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It is known since the 1980s that the instanton-induced ’t Hooft effective Lagrangian not only can solve
the so-called Uð1Þa problem, by making the η0 meson heavy etc., but it can also lead to chiral symmetry
breaking. In the 1990s it was demonstrated that, taken to higher orders, this Lagrangian correctly
reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Recent progress
in understanding gauge topology at finite temperatures is related with the so-called instanton-dyons, the
constituents of the instantons. Some of them, called L-dyons, possess the antiperiodic fermionic zero
modes, and thus form a new version of the ’t Hooft effective Lagrangian. This paper is our first study of a
wide set of hadronic correlation function. We found that, at the lowest temperatures at which this approach
is expected to be applicable, those may be well compatible with what is known about them based on
phenomenological and lattice studies, provided L and M type dyons are strongly correlated.
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I. INTRODUCTION

A. Instanton-dyons

Instantons are the 4-d topological solitons of the
(Euclidean) gauge theory, discovered by Polyakov and
collaborators [1]. The so-called instanton liquid model
(ILM) has been proposed in [2]. Its main original appli-
cation was related with explanation of chiral symmetry
breaking, via collectivization of the so-called zero mode
zone (or ZMZ for short). Another way to explain it is to
state that the hypothetical 4-fermion interaction of the
Nambu-Iona-Lasinio model [3] is in fact the instanton-
induced ’t Hooft Lagrangian. One may compare its two
phenomenological parameters—the mean instanton size
ρ̄ ≈ 1=3fm and the total instanton-antiinstanton density
n ≈ 1fm−4—to two parameters of the NJL model, the
coupling constant G and the cutoff Λ. Of course, the
’t Hooft vertex does more than the NJL operator: in
particular, it knows about chiral anomaly and correctly
breaks the Uð1ÞA symmetry. It also has a natural form
factor, allowing to calculate diagrams of any order.
Further development, of the interacting instanton liquid

model (IILM) in the 1990s has basically included the
’t Hooft Lagrangian to all orders. The resulting theory was
shown to reproduce well not only properties associated
with the chiral symmetry breaking, the pions and their
interactions, but also the correlation functions in such
channels as vector and axial mesons, octet and decuplet
baryons, and even glueballs, for a review see [4]. Among
shortcomings of this theory is its inability to describe
confinement.
The deconfinement order parameter, being nonzero at

T > Tc, is the so called Polyakov line. Its vacuum expect-
ation value hPðTÞi ≠ 0 has been derived in multiple
lattice works. It is interpreted as the appearance of the
nonzero “holonomy field” hA4ðTÞi ≠ 0. Modification of

the instanton solution to such environment has lead to the
discovery of the KvBLL caloron solution [5,6] and reali-
zation that instantons can be disassembled into constitu-
ents, now called instanton-monopoles or instanton-dyons.
They are allowed to have non-integer topological charge
because they are connected only by (invisible) Dirac
strings. Since these objects have nonzero electric and
magnetic charges and source Abelian (diagonal) massless
gluons, the corresponding ensemble is an “instanton-dyon
plasma,” with long-range Coulomb-like forces between
constituents.
The first application of the instanton-dyons were made

soon after their discovery in the context of supersymmetric
gluodynamics [7]. This paper solved a puzzling mismatch
of the value of the gluino condensate, between different
answers obtained in various approaches. Diakonov and
collaborators (for review see [8]) emphasized that, unlike
the (topologically protected) instantons, the dyons are
charged and thus interact directly with the Polyakov line.
They suggested that since such dyon (anti-dyon) ensemble
become denser at low temperatures, their backreaction
may overcome the perturbative potential and drive it to
its confining value, hPi → 0. A semiclassical confining
regime has been defined by Poppitz et al. [9,10] in a
carefully devised setting of softly broken supersymmetric
models. While the setting includes a compactification on a
small circle, with weak coupling and an exponentially small
density of dyons, the minimum at the confining holonomy
value is induced by the repulsive interaction in the dyon-
antidyon molecules (called bions by these authors).
Recent progress to be discussed below is related to

studies of the instanton-dyon ensembles. One series of
papers were devoted to high-density phase and mean field
approximation [11–15]. Our efforts were so far focused
on the direct numerical simulation of the dyon ensembles
[16–19]. These works had reproduced the deconfinement
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and chiral restoration phase transitions, both in pure gauge
[SUð2Þ] theory and in a QCD-like setting (2 colors and 2
light flavors). They also show strong modification of both
transitions due to unusual quark periodicity phases [19].
Although in this paper we will be using SUð3Þ color

group, for simplicity let us start with the simplest case of
the SUð2Þ. In the latter case there are only two self-dual (L
and M) and two anti-self-dual (L̄ and M̄) instanton-dyon
types. Their electric and magnetic charges make all
combinations of �1. They form three distinct pairs LM,
LL̄, LM̄ plus three conjugates, and the amount of screening
depends on the effective interaction in each of them. Two
obvious opposite limits are those of weakly correlated or
random plasma, for which the mean field analysis would be
adequate. Another limit is very strongly correlated ensem-
ble. For example, if LM pairs be strongly correlated in their
locations, their fields would be nearly vanishing: in fact this
limit would return us to the “instanton liquid,” in which the
solitons are “neutral,” without electric or magnetic charges.
Strong correlation in the LL̄ channel leads to vanishing
magnetic, but not electric fields. Strong correlation in the
last LM̄ channel would on the contrary cancel electric but
not magnetic charges.
Our previous studies were based on classical effective

interaction derived from “streamline configurations” for
last two channels LL̄, LM̄. The classical action in the
instanton channel LM is different, it is “BPS protected”,
and so, at the classical level, no interaction was expected (or
used in simulations). And yet, as we will show below, there
are strong phenomenological evidences that even in this
channel strong correlations of the instanton-dyons seem to
be necessary.
By the present work we start a set of papers addressing

some phenomenologically important issues of the instanton-
dyon theory.

B. Hadronic correlation functions and structure
of the QCD vacuum

Two-point correlation functions

Kðx − yÞ ¼ hJðxÞJðyÞi ð1Þ

of local gauge invariant operators J, to be referred as
“currents” for brevity, are among the most fundamental
observables of QCD. Since they are some functions of the
distance between the two points xμ − yμ, one of the points
can always be set to zero. In Euclidean thermal circle
setting, there are two relevant variables, time separation

τ ¼ x4 − y4 and distance r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m¼1;2;3ðxm − ymÞ2
q

, and

we will systematically put r → 0, to focus inclusively on
their τ dependence related to the energy spectrum of the
theory.
The correlation functions are different for operators with

different quantum numbers: for a general review of their

phenomenology see [20]. Two-point correlations function,
both for mesonic and baryonic operators, have been also
has been calculated on the lattice, see, e.g., [21], and in the
instanton liquid model (see review [4] and references
therein).
Let us just remind few key facts. At large distances all

correlation functions decrease exponentially, with the
exponent given by the “spectral gap”, the lowest excitation
in the sector with the corresponding quantum numbers.
Their opposite limit of small distances reflects propagation
of the fundamental objects of the QCD, quarks and gluons.
In between these two limits, one can compare the corre-
lation functions to those of free propagation of quarks, and
identify “attractive” and “repulsive” channels, being below
or above the free propagation, respectively.
Specific combination of the two limits lead to successful

parameterizations of the correlation functions, originally
suggested in the context of the QCD sum rules [22]. The
basic relation between the so called “spectral density”, the
imaginary part of the Fourier transform of the correlator in
real time, and the real part of the correlator calculated in
Euclidean time is given by the dispersion relation. Its
coordinate form is

Kðx; TÞ ¼ 1

π

Z
dsIm ~KðsÞDð ffiffiffi

s
p

; x; TÞ ð2Þ

where the standard Mandelstam’s invariant s ¼ −p2 is
related with the Minkowskian momentum squared, and
DðM; x; TÞ is the Euclidean propagator of a particle of mass
M to Euclidean distance x at temperature T.
Out of many possible quantum numbers, corresponding

to various mesonic channels, we selected four most studied
ones. Those are all for the “charged” isovector channels,
say of ūΓd flavor structure, which does not require
(statistically difficult) disconnected diagrams. The gamma
matrices for the pseudoscalar P, vector V, axial vector A,
and the scalar S correlators are

Γ ¼ iγ5; γ0; γ0γ5; 1 ð3Þ

respectively. The corresponding lowest mesonic states in
these channels are the π−ð134Þ, ρ−ð770Þ, a−1 ð1260Þ, and the
scalar a−0 ð1450Þ, the numbers are masses in MeV.
(In the literature on chiral symmetry breaking the isovector

scalar channel—theUð1Þa partner of the pion—is also known
by its old name δ⃗. Note also that the indicated state a−0 ð1450Þ
is the lowest q̄q meson state with this quantum number.
The resonance a0ð980Þ has near-degenerate isoscalar partner
f0ð980Þ: those states are believed to be weakly bound
mesonic molecules and thus are disregarded as far as the
two-point correlator is concerned).
Since mesonic masses appear squared in the effective

Lagrangians, consider approximate values of those for the
channels under considerations,
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m2
P;V;A;S ≈ 0.02; 0.5; 1.58; 2.1 GeV2:

Two middle ones, the vector and axialvector, are the partners
under the SUðNfÞ chiral symmetry, and their splitting in
mass squaredm2

A −m2
V ≈ 1 GeV2 indicate the strength of its

breaking in the QCD vacuum. (In nonrelativistic quark
model the vector is a “normal” meson, with the mass close
to twice the constituent quark mass, and the axial vector is
the orbital excitation.) The other two are the Uð1Þa chiral
symmetry partners, and their squared masses are split more,
by m2

S −m2
P ≈ 2 GeV2. To accommodate those in the non-

relativistic quark model one needs to include additional
strong attraction/repulsion. As we will see below, all of these
splittings are of the topological origin.
While the squared masses give some hints about the

scale of q̄q interaction in these channels, much more
detailed information on that comes from studies of the
corresponding correlation functions. Theory and phenom-
enology of those, first systematically reviewed in [20], do
indeed reveal very different x-dependence, depending on
the quantum number of J. Some channels are “strongly
attractive,” with KðxÞ exceeding the K0 ∼ 1=x6 (corre-
sponding to propagating massless quark and antiquark).
Some are “strongly repulsive,” while all vector channels
(ρ, ω, ϕ) are “near-free,” in the sense that KðxÞ=K0ðxÞ ≈ 1
in a wide range. It is those splittings of the correlation
functions KðxÞ which we are going to calculate and discuss
in this work.
A wider issue related to splittings of these functions is

the spin-flavor structure of the nonperturbative effects in
the QCD vacuum, leading to spontaneous breaking of the
SUðNfÞ and explicit breaking of the Uð1Þa symmetry. The
former issue we will study focusing on the difference
between the vector and axial (isovector) correlation func-
tions, V − A for short. The latter one is related with the
splitting between the pseudoscalar and scalar (isovector)
correlation functions, P − S.
The V � A combinations of the correlation functions

are especially valuable. First of all, they can be deduced
directly from experimental data, with good (few percent)
accuracy. The vector ones have the spectral densities
directly measurable via reaction eþe− → hadrons. The
axial ones are amenable via weak decays, most prominently
of the reaction τ → ντ þ hadrons. ALEPH collaboration
data [23,24] remain the best one, used in both instanton
study [25] and recently in the lattice calculation Ref. [26].
From the theoretical point of view, the best for our

purposes is the difference V − A of the vector and axial
correlators. Due to chiral symmetry, pQCD diagrams with
any number of exchanged gluons contribute equally to both
of them, and are canceled in the difference. What remains
are only the nonperturbative chiral symmetry breaking
effects, which we focus on. We will specifically use V − A
combination of correlators below to determine the key
parameter of the instanton-dyon ensemble.

In Fig. 1 we show the V − A combination of correlators
deduced from experimental ALEPH results, the instanton
liquid calculation [25] (upper plot) as well as from the
recent lattice study [26] (lower plot). Unlike older studies of
point-to-point correlators, this one is done with dynamical
quarks at physical mass, with proper continuum extrapo-
lation. As one can see, both the ALEPH data and modern
lattice do provide the correlation function with the accuracy
of just a couple percents. Also it is evident from those plots
that the original sum rule predictions [22] based on the
operator product expansion (OPE) are applicable only at
very small distances.
The strongest splitting of the correlation function,

between the isovector pseudoscalar (charged π⃗) channel
and the scalar (charged δ⃗), reveals a very important feature
of the QCD vacuum/matter structure, namely its strong
inhomogeneity, but it reveals direct relation to underlying
topology of the gauge fields. Unfortunately it is not so
accurately known.
At small x the nonperturbative corrections to correlators—

the splittings—are approximately given by expectation
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FIG. 1. V − A correlation function as a function of the
Euclidean distance x. The upper figure, from [25], compares
the ALEPH data (region between two dashed lines) to the
instanton liquid calculation (closed squares) and the OPE [22]
(open rhombs). The lower plot, from [26], compares the same
ALEPH data (shaded region) with versions of the OPE (lines) and
to extrapolated results of their lattice simulations (red points).
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values of hJ2i, or the fluctuations of the currents in the
vacuum. In a bit more general terms, those are related to
VEVs of various 4-fermion operators. Strong inhomogeneity
of vacuum configurations means that those fluctuate from
point to point by orders of magnitude. “Strong” feature can
also be expressed as a statement that some VEVs are large

hO4−fermioni ≫ hq̄qi2

compared to the quark condensate squared in the r.h.s. There
are plenty of the 4-fermion operators one can construct out of
quark fields, and one may ask which ones show this feature
in the most pronounced way. The studies, in the instanton
framework [4] and in lattice simulations [27] concluded
that it is (parts of) the topology-induced ’t Hooft effective
Lagrangian. For two light flavors its structure is

O4−fermion ∼ ðūRΓiuLÞðd̄RΓidLÞ þ ðL ↔ RÞ ð4Þ

where L, R are left and right handed components of the
quark fields and Γi may include some color and Dirac
matrices. This observation directly implies the presence of
some small-size topological objects in the vacuum. Strongly
enhanced local violation of Uð1Þa chiral symmetry was the
key prediction of the “instanton liquid model,” in which
the typical instanton size is ρ∼1=3fm. The magnitude of the
enhancement is inverse to the “diluteness fraction” of that
model, the fraction of the 4-volume occupied by instan-
tons ∼ðρ=RÞ4 ∼ 1=34.

C. The goals and structure of this paper

As we already mentioned above, the modern version of
the semiclassical theory at temperatures comparable to the
critical one is based not on instantons themselves, but on
ensemble of their constituents, the instanton-dyons. Those
came into existence due to inclusion of the nonzero VEVof
the Polyakov line, also known as the “holonomy Higgsing.”
So far its trust was focused on the deconfinement and chiral
phase transitions. Now we know that both of them can be
reproduced by it, it is time to focus on the applicability
limits of this theory, and see whether it does or does not
reproduce correctly known effects as the theory approaches
its boundary.
Without much details, let us state what is known about

the limits of its applicability. The upper boundary is
expected to be around T ∼ ð2–3ÞTc ∼ 300–400 MeV,
where the Polyakov line VEV gets trivial hPi → 1. At
higher temperatures the L-type dyons basically become the
instantons themselves, while the M type dyons disappear.
Our attention in this work is focused on the lowest

temperatures at which the instanton-dyon approach is
expected to be applicable. It is clear that at T → 0 it cannot
be used, with the dyons being basically the 3-d solitons,
and with their properties all normalized to T. As we detail
below, at low T interference between the dyon fields do

lead to approximately 4-d spherically symmetric instan-
tons, but these interferences are complicated.
The main question we try to answer in this work is

whether the instanton-dyon ensemble can correctly repro-
duce the known features of hadronic correlation functions.
It would be nice to have lattice data on the correlators as a
function of the temperature: yet so far we only know them
quantitatively at T ¼ 0, in the QCD vacuum. Below we use
the instanton-dyon model at its lowest edge, at the temper-
ature T ¼ 100 MeV, and compare the results with vacuum
correlators.
In Sec. II we briefly outline general properties of dyons

in SUð3Þ and the random ensemble used in this paper.
In Sec. III we discuss the properties of the fermionic zero

modes of the dyons. For the usual fermionic (antiperiodic in
Matsubara time) quarks only one type of Nc dyons, called
L dyon, has the fermionic zero modes. So, naively, in
observables related with light quarks, such as the quark
condensate, one should only consider subensemble of L
dyons and forget about all M. However, we will show
below that such approach cannot be used, because in fact
those zero modes turn out to be extremely sensitive to LM
correlations, Close proximity of M dyon to L can change
local density of the zero modes by up to two orders of
magnitude. We give the formula for the used approxima-
tions, the size of the box, amount of L dyons etc.,
In Sec. V we present and discuss our results for the

mesonic and baryonic correlation functions. We start by
showing the sensitivity of the correlators to LM correla-
tions. We then tune the main parameter of the model rLM
to the best known V − A combination of the correlation
functions. After that, we present various other correlators.
We obviously start with the strongest effect, the Uð1Þa
chiral symmetry breaking revealed in the π⃗ − δ⃗ splitting.
(The vectors here stand for isovectors of the Nf ¼ 2

theory.) At the end we present and discuss the resulting
correlators for the Nucleon and Delta baryonic currents,
and discuss strong attraction in the “good diquark” channel.
We summarize the paper in Sec. VI.

II. RANDOM ENSEMBLE IN SU(3)

Before we discuss the setting we use for our calculations,
it is useful to recall the limitations of the semiclassical
instanton-dyon theory.
At high T it is limited to the region in which the VEVof

the Polyakov line is not too close to the unit value. The
reason for that is that when the holonomy parameter ν is
small, theM-type dyons become too light (and too large) to
keep their semiclassical theory meaningful. In QCD this
range approximately correspond to T < 350 MeV.
At low T < Tc, in the confined and chirally broken

hadronic phase, the holonomy parameter ν is fixed to
the confining value, so that hPi ¼ 0 and all types of dyons
have the same actions. Yet as one moves toward the lower
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temperatures, the action per dyon S ∼ 1=g2ðTÞ logarithmi-
cally decreases due to the running coupling, eventually
making their semiclassical theory inapplicable. Tentatively
we use as the lower “large” value SM;L ∼ 3ℏ. In QCD this
range approximately correspond to T > 100 MeV
(Note that coincidentally this range correspond well to

the temperature range of excited matter produced in heavy
ion collisions at RHIC and LHC colliders).
In this first paper devoted to hadronic correlation

functions we decided to use the simplest ensemble possible,
in which positions and color orientations of the dyons are
selected randomly. We will thus refer to this ensemble as
random instanton-dyon model, or RIDM.
While our previous works used the simplest SUð2Þ color

group, we now switch to the SUð3Þ. Therefore we should
start by defining the holonomy parametrization used.
Standard holonomy phases μi, i ¼ 1.:Nc should satisfy
the zero-trace condition

P
μi ¼ 0. In addition, we assume

that hPi is real. These two conditions reduce 3 phases to
one free parameter

μ1 ¼ 0; μ2 ¼ −μ3 ¼ ν ð5Þ

in terms of which VEV of the Polyakov line is

hPi ¼ 1

3
þ 2

3
cosð2πνÞ: ð6Þ

The confining value, at which it vanishes, is thus ν ¼ 1=3.
With this definition the actions ofMi, i ¼ 1, 2 dyons are

SM ¼ S0ν, where the instanton action S0 ¼ 8π2=g2ðTÞ. The
action of the “twisted” L-dyon is SL ¼ S0ð1 − 2νÞ. In the
confining phase all of them have the same action S0=3 and
locations of three holonomy eigenvalues are as shown in
Fig. 2, by blue circles.

III. FERMIONIC ZERO-MODES FOR
CORRELATED L−M DYONS

Zero-eigenstates of the Dirac operator play the central
role in our calculation, as they provide the basic set of wave
functions for the region in eigenvalues called the zero mode
zone (or ZMZ for short) inside which the long-distance part
of quark propagators is calculated. So, before we embark
on modeling quark propagators and hadronic correlation
functions, a direct comparison between those would be
instructive.
We will subsequently discuss three historic

approximations:
(i) the original periodic instanton (caloron) at zero

holonomy
(ii) the single instanton-dyon (of the L type)
(iii) the KvBLL caloron at nonzero holonomy, or the

case of a set of interfering L, Mi dyons
Furthermore, since in a random ensemble of the instanton-

dyons there are both self-dual and anti-self-dual objects,

there are no general formulas for these influences anyway.
The practical solution we therefore use is to take as a basis
the zero modes of the individual dyons.
The detailed derivation of those has been done in the

appendix of [28]. Since it was done for arbitrary periodicity
phase, it includes discussion of the delocalization of zero
modes, at the values when color holonomy and flavor
holonomy values coincide. Here we only need the zero
mode for the physical antiperiodic quark fields, which for
the L-type dyons has the following form

ϕA
a ¼ eiπt

ffiffiffiffiffiffi
v̄3

2π

r
tanhðv̄r=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄r sinhðv̄rÞp ϵaA: ð7Þ

Here and below in this section we write everything in
units T ¼ 1. The normalization constant corresponds toR
d4xTr½ϕϕ�� ¼ 1.
The quark zero modes for the finite-T instantons, known

as “calorons,” are also known. Their gauge potential
belongs to a general ansatz

Aa
μ ¼ η̄aμνΠðxÞ∂νΠ−1ðxÞ ð8Þ

which in this case takes the form

ΠðxÞ ¼ 1þ πρ2T
r

sinhð2πTrÞ
coshð2πTrÞ − cosð2πTτÞ ð9Þ

where ρ denotes the size of the instanton. Note that the
dependence on Euclidean time τ is periodic, with the
correct period 1=T.
The fermion zero mode is also expressed in terms of this

function

ψa
i ¼

1

2
ffiffiffi
2

p
πρ

ffiffiffiffiffiffiffiffiffiffi
ΠðxÞ

p ∂μ

�
ΦðxÞ
ΠðxÞ

��
1 − γ5
2

γμ

�
ij
ϵaj; ð10Þ

where

ΦðxÞ ¼ ðΠðxÞ − 1Þ cosðπTτÞ
coshðπTrÞ :

Before we are going to compare these functions in more
detail, it is instructive to compare their asymptotic behavior
at large r. Both decay exponentially at large distances, but
with different exponents. The L-dyon mode (7) decreases
as expð−v̄r=2Þ prescribed by the magnitude of the corre-
sponding holonomy. The caloron zero-mode (10) expo-
nential decay is expð−πrÞ, related to the lowest fermionic
Matsubara frequency. The two match only at high T
where v̄ → 2π.
So, already from the comparison of the asymptotic of

these modes, one can preview the generic phenomenon: the
sizes of the instanton-dyons in general (and their zero
modes in particular) are larger than those of the calorons.
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This statement may appear very counterintuitive, since the
instanton-dyons are the caloron constituents. Note how-
ever, that interference of the instanton-dyon fields is mostly
destructive.
Note also, that since at the higher-T limit of the

instanton-dyon theory ν̄ → 1, in this limit the zero mode
asymptotics for the L-dyon and the instanton match.
The size of the zero mode is also determined by the size

parameter of the caloron ρ. At high T > Tc temperatures
the instanton density is corrected by the so called Pisarski-
Yaffe factor which with a good accuracy is just the result of
electric Debye screening by quarks and gluons scattering
on the caloron

ninstðT; ρÞ ¼ ninstð0; ρÞe−ð
ρ
ρT
Þ2

1

ρ2T
¼ 2Nc þ Nf

3
π2T2 ð11Þ

which forces the instanton sizes to scale with temperature
like ρ ∼ ρT ∼ 1=T. (For explanations see, e.g., the review
Schafer:1996wv.) However at small T → 0 the instanton
sizes have a constant limit, in the original instanton liquid
model ρðT ≪ TcÞ ≈ 1=3fm. For QCD (Nc ¼ Nf ¼ 3) ρT
reaches this value at T ¼ Tmin ≈ 100 MeV.
The main difference between the zero mode of the

caloron and the L-dyon is that the former is strongly
time-dependent. Substituting three different values of the
size we see, from Fig. 3, that the density of the zero mode
as a function of time changes by up to two orders of
magnitude when ρ ¼ ρT , but is weakly time dependent
when ρ ¼ 1 (that is 1=T in absolute units).
The space dependence of the caloron zero mode density

is shown in Fig. 4. Here we compare the integrand of the
normalization condition, thus multiply the densities by r2.
Note further that there are two dyon curves, corresponding
to confining value v̄ ¼ 2π=3 (valid at T < Tc) and the
“trivial holonomy” value v̄ ¼ 2π valid at high T.
Comparison of the plots indicate that while the ensemble

of the calorons can be relatively dilute, that of the dyons
cannot be such, because their zero modes have significantly
larger range in space.
A popular measure of how strongly the function is

localized is the integral of the density squared, or the 4th
power of the zero mode

I4 ¼
Z

d4x½TrðϕϕþÞ�2: ð12Þ

(Let us recall that the integral of the second power is the
normalization integral taken to be 1, and that the 4-fermion

FIG. 2. The so called holonomy circle explaining notations
used. Three blue points marked μ1, μ2, μ3 correspond to three
eigenvalues of the Polyakov line in SUð3Þ gauge theory. Three
sectors between those, marked M1, M2 ¼ L, M3 correspond to
actions of the three types of the dyons. The red rhomb marked z
corresponds to periodicity phase of the antiperiodic quarks: the
sector containing it is the one which has the fermionic zero mode.

FIG. 3. The dependence of the caloron zero mode density on
time, for ρ ¼ ρT (black dashed), ρ ¼ 2ρT (blue solid), and ρ ¼ 1
(red dotted) lines. The quantity ρT is defined in (11).

FIG. 4. The dependence of the zero mode densities times r2 on
r, for t ¼ 0 (upper plot) and t ¼ 1=2 (lower plot). Mote that these
times correspond to the maximum and minimum in the previous
plot. In all of them black solid curve is for the caloron with
ρ ¼ ρT , while blue dotted and red dashed curves are for the
L-dyon, with v̄ ¼ 2π=3 and 2π respectively.
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operator—’t Hooft effective Lagrangian—is instrumental
in breaking the chiral symmetry).
For the caloron radii ρ ¼ ρT , 2ρT , 1 (the same as shown

in Fig. 3) its values are I4 ¼ 26.6, 4.20, 1.55, respectively.
All these comparisons suggest the inevitable conclusion:

in distinction to the “instanton liquid”—which is relatively
dilute, with the instantons occupying only few percent of
the volume [2]—the ensemble of the instanton-dyons at
T < Tc is in fact rather dense.
Finally, we discuss the fermionic zero mode for a

KvBLL caloron at nonzero holonomy worked out by
van Baal and collaborators [29], using general ADHM
and Nahm construction. That resulted in very complicated
expressions which we do not copy here. The effect we are
after takes into account mutual influence of the fields of L
and M instanton-dyons, as a function of their relative
distance, related to the “caloron size” parameter ρ via

rLM ¼ jr⃗L − r⃗Mj ¼ πρ2T: ð13Þ

The results are shown in Fig. 5: one can see that if the
distance between the dyons is as large as 1 (the lowest black
dashed curve), the time dependence is rather mild, resem-
bling the infinite distance (single dyon) case discussed
above, in which there is no t-dependence at all. But, as L
and M are moved closer to each other, their interference
deform the zero mode to be well localized. Indeed, close
L −M dyon pair is a small dipole, with electric and
magnetic fields canceling outside. So the fermionic zero
mode get strongly localized in between them.
The density of the zero modes can be written in a nice

form (see, e.g., (11) of [29])

Ψ̂a
z ðxÞþΨ̂b

z ðxÞ ¼ −
1

ð2πÞ2 ∂
2
μf̂

ab
x ðz; zÞ ð14Þ

where the r.h.s. is the Green function of certain equation in
Nahm variable z.

A. The gauge factors of the zero-modes

Since we treat the dyons as individual object and do not
include overlap effects, the dyon is an SUð2Þ object. Higher
order groups are obtained my taking the SUð2Þ object and
injecting it into a higher group, which in this case is
the SUð3Þ.
To have more than one dyon in the same gauge, the

hedgehog gauge dyon is rotated into a specific direction in
color space. As in earlier work we choose to rotate the
dyons into the τ3 direction. In order to do this we first rotate
all directions by an angle of ϕ around the τ3, followed by a
rotation of θ or π − θ for dyons and antidyons around the τ2
direction, putting the direction along the z-axis correspond-
ing to the τ3 axis. Since any rotation around the z-axis in
the xy plane will be invariant, we have a free rotation,
corresponding to the Uð1Þ rotation. This angle sets the
angle of the core and is important when dyons overlap each
other. We therefore use the time coordinate for this rotation.

IV. THE SETTINGS

In our previous simulations [17,18] in the partition
function the classical and one loop interactions of all dyon
pair channels were included. The color group was SUð2Þ,
and the 3-d manifold on which simulation was done was the
3d sphere S3.
The instanton-dyons we use in this paper are embedded

in SUð3Þ color group. It has L, M1, M2 and their anti-
solitons, 6 species in total. The 4-d manifold is the standard
periodic Matsubara box, with variable space and time
dimensions. The number of the dyons in the simulation
we keep constant, Ni ¼ 100, where i can be L or L̄.
Since we only consider antiperiodic (fermionic) quarks,

only the L, L̄ dyons have quark zero modes. Thus the total
basis of the zero mode zone is NL þ NL̄ ¼ 200 states. The
propagation of quarks from one object to another is done
via the “hopping matrix” Tij, in this case the matrix of
200 × 200 size. Other dyons Mi only enter via their
correlation/overlaps with L, L̄, which we describe approx-
imately via the parameter rLM as detailed below.
The temperature has been set by the size of the box in

temporal direction, which was chosen to be 2fm, while the
size of spatial directions was used to control the density.
The density was found by fitting to experimental data as
shown in section V.
The full zero-mode in SUð2Þ and SUð3Þ are known, but

it is a huge expression which, even after long simplifica-
tions in Mathematica, is not viable to write in reasonably
compact form. We have therefore generated numerically a
set of graphs for their density distribution in space-time x
and parametrized those approximately.

FIG. 5. The time dependence of the zero mode densities, at
r ¼ 0, for the SU(2) caloron at confining holonomy v ¼ v̄ ¼ π.
The lowest (black dashed) curve is at relative distance 1, the
next (blue solid) is 0.5, then (red dots) 0.2 and (brown dash-
dotted) one 0.1. The time and distances are in units such that
β ¼ 1=T ¼ 1.

HADRONIC CORRELATION FUNCTIONS IN THE RANDOM … PHYSICAL REVIEW D 96, 034508 (2017)

034508-7



The zero-mode is a function of position x, holonomy ν
and distance to the M dyon rLM. We were interested in the
shape for this at ν ¼ 1=3 and for distances rLM < 2 for
which the approximation works reasonably fine.
The form is

ψa
A ¼ N

ffiffiffi
f

p
ϵaA

f ≈ exp½ð0.4þ π exp½−4rLM�Þðcos½2πt� − 1Þ�
× 1= cosh

h
−ðπ þ ð2 cos½θ� þ 10Þ exp½−2rLM�Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ 0.4r2LMÞ2�

q
2νT

i
; ð15Þ

whereN is a normalization factor, since the parametrization
normalization was slight of 1, θ is the angle between the L
dyon to theM dyon and the position of the field. The color
structure is given by the ϵ symbol.
The so-called hopping matrix is made of overlap matrix

elements of the Dirac operator, symbolically

Tij ¼ hijD̂μγμjji: ð16Þ

Here Dμ is the covariant derivative including the gauge
field. If the fields is approximated by a sum of fields for
each dyon, one can use Dirac equation of the zero mode to
remove all fields and keep only the usual derivative. Those
integrals were also numerically calculated and parame-
trized as follows

Tij ≈ exp
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.7þ ð2πðν=2þ ν̄=2.5 exp½−0.5r2LM�ÞrÞ2

q i

× ð1þ Cos½2πt� exp½−7rLM�Þ8πTν: ð17Þ

This parametrization only works for values of rLM < 2.
The parametrizations made for SUð2Þ is then embedded

into SUð3Þ and the random ensemble is generated for 200
different L dyons. The size of the box and the constant rLM
is varied, until we obtain a difference in the axial and vector
channel that is similar to the experimental results. The
results of this fit are shown in Sec. V.
The crucial parameter here and in the previous expres-

sion is rLM, in SUð2Þ the distance between the L and M
dyons. Its value used will be explained in the next section.
The correlation functions are given by the Feynman

diagrams, in which quark-antiquark pair for mesons, or
three quarks for baryons, propagate from x to y. For the
quark propagator we use the approximation well developed
for the instantons. Its zero mode part has the structure
hxjiiðT−1Þijhjjyi where hjjyi ¼ ψ0ðyÞ is the zero mode
shifted to the location of the jth dyon. Note that the
propagator includes the inverse hopping matrix, since the
propagator is inverse to the Dirac operator.
For any configuration of the dyons, the set of zero modes

are calculated. The 200 × 200 hopping matrix is filled

and inverted. The obtained quark propagator is inserted in
all diagrams, convoluted with various matrices in the
currrents. The ensemble of configurations we use include
10 configurations.

V. THE CORRELATORS

A. Mesonic correlators

As explained in the Introduction, the difference in the
correlation functions for the vector (charged ρ) and axial
(charged A1) channels VðxÞ − AðxÞ, related to SUðNfÞ
chiral symmetry breaking, is the most accurately known
topology-related combination, both from the experimental
inputs and from the lattice. However, it is not the difference
corresponding to the largest splitting, which is that between
the pseudoscalar and scalar channels.
Let us start to display our results by showing, in Fig. 6,

how both the VðxÞ − AðxÞ and PðxÞ − SðxÞ differences
depend on the parameter rLM of our model.

FIG. 6. The upper plot is the difference between the vector and
axial correlators ðVðxÞ − AðxÞÞ=ð2K0ðxÞÞ versus the temporal
distance x (in fm). The lower plot is the difference between the
pseudoscalar and scalar correlators ðPðxÞ − SðxÞÞ=ð2K0ðxÞÞ.
Different curves are for values of the parameter rLM ¼ 0.1
(Purple▿), 0.15(Blue•), 0.2(Orange□), 0.3(Red△), 0.5(Green⋄).
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The first observation from this figure is that indeed the
second P − S splitting is much larger than the first V − A,
by about one order of magnitude.
The second observation, clearly seen in both of the plots,

is that they are quite sensitive to the magnitude of the
parameter rLM, the typical distance from the L dyon to the
M dyons. By varying it one finds very different magnitude
of the correlation functions. Therefore, using this sensi-
tivity we can tune the value of this parameter to correspond
to the known vacuum value of the V − A correlator, see
Fig. 7. The used value for the fit were r12 ¼ 0.2.
We see that the fit works well up to distance about

0.5fm, but after this overshoots the experimental and lattice
data at jxj > 0.5fm. In the latter region one also observes
several unphysical effects, in particular the scalar correlator
gets negative SðxÞ < 0, see Fig. 7, in contradiction to
spectral decomposition which require all diagonal corre-
lation functions to be strictly positive.
These abnormal phenomena in fact have been observed

long before, in random instanton liquid model (RILM) and
later in quenched QCD [21]. Note that both of these
approaches lack the fermionic determinant in the measure,
and thus lack the most critical back reaction of quarks
on the topological ensemble. Arbitrary operations like
“quenching” break connections between these ensembles
and quantum field theory foundations, so the correlator
positivity and other general features of QFTs can and are
violated.
It has been later shown (see the review Schafer:1996wv)

that in the so-called interacting instanton liquid model
(IILM)—which includes the fermionic determinant in the
measure—these abnormal phenomena disappear. And they,
of course, also are not present in unquenched lattice
simulations with the dynamical quarks. So, although we
have not yet done simulations with fully interacting

(unquenched) ensemble for SU(3) instanton-dyons, we
are confident that in this case these abnormalities would
disappear as well.
Now we return to Fig. 8 in which the correlations

functions are shown for all four channels under consid-
eration, P, V, A, S from top to bottom. One can clearly see,
that for small distances x < 1=3fm all of them are in a
good approximation identical. We further recall that their
value in this region, equal to 1 in our normalization,
corresponds to free propagation of the massless quark
and antiquark.
At larger distances in Fig. 8 our simulations for the four

channels display clear splitting pattern, which is nearly
identical to what was first observed in RILM and then on
the lattice in the 1990s. The lines going upward correspond
to attractive channels P, V and those going downward show
repulsion in the A, S channels. For comparison we also
show in this figure the results from [21], shown by similar
symbols as ours but without connecting lines. Overall our
results are reasonably well consistent with these lattice
data. On a quantitative level one finds certain differences:
e.g., the splitting of our pseudoscaler is slightly weaker
than on the lattice. All these differences are however
completely understandable and are due to different values
of the quark masses in our ensemble and on the lattice.
The last subject we would like to discuss for the mesonic

correlators is how they change as the temperature increases.
These changes are supposed to be caused by (at least) the
following effects:

(i) the VEV of the Polyakov line moves toward trivial
value 1, and thus the holonomy parameter ν goes
towards 0;

(ii) the effective coupling runs to smaller values, the
action of the dyons grow and their density decreases;

(iii) the size of the Matsubara box decreases.

FIG. 7. The normalized vector minus axial vector difference
ðVðxÞ − AðxÞÞ=ð2K0ðxÞÞ channels versus the distance x ðfmÞ.
The narrow shadowed region corresponds to ALEPH data, the red
and blue dots correspond to the lattice data [26], for two lattice
spacings indicated on the plot. Our results for r12 ¼ 0.2 are
shown by (black) •).

FIG. 8. The colored points connected by lines are our results for
four channels, for r12 ¼ 0.2. Top to bottom: Pseudoscalar
(Brown) □, Vector (Green) ⋄, Axial vector (Red) △, and Scalar
(Blue) •. The individual (black) points without lines are lattice
data from [21], their symbols are the same as for our data.
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We implement only the first two modifications, ignoring
the last kinematical one and keeping (for illustration
purposes) the same box size. The results of the calculations
with a modified ensembles are shown in Fig. 9.
Both the V − A and P − S differences of the correlators

decrease, as the corresponding modifications are imple-
mented. As expected, such decrease display the tendency
of chiral symmetry breaking effects to “melt away” at
higher T.
Furthermore, a careful observer would notice that the

decrease in the ðVðxÞ − AðxÞÞ (upper plot) is much stronger
than in the ðPðxÞ − SðxÞÞ case (the lower plot). Compare
especially the “highest T” points, shown by red triangles.
This means that the restoration of the chiral SUðNfÞ

symmetry proceeds more rapidly than the restoration of the
chiral Uð1Þa symmetry. This is indeed what is expected on
general grounds [30]: while the former symmetry is broken

spontaneously and gets restored at T > Tc, the latter one is
broken explicitly by the anomaly and never disappears. If
the instanton-dyon ensembles used would be fully
“unquenched” from full dynamical simulations including
the fermionic determinant, one should see both phenomena
directly. Unfortunately, in this first study we use random
ensembles only, with not-so-small quark mass, and thus full
restoration of the chiral SUðNfÞ symmetry, or V − A ¼ 0 at
T > Tc, is not there. Yet it is nice to see that it is at least is
getting quite small.

B. Baryonic correlators

Local currents without derivatives with the quantum
numbers corresponding to the nucleons (with three flavors,
the members of the spin-1=2 SUð3Þf octet) and delta
resonance (the members of the spin 3=2 SUð3Þf decuplet)
has been defined in [31] and are known as Ioffe currents.
The proton current is

Jp ¼ ðuTCdÞu − ðuTCγ5dÞγ5u ð18Þ

where the index T means the transposed spinor and C
indicates the charge conjugation: both are needed to write a
fermion as an antifermion, to close the bracket (convolute
the color and spinor indices). In such notations the current
color and spinor indices (not shown) are those of the
last quark.
The delta has a current of a single simple structure, e.g.,

the charge 3=2 one

JΔ ¼ ðuTCγμuÞu ð19Þ

and 4 correlators, two “nonflip” and two “flip” ones.
We had explained the color structure of the correlators,

but not yet the spinor one. Each correlator defined above
has two currents which are spinors: so one can sandwich in
any gamma matrix and take the trace. Physically, there are
two possible spin structures for the nucleon, with and
without a spin flip of the nucleon, corresponding to choices
Tr½K�, Tr½γ0K�. Since one can also study any nondiagonal
correlators, there are in total 6 correlations functions for the
nucleon. Two of them are “nonflip” and must tend to 1 at
small distances, the others go to zero there. The delta
current has only one color structure but more possible spin
transitions, so in total there are 4 functions.
Results from our simulations for these ten correlation

functions are displayed in Fig. 10 and Fig. 11 respectively.
The normalization is similar to that in the previous
subsection, but now to the propagation of three free
massless quarks K0 ∼ 1=jxj9. Note that variation of differ-
ent correlators in this normalization is not very drastic,
although in absolute normalization the correlators would
change by about 109 over the range of this plot.
Like for mesonic correlators, we also compare the results

for some nucleon and delta correlators to the available

FIG. 9. The upper plot is the difference between the vector and
axial correlators ðVðxÞ − AðxÞÞ=ð2K0ðxÞÞ versus the temporal
distance x (in fm). The lower plot is the difference between the
pseudoscalar and scalar correlators ðPðxÞ − SðxÞÞ=ð2K0ðxÞÞ.
rLM ¼ 0.2. Different curves are for values of the density and
holonomy: ν ¼ 1=3, n ¼ 0.8 blue closed circle •; ν ¼ 1=6, n ¼
0.8 brown box□; ν ¼ 1=6, n ¼ 0.46 green diamond ⋄; ν ¼ 1=6,
n ¼ 0.29 red triangles △.
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lattice data from [21], shown by points without connecting
lines, and corresponding to quenched quark simulation.
As we already mentioned, the main difference between

the nucleon (spin-1=2 octet baryons) and the Delta (spin-
3=2 decuplet baryons) is due to the fact that the former
includes “good” spin-0 diquark, while the latter has “bad”
spin-1 diquark. The former one is deeply bound, due
mainly to the operator of the topological origin, the ’t
Hooft Lagrangian.
Already in [20] it has been proposed to look at heavy-

light correlation functions, made of a static quark plus the
diquarks. The one of interest is the Λ-type

KΛðxÞ ¼
�
ðJΛðxÞÞþn P exp

�
ig
2

Z
x

0

Aa
μtadxμ

�
nk
ðJΛð0ÞÞk

�

including the “good diquark” current JΛðxÞk ¼
uTi ðxÞCγ5djðxÞϵijk. (For “bad” diquark the current can

be modified by the substitution γ5 → γμ.) Note that we
have explicitly shown here the color indices, to emphasize
the fact that any diquark has spin-color quantum number of
an antiquark. In order to make the correlator gauge
invariant one needs to include the connector, the path
order exponent, from one point to another.
Before showing our numerical results for the diquark

correlator, two comments are in order. One is that in a
particular case of SUð2Þ color group this diquark is a
colorless baryon, degenerate with the pion due to Pauli-
Gurcey symmetry. While our calculations are for the
SUð3Þ, in which no such symmetry is present, one still
may expect certain continuity in Nc and thus a strong
attraction in this channel. The second, following from the
first, is that the “good” (ud spin-0) diquark is the most
attractive channel, thus leading to phenomenon of color
superconductivity at high density.
In Fig. 12 we show our measurements of this correla-

tion function. We use an approximation P exp½ðig=2Þ ×R
x
0 A

a
μtadxμ� ≈ 1 since its evaluation on our model is

expensive—one needs to calculate the gauge fields from
all the dyons along the straight line from x to y—and rather
unimportant numerically. As one can see from this figure,
the normalized correlator goes upward with an increasing
distance. Since the normalization is to the free quark
propagation, such behavior indicate attraction between
quarks in this channel.
Its magnitude is roughly consistent with what was

observed in the instanton liquid model [32]. There is a
simple explanation of its magnitude, based on the analyti-
cally known dependence of the ’t Hooft Lagrangian on
the number of colors: the factor in the qq channel relative
to q̄q follows from Fiertz transformation and is
fNc

¼ 1=ðNc − 1Þ. Note that at Nc → ∞ one has

FIG. 10. All six nucleon correlators, see text, versus the
distance xðfmÞ, for r12 ¼ 0.2. The individual black points
without line are lattice data from [21]. Those should be compared
to the lines with the same symbol.

FIG. 11. All four delta correlators versus the distance xðfmÞ,
for r12 ¼ 0.2. The black closed points without lines are lattice
data [21]. Those should be compared to the lines with the same
symbol.

FIG. 12. The normalized correlator for a “good” (ud spin-0)
diquark channel versus distance xðfmÞ. As other plots, it is done
for ensemble of correlated L −M dyons with r12 ¼ 0.2, in a box
of size 2fm in time direction and 5fm in spatial directions, with
200 zero-modes, which gives a density of 0.8fm−4.
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fNc
→ 0. At Nc ¼ 2 one finds f2 ¼ 1, consistent with

Pauli-Gurcey symmetry. For the case of QCD and our
simulations Nc ¼ 3, thus the relevant factor is f3 ¼ 1=2. It
is gratifying to see that the simulation results for the
diquark show splitting from 1 being indeed roughly a half
of what is observed in the pion channel.

VI. SUMMARY AND DISCUSSION

By this paper we started studies of the hadronic
correlation functions at nonzero temperatures T, using
numerically generated ensembles of the instanton-dyons.
Specifically, in it we addressed the question whether this
version of the semiclassical theory, at its lowest range of
applicability T ≈ Tmin ∼ 100 MeV, can or cannot correctly
reproduce many important nonperturbative phenomena in
the QCD vacuum. More specifically, we have done so
by explicit evaluation of multiple mesonic and baryonic
two-point correlation functions.
The instanton liquid model has demonstrated successful

description of those already in the 1990s, and thus one
might naively think that the instanton-dyon ensemble
would easily reproduce these functions as well, provided
the density nL (per the dyon type) be in the ballpark of the
instanton density ninst ∼ 1fm−4.
What we have found is that this task is by no means

trivial or even simple to fulfill. The reason is the main
element of the calculation, the quark zero modes, are in fact
very different for the dyons and instantons. The dyons are
natural at high T, at which the temporal extent of the
Matsubara box β ¼ 1=T is small, one therefore one can
reduce the 4-d theory to its 3-d approximation. The sizes of
the individual dyons are fixed by the β and are small at
high T.
However at low T the dyon sizes are getting comparable

to the interparticle distances, or even exceed those. If so, the
dyons start to overlap, partially screening each other. A
close pair of LM dyons (in SU(2)) or triplets LM1M2 (in
SU(3)) cancel the fields except in a small central core.
Yet, the topological charge is not screened, and the index
theorems thus guarantee the existence of quark zero modes.
As those are localized stronger, to a smaller volume, their
normalization condition forces them to become locally very
strong. As seen in Sec. III, their density grows by about two
orders of magnitude.
Since the nontrivial part of the correlation functions of

(gauge invariant) currents depend on local density of these
zero modes, one also observes a very strong dependence of
those on the dyon correlation parameter rLM.
Using accurately known V − A correlator, we were able

to tune the value of this parameter to rLM to it. After this is
done, we calculate several other correlators as well.
Of particular importance are two strongest effects of the

topological origin:
(i) the P − S or π⃗ − δ⃗ splitting, violating the Uð1Þa

chiral symmetry, and

(ii) the ud quark pairing into the “good diquark,” present
inside the nucleons. hadronic phenomenology.

Finally, let us recall that—both on the lattice and in
the semiclassical instanton-dyon theory—there remains to
study how all the correlation functions and the particular
splitting effects we studied above depend at the temper-
ature. The V − A combination should vanish for massless
quarks at T > Tc, as the SUðNfÞ chiral symmetry gets
restored. (Or be OðmÞ if the quark mass is nonzero.) The
other—and larger—splitting π⃗ − δ⃗ is expected to be non-
zero at any T, as the Uð1Þa chiral symmetry never gets
restored. While our random “quenched” ensemble does not
fully display this difference, as we have shown above, it
does show it approximately.
Let us emphasize the importance of high accuracy lattice

studies of the issues involved. This task has recently been
carried out (for vector and axial isovector channels) in
Ref. [26], showing good agreement with phenomenology
and with the calculation in the framework of the instanton
liquid model [25]. Such studies should be extended to the
finite temperatures. While hadrons themselves “melt” at
high temperatures, get large widths and eventually com-
pletely disappear in hot quark-gluon plasma, the correlation
functions of gauge-invariant operators are well-defined at
any temperatures, and therefore they are the main observ-
ables, studied in lattice gauge theory and hadronic
phenomenology.
Our paper is based on an ensemble of the instanton-

dyons, which has confinement at T < Tc. So we expect the
near-realistic spectrum, improved compared to instanton-
based calculations of the 1990s. At the other hand, in this
pilot “quenched” study, we use ensembles with randomly
populated dyons. We expect to do full dynamical calcu-
lations in subsequent works, and see how the correlators
would be affected.
One important issue wewould like to understand in those

works, by a comparison of the results of this work with
phenomenology, is the issue of “rigid breaking” of the color
group SUð3Þ → Uð1Þ2. The nonzero holonomy phenome-
non, well studied on the lattice, is hPðTÞi ≠ 1. This
function provide a local (in x⃗) representation of the trace
of the unitary operator, which we parametrize in terms of its
eigenvalues μi, which are the main building blocks of the
instanton-dyon model.
The residual local SUð3Þ rotations do not change the

hPðTÞi eigenvalues and the instanton-dyon actions.
Thus they are irrelevant for the noninteracting dyon
ensemble we use. But they are relevant for the quark
propagators used. Indeed, a quark propagating from a
dyon located at point x to the dyon located at point y
finds two different sets of zero modes at x and y,
rotated by this residual local SUð3Þ transformations
differently. We do not have much first-principle infor-
mation on the correlation length of these residual local
SUð3Þ rotations, and therefore approach the issue on
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try-and-see phenomenological bases. Therefore we will
compare two limiting cases:

(i) a “rigid breaking” of SUð3Þ → Uð1Þ ×Uð1Þ”, in
which the eigenvectors of the Polyakov line have
the same direction everywhere, and thus all dyons
have the same color orientation; and

(ii) “random breaking,” in which all dyons are rotated
randomly by independent SUð3Þ matrices.
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