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Supersymmetric QCD on the lattice: An exploratory study
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We perform a pilot study of the perturbative renormalization of a supersymmetric gauge theory with
matter fields on the lattice. As a specific example, we consider supersymmetric AV = 1 QCD (SQCD). We
study the self-energies of all particles which appear in this theory, as well as the renormalization of the
coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-
point Green’s functions using both dimensional and lattice regularizations. Our lattice formulation involves
the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for
scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(N ), while the
number of colors, N, the number of flavors, N, and the gauge parameter, a, are left unspecified. We obtain
analytic expressions for the renormalization factors of the coupling constant (Z,) and of the quark (Z,,),
gluon (Z,)), gluino (Z;), squark (Z,, ), and ghost (Z,) fields on the lattice. We also compute the critical
values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark
degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in

order to disentangle the components of the squark field via an additional finite renormalization.
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I. INTRODUCTION

In recent years the prospects of extracting nonperturba-
tive information for supersymmetric theories through
lattice simulations are being addressed extensively, from
a number of viewpoints [1-8]. There are a number of
important physical questions regarding supersymmetry
(SUSY) to be ultimately investigated on the lattice, such
as the nature of SUSY breaking, and the phase diagram of
SUSY models. Such questions have become increasingly
relevant in recent years, in the context of studies of beyond-
the-standard-model (BSM) physics. Many notorious prob-
lems arise when formulating SUSY models on the lattice,
such as the emergence of a plethora of counterterms in the
action and the need for fine-tuning of masses and coupling
constants [2]. The present paper investigates these prob-
lems using, as a representative nontrivial model, super-
symmetric SU(N.) quantum chromodynamics (SQCD),
with V' = 1 supersymmetric generators and N, flavors of
matter fields.

Regularizing a field theory on the lattice entails breaking
several symmetries, including Lorentz/rotational sym-
metry, chiral symmetry and, inevitably, supersymmetry.
Depending on the type of discretization, a small subset of
the original SUSY generators may be left intact in some
models; the study of such cases is very interesting on its
own merits [5]. However, in most models of interest, SUSY
is thoroughly broken upon discretization; thus one must
carefully assess the possibility of restoring the symmetry in
the continuum limit. In the absence of anomalies, symmetry
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restoration amounts to introducing appropriate counter-
terms to the regularized Lagrangian, and thus it is a feasible
procedure in principle; the correctness of such a procedure
was established, for supersymmetric Yang-Mills theories,
in the seminal paper of Curci and Veneziano [9].
Nevertheless, a satisfactory calibration of counterterms
appears to be a formidable problem; not only can their
number be exceedingly large [10], but some of them can
diverge with inverse powers of the lattice spacing, making
their determination intractable by perturbation theory
alone. At best, one must evoke both perturbative and
nonperturbative methods [11] in order to achieve a reliable
renormalization of the theory. The present work represents
a first step towards this goal.

In a supersymmetric version of QCD, both gluons and
quark fields are promoted to superfields, containing
fermionic and bosonic components. In this paper we
concentrate on A =1 supersymmetry in the Wess-
Zumino (WZ) gauge. In this gauge, the SQCD
Lagrangian contains the following fields: the gluon
together with the gluino and one real auxiliary scalar;
in addition, for each quark flavor, a Dirac fermion, two
squarks and two complex auxiliary scalars. The squark
fields are complex scalar bosons, and the gluino field is a
Majorana fermion which mediates interactions of the
squark fields with their fermionic partners. In addition to
these interactions, the gluon field is coupled with all
superpartners and with the quark field. Since all these
interactions must have the same coupling, the theory has
a unique coupling constant renormalization. Furthermore,
SUSY requires that the renormalized masses for quark
and squark fields be the same.
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The outline of this paper is as follows: Sec. II provides a
brief theoretical background in which we introduce the
supersymmetric transformation of all fields which appear in
the classical Lagrangian of SQCD. The main part of this
study is Sec. III which contains a summary of the calcula-
tional procedure for the two-point (2-pt) Green’s functions
for each field and three point (3-pt) Green’s function for the
determination of the coupling constant. This section is
divided in two subsections: In Subsection III A, we
calculate the 2-pt and 3-pt Green’s functions using dimen-
sional regularization and in Subsection III B, using the
lattice formulation. Furthermore, in Sec. III B, using the
results that we found in Sec. Il A, we extract the renorm-
alization of all fields and of the coupling constant, in the
MS (modified minimal subtraction) renormalization
scheme. We also discuss the finite mixing between the
two squark fields, which appears on the lattice but also in
dimensional regularization, depending on the D-dimen-
sional prescription for ys, and calculate the corresponding
mixing matrix. Finally, we conclude in Sec. IV with a

|

D(x;0,0) = A(y) + V20w (y) + 00F(y)
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discussion of our results and possible future extensions of
our work.

II. THE CONTINUUM ACTION AND
TRANSFORMATION PROPERTIES OF THE
COMPONENT FIELDS

Superfields are functions over superspace {x*,0,0},
where 6, 0 are anticommuting variables and x, are the
spacetime coordinates. The construction of the Lagrangian
of SQCD involves chiral superfields and vector superfields.
These fields are described in detail in, e.g., Refs. [12—15];
in what follows, we list some of their properties, for the
sake of a self-contained presentation. The physical com-
ponents of a chiral superfield @ are the matter fields: A(x)
which represents a complex scalar (squark), y(x) which is a
two-component spinor (quark—spin %) and F(x) which is
an auxiliary complex scalar field. All components of the
chiral superfield carry a color index in the fundamental
representation of SU(N..). In superspace notation the chiral
superfield @ in terms of the above component fields is:

(Y = x* + i0c+0)

_ j _ 1 _
= A(x) + V20y(x) + 00F (x) + i06"00,A(x) + \%eeeaﬂaﬂw(x) +00000,0A(). (1)

The general form of a vector superfield V(x, 0, 9) is:

V(x:0.8) = C(x) + if(x) ~ D7(x) + 2 08(M (x) + iN(x)] -

00[M(x) — iN(x)]

N ~.

— 06" 0u,(x) + i000 [/_l(x) + ;5'”8,4)(()6)} —-i6600 {ﬂ(x) + %o"a/,j((x)

+ %9999 [D(x) + %B”G”C(x)} , (2)

where C(x), D(x), M(x), N(x) are real scalar fields, y(x)
and A(x) are two-component spinors, and u,(x) is a vector
field; all components are in the adjoint representation of
SU(N.): V(x;0,0) = V(x;0,0)°T* where T* are the
generators of SU(N,) and a=1,...,N2—1. A super-
symmetric gauge transformation may be applied on both
the chiral and vector superfields, see Eq. (4), and we will
require the Lagrangian to be invariant under this trans-
formation. We can choose a special gauge where the
components C, y, M, N are zero. This defines the Wess-
Zumino (WZ) gauge. A vector superfield in the WZ gauge
reduces to the form:

V(x;0,0) = —00"0u,(x) + i006 A(x) — i6 6 6A(x)

+%6‘999D(x), (3)

I
where uj is the gluon field, 1% is the gluino field and D* is
an auxiliary field.

In order to obtain a renormalizable theory, we need to
construct a Lagrangian with products of superfields having
dimensionality < 4; in addition, we require Lorentz invari-
ance as well as invariance under supersymmetric gauge
transformations:

! a—iA
D, =e "D,
@ = Pp_er
, At .
e2gV —e iN eZgVezA’ (4)

where A(x;0,0) is an arbitrary chiral superfield:
A(x;0,0) = Ag(y) +V20A, (y) +00A,(y). The special case
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in which A; = A, =0 — A(x;0,0) = Ag(y) = Ag(x) +
i06400,Ao(x) + 10000 0Ny (x), where Ag(x) = Aj(x),
amount to ordinary gauge transformations, which do not
take us out of the WZ gauge:

Al =G7A,, vy =Gy, Fl.=G'F,
(G(x) = et
AL =A_G, v =w_G, F.=F_G
W, =G 'u,G+-(9,61G, ¥ =GG,
g
D' =G 'DG. (5)

A Lagrangian, which respects the transformations of
Eq. (4), in terms of superfields is

L Tr(WWolgg + WeWo55)

" 16kg
+ (@YD, + d_e22VO!)| 40
+m(P_D. |y + PLDL55), (6)
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where Tr(T°T?) = k6%, W, = —1DD e 2"D,e*" is the
supersymmetric field strength, and the supersymmetric
covariant  derivative is defined as: D, = % +

i0h,0°0,,, Dy = =75 — i0°(6") 40, [13,15]. Combining
the components of ®, with ®_ we can construct a
4 component Dirac spinor (yp). In the presence of
at least 3 flavors of matter fields, the Lagrangian may
contain in principle further color singlet terms of
dimension < 4, having the form: ¢, jk(h'if g N(Difd)jf /<I>ﬁf "t
WS T oY S DK h.c.), where h. is a totally antisym-
metric tensor with flavor indices; such terms are not
included in the present study.

We conclude that the SQCD Lagrangian for N = 1
supersymmetry in 4 dimensions contains, for each flavor of
matter fields, two complex scalars (squarks) A ,A_, a
Dirac spinor (quark) {y_,w_}, and two auxiliary complex
scalars F,,F_; in addition, the Lagrangian contains a
gauge field (gluon) u,, a Majorana spinor (gluino) 4 and
one further real auxiliary field D. Starting from Eq. (6),
taking the corresponding components of the superfields
(appropriate powers of @ and ), the continuum Lagrangian
in the WZ gauge is

| 1 _
Lsocp = 1 Mﬁuju’“’(“) + ED(Q)D(G) — i/l(“>6"Dﬂ/1(“)

—-D,A\D'A, — DATD'A_ — iy @Dy, — ip_"Dyy_ + FF, +F F_
+ l\/ig(Aiﬂ(a)T(a)l//+ _ z/7+/_1(")T(“)A+ 4 A_Z((I)T(a)l/—/_ _ l//_/1<a) T((I)A_)

+ g(ALDOT@A, — A_DOT@AL)

+m(A_F, +F_A, —y_y, + A FL + FLAT — g 5. (7)

where:

DA, = d,A, +ign"T@A,

D,AT = ,AT + igui"T@WAT

— H a),,(@)
D,A_=0,A_—igA T,

DA = 9,A% —igAl 7@y

Days = 0y + igus Ty,

D

o= O —igy_T@u”

D, A = 0,4+ ig[u,. 4]

Uy = Oty — Oy, + iglu,, u,). (8)
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Lsqcp is invariant, up to a total derivative, under the supersymmetric transformations (£ is a Majorana spinor parameter):

OAL = \/Efl//+,
A= V2 g,
Sy = V20" ED, AL+ V2EF
Sep® = —iV2E;5" D, A_ + V2F_¢g,
8:F , = ivV2E5" Dy, + 2igT WA, E1,
:F_ = —iV2D,y_o"E — 2igA_TWEI,
el = —iA@ghg 4 iEH A,
5 = o euly) + iED,
8:D\®) = —£0"D, A — D, Ao, 9)

Note that the above transformations are not linear: Indeed, the standard linear realization of supersymmetry
transformations on superfields would reintroduce those field components which are absent in the WZ gauge.
Consequently, linear SUSY transformations must be accompanied by appropriate gauge transformations, in order to
ensure persistence in the WZ gauge. Thus, the end result is no longer linear in the component fields.

Equation (7) can be rewritten in 4 dimensions in Dirac notation and in the Weyl basis as follows:

Lsqep = — i Uy U A+ %D”D“ + éim"%%
-D,A . D'A, - D,A_D'AT + iy Dy + FLF,. + FLF_
— iV2g(AL 24P oy, — i pP_A4T A, + A_AS T P_yp, — ipP A4 TAY) 4 g(AL D“T*A, — A_D*T*AT)
+m(A_F, + F_A, +ypyp+ AL FL+ FLAL), (10)

. A
where P, = Héys, vs = 'r'r’r’ An = (Za) and yj, = (

Wia
i)

The auxiliary fields may now be eliminated, either by applying their equations of motion (classical case), or by
functionally integrating over them (quantum case). In both cases, the action of SQCD takes the following form in
Minkowski space:

1 i- P
Ssocp = /d4x [—Zuzyu””“ + EA“M]//‘D”A“M - DﬂAiDﬂAJr - DﬂA_D”A’_ + wWwpr*Duyp
— iV2g(AL 24 TP oy, — i pP_A4 T A, + A_A%TP_yp, — yp P, A% TOAT)

1
= F(ALT A — A_T*ATY? + m(ppyp — mAT A, —mA_AT)|, (11)
Ssqcp 1s invariant under supersymmetric transformations:

O:AL = _\/EEMP#//D?
8:A_ = —V2pP &y,
8:(P wp) = i\/i(DuA+)P+7”5M - \/EmP+§MAi,
8:(P_yp) = iV2(D,AL) P_y"éy — V2mA P_&y,
Seus = —i&yy" 2y,
b3y = Tl e — 2igr e (LT, — A_ToAL), (12)

After a Wick rotation, the resulting expression for the Euclidean action in Dirac notation, S§ocp, is
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1 1-
SEocp = / d*x [4 ug,ulh, + 5/15{,,7/51)”/1}{4
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+D,A'D,A, +D,A_DA" +ypyEDwp
+ ivV2g(AL A4 T PEy y — i PEASTA . + A_J8, T*PEyp, — i PEAS, TEAT)

2

E_ 1375 E_
where PL =—=, y5 =
E
4

are defined as: y
{r-r} =20,

As is the case with the quantization of ordinary gauge
theories, additional infinities will appear upon functionally
integrating over gauge orbits. The standard remedy is to
introduce a gauge-fixing term in the Lagrangian, along with
a compensating Faddeev-Popov ghost term. The resulting
Lagrangian, though no longer manifestly gauge invariant, is
still invariant under BRS transformations [16]. This pro-
cedure of gauge fixing guarantees that Green’s functions of
gauge invariant objects will be gauge independent to all
orders in perturbation theory.

For supersymmetric gauge theories one can choose a
gauge fixing term [17], which is the natural supersymmetric
generalization of covariant gauge fixing [see Eq. (15)]:

vEyEyEyE. BEuclidean y matrices
0 _

=7, Vf —iy; and they satisfy:

1 —
S = - [ DV g

1
= ——— [ d*xTr(4MTM + 4NCIN
8ak

+4(D +0C)* +4(0,ut)?
— 80y — 800y — 8il5"9,A — 8iy5"0,[y).
(14)

This gauge fixing term does not break supersymmetry due
to the fact that it is a 6000 term; thus it is a reasonable
choice in regularizations which strive to preserve exact
SUSY at all intermediate steps of the calculation of
renormalized Green’s functions. However, given that the
renormalized theory does not depend on the choice of a
gauge fixing term, and given that many regularizations, in
particular the lattice regularization, violate supersymmetry
at intermediate steps, one may as well choose the standard
covariant gauge fixing term, proportional to (0, ut)?.
Actually, this simpler choice is most often utilized also
in continuum perturbative calculations of supersymmetric
models. Below are the ordinary gauge fixing term and ghost
contribution arising from the Faddeev-Popov gauge fixing
procedure:

1
Shp = / dxTr(0,u,)". (15)

1 .
+ =P (AT A — A_T*ATY? = m(ppyp —mATLA, — mA_Ai)] : (13)

where « is the gauge parameter [@ = 1(0) corresponds to
Feynman (Landau) gauge], and

SEiost = —2/d4xTr(68ﬂDﬂc), (16)

where the ghost field ¢ is a Grassmann scalar which
transforms in the adjoint representation of the gauge
group, and: D,c = d,¢ +iglu,, c]. The term SE. is
quadratic with respect to u, and it contributes to the
tree level gluon propagator. On the other hand, SE
contains an interaction between gluon and ghost fields.
Consequently, the corresponding continuum action has
the form:

St = SgQCD + S&r + Shost- (17)

III. THE CALCULATION OF
THE SUPERSYMMETRIC
RENORMALIZATION FACTORS

In this section we calculate perturbatively a set of 2-pt
and 3-pt Green’s functions up to one-loop, both in the
continuum and on the lattice. The quantities that we
study are the self-energies of the quark (y), gluon (u,),
squark (A), gluino (1), and ghost (¢) fields, using both
dimensional regularization (DR) and lattice regularization
(L) [18]. In addition we calculate the gluon-antighost-
ghost Green’s function in order to renormalize the
coupling constant (g). The Green’s functions leading to
self-energies of squarks exhibit also mixing among A,
and AT; we calculate the elements of the corresponding
2 X 2 mixing matrix.

Since all of our calculations will be in Euclidean space,
the superscript “E” is understood in what follows.

A. Dimensional regularization

The first step in our perturbative procedure is to calculate
the 2-pt and 3-pt Green’s functions in the continuum, where
we regularize the theory in D Euclidean dimensions
(D =4 —2¢). The continuum calculations [19,20] are
necessary in order to compute the MS-renormalized
Green’s functions; the latter are relevant for the ensuing
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calculation of the corresponding Green’s functions using
lattice regularization and MS renormalization. The con-
tinuum results also provide the renormalization factors of
the quark field (Z,,), squark field (Z,,), gluon field (Z,)
gluino field (Z;), ghost field (Z,.) and coupling constant
(Z,) in DR. For the extraction of the renormalization
factors, we applied the MS scheme at a scale ji. Once
we have computed the renormalization factors in the MS
scheme, we can construct their RI' counterparts using
conversion factors which are immediately extracted from
the above computations to the required perturbative order.
Being regularization independent, these same conversion
factors can then be also used for lattice renormalization
factors.

The aforementioned renormalization factors are defined
as follows:

yR = /Zu" (18)
AR =\ /Z, AB, (19)
uf = /Zuf}, (20)
R =./Z,18, (21)
R =\/Z.P, (22)

g =Zug", (23)

where B stands for bare and R for renormalized quantities,
and p is an arbitrary scale with dimensions of inverse
length. For one-loop calculations, the distinction between
g® and ¢? is inessential in many cases; we will simply use g
in those cases.

For the calculation of Feynman diagrams in DR we
adopt the t'Hooft-Veltman (HV) scheme [21], in order to
continue to D dimensions the metric tensor, ¢y, and the
gamma matrices. The following relations hold in this
scheme:

e =D.  {r.r} =24 (24)
The matrix ys is defined as:
1 VA
Vs = &, (25)

where &% = () when any of its indices is outside the range
1-4. In this way:
{rs:;vu} =0, <4, (26)

5.7 =0,  p>4 (27)

PHYSICAL REVIEW D 96, 034507 (2017)

There exist several alternative prescriptions [22] for
ys: Naive dimensional regularization (NDR) [23], in
which ys5 anticommutes with all y,,, as well as the DRED
[24] and DREZ schemes (see, e.g., Ref. [25]). These
prescriptions are related among themselves via finite
conversion factors [26]. Thus, the treatment of diagrams
containing quark-squark-gluino interactions in the MS
scheme requires special attention. For our continuum
results, we use MS renormalization in the HV scheme
and for completeness we present also the conversion
factors to the NDR scheme. In our calculation of the
quark and gluino propagators the indices carried by all
gamma matrices are eventually contracted with the
indices of external momenta; given that the latter only
have 4 (rather than D) components, all four prescrip-
tions give the same results for these propagators. The
gluon propagator is also prescription independent to
one-loop order, since it does not involve vertices
containing ys.

Our conventions for Fourier transformations are

4
wix) = / (62154 " (q)

y(q) = / dxe™ My (x),
(28)

4 ~
Au0) =[5 et

i) = [dtreoa () o

(29)

4
) = [ e, @, we = [ Sl la)

(30)

Mq) = / d*xe™ 1% )(x),

c(q) = /d4xe_i"‘xc(x),
(32)

Figure 1 shows all vertices in the action of SQCD
[Eq. (17)]. There is a total of 16 vertices in the continuum;
four of these vertices are present in the nonsupersymmetric
case (# 1, 5, 10, 16). The algebraic expression for each
vertex, V; (i =1,...,16), is given in Egs. (33)-(48); a
factor of [ d*k/(2x)*X(k) is understood for each field X
appearing in the vertex; saturation of the vertices’ indices
(Dirac, color, Lorentz) with those of the corresponding
external fields is also implied. [k; denote momenta; a;(a;)
are color indices in the adjoint(fundamental) representa-
tion; j are Lorentz indices.]
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k,,a,, p, 1 Kk, ,a,, u, 2 k,,a,, u, 3
k; ,a, k, ,a, + k;,a, k,,a, + - k;,a, Kk, ,a, =
> > R s ITRPRE Pooeee et B SRR TEEEE D SREEE
k,,a,, H, 4 k,,a,, I 5
k;,a k,,a, k;,a, k,,a,
\\k”a1 ° \\k1 & 7 k.a, /8 k,,a, /9
N N rd
A ¥ s
+ ks ,a,N k,,a - ~ K, ,a P L4
SRS e B kg M km e bgo ol
k
A Kerdso K, + ", - 12 _ + 13 &
10 k;,a, v '4 k,,a, k,,a a ‘ k, ,a k, ,a .‘. s k, ,a,
. :"- .
. . &
koa, 7 Yo koa, g A ks k,,a, Y. keoa,
k;,a;, p, o+ + - S _ _
14 1
Ko,a,, H, kz,ll H, k,a,, H, ° k,,a,, p, ki, a,, H,
k,,a, A *._ka,ag k,,a‘,‘,ﬁ y k3,33 ﬁ:
g 5. R J,ag, H, “a“ H,

FIG. 1. Interaction Vertices of SE

total*

A wavy (solid) line represents gluons (quarks). A dotted (dashed) line corresponds to squarks

(gluinos). The “double dashed” line is the ghost field. Squark lines are further marked with a 4(—) sign, to denote an A, (A_) field. A

squark line arrow entering (exiting) a vertex denotes a A, (Al) field; the opposite is true for A_ (A7) fields.
Vi(ki k. k3) = ig(2m)*6(ky — ks + k3)y,, Tadas
Va(ki ka k3) = g(21)*8(ky = ky + k3) (kay,, + ks, ) Tl
Vi(ki,ky. k3) = —g(27)*6(ky + ky = k3)(kay, + k3, ) Tara,

1
V4(kl» k2, k3) = 59(27[)45(](1 _ k2 + k3)y/4|fulaz(13

VS(kla kz, k3) = —lg(2ﬂ)45(kl — k2 + k3)k2ﬂfa‘“2a3

. -7

Ve(ki, ky, ks) = —z\/ig(2ﬂ)45( — ko + k3) 3 : Ta}a,
. 4 1+ V5 a

Vo(ky ko, k) = —iv/29(27)*8(ky — ky + ky) —2 5 T
. 4 1 + V5 a

Vs(ky. ko, ks) = iv29(27)*8(ky — ky + k3) ——2 T4,
=75, 4

Vol ko, ks) = iv/2g(2m)*5(ky — ky + ks) — > Tal,,
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i

Violky, ky, k3) = —59(2”)45<k1 + ky + k3) f06, ,,, (kayy — ki) (42)

1
Vii(ky, ky ks, ky) = 592(2”)45(k1 +ky — k3 — k)T 4, T4, (43)

1
Via(ky k. ks, ky) = 592(2”)45(]‘1 +ky — ks — k) T30, TG0, (44)
Vis(ki, ko, ks, ky) = =g (27)*8(ky — ky + k3 = ka) T4 4, T4, 0, (45)
Vig(ky ky ks, ky) = g7 (2m)*8(ky + ky — k3 + ky ) (T A P (46)
Vis(ky ky, ks ky) = ¢ (2m)*6(ky + ko 4 k3 = k) (T T*) . 4 8y (47)

1
Vielky, ko, ks, ky) = 192(277)45(k1 +ky + k3 + ky) fUOROfOBOE, G (48)
|

All these vertices are intended to be symmetrized over  propagator, (u(x) u’ (v)), and gluino propagator,

identical fields before contraction among the fields and
creation of Feynman diagrams; a summation over the color

index a is understood.
The one-loop Feynman diagrams [one-particle irreducible

(1PI)] contributing to the quark propagator, (w(x)y(y)),
are shown in Fig. 2, those contributing to the squark

(A%(x)A?(y)), are shown in Fig. 4 and Fig. 5, respectively.
Lastly, the 1PI Feynman diagram which contributes to the
ghost propagator, (c(x)c¢(y)), is shown in Fig. 6. As is
usually done, we will work in a mass-independent scheme,
and thus all of our calculations, in the continuum as well as
on the lattice will be done at zero renormalized masses for all

particles.

Here we collect all our results for the 2-pt inverse
Green’s functions; the first result which we present, is
the inverse quark propagator in momentum space:

propagator, (A (x)A’ (y)), in Fig. 3. Identical results
are obtained for (A, (x)A’ (y)) and (Al (x)A_(y)). The
one-loop Feynman diagrams contributing to the gluon

@@ VB = 2yatg - i1+ Tk (2

+4+a+(2+a)10g<z—z>>}’ (49)

where Cr = (N2—1)/(2N,) is the quadratic Casimir operator in the fundamental representation, ¢ is the external

momentum in the Feynman diagrams, and j is the energy scale which is related to u through:1 u = fi\/e' /4x. Note also
that a Kronecker delta for color indices is understood in Eqs. (49)—(54).
In the HV prescription, there is mixing in the 2-pt Green’s functions of A, and A_. The diagonal elements of the mixing

matrix are
2Cr (1 16 2
+4 F( +a+—+(1+a)log(%)>} (50)

(R @AY ()8 = (2 (@A2NBE = oot - ) 1+ 4 55 (204
The nondiagonal elements are shown in Eq. (60). Furthermore, we calculate here the same quantities in the NDR scheme. It
is known that this scheme needs additional corrections [27], in order, e.g., to reproduce the correct axial anomaly in QCD.

The diagonal elements in NDR are

_ _ _ _ 2 o 2
R AL (R = A2 @A = nola - )| 1455 (P a s v apiog(%) )] 1)

Note that, because of the definition of y5 in the NDR prescription, the nondiagonal elements vanish. In Eq. (66), we have
determined the conversion factor between NDR and HV.

'y is Euler’s constant: y; = 0.57721.
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i ; e 4 5

\ ¥ \ » e L N 6
\\‘)’// \\\"// ‘ "}
FIG. 2. One-loop Feynman diagrams contributing to the 2-pt 'VVV\MN\N\' , — 8 e 9
Green’s function (y(x)@(y)). Koo PO *
AN\ PANN AN \AAAATVVVV VS BN

FIG. 4. One-loop Feynman diagrams contributing to the 2-pt
Green’s function (uﬁ(x)uff(y))

! 1
------ @ W B e 3

FIG. 5. One-loop Feynman diagrams contributing to the 2-pt
Ter 8 Green’s function (A%(x)2(y)).

+ + + +
D e e O ettt bl

FIG. 3. One-loop Feynman diagrams contributing to the 2-pt
Green’s function (A (x)A® (y)). The case of (AT (x)A_(y)) is  FIG. 6. One-loop Feynman diagram contributing to the 2-pt
completely analogous. Green’s function (c(x)c(y)).

We now turn to the gluon propagator. The contributions from the diagrams of Fig. 4, taken separately, are not transverse.
But, their sum has this property, and it is found to take the following form in the continuum:

e 1 N, (1 2
(g (@)t} (q')) ok = (27)*6(q + ') {5 4uqy + (%6 = 4,9,) [1 + 16”‘5 (E +2+log <;

2 2 —
gN.1 1 19 a i

IR (3 _g)- g2 Y L Goa)log(t . 2
167522((3 a)€+6+a+2+(3 Q) 0g<q2>>}} (52)

Since there is no one-loop longitudinal part for the gluon self-energy, the renormalization factor for the gauge parameter
receives no one-loop contribution. This result as well as the result for the quark propagator are in complete agreement with
older results in the absence of supersymmetry (see, e.g., Ref. [28]).

Our result for the inverse gluino propagator to one-loop order is

2 167>
2 =2
9N, a 17

Finally, the ghost propagator is the same as in the nonsupersymmetric case, since its contributions come only from Sy,

Pl g = eaota - ) a1+ Tk (24 L rog ()

@@ = eotota- 11 - Tos (14204 Lo - aog(5 ) )| (54

Starting from the 2-pt Green’s functions, it is straightforward to write down the renormalization factors for all fields
appearing in SE | in the MS renormalization scheme. In this scheme, renormalization factors are simply defined in such a
way as to only remove the pole parts.
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FIG. 7. One-loop Feynman diagrams_contributing to the 2-pt
Green’s function (A% (¢)A%(q')) and (A%T(q)A%7(¢')).

The results for the DR renormalization factors in the MS
scheme are presented for arbitrary values of N, N, and a:

= ’Cr 1
ZDRMS _ | L 9CF 2 55
C TR (33)
< ’Cr 1
gDRMS _ | ICr1 56
Ar +167T2€( +a) (36)
— I{/fa 3
ZDRMS _ g “NZ=Z\N. +N 57
+16ﬂ'2€ 272Nt 7)
ZDRMS _ +g_21(aN +Ny) (58)
g 167° € ‘ /
— 2 13-«
ZPRMS _ 9 1 5
l6z%e 4 59)

(A™ (@A™ (¢))iny, = (27)*6(q ~ ') [42 <1 O) Y

01
= (21)*8(q — ¢')[g*1 — =],

where AMS s a 2-component column which contains the
renormalized squark fields:

AMS = ( AT ) (62)

AVST

Since the nondiagonal matrix elements of (AMSAMST). &
are simply constant multiples of g%, we can use another
renormalization scheme (Y), in which the squark field
propagators are disentangled. The two schemes will be
related via a mixing matrix (conversion factor), CY*'MS,
which is finite and scale independent. The conversion
factor does not depend on the regularization scheme (thus,
it will be the same also using a lattice regularization, as in
Sec. III B) and its definition is as follows:

AY = (CYMS)!ZpAMS, (63)

There are several possible choices for such a scheme:

(i) A “diagonal” scheme (“D”) in which the diagonal
elements of the squark propagator matrix remain
unaffected.

167>

PHYSICAL REVIEW D 96, 034507 (2017)

As already mentioned, there are also nonzero 2-pt
Green’s functions connecting A, with A_ in the HV
scheme. The mixed Green’s functions of A, and A_ arise
beyond tree level: (A% (q)A%(¢')) and (A%7(q)A%(¢')).
This nonsingular mixing comes from the diagrams of
Fig. 7 and the corresponding mixing elements
obtained in the HV scheme are shown in Eq. (60).
Given that the MS scheme affects only the pole
parts (1/e terms), the renormalization factors in this
scheme will be diagonal. However, the 2-pt Green’s
functions of the MS-renormalized squark fields will
remain mixed.

The nondiagonal elements are equal to each other and
our result, to one loop, is

(AT (@AZ (@0 = (AT ()AL (¢))0%

In matrix notation, our results for the MS renormalized
Green’s functions are

16 F\\(1 0 @Cp4 (0 1
D+ a)tog” _pdtr?
<3+( +a) °g<q2))(o 1) T16223\1 0

(61)

2
il i 64
167r23<1 0 (64

CD.M_S —

(i) An RT-like scheme (“RI’”), in which the renormal-
ization prescription is: ER'| .z = 0.

' MS 2C 4 4 _1
CRIMS — g L I =F2 65
el o4) )

(iii) An MS-like scheme (“MSNDR”), in which bare
Green’s functions are constructed in the NDR
regularization, and only pole parts in € are removed
from them.

CMSNDRMS _ 1

FCpa 1 —1
— 66
+ 16223\ -1 1 (66)

In this paper we also calculate the gluon-antighost-
ghost Green’s function in order to renormalize the
coupling constant. Other determinations of the coupling
constant renormalization (through gluon-antiquark-quark,
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SR

FIG. 8. One-loop Feynman
(c*(x)e” (y)uiu(2)).-

diagrams contributing to

gluon-gluino-gluino and gluon-antisquark-squark Green’s
functions) are expected to lead to identical results. We
compute, perturbatively to one-loop, this Green’s function
using both dimensional and lattice regularizations. In

|

: DRMS\~! (> DRMS\~1/2 /DR MS\~!
lim( (2238 (ZDRNS) 712 (7DR3S)
In the above equation Z? RMS js required to eliminate only

the pole parts of the left-hand side, without additional finite
terms; the same requirement leads to the definition of

ZPRRU \yhich is thus trivially equal to Z2%MS. The right-
hand side is actually the MS renormalized 3-pt Green’s
function. There follows:

e 1/3 1
ZDRMS _ g1 N, —=N, ). 69
g +167r2€ et (69)

DRMS

Notice that the expression for Z; is gauge independent.

B. Lattice regularization

Even though the lattice breaks supersymmetry explicitly
[29], it is the only regulator which describes many aspects
of strong interactions nonperturbatively. We use a standard
discretization where the quarks, squarks and gluinos live on
the lattice sites and the gluons live on the links of the lattice:
U, (x) = e9aT"ui(+ai/2) We will extend Wilson’s formu-
lation of the QCD action, to encompass SUSY partner
fields as well. This formulation leaves no SUSY generators
intact, and it also breaks chiral symmetry; it thus represents
a “worst case” scenario, which is worth investigating in
order to address the complications which will arise in

17 18

k,,a,, p, k,,a,, M, ke, k,,a,, M,

FIG. 9. Additional interaction vertices in lattice-SQCD. All
fields are represented as in Fig. 1. The solid box in the bottom
right vertex comes from the measure part of the lattice action.

PHYSICAL REVIEW D 96, 034507 (2017)

Fig. 8, we have drawn the corresponding continuum 1PI
Feynman diagrams. The 3-pt amputated Green’s function,
at zero antighost momentum, in DR gives:

(eB(q)eP(0)ity" (¢'))RR,
= (2n)*8(q + q') [ (igq,)

2 =2
gN.a 1 7
1+ —(14+—+log|=)|. 67
x 1672 2( € Og<q2>} (67)

The value of Z2®MS now stems from the requirement:

(@ (q)E(0)a" (¢))omp] = (@) (0" (¢ )ml1jeo (68)

|

numerical simulations of SUSY theories. In our ongoing
investigation we plan to address also improved actions, so
that we can check to what extent some of the SUSY
breaking effects can be alleviated.

As we mentioned earlier, we will calculate the renorm-
alization factors which are necessary ingredients in relating
lattice matrix elements to physical amplitudes. Our compu-
tation is performed to one loop order and to the lowest order
in the lattice spacing, a. Lattice perturbation theory is much
more complicated than continuum perturbation theory. There
are more vertices stemming from the discretized action, see
Fig. 9, leading to more Feynman diagrams; what is worse,
the propagators and vertices, with which one builds the
Feynman diagrams, are also more complicated on the lattice
than they are in the continuum, which can lead to expres-
sions containing a very large number of terms: Even in the
Wilson formulation, which is rather concise, a typical
“difficult” Green’s function contains a few thousand terms
at intermediate stages.

Calculating the same Green’s functions as before on the
lattice, and combining them with our results_from the
continuum, we will be able to extract Zﬁ,‘MS, Zﬁ‘MS, Zf’MS,

Zf"iMS, ZEMS and ZEMS in the MS scheme and on the

B RN
; ’f \‘I
“ ' . ;

SN 5

FIG. 10. Additional one-loop Feynman diagrams contributing
to the 2-pt and 3-pt Green’s functions on the lattice.
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lattice. On the lattice we have to calculate all the diagrams  algebraic operations involved in evaluating Feynman
which were presented in Sec. III A as well as further loop  diagrams, we make use of our symbolic package in
diagrams, as shown in Fig. 10; in addition, for the gluon  Mathematica.

propagator we have to take into account the contribution For Wilson-type fermions and gluons, the Euclidean
which comes from the measure part of the action. For the  action SéQCD on the lattice becomes:

N. 1 - r -
Skocp = a*> [—2 > (1 - FTrUW> + ) Tr(Ayy, Dydu) — aETr(AMDz/lM)
¢ JZ

x LY 87

_ r_
+ > _(DALDAL +DADAL + 551, Dwp) = azinDwp
i
+iV29(AL TG TP Ly = FpP_I§TA, + A_J§TP_yp — ipP. 24 T°AT)

1,
+5 P(ALT AL — A_T*AT)2 — m(ppyp — mAT AL —mA_AL)|, (70)

where: U, (x) = U,(x)U,(x + af))Uj(x + ap)U}(x), and a summation over flavors is understood in the last three lines of
Eq. (70). The 4-vector x is restricted to the values x = na, with n being an integer 4-vector. Thus the momentum integration,
after a Fourier transformation, is restricted to the first Brillouin zone (BZ) [—77:/ a,n/ a]4 and the sum over x leads to
momentum conservation in each vertex. The terms proportional to the Wilson parameter, r, eliminate the problem of
fermion doubling, at the expense of breaking chiral invariance.’

The definitions of the covariant derivatives are as follows:

D, (x) = 9 (U, (Vg (5 + AU} () = U (x = i) (x = ) U, x — )] (1)
Dy (x) = ;Eﬂjwﬂ (W)has (x + A UL() = 220 (3) + Ul (x = a2y (x = a) Uy (x = ap)] (12)
D () = 5 (U (W x +af) ~ Ub(x ~ awolx — af)] (73)

Doy (x) = ;;[Uﬂ (e (x + ai) — 2 (x) + UL (x — aiwp(x = ajt) (74)
DAL(0) =+ [U, (A, (x + ap) = A, (2] (75)

D,AL(x) = = (AL (x + ai) U (x) ~ A} (3] (76)

D,A-(x) = L [A_(x + @) Ul(x) ~ A_(v)] ()

DA (x) = é U, (0)AT (x + ajt) — A (x)] (78)

As always in perturbation theory, we must introduce an appropriate gauge-fixing term to the action; in terms of the gauge
field u,(x) it reads:

Sk = 5?3 ST, (v + af2) — u,(x — ap/2) 2. (79)
x op

’In what follows, we will set |r| = 1.
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In simulations there is no need for gauge fixing since functional integration is performed over a finite number of degrees of
freedom (d.o.f.), each of which ranges within the compact domain of the group manifold. However, in perturbation theory,
where an infinite number of d.o.f. takes values over the noncompact algebra, gauge fixing is necessary in order to avoid
divergences from the integration over gauge orbits. Covariant gauge fixing produces the following action for the ghost fields
¢ and ¢:

Saw—2f§j§jﬁ{@u+am—au»(dx+ww—dw

gl (x4 a/2), (o) + yiglu (v + a/2), x+ ap) = ()]

- 3Pl + a2l + /2l + a) = (o)) | + O (%0)
In Eq. (70) we must also add a term arising from the fact that we change integration variables from the link variables U, to
the gluon fields u, . This procedure changes the Haar integration measure by a Jacobian, which can be recast as an
exponential, thus taking the form of an additional contribution to the action; this is the usual measure term S%; in the action
and, to lowest order in g, it reads:

Sty = TN 3 Teluy(x + a2+ O). (81)

The terms S§ocps SGrs SGhos and Sy must be added to obtain the total lattice action.
We now summarize the rules for calculating the contribution of a Feynman diagram to the 2-pt and 3-pt Green’s
functions. In the following equations we present the tree-level propagators.

1 o 1
Quark propagator: — , where: g=-Y) y,sin(aq,)
iq—i—ﬁzﬂsinz(aqﬂ/Z) —-m ”; g g
1 4,4, 2 . a
Gluon propagator : 7 <5,w —(1-a) (]g;] > where: g, = asm%, Q2 = zﬂ:qi
1
Ghost propagator: —
q
Squark propagator: !
u :
q propag P+ m?
. 2
Gluino propagator: — - (82)
ig+ %Zﬂsmz(aqﬂ/Z)

We have also listed the vertices which are required for carrying out the lattice computations. The extra vertices on the
lattice are enumerated in Fig. 9 and all vertices’ expressions on the lattice are given in Egs. (83)—(102) in momentum space.
In these expressions we have rescaled all momenta k; to the range [—z, z] and omitted overall powers of a.

k, + k k, + k
Vilky k. ks) = ig(2m)*8(ky — ky + k3) T4, ( 7, cos A B i gn(F R 83
A 2 2
ky + k
VZ(kl s kz, k3) = 2g(2ﬂ)45(k1 — k2 + k3)Tg;a3 sin <(223)ﬂ]> (84)
k, +k
Vi(ki, ko, k3) = =29(27)*6(ky — ky + k3) Tasa, sin <%> (85)
1 k, + k ky + k
V4(k1, kz, k3) = Eg(2ﬂ)45(kl - k2 + k3)f(1|a2(13 <]/Ml COS <%) — irsin (%)) (86)
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k k
Vs(ki, ko, k) = =2ig(2m)*5(ky — ky + k3) f41%2% cos <ﬂ> sin <ﬂ>

2 2
1 - a
Vé(k] N kz, k3) = —l\/ig(Zn')“(S(kl —_ k2 + k3) TySTu;a3
\/— 4 1"‘7/5 a
Vi(ki ky k3) = —iv2g(2n)*6(ky — ky — k3) 7 Lo,
. 1475 o
Vg(k], kz, k3) = l\/§g5(—k1 + k2 - k3) TysTa;az
1- a
Vo(ky. k. k3) = iv2g8(—ky + ky + ks) 27/5 Taza,

k ky —k
Vl()(kl? kz, k3) = lg(27r)45(k1 + kz + k3)5ﬂlﬂ2fala2a3 COS <%) sin <%>

1
V]l(kl’ kZ’ k37 k4) = 592(277:)45“(1 + k2 - k3 - k4)TZ1a3nga4

1
Via (ki ko, k3 ky) = 592(2”)45(/(1 +hky — k3 —ky)T%0 TG0,
Vis(ki ky ks, ky) = —g*(2m)*6(ky — ky + k3 — ky) T4 o0, TG0,

(ks + ky)
Vig(ki, ky, ks, ky) = g7 (27)*6(ky + ky = ks + k4)8,,, (TOT®) ., COS (fﬂl

ks + k
Vis(ky,ky, ks, ky) = ¢ (2m)*6(ky + ky = k3 + k4) 8,1, (T T™),,,,, COS ((324)Ml>

Vie(ki ky. k3. ky) = =g*(27)*8(ky + ky + ks + k) Te(TH T2 TST™)

2 2 1
X {5/41/%3#4 <§ 3 Z Cos(klﬂ) + EZ cos (k; + k2)p> + Ouspuaps (_ 2
P P

k 2k, + k k 2ky + k
+23in<%) sin(i( : 5 4)”“> +2sin<%> sin(—( } 5 s

ks +k ks + k ks — k
* 6141#25#3;44 (COS <%> CcoS <%> —2¢os (M

S ARIES W)

1
Vig(ky ko ks, ky) = 592(2”)45(]‘1 +ky = k3 + kg)By,, (T T™) 40,

(iR ¢ (b

1
Vis(ki ko, k3, ky) = 192(2”)45("1 + ko — k3 + kg)By,,,, [T f RN

o (iS5 ¢ (b
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k k
Vlg(k],kz, k’;, k4 92 ”W(Zﬂ 45 k] + k2 k'; + k4)fa1a3afa2(l4a S1H< ;ll) s1n<%) (101)

1
Vao(ky, ky) = 78

12 mm(27r)45(k1 + ko) Tr (T4 T*) (102)

Using the 2-pt Green’s functions of each field, we can determine the corresponding renormalization factor. The first result
presented here, Eq. (103), is the lattice inverse quark propagator up to one loop; in this equation the quantity proportional to
1/a contributes to the additive renormalization of the quark mass (critical mass). In all lattice expressions the systematic
errors (coming from an extrapolation to infinite lattice size of our numerical loop integrals) are smaller than the last digit we
present.

2
W (@t (d))k, = (2n)*(q - q ){iﬁ[{l - ?6?[5 [12.8025 — 4.7920a + (2 4+ a) log (a*¢*)] | + 16CF151 4347r}
+O(a). (103)

From the one-loop correction to the quark propagator we obtain the multiplicative renormalization factor of the quark
field. To this end, we use the renormalization condition of Eq. (104) which connects the bare inverse 2-pt Green’s
function on the lattice with the MS renormalized one. To avoid heavy notation we have omitted coordinate/momentum
arguments, as well as Dirac/flavor indices on (yy):

Wiy = Z P )iy o (104)

The left-hand side equals the inverse Green’s function in Eq. (49) without the pole parts. From this equation we extract
the renormalization for the quark field on the lattice:

ZEMS — 1 4

16 2( 16.8025 + 3.7920a — (2 + a) log(a*f2)). (105)

In Eq. (103), just as in the corresponding equation in the continuum, terms with y5 cancel out at one-loop level. The same
observation holds also for the gluino 2-pt function, see Eq. (107). This means that the y, and y_ components of massless
quarks do not mix under renormalization, unlike the case of the squark propagator, see Eq. (112). The quark critical mass
can be read from Eq. (103):

2
uark g C 1
gl'it 1671' (106)
This result is in agreement with Ref. [30].
The gluino inverse propagator is given at the one-loop order by:
5B( 3B 4 i FNy 2,2
(27 (@)2"(@))iny = (22)*8(q = ¢') 74| 1 + 75 (19209 ~log (a*¢*))
¢*N, g N,
~ 6 5 (16.6444 — 4.7920a + alog (a*q?)) | + ———51 4347r} + O(a). (107)
7

The renormalization factor of the gluino field is determined in the MS scheme by imposing the following condition:

(AFAR) iy = Z7 (AP2P) Lo (108)

mv
leading to:

2

ZEMS - 2
16

[N.(16.6444 — 3.7920a + alog (a*F%)) + N ;(0.07907 + log (a%i2))], (109)

and the critical mass for the gluino field is
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2
lui g N c 1
In order to discuss the renormalization and mixing of
squarks, it is convenient to write the bare squark fields in 2-

component form:

PHYSICAL REVIEW D 96, 034507 (2017)

AB = AL
C o\ ABt )"

The inverse squark propagator (without O(1/a?) contri-
butions), is given to one-loop order by:

(111)

’C Lo
916 Ly [[11.0173 —3.7920a + (1 + a) log(a?q*)] < )
JT

(AP (q)AP'(q)h, = (27)*8(q — q’>{q2 (1 0) B

0 1 0 1

0 1
—i—1.0087(1 O)}}—i—@(a), (112)
and the critical mass for the squark fields (O(1/a?) contributions) is
2 squark ¢Cr 1 (653930 75.4031
crit = T 122 : (1 13)
167 a” \ 75.4031 65.3930
We define the renormalization mixing matrix for the squark fields as follows:
AR ! AB
_ 2 +
(o) =@ () (14)
Substituting Eq. (114) into Eq. (112), and requiring agreement with Eq. (50) in the ¢ — O limit, we find:
ZHEMS — 1 T ZE 1181753 — 1.8960a + = (1 + a) log (a2 -0.1623 : 115
@ = a+5(1+a)log (@) Lo (115)
The gluon inverse propagator is given to one loop by:
~ ~ 1
DTN, = 2150 + )L
g 1
+ (%6, — 9,9,) [1 e {—19.73921\[ + N;(=2.9622 + log (a*q?))
T B ~
a [a 3 .
+N. 20.1472—0.88630:—!—1—1— 573 log (a*g*) + O(a). (116)

For (u8(q)u(q'))k,, some diagrams contribute a quadratically divergent mass term (1/a* contribution). But when all
Feynman diagrams are summed these divergences are found to cancel out. Another cancellation worthy of note regards
noncovariant terms of type (5Wq§); after summing all contributions, these terms cancel out and one is left with a transverse
expression for the gluon self-energy, reflecting the gauge invariance of the theory. Since there is no critical mass or
longitudinal part for the gluon self-energy, the renormalization of the gauge parameter Z, receives no one-loop contribution.
Our result for the gluon propagator without diagrams which involve squarks and gluinos, is consistent with Ref. [31], where
we calculate the same quantity in the nonsupersymmetric case. By demanding the following:

<M5M§>inv = 2;1 <Mﬁu§>i€w’

(117)
we find:
2

S 1 3
ZLMS _ g | ]gﬂz [19.7392N —N, <1 8.5638 — 1.3863a + (— S+ ‘;) log (a2ﬁ2)> + N;(0.9622 — log (a%i2))|.

(118)
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The ghost field renormalization, Z., which enters the evaluation of Z, can be extracted from the ghost propagator:

(@(@)cP(q)iy = 2n)*6(a - d')q { 167
and ZLL-'M_S is

Z;,m - 92N
¢ 1672

[3 6086 — 1.20290 — — (3 a) log (a*i )} .

N (46086—120290:—1(3 a)log (a? )>}+O(a), (119)

(120)

As in DR, we extract the coupling constant renormalization, Z,, from the gluon-antighost-ghost Green’s function

(g (x) e (x) 2B

lim|(

a—0

MS, 1 MS.—1/2

MSy—! ~
2N (2SR (2 e

By

(@) (0)t” (q') ) iamp) = (€% ()2 (0)ut” (4)) 20110

(y))amp In the MS scheme, the renormalization condltlon by analogy with Eq. (68), is

(121)

where the expression for (¢5%(q)c? (0)uy’ (q' ) aol1/e—o is the MS-renormalized 3-pt Green’s function which was
calculated in the continuum, and the corresponding expression on the lattice is

2

(@O (o Vg = (2ola + (i) |1+ 9205 (239600 — Jalog () )| + 0. (12)

Our result for Z5MS is

SN _, T

1672 N,

From the calculation of Zé’m one can extract the Callan-
Symanzik beta-function for SQCD. On the lattice the bare

beta-function is defined as:

ng
Pr (QB) = _ad—
Ay

(124)
In the asymptotic limit for SQCD, the expansion of the
beta-function is done in powers of the bare coupling
constant. The first term in this expansion is

g3

1672 (125)

Br(g) = (=3N,+N;)+O(g).

For N; <3N,, the O(¢g®) term is negative, in other
words, the theory is asymptotically free. Our finding for the
beta function agrees with what is obtained in the super-
symmetric Yang-Mills theory [32].

IV. SUMMARY—CONCLUSIONS

In this paper we have performed a pilot investigation of
issues related to the formulation of a supersymmetric
theory on the lattice. As a prototype model, we have
studied A/ = 1 supersymmetric QCD. This model bears all
major characteristics of potential extensions of the standard

1 3 1
-9.8696— + N, (12.8904 - Elog (a2ﬁ2)> - Ny <0.4811 - Elog(aﬂ;ﬁ))} )

1672

(123)

[
model, including superpartners for gauge and matter fields;
it is thus appropriate for a feasibility study on the lattice.

There are several well-known problems arising from the
complete (or even partial) breaking of supersymmetry in a
regularized theory, including the necessity for fine tuning of
the theory’s bare Lagrangian, and a rich mixing pattern of
composite operators at the quantum level. We address these
problems via perturbative calculations at one loop. In order
to provide the necessary ingredients for performing numeri-
cal studies of supersymmetric theories, we have calculated
the self energies of all particles which appear in SQCD. We
determined the renormalization factors for these fields; in
addition, for the squark propagator we found the mixing
coefficients among its different degrees of freedom.
Furthermore, we have computed the gluon-antighost-ghost
Green’s function in order to renormalize the coupling
constant. Our results are also relevant to the investigation
of relationships between different Green’s functions
involved in SUSY Ward identities [33,34].

There are several directions in which this work could
be extended. A natural extension would be the computation
of the Green’s functions for composite operators made
of quark, squark, gluon and gluino fields; studies of
such operators in the continuum can be found in, e.g.,
Refs. [35-38]. A serious complication in the supersym-
metric case regards the mixing of quark bilinear operators
with other composite operators. A whole host of operators
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with equal or lower dimensionality, having the same
quantum numbers and same transformation properties
can mix at the quantum level; on the lattice, the number
of operators which mix among themselves is considerably
greater than in the continuum regularization. We are
planning to study their renormalization and mixing per-
turbatively. The perturbative computation of all relevant
Green’s functions of these operators, will be followed by

PHYSICAL REVIEW D 96, 034507 (2017)

the construction of the mixing matrix, which may also
involve nongauge invariant (but BRST invariant) operators
or operators which vanish by the equations of motion.

Finally, it would be important to extend our computa-
tions to further improved actions with reduced lattice
artifacts and reduced symmetry breaking, e.g. the overlap
fermion action, as a forerunner to numerical studies using
these actions.
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