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We calculate the von Neumann and Rényi bipartite entanglement entropy of the Oð2Þ model with a
chemical potential on a 1þ 1-dimensional Euclidean lattice with open and periodic boundary conditions.
We show that the Calabrese-Cardy conformal field theory predictions for the leading logarithmic scaling
of these entropies are consistent with a central charge c ¼ 1. This scaling survives the time-continuum
limit and truncations of the microscopic degrees of freedom, modifications which allow us to connect the
Lagrangian formulation to quantum Hamiltonians. At half-filling, the forms of the subleading corrections
imposed by conformal field theory allow the determination of the central charge with an accuracy better
than 2% for moderately sized lattices. We briefly discuss the possibility of estimating the central charge
using quantum simulators.
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I. INTRODUCTION

Conformal symmetry has been a major source of inspira-
tion for theoretical physics during the last few decades [1,2].
In two dimensions, the conformal algebra is infinite dimen-
sional and can be identified with the Virasoro algebra
generating the reparametrization of the world sheet in string
theory. This algebra admits central extensions labeled by the
central charge, denoted c hereafter. Known unitary repre-
sentations with c ¼ 1�6=ðmðmþ 1ÞÞ and m ¼ 3;…; 6
describe the critical behavior of the two-dimensional Ising
and 3-states Potts models and their tricritical versions [3–5].
For Zn “clock” models with n ≥ 5, the central charge and
universality of the intermediate-temperature phase have been
investigated numerically [6].
In three dimensions, the conformal bootstrap defines a

boundary of the region of anomalous dimensions. On this
boundary, there is a cusp, and there is a possibility that this
cusp corresponds to the Ising universality class. This
possibility has triggered very interesting new developments
[7–9]. In four dimensions, the idea that electroweak sym-
metry breaking could result from new strong interactions at a
multi-TeV scale with an approximate conformal symmetry
[10–15] protecting a light Higgs-Brout-Englert boson has
motivated numerous lattice studies [16–18].
QCD-like systems with various numbers of fundamental

fermions and also fermions in different representations are
being explored on the lattice (the latest results for various
models are presented, for instance, in Refs. [19–23]). Based
on the Banks-Zaks argument, systems with a large number
of fermion flavors, Nf, feature a conformal phase [24].

However, precisely at what value of Nf, this happens for a
particular gauge group, and fermion representation remains
a subject of controversy. For the SUð3Þ gauge group and
fermions in the fundamental representation, some studies
claim observing conformal behavior at Nf ¼ 12 (see
Ref. [25] for instance), while others (e.g., Ref. [26]) argue
that Nf ¼ 12 is not conformal.
To probe the conformality, various lattice methods,

designed and well tested for QCD, have been employed.
The major obstacle, however, is that large-Nf theories are
very different from QCD. While in QCD the running of the
coupling is fast enough so that one can probe both the
ultraviolet perturbative and the infrared confining phenom-
ena, as manifested, for instance, in one of the basic and
extensively studied quantities, the static quark-antiquark
potential, large-Nf theories require fine lattices and large
volumes to disentangle the physics from the lattice cutoff
effects. This makes identifying conformal theories from the
massless extrapolations of massive lattice simulations a
nontrivial task [25–30].
In the given examples, conformal symmetry is explicitly

broken by the lattice regularization and only reemerges in a
suitable continuum limit and infinite volume limit. Given the
predictive power of conformal symmetries, it is important to
identify the restoration of these symmetries in practical
calculations at finite volumes. The entanglement entropy
may offer a promising direction in understanding the con-
formal behavior of systems with finite-size scaling and could
be a more sensitive tool, especially for small-size systems.
How the entanglement entropy of a subsystem scales with its
spatial volume provides useful information about the sym-
metries present and the conformality of the phases of a model
[31]. This is very well understood in two (one space and one*judah‑unmuth‑yockey@uiowa.edu
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Euclidean time) dimensionswhereCalabrese andCardy (CC)
[32] have shown that various entanglement entropies scale
like the logarithm of the size of the subsystem with
coefficients proportional to the central charge.
Calculations of the entanglement entropy in lattice

gauge theory with Monte Carlo methods have so far
been performed in pure gauge theory [33–35] and two-
dimensional critical spin systems [36]. Those calculations
use the “replica trick” where n sheeted Riemannian
surfaces are glued together over an interval but may require
extra developments for theories with fermions. The entan-
glement spectrum for lower-order Rényi entanglement
entropies has been analyzed for fermion systems in three
dimensions using determinantal Monte Carlo methods,
with universal behavior found that could potentially be
observed in cold-atom experiments [37–39]. In the long
run, finite-size scaling of the entanglement entropy may
provide a cleaner way to study conformal systems than just
increasing lattice volumes and decreasing lattice spacings
in the hope of suppressing lattice artifacts.
In the following, we use renormalization group based

methods [40–44] to calculate the von Neumann and
second-order Rényi entanglement entropy of the classical
Oð2Þ nonlinear sigma model with a chemical potential in
1þ 1 dimensions on a space-time lattice. This model is
often used as an effective theory for the Bose-Hubbard
model [45] and is good as a toy model for gauge theories
in higher dimensions. The model has vortex solutions,
no long range order, and demonstrates a confinement-
deconfinement transition of vortex-antivortex pairs. This
model [46] has a superfluid (SF) phase where we expect to
observe the CC scaling and multiple Mott insulator phase
lobes lacking the CC scaling.
By using rectangular lattices of increasing spatial size

and very large (Euclidean) temporal sizes, we probe the
zero temperature entanglement entropy. We focus on half-
integer charge density where the entropies considered are
extremal. We then take the time-continuum limit and
truncate the microscopic degrees of freedom in such a
way that we obtain a Hamiltonian that can be quantum
simulated [46,47]. These modifications should not affect
the universal parts of the scaling. Our goal is to demonstrate
that the constraints imposed by conformal symmetry on
the finite-size scaling, as well as conjectures [48–50]
explaining oscillations in the scaling, allow us to identify
conformal behavior for modest lattice sizes.
The motivation for relating this model to a model that

can be quantum simulated on optical lattices with cold
atoms is prompted in current challenges with classical
computation. It would be valuable to not only have efficient
calculational tools for understanding conformal behavior
for more complex, higher-dimensional systems but also
to completely overcome the difficulty with large volume,
small lattice spacing calculations entirely. This can be done
by using quantum simulation, which can already reach

volumes in 3þ 1 dimensions on the same order as classical
computation, and larger volumes are expected. This idea is
pursued in more detail in Ref. [51].
Manipulations of small one-dimensional systems of cold

atoms trapped in optical lattices have allowed experimental
measurements of the second-order Rényi entanglement
entropy [52] using a beam splitter method proposed in
Ref. [53]. These measurements have been performed for
small chains of four atoms. A more recent experiment on
thermalization [54] involves six atoms. It is expected that in
the near future manipulations of chains with 12 or more
atoms will be possible [55].
The paper is organized as follows. In Sec. II, we review

the Rényi entropy and the corresponding conventions used
in this paper. We also discuss the currently understood
asymptotic scaling in the Rényi entropy as a function of
system size. In Sec. III, we introduce the Oð2Þ nonlinear
sigma model on a lattice and the tensor formulation of the
model. We give explicit tensor elements and discuss the
isotropic and anisotropic coupling limits used in this paper
as well as some results obtained in those limits. In Sec. IV,
we give results for fits to Rényi entanglement entropy data.
We consider the scaling of the entanglement entropy as a
function of system size. We also go into detail about the
methodology used in our fits and make comparisons with
theoretical predictions. In Sec. V, we discuss the possibility
of quantum simulating theOð2Þ nonlinear sigma model and
a possible quantum Hamiltonian that could be used for
simulation. We also consider finite-temperature effects on
the entanglement entropy. Finally, in Sec. VI, we give
concluding remarks about in what possible directions work
could proceed and other possible implications of this work.

II. RÉNYI ENTANGLEMENT ENTROPY

For the calculation of the entanglement entropy, we will
restrict ourselves to 1þ 1-dimensional space-time, or one
space and one Euclidean time dimension, where the one-
dimensional space has an even number of sites. For all
results in this work, the system was divided into two
identical parts, each one half the size of the entire spatial
dimension, Ns (justification for this can be found in the
supplemental material of Ref. [51]). Calculations of the
entanglement entropy with other partitions of the system
were exploratory and used as checks. Tracing over one of
the halves, we obtain the reduced density matrix ρ̂A for the
other half (denoted A),

ρ̂A ¼ Trenv½ρ̂�; ð1Þ

where the trace is over the “environment” leaving only the
subsystem defined as A. The nth-order Rényi entropy is
defined as

SnðAÞ≡ 1

1 − n
lnðTr½ρ̂nA�Þ: ð2Þ
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The limit n → 1þ is the von Neumann entanglement
entropy, or the first-order Rényi entropy. S2 is the sec-
ond-order Rényi entropy and was measured in recent cold
atom experiments [52]. An important goal for future
work is to estimate the central charge, c, from empirical
data. Using the transformation properties of the energy-
momentum tensor and the Ward identities from conformal
field theory (CFT), CC established that, to leading order,
the Rényi entropy scales linearly with the logarithm of the
spatial volume. The constant of proportionality is the
central charge multiplied by a rational that depends on
the order of the Rényi entanglement entropy and the
boundary conditions:

SnðNsÞ ¼
(
Kn þ cðnþ1Þ

6n lnðNsÞ for PBC

K0
n þ cðnþ1Þ

12n lnðNsÞ for OBC:
ð3Þ

The intercept is nonuniversal and different in the four
situations considered here.
The calculation of Sn can be performed [56] using

blocking (coarse-graining) methods [40–43]. In this
work, we used the density matrix renormalization group
(DMRG) with matrix product states (MPS) as well as exact
blocking formulas [40–42,46] with the tensor renormaliza-
tion group method (TRG), and the only approximation in
these methods consists of truncating the number of states
(called Dbond). The errors associated with this truncation
will be discussed later.

III. Oð2Þ MODEL

In the following, we consider the classical Oð2Þ model
on a Ns × Nτ rectangular lattice with sites labeled ðx; tÞ.
This is a generalization of the Ising model where the local
spin is allowed to take values on a circle, making an angle θ
with respect to some direction of reference. This angle can
be interpreted as the phase of a complex field, and the
model has an exact charge conjugation symmetry, θ → −θ,
interchanging particles and antiparticles. This symmetry
can be broken by adding a chemical potential μ to the angle
gradient [57]. The partition function reads

Z ¼ 1

2π

Z Y
ðx;tÞ

dθðx;tÞe−S ð4Þ

with

S ¼ −βτ
X
ðx;tÞ

cosðθðx;tþ1Þ − θðx;tÞ − iμÞ

− βs
X
ðx;tÞ

cosðθðxþ1;tÞ − θðx;tÞÞ: ð5Þ

We use periodic boundary conditions (PBC) or open
boundary conditions (OBC) in space and always PBC in
time. In the following, we define the charge density as

λ≡ 1

ðNs × NτÞ
∂ lnðZÞ
∂μ : ð6Þ

We will start with the situation where the relativistic
interchangeability between space and time is present
(βs ¼ βτ ≡ β), as is typical in lattice gauge theory simu-
lations. Later, we will take the time-continuum limit and
switch to the Hamiltonian formulation.
For numerical purposes, and in order to connect the

Hamiltonian formulation to quantum simulators, it is
convenient to introduce discrete degrees of freedom on
the links (bonds) of the lattice. Using Fourier expansions
[40,58,59], one can show [46,56] that the partition function
can be expressed in terms of a transfer matrix Z ¼ Tr½TNτ �
where the matrix elements of T have the explicit form

T ðn1;n2;…;nNs Þðn1 0;n2 0;…;nNs
0Þ ¼

X
~n1 ~n2… ~nNs

Tð1;tÞ
~nNs ~n1n1n1

0T
ð2;tÞ
~n1 ~n2n2n2 0…

…

× TðNs;tÞ
~nNs−1 ~nNsnNsnNs

0 ; ð7Þ

with

Tðx;tÞ
~nx−1 ~nxntn0t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IntðβτÞIn0tðβsÞ expðμðnt þ n0tÞÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ~nx−1ðβsÞI ~nxðβτÞ

q
δ ~nx−1þnt; ~nxþn0t : ð8Þ

In Eq. (8), the first two indices are associated with the links
in the spatial direction, while the last two indices are
associated with the links in the temporal direction. When
Ns is a power of 2, the traces in the spatial directions in
Eq. (7) can be performed recursively and combined with a
truncation of the number of states kept in the time direction
[46,56]. The accuracy of this tensor renormalization group
method has been tested against sampling methods [56].
We can interpret TNτ as a density matrix ρ̂ if we

normalize by the trace of the matrix. It is important to
understand that the classical spin model described above
can be taken in a limiting form as a quantum model in
one spatial dimension. In the following, we always take
Nτ ≫ Ns and extrapolate to infinite Nτ. This corresponds
to the zero-temperature limit in the quantum terminology.
Finite-temperature effects will be discussed in Sec. V and
were considered in Ref. [56].
The SF phase is characterized by a response of the charge

density, λ, to a change in the chemical potential. This is
illustrated in Refs. [46,59]. In contrast, in the Mott phases,
the charge density keeps a fixed integer value as we
increase μ. This lack of response is somewhat puzzling
in the functional integral formulation and is often called
the “Silver blaze” phenomenon [60] in the context of finite-
temperature QCD. Another characterization of the two
phases is by the scaling of the Rényi entropy as a function
of the volume of space.
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In the following, we focus on two cases for two different
relationships between the spatial and temporal couplings.
We consider β ¼ 0.1, μ≃ 3 (case 1), and β ¼ 2, μ ¼ 0
(case 2). Both of these situations are considered in the
limits of isotropic coupling (βs ¼ βτ) and anisotropic
coupling (βsβτ ¼ const.. with βτ → ∞ and a → 0, where
a is the temporal lattice spacing). In case 1, the SF
transition is driven by an increase in the chemical potential
at fixed β. This is the transition driven by fluctuations
in density. For case 2, the transition is driven by the
presence of vortices and is the Berezinskii-Kosterlitz-
Thouless transition.

A. Isotropic coupling

In this section, we consider the case where the coupling
in space and time are the same. This is a classical statistical
two-dimensional spin system. Using TRG, we can block a
(Euclidean) time slice of the lattice and consider it a transfer
matrix. From it, we can calculate a “zero-temperature”
density matrix by taking Nτ ≫ Ns (typically Nτ ≈ 220Ns
in practice, although even larger sizes may be used).
Then, from the density matrix, one can make the reduced
density matrix and calculate the Rényi entropy of the
desired order.
The values of S1 and S2 are shown in Fig. 1 for Ns ¼ 4,

8, 16, and 32, for PBC and OBC. These results are
compared with the leading CFT prediction of Eq. (3) by
just fitting the intercept with the CFT slope fixed. For
isotropic calculations, the TRG calculations kept up to 250
states. The figure shows that the discrepancies are rather
small and most visible for S2 with OBC for case 1. In
case 2, the discrepancies are slightly more pronounced. In
all cases, the discrepancies are due to subleading

corrections not taken into account in the fits, rather than
the small numerical errors.
Figure 2 gives the values of S2 for Ns ¼ 4 across a region

of the β-μ plane. This figure shows lobes corresponding to a
fixed charge density. The largest and most prominent is the
λ ¼ 0 lobe, followed by a much thinner λ ¼ 1 lobe above.
The lobes continue as long as the truncation on the number
of states used in the TRG calculation can support the charge
density. Figure 2 also shows three plateaus in the SF regions
between each Mott lobe. These plateaus were investigated
and related to the charge density in the isotropic limit in [56].
In the next section, we consider the time-continuum limit
of the classical Oð2Þ model and how the phase diagrams
transform through taking that limit.

B. Anisotropic coupling

We now proceed to take the time-continuum limit. This
can be achieved by taking βτ very large while keeping
constant the product βsβτ and keeping μβτ tuned to the
desired charge density. For case 1, the limit of the chemical
potential must be done carefully in order to maintain a
fixed charge density corresponding to half-filling. For
small volumes, half-filling takes place around μβτ ¼ 0.5
as βτ → ∞, but not all the data collected for larger volumes
were necessarily done at that parameter specification, and
instead the parameters were tuned to maintain half-filling.
The time-continuum limit in the tensor formulation defines
[46] a rotor Hamiltonian [61,62],

Ĥ ¼ U
2

X
x

L̂2
x − ~μ

X
x

L̂x − 2J
X
hxyi

cosðθ̂x − θ̂yÞ; ð9Þ

with ½L̂x; eiθ̂y � ¼ δxyeiθ̂y . It is possible to truncate to finite
integer spin and approximate these commutation relations
[46]. The normalization has been chosen in such a way that

(a)

(b)

FIG. 1. (a) The second-order (S2) and first-order Rényi (S1)
entropies for case 1, μ ¼ 2.99 and βs ¼ βτ ¼ 0.1, both PBC and
OBC. The solid, black lines are linear fits to the data, and the
dashed, blue (online) lines are fits of the intercept with the CFT
slopes. (b) Same quantities for case 2, μ ¼ 0 and βs ¼ βτ ¼ 2.

FIG. 2. Second-order Rényi entropy in the β-μ plane forNs ¼ 4
showing the various lobes of charge densities. λ ¼ 0, 1, and 2 are
the prominent bright regions stemming from the β ¼ 0 axis.
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the coupling constants in the Bose-Hubbard model used
in Ref. [52] and here in the Oð2Þ model are the same:
βsβτ ≡ 2J=U and μβτ ≡ ~μ=U.
In the following, we primarily use the spin-1 approxi-

mation, which can also be implemented in the original
isotropic formulation by setting the tensor elements in
Eq. (8) to zero for space and time tensor indices strictly
larger than 1 in absolute value (so only three states remain).
The Hamiltonian is then a spin-1 XY model with a
chemical potential and an ion anisotropy. In addition, for
large enough chemical potential, the n ¼ −1 component
decouples, and we are approximately left with a spin-1=2
XY model. Furthermore, for ~μ ¼ U=2 ≫ J, there is an
approximate connection with the Bose-Hubbard model

H ¼ U
2

X
x

nxðnx − 1Þ − J
X
x

ða†xaxþ1 þ H:c:Þ: ð10Þ

The Hamiltonian in Eq. (9) is never explicitly used in the
blocking procedure with TRG. In practice, the TRG tensors
used are the same; however, the coupling constants that
appear in the local tensor’s definition are tuned to reflect
the scenario under consideration. Again, using the TRG
the same way, one calculates the Rényi entropy for an
approximately zero-temperature situation. The only minor
change is that, due to the increased coupling in the time
direction, Nτ needs to be adjusted to compensate the
smaller lattice spacing. This means increasing Nτ even
more, a facile task while using a blocking method.We show
slices of the Rényi entropy in the region of case 1 for
Ns ¼ 4 and 8, OBC, in Fig. 3. A more extensive plot of S2
for the Oð2Þ model in the time-continuum limit can be
found in Ref. [51] for a large range of couplings along with
a comparison to the Bose-Hubbard model.
In order to check the TRG calculations of Sn in the

time-continuum limit [Eq. (9)], we have used DMRG [43],
which has been used to calculate the ground state
entanglement entropy and Rényi entropy for similar
Hamiltonians [63–65]. Calculations with MPS optimiza-
tion [44] have been performed using the ITensor C++
library [66]. We run enough sweeps for the entropy to
converge to at least 10−8, and a large number of states, up to
1500, was kept so that the truncation error is less than
10−10. The comparison of the results with the two methods
showed excellent agreement at small volume (typically
nine digits for Ns ¼ 4), but the discrepancies increased
with the volume (typically three digits agreement for
Ns ¼ 32). We believe that the DMRG results are more
accurate because, first, it can keep many more states than
the TRG by using sparse linear algebra libraries. Second,
the truncations are made step by step to try to maximize the
entanglement entropy. Finally, DMRG uses an environment
sweep method which optimizes the ground state wave
function iteratively. For these reasons, we have used the
DMRG results for the fits that follow.

IV. FITS TO Sn

In this section, we give some results for fits to the isotropic
and anisotropic data, as well as for fits to the DMRG data.
The primary deviations from the leading-order linear behav-
ior of the Rényi entropy come from finite volume effects
and parity oscillations. These deviations were found most
prominently in OBC data and the second-order Rényi
entropy. Oscillations were found between sizes Ns mod
4 ¼ 0 and Ns mod 4 ¼ 2, although in case 1 S1 with PBC
had none, as well as S1 in case 2. Corrections to the leading-
order CFT behavior to account for these oscillations have
been conjectured [48–50], and we check their validity for the
anisotropic Oð2Þ model. In addition, nonoscillatory finite-
volume corrections have been derived [67], and in the
following, we attempt to take all these corrections into
account in order to fit the data as well as possible.
Initially, all the data were fit to the leading-order CFT

prediction [Eq. (3)], with the slope and intercept as the two
free parameters. This was done for spatial volumes which
matched the TRG blocking volumes, e.g., Ns ¼ 2l, and
since these sizes are multiples of 4, no oscillations were
present. These fits were done for both the DMRG and
TRG data in both the isotropic and anisotropic limits. The
results for the slope fits are reported in Table I for all cases
considered.
For the two cases considered here, we tried various

fits that attempted to incorporate subleading corrections.
We attempted fits with four or five free parameters.
These included corrections ∝ 1=Ns, 1=N2

s , 1= lnðNsÞ and

(a) (b)

(c) (d)

FIG. 3. The first-order (orange online) and second-order (blue
online) Rényi entropy as a function of ~μ=U in the region around
case 1. (a), (b) Entropies for Ns ¼ 4 and Ns ¼ 8, respectively,
with OBC. (c), (d) Entropies for Ns ¼ 4 and Ns ¼ 8, respec-
tively, with PBC. The second Rényi entropy maintains a local
minimum around ~μ=U ¼ 0.5 for all cases; however, the PBC
data for the first Rényi entropy have a maximum. For these data,
βτ ¼ 500 and Dbond ¼ 101.
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1= ln2ðNsÞ. To judge the quality of the fits, we compared
the average relative error between fits,

ðrelative errorÞ2 ¼ 1

N

XN
i¼1

�
yi − fðxiÞ

yi

�
2

; ð11Þ

with yi the dependent data and fðxiÞ the fitting function
evaluated at the independent data. This measure is con-
venient since the error is dimensionless; in addition, a χ2

measure of error would depend upon the unknown DMRG
error bars, and fitting with uncertainties in arbitrary units
gives a relatively useless estimate of the fit quality. The
relative errors associated with the fits were never greater
than 10−3 and never less than 10−7. For systems with
subsystems of size l, we considered a fit of the form

SnðNs; lÞ ¼ An ln

�
Ns sin

�
πl
Ns

��
þ B

þ C
Npn

s
cosðπlÞ

				 sin
�
πl
Ns

�				−pn þ fnðNs; lÞ ð12Þ

with fn a function to take into account additional correc-
tions, and An, B, C, and pn are fit parameters. However, we
focused on data with l ¼ Ns=2. We found the best fit results
by excluding data with l < Ns=2 and l > Ns=2 for small
Ns, and at larger Ns, we found fits preferred data near
l ≈ Ns=2, resulting in data which resembled a “fan with a
handle” (see Ref. [51]).
For case 1, the best fits included corrections like f ∝

1=N2
s and 1= ln2ðNsÞ. We found almost identical relative

errors between corrections 1=N2
s and 1= ln2ðNsÞ. For case

2, the OBC data had the least error with corrections
∝ 1=Ns, while the PBC data had the least error with
corrections ∝ 1=N2

s . For the oscillating term, the various
pn are expected to follow special relations [49] (see below).
For some fits, there were no oscillations present, and the fits

drove pn very large. In these cases, we replaced the πNs=2
in the cosine by πNs, so as to set it to unity by hand, and
assumed a correction ∝ N−pn

s . The fits were done by
nonlinear least-squares minimization.
The results are shown in Fig. 4 for case 1. The values

of the slopes, An, for both S1 and S2 are plotted in Fig. 5
with the slope value predicted from CFT surrounded by a
band representing a 1% deviation from the CFT value. The
values for An and pn using all the data points up toNs ¼ 64
are shown in Table II. Notice the good agreement with the
predicted relations [49] pOBC

1 ¼ 2pOBC
2 , pPBC

1 ¼ 2pPBC
2 ,

TABLE I. Slopes of the Rényi entropies using the leading-order
linear fit. The fits were done using the same volumes used in the
TRG calculations: Ns ¼ 2l. For data at these volumes, oscil-
lations do not appear; oscillations occur between volumes: Ns
mod 4 ¼ 0 and Ns mod 4 ¼ 2.

Case 1 Isotropic Anisotropic DMRG c ¼ 1 CFT

S1 PBC 0.319 0.311 0.327 0.3̄
S2 PBC 0.273 0.265 0.267 0.25
S1 OBC 0.207 0.208 0.195 0.16̄
S2 OBC 0.182 0.152 0.168 0.125

Case 2 Isotropic Anisotropic DMRG c ¼ 1 CFT
S1 PBC 0.328 0.296 0.329 0.3̄
S2 PBC 0.262 0.229 0.250 0.25
S1 OBC 0.179 0.152 0.159 0.16̄
S2 OBC 0.165 0.148 0.140 0.125

(a) (b)

(c) (d)

FIG. 4. The first-order and second-order Rényi entropy scaling
with system size for βsβτ ¼ 0.01, μβτ ¼ 0.5 in the time-
continuum limit calculated using DMRG. (a), (b) The first-order
Rényi entropy with OBC and PBC, respectively. (c), (d) The
second-order Rényi entropy with OBC and PBC, respectively.

(a)

(b)

FIG. 5. The An for βsβτ ¼ 0.01, μβτ ¼ 0.5 with OBC is plotted
vs the maximal size of the lattice used to fit the data. The
horizontal line is the CFT prediction with c ¼ 1 with a region
around representing a �1% deviation. (a) The first-order Rényi
entropy. (b) The second-order Rényi entropy.
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and pPBC
n ¼ 2pOBC

n . The fit results for case 2 are shown in
Fig. 6. As can be seen, the oscillations are very small, if at
all, as compared to case 1. Also, in contrast, case 2 did not
yield the special relationships between the pn exponents
that did occur for case 1. The An values when fitting to all
the data up to Ns ¼ 64 are found in Table III. In both case 1
and case 2, the first-order Rényi (von Neumann) entropy
with PBC possesses no oscillations, which is in agreement
with what is known [48]. These results suggest that both of
these different regions of the phase diagram are conformal
and approximately c ¼ 1. If either of these two regimes
could be quantum simulated and experimentally realized,
it may be possible to measure the central charge. We will
briefly discuss the feasibility of this prospect in the next
section.

V. PROSPECT FOR QUANTUM SIMULATIONS

To better understand the possibility of quantum simulat-
ing the Oð2Þ model, it is important to find a suitable
condensed matter model to relate to. We considered a single
species Bose-Hubbard quantum Hamiltonian [Eq. (10)] in a
region of the phase diagram where the two models are

essentially identical: ~μ ≈U=2 ≫ J, i.e., similar to case 1.
While the hopping parameter is very small compared to the
on-site repulsion, the chain is only half-filled, allowing the
superfluid regime to be probed.
We considered the second-order Rényi entropy for the

Bose-Hubbard model for J=U ¼ 0.005 and J=U ¼ 0.1
with OBC. We did runs using DMRG across various
system sizes such that 4 ≤ Ns ≤ 64 and subsystem sizes
such that 1 ≤ l ≤ Ns − 1. To illuminate the legitimacy of
the comparison between the two models, we have plotted
S2 and A2 for both the Oð2Þ model in the time-continuum
limit for case 1 and the Bose-Hubbard model with J=U ¼
0.005 in Fig. 7. As one can see in Fig. 7, the BH model in
this limit is almost identical to case 1 of the Oð2Þ model.
Changing J=U to 0.1 increases the discrepancy, but the
models continue to agree quantitatively well, especially
for smaller volumes. The exploratory fits and trials can be
found in Ref. [51]. A Bose-Hubbard model with small
spatial volumes and μ ¼ U=2 ≫ J=U ¼ 0.1 appears as a
potential candidate for quantum simulating the Oð2Þ
model and experimentally measuring the central charge.

(a) (b)

(c) (d)

FIG. 6. The first-order and second-order Rényi entropy scaling
with system size for βsβτ ¼ 4, μβτ ¼ 0 in the time-continuum
limit calculated using DMRG. (a), (b) The first-order Rényi
entropy with OBC and PBC, respectively. (c), (d) The second-
order Rényi entropy with OBC and PBC, respectively.

TABLE II. Values for An and pn for βsβτ ¼ 0.01, μβτ ¼ 0.5,
from the least-squares fits to the DMRG data up to Ns ¼ 64
corresponding to Fig. 4.

Sn pn An from fit An with c ¼ 1

S1 PBC 2.315 0.3338 0.3̄
S2 PBC 0.981 0.2525 0.25
S1 OBC 0.901 0.1663 0.16̄
S2 OBC 0.443 0.1246 0.125

TABLE III. Values for An for βsβτ ¼ 4, μβτ ¼ 0, from the least-
squares fits to the DMRG data up to Ns ¼ 64 corresponding to
Fig. 6.

Sn An from fit An with c ¼ 1

S1 PBC 0.3337 0.3̄
S2 PBC 0.2500 0.25
S1 OBC 0.1654 0.16̄
S2 OBC 0.1278 0.125

FIG. 7. A comparison between the Bose-Hubbard model and
the Oð2Þ model at half-filling and J=U ¼ 0.005 with OBC. (top)
S2 for the two models. The data lie almost on top of each other,
and there are two solid black lines fitting the two data sets which
are essentially indistinguishable. (bottom) The value of A2 vs the
maximum size of the lattice used to extract the value of A2. The
horizontal line represents the CFT prediction of 1=8 with a band
representing a �1% deviation.
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The possibility of measuring the central charge with
cold atoms trapped in optical lattices was investigated
in Ref. [51].

A. Finite-temperature effects

For quantum simulation, while most of the calculations
were done at T ¼ 0, finite-temperature effects should be
considered. Here, we take k, the Boltzmann constant, equal
to unity. While working on a two-dimensional Euclidean
lattice, we must relate the temporal extent to the physical
temperature. This is done through the relation

1

T
¼ Nτa: ð13Þ

This relation can be derived with simple quantum statistical
mechanics arguments. To take the time-continuum limit,
we allowed βτ → ∞ and a → 0. This allowed us to set the
scale with the quantity U≡ 1=βτa. With this definition, we
have

1

T
¼ Nτ

βτU
¼ βsNτ

2J
: ð14Þ

This relates a number of important quantities, for instance,
the spatial or temporal coupling on the Euclidean lattice to
the physical temperature of a quantum Hamiltonian, as well
as the number of temporal sites on the lattice. In addition, it
relates the hopping parameter, J, and the on-site repulsion,
U, to the physical temperature and lattice couplings.
To verify this relation between the classical picture of a

two-dimensional lattice and its quantum counterpart in one
less dimension, we again compared time-continuum TRG
results with DMRG results for finite temperature. For TRG,
we merely considered temporal lattice sizes which were
not as great as before for the zero-temperature analysis and
tuned the couplings for the time-continuum limit. The
DMRG analysis used a thermal density matrix (as opposed
to using the ground state) to compute the Rényi and von
Neumann entanglement entropies [68–70]. In Fig. 8, one
can see the agreement between the DMRG calculations and
the TRG ones in the case of the Oð2Þ model. This figure
also demonstrates the effect the thermal entropy has on the
entanglement entropy as the temperature increases. The
peaks and valleys of the entanglement entropy become
smoothed out, and while the boundaries remain at approx-
imately ln(2), the half-filling valley increases.
For systems at half-filling, i.e., the central peak (valley)

like in Figs. 3 and 8, the CC scaling can be well fit to a
functional form

SnðNsÞ ¼ An lnðNsÞ þ Bþ C
Npn

s
cosðπNs=2Þ

þ ENs þ fðNsÞ; ð15Þ

that is, adding a term linear in Ns takes into account the
finite-temperature effects. For fits to a general subsystem
size at fixed Ns, we find a term linear in l fits the data well,

SnðNs; lÞ ¼ An ln

�
4ðNs þ 1Þ

π
sin

�
πð2lþ 1Þ
2ðNs þ 1Þ

��
þ B

þ C
Npn

s
sin

�
πð2lþ 1Þ

2

�				 sin
�
πð2lþ 1Þ
2ðNs þ 1Þ

�				−pn

þDlþ fnðNs; lÞ: ð16Þ

This linear term can be used to subtract off finite-
temperature effects [54]; however, we find additional
corrections are necessary to maintain the original T ¼ 0
fit parameters. Examples of fits done with these functional
forms for various temperatures can be found in Ref. [51].

VI. CONCLUSION

We have argued that finite-size scaling of the entangle-
ment entropy may provide a sensitive tool for identifying
conformal behavior in a system. It may complement the
techniques currently in use in the lattice gauge theory
community for studying models in the context of physics
beyond the Standard Model. Such models are harder to
study on the lattice than QCD, because the running of the
coupling is slow and the relevant physics may be easily
masked by lattice artifacts (e.g., finite lattice spacing and
finite volume).
We have calculated the Rényi entropy for the classical

Oð2Þmodel in the isotropic coupling limit, as well as in the
anisotropic coupling limit with a quantum Hamiltonian.
From fits to the Rényi entropy, we have estimated the

FIG. 8. The second-order Rényi entropy as a function of the
chemical potential, ~μ ¼ βτμ, for Ns ¼ 4 with J=U ¼ 0.1. The
solid lines are the DMRG data and the markers are the TRG data.
We see the effects of a finite temperature on S2 are to smooth out
the peaks and valleys. As the temperature increases, the thermal
entropy dominates the Rényi entropy. The temperature, T, was
calculated here with U ¼ 1 and βτ ¼ 500, and Dbond ¼ 201 for
the TRG.
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central charge. We found that this model can be mapped
to a single-species Bose-Hubbard model in a particular
region of the phase diagram and their Rényi entropies are
quantitatively similar, allowing for the possibility of quan-
tum simulating the Oð2Þ model and observing the CC
scaling during simulation. In addition, we have considered
finite-temperature effects on the Rényi entropy and found
fitting functions which match the data for S2 well, with
scaling in Ns and in subsystem size. These additional fits
involved including a term which is linear in either the
subsystem size, l, or the system size, Ns.
It would be interesting to study the scaling of the Rényi

entropy of the Oð3Þ nonlinear sigma model with finite
chemical potential in 1þ 1 dimensions. This model is
known to have asymptotic scaling in the continuum limit
leading to a nonzero mass gap, as well as meron (instanton)
solutions that are related to vortices in the Oð2Þ nonlinear
sigma model [71,72]. With the inclusion of a chemical
potential coupled to the Oð2Þ subgroup it is, as of now,
unclear what sort of transition takes place at finite density.
The phase diagram in the time-continuum limit has a form
similar [73] to the Oð2Þ model considered here and could
be investigated in a similar fashion.
In addition, it would be interesting to study the effects of

a weak gauge coupling to the Oð2Þ spins (as discussed in
Refs. [47,74]). This would be scalar electrodynamics in a
perturbative limit of weak gauge coupling. Monitoring the
entanglement entropy as one takes the limit of zero gauge

coupling would give information about the symmetries
for the phases of scalar electrodynamics and the passage
between the two models.
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