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In Coulomb gauge a longitudinal electric field is generated instantaneously with the creation of a static
quark-antiquark pair. The field due to the quarks is a sum of two contributions, one from the quark and one
from the antiquark, and there is no obvious reason that this sum should fall off exponentially with distance
from the sources. We show here, however, from numerical simulations in pure SU(2) lattice gauge theory,
that the color Coulomb electric field does in fact fall off exponentially with transverse distance away from a
line joining static quark-antiquark sources, indicating the existence of a color Coulomb flux tube, and the
absence of long-range Coulomb dipole fields.
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I. INTRODUCTION

Coulomb gauge has been used in many studies of quark
confinement, beginning with the seminal work of Gribov
[1], later elaborated by Zwanziger [2]. In this gauge the
color Coulomb potential (defined below) is confining, and
there is some hope that this confining behavior can be
derived or understood analytically, e.g. by Schwinger-
Dyson equations, variational methods, or some other
approach. A sample of work along these lines is found
in [3–9]. Coulomb gauge also has the advantage that
physical states are obtained by operating on the vacuum
with local field operators. This allows us to define what is
meant by “constituent” gluons in hadronic states, and to
construct e.g. glueball states by operating on the vacuum
with A-field operators in the appropriate combinations of
spin and parity.
The color Coulomb potential VCðRÞ is the interaction

energy of the state Ψq̄q generated by quark-antiquark
creation operators acting on the ground state, i.e.

E ¼ hΨq̄qjHjΨq̄qi
¼ ECðRÞ þ Evac ð1Þ

where H is the Coulomb gauge Hamiltonian and Evac is the
vacuum energy, and the color Coulomb potential is the
R-dependent part of the Coulomb energy

ECðRÞ ¼ VCðRÞ þ Eself ð2Þ

with Eself being a self-energy term. We consider static
quarks in the infinite mass limit, with the quark located at
position R1, the antiquark at position R2, and the q̄q state
being

jΨq̄qi ¼ N
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 b

†σðk1; λ1Þd†σðk2; λ2Þ

× e−iðk1·R1þk2·R2ÞjΨ0i; ð3Þ

whereΨ0 is the ground state, b†, d† are quark and antiquark
creation operators, σ is a color index, N is a normalization
constant, and the polarizations λ1;2 are unimportant in what
follows. For convenience we take R1 to be the origin, and
R2 ¼ R ¼ Rêx to lie along the x-axis. It is well known from
lattice simulations [10–15] that VCðRÞ is a linearly con-
fining potential. What has not been investigated up to now
is the spatial distribution of the color Coulomb field which
gives rise to this potential.
The reason that there is any R-dependence at all in the

energy expectation value is due to the fact that, in Coulomb
gauge, the creation of charged sources is always accom-
panied, because of the Gauss law constraint, with an
associated longitudinal electric field. To briefly review this
point, in Coulomb gauge the dynamical degrees of freedom
are the transverse A; Etr fields. Separating the color electric
field into a transverse and longitudinal part, E ¼ Etr þ EL
where EL ¼ −∇ϕ, the Gauss law constraint DkEk ¼ ρq
becomes

−∂iDiϕ ¼ ρq þ ρg; ð4Þ

where Di is the covariant derivative, and

ρaq ¼ gq̄Taγ0q; ρag ¼ gfabcEtr;b
k Ac

k ð5Þ

are the color charge densities due to the quark and gauge
fields, respectively, with Ta being the generators of the Lie
algebra, and fabc the structure constants. Let

Gabðx; y;AÞ ¼
�

1

−∂iDiðAÞ
�

ab

xy
ð6Þ

be the inverse of the Faddeev-Popov operator. Then the
longitudinal electric field EL ¼ −∇ϕ is determined to be

Ea
Lðx;A;ρÞ¼−∇x

Z
d3yGabðx;y;AÞðρbqðyÞþρbgðyÞÞ: ð7Þ
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We are interested in the part of EL which is generated by the
quark-antiquark sources, namely

Ea
L;qq̄ðx; A; ρqÞ ¼ −∇x

Z
d3yGabðx; y;AÞρbqðyÞ: ð8Þ

Now suppose Ai is a typical vacuum fluctuation, where the
word typical is best defined with a lattice regularization:
these are thermalized configurations generated by the
lattice Monte Carlo procedure, transformed to Coulomb
gauge. Squaring Ea

L;qq̄ðx; A; ρqÞ, summing over the color
index a, and taking the expectation value of the matter field
color charge densities in the massive quark-antiquark
state, a straightforward calculation leads to the matter
contribution

E2
L;qq̄ðx; AÞ ¼

g2

2Nc
(∇xGabðx; 0;AÞ ·∇xGabðx; 0;AÞ

þ∇xGabðx;R;AÞ ·∇xGabðx;R;AÞ
− 2∇xGabðx; 0;AÞ ·∇xGabðx;R;AÞÞ; ð9Þ

where Nc is the number of colors. It seems unlikely that
Gabðx; y; AÞ would fall exponentially with jx − yj for
typical vacuum configurations. In that case it is hard to
see how the color Coulomb potential, which depends on the
interaction kernel

Kabðjx − yjÞ ¼
Z

d3zhðGacðx; z; AÞð−∇2ÞzGcbðz; y; AÞÞi;

ð10Þ

could rise linearly at large jx − yjÞ. Moreover, the expect-
ation value of the Fourier transform of Gabðx; y; AÞ, which
is the momentum-space ghost propagator GabðkÞ, has been
computed in lattice Monte Carlo simulations, both in SU(2)
[14,16,17] and SU(3) [18] pure gauge theory, with the
result

GabðkÞ ¼ hGabðk; AÞi ∼ δab

jkj2.44 ð11Þ

in the infrared, corresponding to an asymptotic behavior
GabðrÞ ∼ δab=r0.56 in position space. So it is reasonable to
assume some power-law falloff of Gabðx; y; AÞ with sep-
aration jx − yj, for typical vacuum fluctuations A. Then,
unless there are very delicate cancellations among the terms
in (9), one would expect a power-law falloff for E2

Lðx; AÞ, as
the distance of point x from the q̄q sources increases. This
would imply a long-range color Coulomb dipole field in the
physical state Ψq̄q.

It should be emphasized that Ψq̄q is not the minimal
energy state containing a static quark-antiquark pair. For
that reason VCðRÞ is clearly an upper bound on the
potential VðRÞ of a static quark-antiquark pair, and if
the static quark-antiquark potential is confining, then so is
the color Coulomb potential VCðRÞ (a point first made in
[19]). In fact, lattice simulations [12,13] show that the color
Coulomb potential in SU(3) pure gauge theory is about a
factor of 4 greater than the usual asymptotic string tension.
If one begins with the physical state (3) and lets it evolve in
Euclidean time, then the state evolves to the minimal
energy state with potential VðRÞ, and the initial color
Coulomb electric field evolves into the standard flux tube
configuration. It has been suggested [20] that in Coulomb
gauge the minimal energy flux tube state is best understood
in the framework of the gluon chain model [21], where we
consider more general states of the form

jΨi ¼
Z Yn

i¼1

d3xiΨk1…knðx1; x2;…; xnÞ

× q̄þð0ÞAk1ðx1ÞAk2ðx2Þ…AknðxnÞqþðRÞjΨ0i; ð12Þ

and the order of color indices of the A fields is correlated
with position in the chain. In principle, such states can
reduce the Coulomb string tension to the asymptotic string
tension; the details can be found in [13,20]. In this article,
however, we are concerned with the distribution of the
Coulomb electric field associated with the state Ψq̄q, and
the question we address here is whether this color dipole
gives rise to a long-range Coulomb field, or whether instead
the Coulomb electric field is somehow collimated from the
moment of creation of the static quark-antiquark pair, even
before that field has a chance to evolve into a minimal
energy flux tube.

II. LATTICE SETUP

Wework in the framework of the Euclidean path integral
of SU(2) lattice gauge theory in Coulomb gauge

Z ¼
Z

DAμδð∇ · AÞM½A�e−SYM ; ð13Þ

whereM½A� is the Faddeev-Popov determinant in Coulomb
gauge, and in this article we neglect the issue of Gribov
copies. To compute the Coulomb potential, let

LtðxÞ≡ T exp ½ig
Z

t

0

dt0A4ðx; t0Þ�: ð14Þ

Then the Coulomb energy is obtained from the logarithmic
time derivative [10,11]

ECðRÞ ¼ −lim
t→0

d
dt

loghTr½Ltð0ÞL†
t ðRÞ�i; ð15Þ
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while the minimal energy of the static quark-antiquark state
is obtained in the opposite limit

EminðRÞ ¼ − lim
t→∞

d
dt

loghTr½Ltð0ÞL†
t ðRÞ�i: ð16Þ

Now in Coulomb gauge the hA4A4i correlator has an
instantaneous part

Dab
44ðx − yÞ ¼ hAa

4ðxÞAb
4ðyÞi

¼ δabDðx − yÞδðx0 − y0Þ þ Pabðx − yÞ; ð17Þ

where Pabðx − yÞ is the noninstantaneous part. It was
shown by Zwanziger [2,22] that both g2Dab

44ðx − yÞ and
g2Dðx − yÞ are renormalization group invariant. Expanding
Lt in a power series and extracting the R-dependent part of
ECðRÞ, it is clear that

VCðRÞ ¼ g2CFDðRÞ; ð18Þ

where CF is the quadratic Casimir of the fundamental
representation.
The lattice version of (15) in SUðNÞ pure gauge theory is

the logarithm of the equal times timelike link correlator

ECðRÞ ¼ − log

�
1

N
Tr½U0ð0; 0ÞU†

0ðR; 0Þ�
�
; ð19Þ

where from this point on R is in lattice units and the
corresponding separation in physical units is denoted
Rphys ¼ RaðβÞ, with aðβÞ being the lattice spacing at lattice
coupling β. In this form ECðRÞ has been computed in
numerical simulations [10–13]. In SU(3) simulations, using
the expression for the lattice spacing [23]

aðβÞ ¼ ð0.5 fmÞ exp ½−1.6804 − 1.7331ðβ − 6Þ
þ0.7849ðβ − 6Þ2 − 0.4428ðβ − 6Þ2� ð20Þ

to convert to physical units, it was found in [13] that

Ephys
C ðRphysÞ ¼ σcðβÞRphys −

γðβÞ
Rphys

þ cðβÞ
aðβÞ

¼ VCðRphysÞ þ Eself : ð21Þ

In physical units the Coulomb string tension σcðβÞ, and the
dimensionless constants γðβÞ, cðβÞ, appear to have finite
nonzero limits as β → ∞, with the Coulomb string tension
being approximately four times larger than the asymptotic
string tension, as also found in [12]. An intriguing fact,
reported in [13], is that γ appears to go to π=12 in the
continuum limit, which is the Lüscher value expected for

the QCD flux tube. That could be a numerical coincidence,
although this value of γ is also roughly consistent with a
best fit of our SUð2Þ on-axis data for ECðRÞ at β ¼ 2.5,
shown in Fig. 1. If this proximity to π=12 is not a
coincidence, and γ does indeed have a string origin of
some kind that would be interesting to know. This is part of
our motivation to study the spatial distribution of the
Coulomb electric field due to static quark-antiquark
charges.
For our purposes it is sufficient to study how the color

electric field depends on the transverse distance away from
the midpoint of a line joining the quark and antiquark. Let
the quark and antiquark lie along the x-axis, say, with êx
and êy unit vectors in the x, y directions, and define

p ¼ 1

2
Rphysêx þ yêy: ð22Þ

The quantity we wish to compute is the contribution to the
x-component hTrE2

xi due to the quark-antiquark pair, i.e.
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FIG. 1. Coulomb interaction energy vs on-axis quark separation
for a static quark-antiquark pair in SU(2) pure gauge theory at
β ¼ 2.5 on a 244 lattice volume. All data are in lattice units. The
solid line is the best linear þ1=R fit to the data in the range
2 ≤ R ≤ 8, which in this case is EðRÞ ¼ 0.094R − 0.27=Rþ 0.49.
Error bars are smaller than the symbol for the data points.

FIG. 2. The observable for the calculation of the x-component
of the color electric energy densityQðR; yÞ, generated by a quark-
antiquark pair along the x-axis separated by distance R, as a
function of the transverse distance y away from the midpoint.
U;Uþ denote timelike link variables at equal times.
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FIG. 3. The connected correlator QðR; yÞ of two timelike links and one plaquette, for fixed link separation R, vs transverse separation
y of the plaquette from the midpoint of the line of quark-antiquark separation. Subfigures (a–g) correspond to R=1–7. This is a measure
of the falloff of the color Coulomb energy density with transverse distance away from a quark-antiquark dipole in Coulomb gauge. The
simulation is for SU(2) pure gauge theory at β ¼ 2.5. The lines show a best fit to an exponential falloff exp½−ðaþ byÞ�.
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hΨq̄qjTrE2
xðpÞjΨq̄qi − hΨ0jTrE2

xjΨ0i

¼ lim
t→0

R
DAδð∇ · AÞM½A�Tr½Ltð0ÞL†

t ðRphysÞ�f−TrE2
xðp; 12 tÞge−SYMR

DAδð∇ · AÞM½A�Tr½Ltð0ÞL†
t ðRphysÞ�Þe−SYM

−
1

Z

Z
DAδð∇ · AÞM½A�f−TrE2

xÞge−SYM : ð23Þ

The lattice version of (23) is βQðR; yÞ, where

QðR;yÞ¼hTr½U0ð0;0ÞU†
0ðR;0Þ�1

2
TrUPðp;0Þi

hTr½U0ð0;0ÞU†
0ðR;0Þ�i −

�
1

2
TrUP

�
;

ð24Þ

and where

UP ¼ Uxðp; 0ÞU0ðpþ êx; 0ÞU†
xðp; 1ÞU†

0ðp; 0Þ ð25Þ
is a plaquette operator, with

p ¼ yêy þ êx ×

� 1
2
R or 1

2
R − 1 R even

1
2
ðR − 1Þ R odd

; ð26Þ

and the expectation values are evaluated in Coulomb gauge.
The lattice operator in the numerator of (24) is illustrated
in Fig. 2. Of course there is nothing special about the x,
y-directions or the t ¼ 0 time slice, so in practice we
average over observables which differ only by spacetime
translations and 90° spatial rotations (Coulomb gauge
precludes changing the orientation in time).

III. RESULTS

Our results for quark-antiquark separations 1 ≤ R ≤ 7,
and transverse separations 0 ≤ y ≤ 8, obtained from lattice
Monte Carlo simulation of pure SU(2) gauge theory at β ¼
2.5 on a 244 lattice volume, are shown in the logarithmic
plots of Fig. 3. This data seem to rule out, fairly con-
clusively, any mild power-law falloff of the color electric
energy density with transverse distance y from the mid-
point. The falloff with y at fixed R instead seems to be very
nearly a pure exponential, at least until the error bars are
comparable to the values of the data points. The Coulomb
electric field of the quark-antiquark dipole is therefore not
long range, but rather is collimated along the axis of the
quark-antiquark pair. In other words, we appear to be
seeing a Coulomb flux tube. Comparison of Fig. 3(g) to a
plot of the center plane action density in the asymptotic (or
minimal energy) flux tube, shown in Fig. 14 of Ref. [24],
indicates that the Coulomb flux tube is substantially
narrower than the minimal energy flux tube, with a width
smaller by about a factor of 1.7.1 This is an indication that

the finite width of the Coulomb flux tube cannot simply be
attributed to the finite size of t (in Lt) equal to the lattice
spacing, in the lattice version (19) of the correlator (15). If
it were the case that the width was infinite at t → 0
(i.e. power-law falloff), and shrunk to the width of the
minimal energy flux tube at t → ∞, then we would expect
the width of the flux tube at finite lattice spacing to be
greater than the width of the minimal energy flux tube,
whereas the reverse is what we actually find.
Some notes on the fitting procedure are in order: We

have shown data in Fig. 3 for QðR; yÞ at each R compared
to expð−a − byÞ, with the constants a, b obtained from a
linear fit to − logQðR; yÞ in an interval y ∈ ½1; ymax�. The
point y ¼ 0 was excluded from the fit, since it clearly lies
below the exponential at R > 4. We have also excluded
points with QðR; yÞ ≈ 10−5 or lower from the fit, since
these data points generally have large error bars which in
some cases are comparable to their values. The fit param-
eters and χ2 are listed in Table I.
Profiles of the flux tube (or, more precisely, the compo-

nent hTrE2
xi=β) at a quark-antiquark separation of R ¼ 5

are shown in Fig. 4. In this case we are computing an
observable QðR; x; yÞ defined by the right-hand side of
(24), but with point p defined by

p ¼ yêy þ xêx: ð27Þ

Note the logarithmic scale on the vertical axis of Fig. 4. On
a linear scale, the values in the transverse direction are soon
indistinguishable from 0.
A natural question is whether the exponential falloff in

the transverse direction is directly related to the exponential

TABLE I. Fit details for Fig. 3. The data are fit to expð−a − byÞ
in an interval ½1∶ymax�, with a; b; ymax, and χ2 per degree of
freedom as shown.

R a b Fit interval χ2=dof

1 3.21(7) 2.44(7) [1,3] 9
2 3.92(7) 1.83(7) [1,3] 29
3 4.83(4) 1.28(3) [1,4] 11
4 5.39(2) 1.01(2) [1,6] 3.9
5 6.04(2) 0.75(1) [1,7] 0.8
6 6.40(3) 0.63(2) [1,7] 3.1
7 6.82(4) 0.50(2) [1,7] 4.7

1Figure 14 in Ref. [24] was also taken at β ¼ 2.5, for a quark-
antiquark separation of eight lattice spacings.
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falloff of the timelike link correlator, from which we have
extracted the color Coulomb potential. For example, we
might ask whether the connected correlator of the timelike
links and timelike plaquette can be viewed as a four
timelike link correlator, which factorizes into a product
of two-point functions. Coulomb gauge brings spatial
links as close as possible to the identity, so if we
approximate

Uxðp; 0ÞU0ðpþ êx; 0ÞU†
xðp; 1ÞU†

0ðp; 0Þ
≈ U0ðpþ êx; 0ÞU†

0ðp; 0Þ; ð28Þ

then the numerator in (24) involves a four-point equal-time
correlator of timelike links. Let us suppose that the
connected part approximately factorizes into a product of
two-point functions

hTr½U0ð0; 0ÞU†
0ðRL; 0Þ�Tr½UPðp; 0Þ�iconn

∼ hTr½U0ð0; 0ÞU†
0ðpþ êx; 0Þ�ihTr½U†

0ðRL; 0ÞU0ðp; 0Þ�i:
ð29Þ

In that case we would expect

Qðy; RÞ ∼ c0 exp

�
−σc

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

4
R2

r
− R

�	
; ð30Þ

where c0 is a constant. In fact this is not even close to a fit of
the data, as seen in Fig. 5 for R ¼ 5. The exponential falloff
of the Coulomb flux tube in the transverse direction is
much faster than exp½−2σcy�, and this two-point correlator
description simply fails to give a reasonable account of
the data.
Returning to the expression (9), and the observed power-

law behavior of the ghost propagator (11), there is the
question of how the Coulomb energy density could fail to
also have a power-law falloff. The only possibility we see is
that the typical vacuum configurations which account
for the expectation value of the ghost propagator are not
the dominant configurations in the expectation value of
products of the Gabðx; y; AÞ operators, such as
∇xGabðx; 0;AÞ ·∇xGabðx; R;AÞ. The expectation value
of the product must be very sensitive to exceptional field
configurations, possibly ones in which the lowest eigen-
value of the Faddeev-Popov operator is unusually small,
which do not greatly affect the expectation value of the
operator Gabðx; y; AÞ by itself. Presumably these excep-
tional configurations, for reasons that are not clear to us,
must be responsible for the rather precise cancellations
among the different terms in (9) that are required for an
exponential falloff.
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FIG. 4. Two views (subfigures (a) and (b)), from different perspectives, of the Coulomb flux tube at quark-antiquark separation R ¼ 5.
Note the logarithmic scale on the z-axis.
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IV. CONCLUSIONS

Confinement in Coulomb gauge seems to be more subtle
than simply a linear potential from dressed one-gluon
exchange, i.e. hA4A4i. While this two-point function is
no doubt part of the story, it is not the whole story, since the
two-point function, although linearly rising, is not by itself
an explanation for the formation of a Coulomb electric flux
tube. One may speculate that the Coulomb string tension
derives from the same underlying mechanism (center
vortices come to mind) that accounts for the asymptotic
string tension. In particular, the confining two-point func-
tion is thought be due to a nonperturbative enhancement in
the density of near-zero eigenvalues of the Faddeev-Popov
operator, associated with the proximity of typical vacuum
configurations to the Gribov horizon. It has been shown via

lattice Monte Carlo simulations that removal of center
vortices from thermalized lattice configurations sends this
eigenvalue density back to the perturbative form [25], and
the corresponding Coulomb string tension (along with the
asymptotic string tension) vanishes upon vortex removal
[10] (for recent developments in the vortex picture, see
[26]). If center vortices or some other topological objects
are responsible for the linearly rising Coulomb potential, it
is probably necessary to also appeal to a topological
mechanism in order to understand the formation of a
Coulomb flux tube.
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