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In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017)], the connected and leading
disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g − 2)
have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the
RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-
volume error that scales like 1=L2 where L is the spatial size of the lattice. In this paper, we demonstrate
that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting
in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We
present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected
exponential approach to the infinite volume limit and consistency with the known analytic result. We have
implemented an improved weighting function which reduces both discretization and finite-volume effects
arising from the hadronic part of the amplitude.
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I. INTRODUCTION

Precision measurements of lepton magnetic dipole
moments provide a powerful tool for testing the standard
model (SM) of particle physics at high precision. The
magnetic dipole moment μ⃗ originating from the lepton’s
spin s⃗ is commonly expressed as

μ⃗ ¼ g

�
e
2m

�
s⃗; ð1Þ

where e is the lepton’s electromagnetic charge and m is its
mass. The anomalous magnetic moment, or anomaly,
a ¼ ðg − 2Þ=2 expresses the deviation from Dirac’s rela-
tivistic quantum-mechanical prediction g ¼ 2. It is gener-
ated by small radiative corrections, which, by a careful
comparison between its experimental measurement to its
theory prediction, may reveal physics beyond the standard
model. Experimental measurements have determined these
anomalous moments at very high precision. The electron
anomaly, ae ¼ 0.00115965218073ð28Þ [1], currently
yields the most precise value of the fine structure constant
α ¼ 1=137.035999157ð33Þ [2]. In general, contributions
from a new physics scale ΛNP to the anomalous magnetic
moment of a lepton l ¼ e, μ, τ are suppressed by m2

l=Λ2
NP.

One therefore expects the muon to be 5 orders of magnitude
more sensitive to such contributions than the electron

which outweighs a loss in experimental precision. With
the τ being experimentally inaccessible, aμ is the most
promising channel to reveal physics beyond the standard
model.
Interestingly, current experimental and theoretical deter-

minations of aμ differ at the 3.1–3.5 standard deviation
level,

aEXPμ − aSMμ ¼ ð27.6� 8.0Þ × 10−10 ½17�;
ð25.0� 8.0Þ × 10−10 ½18�; ð2Þ

depending on which value for the hadronic vacuum
polarization contribution is used (see Table I).
In this tension the theory and experimental uncertainties

are approximately balanced, with the theory uncertainty
dominated by the hadronic vacuum polarization and
hadronic light-by-light (HLbL) contributions. With future
experiments at Fermilab (E989) [9] and J-PARC (E34) [10]
aiming for a fourfold decrease in experimental uncertainty,
a careful first-principles determination of these hadronic
contributions and a similar reduction in uncertainty is
desirable.
In this work we present an improved method of

computing the HLbL contribution from first principles in
lattice quantum chromodynamics (QCD). We build on the
optimized sampling strategy of the HLbL diagrams, which
we have introduced in Ref. [11], and which has reduced the
statistical uncertainties, at the same cost, by more than an*ljin.luchang@gmail.com
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order of magnitude compared to the pioneering work of
Ref. [12]. In a recent publication [13], we have presented a
first-principles 2þ 1 flavor lattice QCD calculation of the
connected and leading disconnected contributions to the
muon anomaly at physical quark and muon masses,

aHLbLμ ¼ 5.35ð1.35Þ × 10−10; ð3Þ

where the statistical uncertainty is given. This result is
affected by potentially large systematic errors due to the
nonzero lattice spacing and the finite lattice volume used in

our calculation. We are in the process of repeating our
calculation on a second lattice spacing to address the
former systematic. The latter is addressed in this work.
So far, all lattice QCD calculations of the HLbL

contribution to the muon g − 2 have treated the photons
and muon in the same finite hypercubic lattice where the
quarks and gluons live. The results are expected to suffer
from sizable finite-volume corrections, which scale as some
power of the system size rather than the exponential scaling
observed for typical lattice QCD calculations since the
photons are restricted to a finite box. Inspired by earlier
work on the hadronic vacuum polarization [14], we remove
power-law finite-volume errors by computing the muon
and photon components of our diagrams in infinite-volume
and subsequently combine the resulting weight function
with a QCD four-point function obtained in our lattice
simulation. The Mainz group announced a similar approach
[15,16], which, to a large extent, motivated this work.
In the following we describe our method in detail and

verify it in the leptonic case, where we replace the quark by
a lepton loop. This replacement is trivial from the per-
spective of our lattice calculation, and the same setup with
free propagators replaced by propagators on a nontrivial
QCD background allows us to perform the calculation in
the desired QCD case.
In Ref. [11], we introduced a formula to obtain the

connected hadronic light-by-light contribution to the
anomalous magnetic moment given by the electromagnetic
Pauli form factor evaluated at zero momentum transfer,
F2ðq2 ¼ 0Þ, from a lattice calculation:

FcHLbL
2 ðq2 ¼ 0Þ

m
ðσs0;sÞi

2
¼ 1

VT

X
x;y;z

X
xop

1

2
ϵi;j;kðxop − xrefÞj · iūs0 ð0⃗ÞFC

k ðx; y; z; xopÞusð0⃗Þ; ð4Þ

where ðσs0;sÞi ¼ ūs0 ð0⃗ÞΣiusð0⃗Þ are the conventional Pauli matrices. The coordinates xop, x, y, and z are the locations of the
electromagnetic currents on the quark loop, the former corresponding to the external photon and the latter to the virtual
photons connecting the quark loop to the muon (see Fig. 1). The point xref can be chosen arbitrarily and may even depend on
x, y, and z. In Ref. [11], we set xref ¼ ðxþ yÞ=2 and further manipulated the above formula to take advantage of the
symmetry between x, y, and z to reduce the statistical noise inherent in our Monte Carlo integration:

FcHLbL
2 ðq2 ¼ 0Þ

m
ðσs0;sÞi

2
¼

X
r;~z

Z

�
r
2
;−

r
2
; ~z

�X
~xop

1

2
ϵi;j;kð~xopÞj · iūs0 ð0⃗ÞFC

k

�
r
2
;−

r
2
; ~z; ~xop

�
usð0⃗Þ: ð5Þ

The integration variables are related to the coordinates in Fig. 1 by the following equations: r ¼ x − y, ~z ¼ z − ðxþ yÞ=2,
and ~xop ¼ xop − ðxþ yÞ=2. The function “Z” is defined by

Zðx; y; zÞ ¼

8>>>>><
>>>>>:

3 if jx − yj < jx − zj and jx − yj < jy − zj
3=2 if jx − yj ¼ jx − zj < jy − zj or jx − yj ¼ jy − zj < jx − zj
1 if jx − yj ¼ jx − zj ¼ jy − zj
0 otherwise:

ð6Þ

TABLE I. Individual contributions to the current standard
model calculation of aμ [3,4]. The BNL E821 experimental
result [5] and Fermilab E989 target precision [6] are given for
comparison.

Contribution Value × 1010 Uncertainty × 1010

QED 11 658 471.895 0.008
Electroweak Corrections 15.4 0.1
HVP (LO) [7] 692.3 4.2
HVP (LO) [8] 694.9 4.3
HVP (NLO) −9.84 0.06
HVP (NNLO) 1.24 0.01
HLbL 10.5 2.6
Total SM prediction [7] 11 659 181.5 4.9
Total SM prediction [8] 11 659 184.1 5.0
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈1.6
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We compute the summation over r in Eq. (5) by stochastically sampling x and y point pairs, while the sums over ~xop and ~z
are performed completely over the entire lattice. The amplitude FC

ν ðx; y; z; xopÞ is given by

FC
ν ðx; y; z; xopÞ ¼ ð−ieÞ6Gρ;σ;κðx; y; zÞHC

ρ;σ;κ;νðx; y; z; xopÞ; ð7Þ

where i4HC
ρ;σ;κ;νðx; y; z; xopÞ represents the four-point hadronic correlation function, and i3Gρ;σ;κðx; y; zÞ is the

QED weighting function. For the connected diagram, i4HC
ρ;σ;κ;νðx; y; z; xopÞ is given by the following two

equations:

i4HC
ρ;σ;κ;νðx; y; z; xopÞ ¼

1

6
Hρ;σ;κ;νðx; y; z; xopÞ þ

1

6
Hσ;κ;ρ;νðy; z; x; xopÞ þ

1

6
Hκ;ρ;σ;νðz; x; y; xopÞ

þ 1

6
Hκ;σ;ρ;νðz; y; x; xopÞ þ

1

6
Hρ;κ;σ;νðx; z; y; xopÞ þ

1

6
Hσ;ρ;κ;νðy; x; z; xopÞ; ð8Þ

Hρ;σ;κ;νðx; y; z; xopÞ ¼
X

q¼u;d;s

ðeq=eÞ4h−tr½iγρSqðx; zÞiγκSqðz; yÞiγσSqðy; xopÞiγνSqðxop; xÞ�iQCD; ð9Þ

where eu=e ¼ 2=3 and ed=e ¼ es=e ¼ −1=3. The QED weighting function, i3Gρ;σ;κðx; y; zÞ, is a symmetrized version of
Gσ;κ;ρðy; z; xÞ, which is represented by the right diagram of Fig. 1:

i3Gρ;σ;κðx; y; zÞ ¼ Gρ;σ;κðx; y; zÞ þGσ;κ;ρðy; z; xÞ þGκ;ρ;σðz; x; yÞ
þGκ;σ;ρðz; y; xÞ þGρ;κ;σðx; z; yÞ þGσ;ρ;κðy; x; zÞ; ð10Þ

Gσ;κ;ρðy; z; xÞ ¼ lim
tsrc→−∞;tsnk→∞

emμðtsnk−tsrcÞ
Z
α;β;η

Gðx; αÞGðy; βÞGðz; ηÞ

×
Z
x⃗snk;x⃗src

Sμðxsnk; βÞiγσSμðβ; ηÞiγκSμðη; αÞiγρSμðα; xsrcÞ; ð11Þ

where Sμ and G are free muon and photon propagators, respectively.

In the past, we evaluated the QED weighting function,
i3Gρ;σ;κðx; y; zÞ, on a finite size lattice, which resulted in
1=L2 finite-volume errors, where L is the size of the lattice
that is used to evaluate i3Gρ;σ;κðx; y; zÞ [11]. This lattice was
referred to as the QED box. Although one can make the
QED box much larger than the QCD box [17], it is far
better to compute the QED weighting function in infinite
volume (and in the continuum) directly as proposed in
Refs. [15,16].

It may be useful to recall the finite-volume effects
expected in the calculation of the hadronic light-by-light
scattering contributions we are studying. The mass gap of
QCD has two implications for a hadronic correlation
function such as HC

ρ;σ;κ;νðx; y; z; xopÞ: (1) The correlation
function will decrease exponentially as the space-time
distances between its arguments grow; (2) for fixed
locations of its arguments, the finite-volume errors in such
a correlation function will fall exponentially in the linear

FIG. 1. The connected light-by-light diagram. There are five other diagrams like the one on the left that correspond to distinct ways of
connecting the photons to the muon line (or, equivalently, the quark loop).
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size of the volume in which it is computed. Therefore, if we
evaluate the QED weighting function in infinite-volume,
which is the focus of this paper, and keep the positions
x; y; z; xop fixed, all finite-volume errors will be exponen-
tially suppressed as the linear lattice size grows. Since the
QED weighting does not grow exponentially when the
separations between x, y, z increase, the summation in
Eq. (5) converges exponentially implying that all finite-
volume errors in the result for the muon anomaly are
exponentially suppressed. For the same reason, one con-
cludes that the finite-volume errors for the lattice calcu-
lation of the hadronic vacuum polarization (HVP)
contribution to the muon g − 2 [14] decrease exponentially
as the lattice volume is increased. This conclusion will
remain true when the QED corrections are included, if they
are treated by a method similar to that used here. One
should keep in mind that the use of an infinite-volume
photon propagator in other contexts may not achieve the
same reduction of finite-volume errors in the HLbL case
studied here.
In this work, we demonstrate our method of computing

the QED weighting function in infinite-volume, which
differs significantly from the one proposed in Ref. [15]. The
paper is organized as follows: In Sec. II, we perform some
analytic calculations and reduce the 12-dimensional inte-
gration in Gσ;κ;ρðy; z; xÞ to a four-dimensional integration,
which we then integrate numerically with the CUBA library
cubature rules [18]. We also introduce a subtraction for
Gσ;κ;ρðy; z; xÞ, which does not alter the final result for F2 in
the infinite-volume and continuum limits of the QCD part.
In Sec. III, we show results of a pure QED light-by-light
calculation carried out in a fashion similar to that of
Ref. [11], but using the new infinite-volume QED weight-
ing function, and we compare the two. In addition, we
demonstrate that the new subtracted QED weighting

function reduces the remaining exponentially suppressed
finite-volume and Oða2Þ discretization errors for F2.

II. FORMULATION

Here we show how Gσ;κ;ρðy; z; xÞ is evaluated using
Eq. (11) in infinite-volume. As usual, we work in Euclidean
space-time, and the free muon and photon propagator take
the form

Sμðx; yÞ ¼
Z

d4p
ð2πÞ4

1

ipþm
eip·ðx−yÞ

¼ ð−=∂x þmÞ
Z

d4p
ð2πÞ4

1

p2 þm2
eip·ðx−yÞ; ð12Þ

Gðx; yÞ ¼
Z

d4p
ð2πÞ4

1

p2
eip·ðx−yÞ ¼ 1

4π2
1

ðx − yÞ2 : ð13Þ

The wall-source and sink muon propagators that create and
annihilate muons at rest appropriate for our kinematic setup
can be evaluated as

lim
tsnk→∞

emμtsnk

Z
x⃗snk

Sμðxsnk; βÞ ¼
γ0 þ 1

2
emμβt ; ð14Þ

lim
tsrc→−∞

e−mμtsrc

Z
x⃗src

Sμðα; xsrcÞ ¼
γ0 þ 1

2
e−mμαt : ð15Þ

The matrix γ0þ1
2

is a projection operator, so

Gσ;κ;ρðy; z; xÞ ¼
γ0 þ 1

2
Gσ;κ;ρðy; z; xÞ

γ0 þ 1

2
: ð16Þ

Since mμ is the only relevant scale in this function, without
loss of generality, we set mμ ¼ 1. Starting with Eqs. (14)
and (15), we find

lim
tsnk→∞

emμðtsnk−ηtÞ
Z
β
Gðy; βÞ

Z
x⃗snk

Sμðxsnk; βÞiγσSμðβ; ηÞ ¼
γ0 þ 1

2
iγσð−∂y þ γ0 þ 1Þfðη − yÞ; ð17Þ

lim
tsrc→−∞

e−mμðηt−tsrcÞ
Z
α
Gðx; αÞ

Z
x⃗src

Sμðη; αÞiγρSμðα; xsrcÞ ¼ ð∂x þ γ0 þ 1Þiγρ
γ0 þ 1

2
fðx − ηÞ; ð18Þ

where

fðxÞ ¼ fðjxj; xt=jxjÞ ¼
1

8π2

Z
1

0

dye−yxtK0ðyjxjÞ; ð19Þ

and K0ðxÞ is a modified Bessel function of the second kind of order 0. Next, we substitute Eqs. (17) and (18) into Eq. (11)
to obtain

Gσ;κ;ρðy; z; xÞ ¼
γ0 þ 1

2
iγσð−∂y þ γ0 þ 1Þiγκð∂x þ γ0 þ 1Þiγρ

γ0 þ 1

2

×
1

4π2

Z
d4η

1

ðη − zÞ2 fðη − yÞfðx − ηÞ: ð20Þ
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Before continuing to evaluate this function, let us prove
some of its useful properties. It should be noted that based
on the definition, Eq. (11), the functionGσ;κ;ρðy; z; xÞ, has a
logarithmic infrared divergence. This might raise concern
about whether it is correct to evaluate only the QED part of
the light-by-light amplitude in infinite-volume. In fact, we
show below that the infrared divergence can be avoided by
using a new definition of the weighting function.
Recall that γμ and Sμðx; yÞ are Hermitian Dirac

matrices which satisfy Σ2γμΣ2 ¼ ðγμÞT and Σ2Sμðx; yÞΣ2 ¼
½Sμðx; yÞ�T . The free propagator is also translationally
invariant, so Sμðx; yÞ ¼ Sμð−y;−xÞ. As a result, one can
show that

Σ2Gσ;κ;ρðy; z; xÞΣ2 ¼ ½Gρ;κ;σð−x;−z;−yÞ�T; ð21Þ

½Gσ;κ;ρðy; z; xÞ�† ¼ −Gρ;κ;σð−x;−z;−yÞ: ð22Þ

It immediately follows that

Σ2Gσ;κ;ρðy; z; xÞΣ2 ¼ −½Gσ;κ;ρðy; z; xÞ��: ð23Þ

Combining this result with Eq. (16), we can parametrize
Gσ;κ;ρðy; z; xÞ as

Gσ;κ;ρðy; z; xÞ ¼
1þ γ0

2
½ðaσ;κ;ρðy; z; xÞÞkΣk

þ ibσ;κ;ρðy; z; xÞ�
1þ γ0

2
; ð24Þ

where ðaσ;κ;ρðy; z; xÞÞk and bσ;κ;ρðy; z; xÞ are real functions.
Although the function Gσ;κ;ρðy; z; xÞ is not Hermitian, the
non-Hermitian part has no projection to the magnetic

moment. So, for the purpose of obtaining F2, we only
need to evaluate its Hermitian component. Because we
need to symmetrize the arguments of the function in
Eq. (10), we can freely permute the arguments of
Gσ;κ;ρðy; z; xÞ without changing F2. This allows us to
define a new version of the function:

Gð1Þ
σ;κ;ρðy; z; xÞ ¼ 1

2
Gσ;κ;ρðy; z; xÞ þ

1

2
½Gρ;κ;σðx; z; yÞ�†

¼ 1

2
Gσ;κ;ρðy; z; xÞ −

1

2
Gσ;κ;ρð−y;−z;−xÞ:

ð25Þ

As a special case, when all three coordinates are the same,
we immediately have

Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0; ð26Þ

sinceGσ;κ;ρðy; z; xÞ only depends on relative coordinates, or
the distance between its arguments. Because the divergence
of the function Gσ;κ;ρðy; z; xÞ is infrared and logarithmic, it
is independent of the coordinates, x, y, and z. One simple
consequence of this behavior and Eq. (26) is that the new

version Gð1Þ
σ;κ;ρðy; z; xÞ is infrared finite. Recall that the new

version Gð1Þ
σ;κ;ρðy; z; xÞ is the same as the original

Gσ;κ;ρðy; z; xÞ after substituting into Eq. (10) and projecting
onto the magnetic moment. While the non-Hermitian part
of the original QED weighting function has a logarithmic
infrared divergence, it does not contribute to the magnetic
moment.
With Eqs. (20) and (25), we obtain an infrared finite

integration formula for Gð1Þ
σ;κ;ρðy; z; xÞ:

Gð1Þ
σ;κ;ρðy; z; xÞ ¼ γ0 þ 1

2
iγσð∂ζ þ γ0 þ 1Þiγκð∂ξ þ γ0 þ 1Þiγρ

γ0 þ 1

2

×
1

4π2

Z
d4η

1

ðη − zÞ2
fðη − yþ ζÞfðx − ηþ ξÞ − fðy − ηþ ζÞfðη − xþ ξÞ

2

����
ξ¼ζ¼0

: ð27Þ

This four-dimensional integration is performed with the
CUBA library’s Cuhre routine [18], which makes use of
cubature rules and evaluates the integration in a determin-
istic way. Since performing the numerical integration is
costly and the lattice calculation needs values of this
function for many different values of its arguments, we
precompute i3Gρ;σ;κðx; y; zÞ for a range of points and then
approximate this function by interpolating the computed
values, which is similar to the strategy used in Ref. [15].
The arguments of the function i3Gρ;σ;κðx; y; zÞ have
12 degrees of freedom. With the help of translation and
spatial rotational symmetries, the relevant number of

degrees of freedom is reduced to five. These five param-
eters are chosen to be

p0 ¼ ðd=6Þ1=2; d ¼ jy − zj; ð28Þ

p1 ¼ α1=2; α ¼ jx − zj=d; ð29Þ

p2 ¼ θ=π; θ ¼ ∠y−z;t̂; ð30Þ

p3 ¼ φ=π; φ ¼ ∠x−z;t̂; ð31Þ

p4 ¼ η=π; η ¼ ∠ ⃗x−z; ⃗y−z: ð32Þ
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Because i3Gρ;σ;κðx; y; zÞ is symmetric with respect to
permutation of its arguments, without loss of generality,
for the purpose of interpolation, we require jy − zj ≥ jx −
yj ≥ jx − zj (this is unrelated to the restriction used for
sampling the x-y point pairs on the quark loop). We also
limit the length d to be less than 6 (or roughly 11 fm) which
should be large enough for the purpose of computing the
hadronic light-by-light diagrams on our lattices. We
employ a straightforward generalization of bilinear inter-
polation for the five-dimensional interpolation (the inter-
polated function is linear with respect to any of its
arguments within the small region between the known
data points), and the grid has uniform spacing in all
directions with 0 ≤ pi ≤ 1. We have computed interpola-
tion grids with sizes 65, 85, 105, 125, 145, and 165. In
contrast to Ref. [15], we do not average over the muon
propagation direction, so our time direction is special.
Thus, we have a five- instead of a three-dimensional grid.
The two additional dimensions make the interpolation
harder, but, as we shall see, the interpolation error remains
under very good control.
Although we introduced Gð1Þ

σ;κ;ρðy; z; xÞ in addition to
Gσ;κ;ρðy; z; xÞ, their differences will vanish immediately
after projecting to the magnetic moment contribution and
substituting into Eq. (10). However, due to the conservation
of electric current in the hadronic four-point correlation
function, we enjoy even more freedom in choosing
Gσ;κ;ρðy; z; xÞ. We introduce yet another version,

Gð2Þ
σ;κ;ρðy; z; xÞ ¼ Gð1Þ

σ;κ;ρðy; z; xÞ −Gð1Þ
σ;κ;ρðz; z; xÞ

−Gð1Þ
σ;κ;ρðy; z; zÞ: ð33Þ

With this definition, Gð2Þ
σ;κ;ρðy; z; xÞ has the property that

Gð2Þ
σ;κ;ρðz; z; xÞ ¼ Gð2Þ

σ;κ;ρðy; z; zÞ ¼ 0: ð34Þ

To demonstrate that these additional two terms in Eq. (33)
do not contribute to the final result, recall the current
conservation law for HC

ρ;σ;κ;νðx; y; z; xopÞ:

∂xρ

�X
xop

1

2
ϵi;j;kðxop − xrefÞjiHC

ρ;σ;κ;kðx; y; z; xopÞ
�
¼ 0:

ð35Þ

Based on arguments similar to those given in Eqs. (22)–
(24) of Ref. [11], we conclude that

X
x

�X
xop

1

2
ϵi;j;kðxop − xrefÞjiHC

ρ;σ;κ;kðx; y; z; xopÞ
�
¼ 0;

ð36Þ
provided surface terms are neglected. Similar conclusions
hold for the sums over y and z as well. This implies that

X
x;y;z

Gð1Þ
σ;κ;ρðy;z;zÞ

�X
xop

1

2
ϵi;j;kðxop−xrefÞjiHC

ρ;σ;κ;kðx;y;z;xopÞ
�

¼0: ð37Þ

This equation demonstrates that if we substitute the
subtraction terms defined in Eq. (33) back through
Eqs. (10) and (7) and finally into Eq. (4), which gives
their contribution to the anomalous moment, we will obtain
zero. Since we use Eq. (10) to obtain the QED weighting
function, the symmetry between x, y, and z is not affected

by the definition of Gð2Þ
σ;κ;ρðy; z; xÞ, and Eq. (5) can still be

derived for this new function.
The neglect of surface terms in Eqs. (36) and (37) and

our use of a nonconserved, local current implies that
Eq. (37) strictly holds only in the infinite-volume and
continuum limits. In other words, for finite-volume or
nonzero lattice spacing, Gð1Þ

σ;κ;ρðy; z; xÞ and Gð2Þ
σ;κ;ρðy; z; xÞ

are subject to different finite-volume and lattice spacing
effects. Lattice fermion propagators are different from their
continuum counterparts mostly in the short-distance region
where the source and sink coordinates are the same, or
separated by only a few lattice spacings. Hence, the
dominant discretization errors most likely come from this
region. Since the new QED weighting function satisfies
Eq. (34), it will suppress the contribution from this region
along with its associated discretization error. As a result, we
expect smaller discretization effects if we switch from

Gð1Þ
σ;κ;ρðy; z; xÞ to Gð2Þ

σ;κ;ρðy; z; xÞ. As we shall see in Sec. III,
the new QED weighting function indeed generates a
smaller discretization error and, fortunately, a smaller
finite-volume error as well.

III. RESULTS

Following Ref. [11], we test this new framework by
performing a pure QED light-by-light calculation where
the analytic result is well known [19–21]. That is, we
replace the quark propagators in Eq. (9) with a leptonic
loop. In Ref. [11], we studied the case where the lepton
loop mass was equal to the muon mass, m ¼ mμ. In this
study, we also investigate the case where the loop mass is
2 times the muon mass, m ¼ 2mμ. For both cases, we

compare results for weighting functions Gð1Þ
σ;κ;ρðy; z; xÞ

and Gð2Þ
σ;κ;ρðy; z; xÞ.

We compute F2 from Eq. (5). As mentioned before, sums
over ~xop and ~z are performed over the complete lattice
volume, but the sum over r is performed stochastically by
sampling x-y point pairs. In order to reduce the statistical
uncertainty from this stochastic process, we sample all pairs
with r ≤ 6 in lattice units, up to discrete symmetries. These
amount to 183 x-y pairs. For r > 6, we sample r with the
following empirically chosen distribution:
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pðrÞ ∝ e−2mjrj

jrj3 : ð38Þ

In all the cases presented below, we sampled 4096 pairs
with r > 6. For each pair, we compute F2 with the
corresponding precomputed, interpolated function
i3Gρ;σ;κðx; y; zÞ with grid sizes N ¼ 6, 8, 10, 12, 14, 16.
The F2 values for different grids are strongly correlated. We
extrapolate to N → ∞ with a second-order fit in 1=N2,
using three values with N ¼ 8, 12, 16. In Fig. 2, we plot fit
curves corresponding to typical volumes and lattice spac-
ings for the lepton loop.
After removing the interpolation error for i3Gρ;σ;κðx; y; zÞ,

we study nonzero lattice spacing and finite-volume effects.
The results are plotted in Fig. 3, and the parameter values are
listed in Table II. The finite-volume and nonzero lattice
spacing effects are greatly reduced by using Gð2Þ instead of
Gð1Þ, and the curves for different volumes appear to be quite
parallel. Note that in the latter case some points even have
the wrong sign. The difference between the ma ¼ 0.1 and
ma ¼ 0.2 results is a good indicator of the nonzero lattice

spacing effects. Sincewe have obtained results forma ¼ 0.1
and 0.2 for three volumes, this difference demonstrates the
volume dependence of the nonzero lattice spacing effects.
We show this comparison in Table III. ThemL ¼ 4.8 and 6.4
points agree within errors for both loop masses. The volume
mL ¼ 3.2 shows similar effects, but in some cases, given our
high statistical precision, we observe a small difference. This
is expected since the nonzero lattice spacing effects become
independent of volume in the large volume limit. We also
study the lattice spacing dependence of the finite-volume
effects in Table IV. It can be seen from the table that the finite-
volume effects are roughly independent of lattice spacing.
The finite-volume effects at fixed lattice spacing ma ¼ 0.2
are shown in Table V, and we expect that the finite-volume
effects in the continuum limit are similar. With this table, we
can see that the finite-volume effect, falling exponentially
with the linear size of the lattice, becomes negligible
for mL ¼ 9.6.
Since the finite-volume effects are exponentially sup-

pressed with lattice size L and the nonzero lattice spacing
effects are of order a2, the lepton anomaly scales like

FIG. 2. Extrapolations taking the number of interpolation grid points N → ∞ for various lattices used in this study. The six points for
each volume and lattice spacing correspond to N ¼ 6, 8, 10, 12, 14, 16. The curves are second-order fits to 1=N2, based on the three
points N ¼ 8, 12, 16. The upper two plots correspond to m ¼ mμ, the lower two, m ¼ 2mμ. The left two plots correspond to Gð1Þ, and
the right two plots correspond to Gð2Þ.
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F2ðL; aÞ ¼ F2 þOðe−mLÞ þOððmaÞ2Þ: ð39Þ

So far, from Tables III and V, we have made two
observations: (1) the nonzero lattice spacing effect becomes
approximately independent of volume when mL ≥ 4.8;
(2) the finite-volume effect becomes negligible for

mL ¼ 9.6. Based on these two observations, we fit all
of the mL ≥ 4.8 data with the following second-order
formula:

F2ðL; aÞ ¼ F2ðLÞ þ k1a2 þ k2a4: ð40Þ

FIG. 3. Leptonic light-by-light contribution to the muon anomaly, with the lepton loop mass m ¼ mμ (upper) and m ¼ 2mμ (lower).
The continuum, infinite-volume results are 0.371 × ðα=πÞ3 for m ¼ mμ [19] and 0.120 × ðα=πÞ3 for m ¼ 2mμ [20,21]. The left two

plots correspond to Gð1Þ
σ;κ;ρðy; z; xÞ and the right two plots toGð2Þ

σ;κ;ρðy; z; xÞ. For each volume, we draw a second-order line which exactly
passes through the three points withma ¼ 0.1, 0.12 or 0.133333, and 0.2 to guide the eye. Note that the vertical scales between the plots
on the left and right are different. The discretization error observed on the left is larger than on the right by a factor of 4, or more, while
the finite-volume errors are larger by a factor of 2, or more. The parameters for these curves are given in Table II.

TABLE II. Fits of the muon anomaly after taking the number of interpolation grid points N → ∞ for nonzero lattice spacing shown in
Fig. 3.

m=mμ mL F2=ðα=πÞ3 using Gð1Þ F2=ðα=πÞ3 using Gð2Þ

1 3.2 0.0765ð41Þ − 8.58ð37ÞðmaÞ2 þ 66ð7ÞðmaÞ4 0.4502ð23Þ − 1.92ð22ÞðmaÞ2 þ 11.3ð4.1ÞðmaÞ4
1 4.8 0.3080ð43Þ − 9.59ð44ÞðmaÞ2 þ 85ð9ÞðmaÞ4 0.3896ð27Þ − 1.94ð28ÞðmaÞ2 þ 14.1ð5.3ÞðmaÞ4
1 6.4 0.3443ð26Þ − 8.83ð23ÞðmaÞ2 þ 71ð5ÞðmaÞ4 0.3703ð19Þ − 1.63ð18ÞðmaÞ2 þ 8.2ð3.4ÞðmaÞ4
2 3.2 −0.0407ð41Þ − 2.98ð40ÞðmaÞ2 þ 19ð8ÞðmaÞ4 0.1471ð18Þ − 0.70ð16ÞðmaÞ2 þ 6.6ð3.0ÞðmaÞ4
2 4.8 0.0823ð39Þ − 3.20ð42ÞðmaÞ2 þ 25ð8ÞðmaÞ4 0.1292ð26Þ − 0.67ð27ÞðmaÞ2 þ 6.2ð5.2ÞðmaÞ4
2 6.4 0.1083ð23Þ − 2.94ð22ÞðmaÞ2 þ 19ð5ÞðmaÞ4 0.1220ð17Þ − 0.62ð16ÞðmaÞ2 þ 5.8ð2.9ÞðmaÞ4
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To study the systematic effects, we also fit the data with a
third-order formula:

F2ðL; aÞ ¼ F2ðLÞ þ k1a2 þ k2a4 þ k3a6: ð41Þ
We do not assume any specific functional form of F2ðLÞ.
Instead, we assume

F2 ≈ F2ð9.6=mÞ: ð42Þ

In this scheme, we show final results for two fermion
loop masses and for Gð1Þ and Gð2Þ in Table VI. We can see
that our method, with the third-order fit, has successfully
reproduced the analytic calculation within our statistical

precision in all cases. For Gð1Þ, the second-order fits
disagree outside of statistical errors, but the values are still
quite close, within five percent or less. Using third-order
fits and Gð2Þ for central values, and the difference between
second- and third-order fits as a systematic error, we find

F2=ðα=πÞ3 ¼ 0.3686ð37Þð35Þ; ð43Þ

F2=ðα=πÞ3 ¼ 0.1232ð30Þð28Þ; ð44Þ

for m=mμ ¼ 1 and 2, respectively. Here, the first error is
statistical and the second systematic. These values agree
within 1 standard deviation with the analytic results
[19–21], 0.371 and 0.120, for the two loop masses.
Finally, to illustrate how exponentially suppressed finite-

volume errors compare with the power-law suppressed
finite-volume effects seen in Ref. [11], we show the values
from Table XI in Ref. [11] and from Table II in Fig. 4. The
curves shown in the figure, which are not fits, demonstrate
the expected volume dependence of the old finite-volume
QED weighting function and the new infinite-volume one.
The simple scaling curves also do not account for possible

TABLE IV. Lattice spacing dependence of finite-volume effects
for the muon anomaly. Differences between F2 with lattice size L
and 6.4=m are shown for two lattice spacings, ma ¼ 0.1 and
ma ¼ 0.2.

m=mμ mL ma ΔF2=ðα=πÞ3 using Gð1Þ ΔF2=ðα=πÞ3 using Gð2Þ

1 3.2 0.1 −0.2658ð15Þ 0.0773(9)
1 3.2 0.2 −0.2654ð5Þ 0.0730(4)
1 4.8 0.1 −0.0425ð12Þ 0.0168(8)
1 4.8 0.2 −0.0438ð4Þ 0.0163(4)

2 3.2 0.1 −0.1494ð14Þ 0.0243(7)
2 3.2 0.2 −0.1514ð6Þ 0.0233(3)
2 4.8 0.1 −0.0280ð10Þ 0.0067(7)
2 4.8 0.2 −0.0274ð5Þ 0.0058(3)

TABLE III. Volume dependence of nonzero lattice spacing
effects in the muon anomaly. Differences between F2 at ma ¼
0.1 and ma ¼ 0.2 are shown for each volume.

m=mμ mL ΔF2=ðα=πÞ3 using Gð1Þ ΔF2=ðα=πÞ3 using Gð2Þ

1 3.2 0.1580(13) 0.0408(7)
1 4.8 0.1597(9) 0.0370(6)
1 6.4 0.1584(8) 0.0365(6)

2 3.2 0.0614(13) 0.0110(5)
2 4.8 0.0588(8) 0.0109(5)
2 6.4 0.0594(8) 0.0100(6)

TABLE V. Volume dependence of the muon anomaly at fixed
nonzero lattice spacing,ma ¼ 0.2. It can be seen that the infinite-
volume value can be approximated by the largest volume
(mL ¼ 9.6) result. The column “diff” is the finite-volume effect
at this volume and lattice spacing, calculated by taking the
difference between F2=ðα=πÞ3 given in that row and in the
mL ¼ 9.6 row.

m=mμ mL
F2=ðα=πÞ3
using Gð1Þ Diff

F2=ðα=πÞ3
using Gð2Þ Diff

1 3.2 −0.1607ð4Þ −0.2765ð5Þ 0.3913(3) 0.0785(4)
1 4.8 0.0609(3) −0.0548ð4Þ 0.3346(3) 0.0217(4)
1 6.4 0.1047(3) −0.0110ð4Þ 0.3182(3) 0.0054(4)
1 9.6 0.1157(4) 0 0.3128(3) 0

2 3.2 −0.1300ð5Þ −0.1586ð6Þ 0.1297(2) 0.0252(3)
2 4.8 −0.0060ð4Þ −0.0346ð5Þ 0.1122(2) 0.0077(3)
2 6.4 0.0214(4) −0.0072ð5Þ 0.1064(2) 0.0019(3)
2 9.6 0.0286(4) 0 0.1044(2) 0

TABLE VI. The muon anomaly in the continuum and infinite-volume from fits to values with mL ¼ 4.8, 6.4, 9.6.
Results are given for second-order (F2ðLÞ þ k1a2 þ k2a4) and third-order (F2ðLÞ þ k1a2 þ k2a4 þ k3a6) fits. Note
that “dof” denotes degrees of freedom, and χ2 is an uncorrelated chi-squared value from the fit. The analytic results
are computed using continuum, infinite-volume, perturbation theory [19–21].

m=mμ Order Dof F2=ðα=πÞ3 using Gð1Þ χ2 F2=ðα=πÞ3 using Gð2Þ χ2

1 2 9 − 5 ¼ 4 0.3522(14) 11.3 0.3651(10) 2.5
1 3 9 − 6 ¼ 3 0.3647(51) 2.8 0.3686(37) 1.4
1 Analytic 0.371
2 2 9 − 5 ¼ 4 0.1146(13) 3.6 0.1204(9) 4.5
2 3 9 − 6 ¼ 3 0.1153(44) 3.6 0.1232(30) 3.6
2 Analytic 0.120
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volume dependence of prefactors. The rightmost green,
plus sign point for the infinite-volume weighting function
Gð1Þ lies a bit off the corresponding curve. This most likely
results because the discretization error has not been
completely removed by the simple ansatz given in
Table II. This is confirmed in Table VI, where for m=mμ ¼
1 the second- and third-order fit values forGð1Þ do not agree
well. Note the second-order fit is especially poor. Still, we
can clearly see that the curves for the infinite-volume QED
weighting functions approach the analytic result much
faster than the curve for the finite-volume QED weighting
function, as expected.

IV. CONCLUSION

In this paper we outlined an approach for eliminating the
1=L2 finite volume errors in previous hadronic light-by-
light calculations [11,13]. This work was very much
motivated by the recent progress made in Ref. [15]. In
comparison, our approach requires less analytic calculation
but more numerical effort. Since we do not average over the

direction of the propagating muon line, our function
i3Gρ;σ;κðx; y; zÞ depends on five parameters instead of three,
which makes the interpolation harder. However, as we have
demonstrated in Sec. III, these difficulties have been
overcome. We noticed that one has freedom in choosing
the QED weighting function i3Gρ;σ;κðx; y; zÞ without affect-
ing the final result. This added freedom can potentially
reduce the discretization and finite-volume errors. In
particular, we find that the choice Gð2Þ defined by
Eq. (33) is much better than the original Gð1Þ defined in
Eqs. (25) and (11). We are now applying the new infinite-
volume QED weighting function i3Gρ;σ;κðx; y; zÞ obtained
in this work to the hadronic four-point correlation function
already computed (and saved) in our previous work [13].
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FIG. 4. Volume dependence of the muon anomaly for infinite-
and finite-volume QED weighting functions. The diamonds
correspond to the finite-volume QED weighting function com-
puted on the lattice [11]. The plus signs and squares correspond to
infinite-volume QED weighting functions Gð1Þ and Gð2Þ, respec-
tively. Values are listed in Table II. Curves correspond to expected
finite-volume scaling (0.371þ k=L2) and infinite-volume scaling
(0.371þ ke−mL), where the coefficient k is chosen to match the
data at mL ¼ 4.8. The rightmost point for the finite-volume
weighting function lies a bit off its scaling curve because the
discretization error has not been completely removed by the
simple ansatz given in Table II, and the coefficient k does not
contain any possible volume dependence.
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