ðq2=m2

ρÞn corrections.

Following [6], we make one further simplification in our
analysis that allows us, in effect, to absorb the four-pion
contact interaction into the amplitude for ππ → ρ → ππ.
This is done by replacing the chiral ρ-ππ coupling by a
simpler coupling, −igρππðpþ p0Þμ, analogous to the pho-
ton coupling. The resulting ππ scattering amplitude, which
now comes entirely from ππ → ρ → ππ, is equivalent to
what is obtained from the chiral theory but simpler to
analyze, at least for our application.
It is well known that chiral parameters for the ρ channel

in ππ scattering are more or less saturated by the ρ itself
[50]. Our analysis relies upon this fact as it uses high-order
chiral coefficients determined by the ρ. After the pion
charge and mass, the most important parameter for our
results is the pion charge radius. The model we use below
gives a pion charge radius squared of 0.46 fm2, which
agrees well with experiment at 0.45ð1Þ fm2 [51]. Similarly
the P-wave scattering length for ππ scattering in our model
is 0.037=m3

π, which again compares well with experiment
at 0.038ð2Þ=m3

π (see, for example, [52,53].) These compar-
isons show that the parameters in the effective theory are
tuned sufficiently well for our purposes.
In the next section we derive a photon propagator that

takes account of γ-ρ0-πþπ− mixing in our effective field
theory. We then specialize that result for use in analyzing
aμ. Finally we show how these results are affected by the
lattice’s finite volume and by taste splittings between HISQ
pions. This allows us to correct the moments from our
simulation to remove systematic errors from finite volumes
and staggered pions.

1. Photon propagator

The one-loop corrected ρ and photon propagators of the
effective theory,

GðqÞ≡
�
GγγðqÞ GγρðqÞ
GγρðqÞ GρρðqÞ

�
; ðB1Þ

are obtained by solving a matrix Lippmann-Schwinger
equation,

G ¼ G0 −G0ΣG; ðB2Þ

(a) (b)

(c)

FIG. 7. Leading diagrams from chiral perturbation theory that
contribute to δΠj: (a) leading-order πþπ− vacuum polarization;
(b) vacuum polarization corrected for the pion’s charge radius;
(c) ππ scattering correction. Dashed lines represent pions.

4The definition of fρ is complicated by the large width of
the ρ meson. Applying naive definitions gives results around
0.208 GeV from τ decay and around 0.220 GeV from ρ → eē,
with errors of order a couple percent in each case. A more careful
analysis, which models nonresonant backgrounds in each case, is
needed to resolve the differences between these two channels. We
take the experimental value to be fρ ¼ 0.21ð1Þ GeV for Fig. 6.
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where

Σ ¼ q2
 

Σð1Þ
γγ e=gρ þ Σð1Þ

γρ

e=gρ þ Σð1Þ
γρ Σð1Þ

ρρ

!
: ðB3Þ

Here we project onto a transverse polarization to remove
the spin algebra. The lowest-order propagator is

G0 ¼
�
q2 0

0 q2 −m2
0ρ

�−1

; ðB4Þ

while the leading-order ππ loops give amplitudes [6]

Σð1Þ
γγ ¼ e2Σðq2Þ;

Σð1Þ
γρ ¼ egρππΣðq2Þ; Σð1Þ

ρρ ¼ g2ρππΣðq2Þ; ðB5Þ

where

48π2Σðq2Þ

¼ 2

3
þ 2ð1 − yÞ − 2ð1 − yÞ2GðyÞ þ logðμ2=m2

πÞ; ðB6Þ

y≡ 4m2
π=q2, and

GðyÞ ¼
8<
:

1
2
ffiffiffiffiffiffi
1−y

p
�
log 1þ ffiffiffiffiffiffi

1−y
p

1−
ffiffiffiffiffiffi
1−y

p − iπ
	

for y < 1;

− 1ffiffiffiffiffiffi
y−1

p arctan ð1= ffiffiffiffiffiffiffiffiffiffiffi
y − 1

p Þ for y > 1:
ðB7Þ

We normalize results from [6] at μ ¼ mπ .
We are particularly interested in the corrected

photon propagator from this theory, since that is what
enters g − 2. Solving the Lippmann-Schwinger equation
gives

Gγγ ¼
1

q2ð1þ Σð1Þ
γγ Þ

þ ðe=gþ Σð1Þ
γρ Þ2

q2ð1þ Σð1Þ
ρρ − ðe=gþ Σð1Þ

γρ Þ2Þ −m2
0ρ

; ðB8Þ

where we have dropped a factor of 1þ Σð1Þ
γγ in the

denominator of the last term since it enters only in order e4.
This propagator has poles at q2 ¼ 0 and at the (renor-

malized) ρ mass. We can set the coupling constants from
the behavior near the ρ pole, where

GγγðqÞ →
e2f2ρ
2m2

ρ

1

q2 −m2
ρ þ imρΓρ

: ðB9Þ

Here fρ is the ρ’s decay constant, and Γρ is its width.
Comparing these two expressions we find that

m2
ρ − imρΓρ ¼ m2

0ρð1 − g2ρππΣðm2
ρÞÞ ðB10Þ

and

fρffiffiffi
2

p
mρ

¼ 1=gρ þ gρππΣðm2
ρÞ

1þ 1
2
g2ρππΣðm2

ρÞ þ 1
2
g2ρππm2

ρΣ0ðm2
ρÞ

ðB11Þ

≈
1

gρ
ð1þ gρgρππΣðm2

ρÞ −
1

2
g2ρππΣðm2

ρÞ

−
1

2
g2ρππm2

ρΣ0ðm2
ρÞÞ ðB12Þ

up to QED corrections suppressed by αQED. Here

48π2q2Σ0ðq2Þ ¼ 3y − 1 − 3yð1 − yÞGðyÞ; ðB13Þ

where, again, y≡ 4m2
π=q2. Taking

mρ ¼ 0.775 GeV; Γρ ¼ 0.148 GeV; fρ ≈ 0.21 GeV;

mπ ¼ mπþ ¼ 0.1396 GeV; ðB14Þ

we find the bare parameters are

m0ρ ¼ 0.766 GeV; gρ ¼ 5.4; gρππ ¼ 6.0: ðB15Þ

2. Contribution to g− 2
Returning to the photon propagator, we find that

Gγγ →
Zhad

q2ð1 − e2Π̂ðqÞÞ ðB16Þ

near the photon pole, where

Zhad ¼
1

1 − e2Πð0Þ ; ðB17Þ

Π̂ðqÞ≡ ΠðqÞ − Πð0Þ, and

Πðq2Þ ¼ −Σðq2Þ þ q2ð1=gρ þ gρππΣðq2ÞÞ2
q2ð1þ g2ρππΣðq2ÞÞ −m2

0ρ

: ðB18Þ

This can be rewritten

Π̂ðq2Þ ¼ −Σ̂ðq2Þ þ f̂2

2m̂2

q2ð1þ gρgρππΣ̂ðq2ÞÞ2
q2ð1þ g2ρππΣ̂ðq2ÞÞ − m̂2

;

ðB19Þ

where Σ̂ðq2Þ≡ ReΣðq2Þ − Σð0Þ,

m̂2 ≡m2
0ð1 − g2ρππΣð0ÞÞ ðB20Þ

¼ m2
ρð1þ g2ρππΣ̂ðm2

ρÞÞ; ðB21Þ
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and

f̂
m̂
≡

ffiffiffi
2

p

gρ

�
1þ gρgρππΣð0Þ −

1

2
g2ρππΣð0Þ

�
ðB22Þ

≈
fρ
mρ

�
1 −

1

2
g2ρππΣ̂ðm2

ρÞ þ
1

2
g2ρππm2

ρΣ̂0ðm2
ρÞ
�

ðB23Þ

are all independent of the ultraviolet regulator. We approxi-
mated gρ → gρππ in the last line above, to simplify the

result. Values for f̂ and m̂ equal those for fρ and mρ to
within a few percent.
To compute the contribution to g − 2 from Π̂ðqÞ,

we Taylor expand and switch to Euclidean momenta
(q2 → −q2E):

Π̂ð−q2EÞ≡
X∞
j¼1

q2jE Πj; ðB24Þ

where Πj ¼ ΠðππÞ
j þ ΠðρÞ

j , corresponding to the first and
second terms in Eq. (B19), respectively.
To leading order,

ΠðππÞ
j ¼ ð−1Þjþ1

8π2m2j
π

ðjþ 1Þ!ðj − 1Þ!
ð2jþ 3Þ! ; ðB25Þ

ΠðρÞ
j ¼ ð−1Þjþ1f2ρ

2m2jþ2
ρ

þOðg2ρππÞ: ðB26Þ

Substituting these results into our formalism for g − 2, with
mπ ¼ mπþ ¼ 0.13957, gives the leading contributions from
ππ loops and from the ρ:

aðππÞμ ¼ 71 × 10−10; ðB27Þ

aðρÞμ ¼ 425 × 10−10 þOðg2ρππÞ: ðB28Þ

This shows that the ρ by itself accounts for about 71% of
the total vacuum polarization contribution to aμ, with ππ
interactions adding another 12%.

3. Lattice corrections

Lattice simulations modify the low-energy analysis
given above in two ways: (i) the lattice volume is finite;
and (ii) pion-loop results are averaged over several tastes
of pion, each with a different mass. The second of
these is peculiar to formalisms, like HISQ, that use
staggered quarks. These effects are largest in the ππ
vacuum polarization function. To correct for these simu-
lation artifacts, we reexamine the ππ contribution to
1
3

P
iΠ

ðππÞ
ii ðq2EÞ in continuum Euclidean QCD:

4

3

Z
d4k
ð2πÞ4

k2 − k20
ðk2 þm2

aÞðk2 þ 2k0qE þ q2E þm2
bÞ

ðB29Þ

¼ 4

3

Z
d3k

ð2πÞ32EaEb

ðEa þ EbÞk2

q2E þ ðEa þ EbÞ2
; ðB30Þ

where qμ ¼ qμ ¼ ðqE; 0; 0; 0Þ, Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
, and

normally ma ¼ mb ¼ mπ. This implies that the ππ
vacuum polarization function used in the previous section
is given by

− Σ̂ð−q2E;ma;maÞ

≡ 4q2E
3

Z
d3k

ð2πÞ32EaEb

k2

ðEa þ EbÞ3ðq2E þ ðEa þ EbÞ2Þ
:

ðB31Þ

The Taylor coefficients ΠðππÞ
j derived in the previous

section are the coefficients of q2jE in the expansion of this
expression when ma ¼ mb ¼ mπ .
We correct for the finite spatial volume (L3) of the lattice

by replacing

Z
d3k
ð2πÞ3 →

1

L3

X∞
kx¼−∞

X∞
ky¼−∞

X∞
kz¼−∞

; ðB32Þ

where the sums are over discrete momenta k ¼ 2πn=L for
all integer n, positive and nonpositive. (We correct our fits
separately for the finite temporal length of the lattice, which
is, in any case, 1.5–3 times longer than in spatial directions
and so effectively infinite.) We ignore the effect of the
finite-lattice spacing since the contributions of interest are
all ultraviolet finite (and quite infrared).
The second modification concerns the pion masses in the

vacuum polarization and is specific to staggered-quark
actions like the HISQ action we use. In our simulations we
use vector currents Jμ that are local, which means that they
carry taste ξμ. (We use the notation of [28], which discusses
quark doubling and taste symmetry at length, especially in
Appendixes A–D.) Taste conservation means that the pion
pairs must carry the same total taste as the current but there
are several different taste pairings that accomplish this.
A current with total taste ξμ can couple to pion pairs
carrying tastes:
(1) ξ5 ⊕ ξμ5 (two combinations);
(2) ξν5 ⊕ ξρσ, where μ, ν, ρ, and σ are all different

(six combinations);
(3) ξρσ ⊕ ξν, where ρ ¼ μ ≠ ν ¼ σ (six combinations);
(4) ξμ ⊕ 1 (two combinations).

The total contribution is the average over these 16 pos-
sibilities. We estimate the ππ contribution to the vacuum
polarization in our simulations by averaging over the
contributions Eq. (B31) from each pairing of pion tastes,
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with ma and mb set to the masses of the two pions. We use
pion masses for different tastes derived from MILC’s
results in [54] (see Table IV).
In Table IV we list corrections δΠj for the moments from

each of our configuration sets. We add these to the
Monte Carlo results in order to correct for effects due to
the finite volume and pion-mass taste splittings. We
estimate these corrections by approximating Eq. (B19) with

Π̂ð−q2E; fρ; mρ; mπÞ ¼ −Σ̂ð−q2E;mπ; mπÞ

þ f2ρ
2m2

ρ

q2Eð1þ gρgρππΣ̂ð−q2E;mπ; mπÞÞ2
q2Eð1þ g2ρππΣ̂ð−q2E;mπ; mπÞÞ þm2

ρ

; ðB33Þ

where Σ̂ is the πþπ− vacuum polarization function from
Eq. (B31) and we have replaced f̂ and m̂ by fρ and mρ,
respectively. To obtain the correction for a given configu-
ration set, we first evaluate this continuum vacuum polari-
zation function using the (Goldstone) mπ , mρ, and fρ
obtained from the configuration set (Table I), and then we
subtract from it the same quantity but with

Σ̂ð−q2E;mπ; mπÞ →
1

16

X
ξa;ξb

Σ̂Vð−q2E;mπðξaÞ; mπðξbÞÞ;

ðB34Þ

where Σ̂V is evaluated for the finite volume of
the configuration [Eq. (B32)] and averaged over the
staggered-pion taste combinations ξa ⊕ ξb listed above.
The corrections δΠj are the Taylor coefficients of
this difference between continuum and finite-volume or
staggered-pion vacuum polarizations.
The contribution to aμ from the first term in Eq. (B33) is

roughly 5 times larger than that from the second term and
has the opposite sign. This is for our simulation results with
physical pion masses and the intermediate lattice spacing
(set 8). The largest contributions come mainly from the
terms

−Σ̂ð−q2E;mπ; mπÞ ×
�
1 − gρgρππ

f2ρ
m2

ρ

q2E
m2

ρ

�
ðB35Þ

¼ −Σ̂ð−q2E;mπ; mπÞ ×
�
1 −

hr2πiq2E
3

�
ðB36Þ

in Eq. (B33) [Figs. 8(a) and 8(b)], where rπ is the charge
radius of the pion. They contribute corrections to aμ of
50×10−10 and−13×10−10, respectively. Further ðq2=m2

ρÞn
corrections to the γ − ππ vertex contribute 3 × 10−10. The
other q2E=m

2
ρ correction in Eq. (B33) is from ππ scattering

[Fig. 8(c)]:

f2ρ
2m2

ρ

q2E
m2

ρ
ðgρgρππΣ̂ð−q2E;mπ; πÞÞ2: ðB37Þ

This should be small because it is second order in
gρgρππΣ̂; in fact, it contributes less than 0.5 × 10−10. The
total correction from all contributions (to all orders) is
41 × 10−10 for set 8—chiral perturbation theory converges
relatively rapidly here.
We add an extra 10% uncertainty to each correction δΠj

to account for missing contributions suppressed by ms=Λ,

TABLE IV. Pion masses for different tastes, and the corresponding finite-volume plus staggered-pion corrections to be added to the
Taylor coefficients Πj for each configuration (as given in Table II). The pion masses are based upon results in [54], using our definition
of the lattice spacing. The Taylor coefficients include an extra 10% uncertainty, beyond that due to uncertainties in the pion masses, to
account for uncalculated and partially calculated higher-order terms in chiral perturbation theory.

Set mπðξ5Þ mπðξ5μÞ mπðξμνÞ mπðξμÞ mπð1Þ δΠ1 δΠ2 δΠ3 δΠ4

1 0.302(2) 0.362(3) 0.407(4) 0.451(5) 0.485(19) 0.0012(1) −0.0050ð5Þ 0.014(1) −0.034ð4Þ
2 0.216(1) 0.294(3) 0.348(4) 0.399(6) 0.438(23) 0.0028(3) −0.0160ð16Þ 0.063(7) −0.220ð24Þ
3 0.133(1) 0.240(3) 0.304(5) 0.362(7) 0.405(26) 0.0094(9) −0.0836ð86Þ 0.588(62) −4.320ð472Þ
4 0.301(2) 0.334(2) 0.360(3) 0.390(4) 0.413(9) 0.0008(1) −0.0038ð4Þ 0.012(1) −0.029ð3Þ
5 0.218(1) 0.262(2) 0.295(3) 0.331(4) 0.359(11) 0.0025(2) −0.0141ð15Þ 0.056(6) −0.196ð22Þ
6 0.217(1) 0.261(2) 0.294(3) 0.331(4) 0.358(11) 0.0022(2) −0.0131ð13Þ 0.054(6) −0.196ð22Þ
7 0.216(1) 0.261(2) 0.294(3) 0.330(4) 0.358(11) 0.0021(2) −0.0125ð13Þ 0.052(6) −0.191ð21Þ
8 0.133(1) 0.197(2) 0.240(4) 0.284(5) 0.316(13) 0.0081(8) −0.0771ð79Þ 0.571(60) −4.340ð474Þ
9 0.308(2) 0.319(2) 0.328(2) 0.337(2) 0.345(4) 0.0005(1) −0.0026ð3Þ 0.008(1) −0.021ð2Þ
10 0.219(1) 0.235(1) 0.247(2) 0.259(3) 0.270(5) 0.0013(1) −0.0084ð9Þ 0.038(4) −0.148ð16Þ

(a) (b)

(c)

FIG. 8. Leading diagrams from the ρ effective field theory that
correspond (to leading order in q2=m2

ρ) to the diagrams in Fig. 7
from the standard chiral theory: (a) leading-order πþπ− vacuum
polarization; (b) correction for the pion’s charge radius from
γ → ρ → ππ; (c) correction for ππ scattering correction from
ππ → ρ → ππ. Dashed and solid lines represent pions and rhos,
respectively.
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due to tadpole and other renormalizations of the leading
vacuum polarization. This uncertainty also accounts for
corrections of order ðq2=ΛÞ2 and higher that are only
partially included by our analysis.
The taste structure of the ππ vacuum polarization matters

because its contribution to aμ is quite sensitive to the pion
mass [see Eq. (B25)] and pions of different taste differ in
mass. Taste-changing interactions normally lead to small
corrections that extrapolate smoothly to zero, like
αsðπ=aÞa2, as the lattice spacing vanishes. This does not
work for the ππ vacuum polarization with physical pions,
however, because its moments are nonanalytic in mπ

[Eq. (B25)] and the taste-changing effects are comparable
to the (physical) pion mass. This is why we use chiral
perturbation theory to remove the effects of the staggered
pion masses in the ππ vacuum polarization. There are other
effects from taste changing but we only need correct
contributions that are nonanalytic in mπ (and large enough
to matter); all other effects will extrapolate away as we take
the lattice spacing to zero. The a independence of our final
results is evidence that we have handled these corrections
properly.
As noted in the main text, the largest corrections (7%) are

for our lightest pion masses. Corrections for our heaviest
pions are about an order of magnitude smaller and therefore
negligible compared to other errors. The corrections are
also negligible for s-quark vacuum polarization, as dis-
cussed in our previous paper [14].
We tested our finite-volume analysis by analyzing

simulations with three different volumes for our intermedi-
ate lattice spacing and a pion mass of about 220 MeV
(configuration sets 5–7). The raw data show variations
between the three volumes of 3.1(1.3)%. Our corrections,
from finite-volume or staggered-pion masses and ρ-mass
rescaling, reduce this variation by an order of magnitude;
see Fig. 3. This is a nontrivial test of our corrections.
We also tested our finite-volume and staggered-pion

corrections by comparing results for individual Taylor
coefficients with experiment. Figure 9 shows the corrected
lattice results, combined with s and c quark contributions
from [14], together with results based on data from eþe−
annihilation [55]. The agreement is strong evidence that our
estimates for these corrections are reliable. Note that the
corrections for moments with n ≥ 3 are larger than the
uncorrected results from the simulation. These large-n
moments have negligible impact on aμ (≤ 0.5%), but they
provide sensitive tests of our corrections.
Our δΠj are almost independent of lattice volume, even

for our lowest mass pions, because of the staggered pion
masses. Normally we would expect larger dependence on
the lattice volume, but here the average pion mass appear-
ing in any ππ vacuum polarization contribution is signifi-
cantly larger than the physical pion mass because of the
staggering. This strongly suppresses finite-volume depend-
ence. Figure 10 shows how the uncertainty from this

FIG. 9. Contributions to the hadronic vacuum polarization
Π̂ðq2Þ at q2 ¼ −m2

μ coming from individual Taylor coefficients
Πn with n ¼ 1…5. Results are show for corrected (above) and
uncorrected (raw, below) coefficients coming from our lattice
QCD simulations with physical sea-quark masses (sets 3 and 8).
The corrected coefficients include both corrections described in
Sec. II B: (i) adding δΠn from Table IV; and (ii) replacing the pion
mass from the simulation with the physical pion mass in the
leading ππ loop. To compare with experiment, we add contri-
butions from s and c quarks [14] to both the raw and corrected
moments, neglecting their contribution to the n ¼ 5 moment
(which is negligible). The dashed lines are results derived from
eþe− data: See the “data direct” column in Table I of [55]. The
error estimates on the lattice results do not include contributions
due to electromagnetic, isospin-violating, and disconnected
contributions (estimated to be around 2% for the n ¼ 1 moment).

FIG. 10. Uncertainty in aHVP;LOμ due to finite-volume and
staggered-pion effects as a function of the average taste splitting
Δm2

π between pions and the spatial size L of the lattice at the
physical value of mπþ (140 MeV). Here the line marked Δm2

π

refers to the splittings for configuration set 8 in Table IV for
which L ¼ 5.8 fm. The splittings decrease slightly faster than a2

as the lattice spacing decreases, so the other lines shown
correspond to conservative uncertainties at lattice spacings of
approximately 0.09, 0.06, 0.045 and 0.03 fm. The uncertainties
are estimated to be 1=10 of the correction.
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correction depends upon the taste splittings between pions
Δm2

π and the spatial size L of the lattice. Lines are drawn
for varying Δm2

π at physical pion mass starting from coarse
set 8. The uncertainty shown in the figure for the largest

Δm2
π (δaμ ¼ �3.6 × 10−10 or 0.6% of the total) is some-

what smaller than the 0.7% uncertainty for configuration
set 8 because the pion mass on that ensemble is smaller than
the physical pion mass.
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