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We study a lattice model comprising four massless reduced staggered fermions in four dimensions
coupled through an SUð4Þ-invariant four-fermion interaction. We present both theoretical arguments and
numerical evidence that no bilinear fermion condensates are present for any value of the four-fermi
coupling, in contrast to earlier studies of Higgs-Yukawa models with different exact lattice symmetries.
At strong coupling we observe the formation of a four-fermion condensate and a mass gap in spite of
the absence of bilinear condensates. Unlike those previously studied systems we do not find a
ferromagnetic phase separating this strong-coupling phase from the massless weak-coupling phase.
Instead we observe long-range correlations in a narrow region of the coupling, still with vanishing bilinear
condensates. While our numerical results come from relatively small lattice volumes that call for caution
in drawing conclusions, if this novel phase structure is verified by future investigations employing
larger volumes it may offer the possibility for new continuum limits for strongly interacting fermions in
four dimensions.
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I. INTRODUCTION

In this paper we study a four-dimensional lattice theory
comprising four massless reduced staggered fermions
coupled through an SUð4Þ-invariant four-fermion interac-
tion. Strong-coupling arguments indicate that the system
develops a massive phase for sufficiently large four-fermi
coupling without breaking symmetries. Such a [paramag-
netic strong-coupling (PMS)] phase has been seen before
in other lattice Higgs-Yukawa models, and is generically
separated from a massless paramagnetic weak-coupling
(PMW) phase by an intermediate ferromagnetic phase
characterized by a symmetry-breaking bilinear fermion
condensate. A representative small sample of this earlier
work can be found in Refs. [1–7] and references therein. The
key result of our current work is that we see no evidence for
this intermediate broken phase in the model described here,
which possesses different exact lattice symmetries than the
systems considered previously. Instead we observe a narrow
region of four-fermi coupling separating the PMWand PMS
phases in which the fermions develop long-range correla-
tions but no bilinear condensate is formed.
The same model was studied previously in three dimen-

sions utilizing three different numerical algorithms: fer-
mion bags, rational hybrid Monte Carlo (RHMC) and
quantum Monte Carlo [8–11]. These studies revealed an
interesting two-phase structure for the model; a massless
phase at weak coupling (the analog of the PMW phase in
four dimensions) is separated by a continuous phase
transition with non-Heisenberg exponents from a massive
(PMS-like) phase at strong coupling.

The four-dimensional theory which is the focus of the
current work was also recently studied in Ref. [12]. The
conclusion of that work was that a narrow broken phase
reappears upon lifting the theory from three to four
dimensions. It is important to note that this conclusion
was not based on an explicit measurement of a condensate
but rather was inferred from the volume scaling of a certain
susceptibility.
In our work we have augmented the action used in that

recent study with source terms to directly address the
question of whether spontaneous symmetry breaking asso-
ciated with the formation of specific bilinear condensates
takes place. Our measurements of susceptibilities at zero
source agree with those reported in [12] and are consistent
with the possibility of a narrow intermediate phase that they
describe. However, in contrast to that work we do not see
any evidence for the formation of bilinear condensates and
spontaneous symmetry breaking in that region of the phase
diagram. Thus the intermediate phase—if it exists—must
be of an unusual character. It goes without saying that the
appearance of potentially new critical behavior in lattice
theories of strongly interacting fermions in four dimensions
would be very interesting from both theoretical and
phenomenological viewpoints, with regards to constructing
theories of Beyond Standard Model physics. Similar
models have also received considerable interest in recent
years within the condensed matter community [13,14]. Of
course one must be somewhat cautious in drawing too
strong a conclusion at this point since our simulations are
currently limited to rather modest lattice volumes. We plan
to investigate larger volumes in future RHMC calculations,
and also hope to see additional studies of this system
employing fermion bags or other algorithms.*smcatter@syr.edu
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The plan of the paper is as follows: In the next section we
describe the lattice model and its symmetries, and in
Sec. III we describe the phases expected at strong and
weak four-fermi coupling. In Sec. IV we show how to
replace the four-fermion interaction by appropriate Yukawa
terms and prove that the resulting Pfaffian is real positive
semidefinite. This fact allows us to simulate the model
using the RHMC algorithm, and we show results for the
phase diagram from those simulations in Sec. V. To
examine the question of whether spontaneous symmetry
breaking occurs we have conducted the bulk of our
simulations with an action that includes explicit sym-
metry-breaking source terms, and we include a detailed
study of the volume and source dependence of possible
bilinear condensates in Sec. VI. In Sec. VII we strengthen
these conclusions by computing the one-loop Coleman-
Weinberg effective potential associated with a particular
single-site condensate that breaks the SUð4Þ symmetry of
the model. We show that the unbroken state remains a
minimum of the potential for all values of the four-fermi
coupling, in agreement with our numerical study. Finally
we summarize our findings and outline future work in
Sec. VIII.

II. LATTICE ACTION AND SYMMETRIES

Consider a theory of four reduced staggered fermions in
four dimensions whose action contains a single-site SUð4Þ-
invariant four-fermion term.1 The action is

S ¼
X
x

X
μ

ημðxÞψaðxÞΔab
μ ψbðxÞ

−
1

4
G2

X
x

ϵabcdψ
aðxÞψbðxÞψcðxÞψdðxÞ ð1Þ

where Δab
μ ψbðxÞ ¼ 1

2
δabðψbðxþ μ̂Þ − ψbðx − μ̂ÞÞ with μ̂

representing unit displacement in the lattice in the μ
direction and ημðxÞ is the usual staggered fermion phase

ημðxÞ ¼ ð−1Þ
P

μ−1
i¼0

xi . The reduced staggered fermions are
taken to transform according to

ψðxÞ → eiϵðxÞαψðxÞ ð2Þ

with α an arbitrary element of the algebra of SUð4Þ and

ϵðxÞ ¼ ð−1Þ
P

d−1
i¼0

xi denoting the lattice parity. The pres-
ence of the four-fermion interaction breaks the usual global
Uð1Þ symmetry down to Z4 whose action is given explicitly
by ψ → Γψ where Γ ¼ ½1;−1; iϵðxÞ;−iϵðxÞ�. The action is
also invariant under the shift symmetry

ψðxÞ → ξρðxÞψðxþ ρ̂Þ ð3Þ

where the flavor phase ξμðxÞ ¼ ð−1Þ
P

d−1
i¼μþ1

xi . These shift
symmetries can be thought of as a discrete remnant of
continuum chiral symmetry [15].
These symmetries strongly constrain the possible bilin-

ear terms that can arise in the lattice effective action as a
result of quantum corrections. For example, a single-site
mass term of the form ψaðxÞψbðxÞ breaks the SUð4Þ
invariance and the Z4 symmetry but maintains the shift
symmetry, while SUð4Þ-invariant bilinear terms con-
structed from products of staggered fields within the unit
hypercube generically break the shift symmetries [16,17].2

The possible SUð4Þ-invariant multilink bilinear operators
for a reduced staggered fermion are

O1 ¼
X
x;μ

mμϵðxÞξμðxÞψaðxÞSμψaðxÞ

O3 ¼
X
x;μ;ν;λ

mμνλξμνλðxÞψaðxÞSμSνSλψaðxÞ ð4Þ

where ξμνλðxÞ≡ ξμðxÞξνðxþ μ̂Þξλðxþ μ̂þ ν̂Þ and mμνλ is
totally antisymmetric in its indices. In these expressions the
symmetric translation operator Sμ acts on a lattice field
according to SμψðxÞ ¼ ψðxþ μ̂Þ þ ψðx − μ̂Þ.
Notice that while the exact lattice symmetries constrain

the form of the effective action of the theory it is still
possible for condensates of either the single-site and/or
multilink operators to appear if the vacuum state sponta-
neously breaks one or more of these symmetries.

III. STRONG-COUPLING BEHAVIOR

Before turning to the auxiliary field representation of the
four-fermi term and our numerical simulations we can first
attempt to understand the behavior of the theory in the
limits of both weak and strong coupling. At weak coupling
one expects that the fermions are massless and there should
be no bilinear condensate since the four-fermi term is an
irrelevant operator by power counting.
In contrast the behavior of the system for large coupling

can be deduced from a strong-coupling expansion. The
leading term corresponds to the static limit G → ∞ in
which the kinetic operator is dropped and the exponential
of the four-fermi term is expanded in powers of G. In this
limit the partition function for lattice volume V is saturated
by terms of the form

1The SOð4Þ symmetry discussed in [10] naturally enhances to
SUð4Þ if the fermions are allowed to be complex. Such an
enlargement of the symmetry group does not invalidate the
arguments needed to construct an auxiliary field representation
or to show the Pfaffian is real and positive semidefinite.

2The usual single-site mass term ψ̄aðxÞψaðxÞ that is possible
for a full staggered field is invariant under all symmetries but this
term is absent for a reduced staggered field since in this case there
is no independent ψ̄ field.
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Z ∼
�
6G2

Z
dψ1ðxÞdψ2ðxÞdψ3ðxÞdψ4ðxÞ

× ψ1ðxÞψ2ðxÞψ3ðxÞψ4ðxÞ
�
V

ð5Þ

corresponding to a single-site four-fermi condensate. To
leading order in this expansion it should also be clear that
the VEV of any bilinear operator will be zero since one
cannot then saturate all the Grassmann integrals using just
the four-fermion operator.
To compute the fermion propagator at strong coupling it

is convenient to rescale the fermion fields by
ffiffiffi
α

p
where

α ¼ 1ffiffi
6

p
G
≪ 1, which removes the coupling from the inter-

action term and instead places a factor of α in front of the
kinetic term. To leading order in α the partition function is
now unity. The strong-coupling expansion then corre-
sponds to an expansion in α. We follow the procedure
described in [18] and consider the fermion propagator
FðxÞ ¼ hψ1ðxÞψ1ð0Þi. To integrate out the fields at site x
one needs to bring down ψ2ðxÞ, ψ3ðxÞ, ψ4ðxÞ from the
kinetic term. This yields a leading contribution

FðxÞ ¼
�
α

2

�
3
Z
x
Dψ

X
μ

ημðxÞðΨ1ðxþ μ̂Þ

− Ψ1ðx − μ̂ÞÞψ1ð0Þe−S ð6Þ

whereΨ1 ¼ ψ2ψ3ψ4 and
R
x means we no longer include an

integration over the fields at x. We then repeat this
procedure at x� μ̂ leading to

FðxÞ ¼
�
α

2

�
3X

μ

ημðxÞðδxþμ̂;0 − δx−μ̂;0Þ

þ
�
α

2

�
4
Z
x;x�μ̂

Dψ
X
μ

ðψ1ðxþ 2μ̂Þ

þ ψ1ðx − 2μ̂ÞÞψ1ð0Þe−S: ð7Þ
Notice that to this order in α we can restore the

integrations over x, x� μ̂ and we now recognize that the
right-hand side of this expression contains the propagator at
the displaced points Fðx� 2μ̂Þ.3 A closed-form expression
for the latter can hence be found by going to momentum
space where

FðpÞ ¼ ði=αÞPμ sinpμP
μ sin

2 pμ þm2
F

ð8Þ

with m2
F ¼ −2þ 4

α4
. Thus the strong-coupling calculation

indicates that for sufficiently large G the system should

realize a phase in which the fermions acquire a mass
without breaking the SUð4Þ symmetry.
An analogous calculation can be performed for the

bosonic propagator BðxÞ ¼ hbðxÞbð0Þi corresponding to
the single-site fermion bilinear b ¼ ψ1ψ2 þ ψ3ψ4,

BðxÞ ¼ 2δx0 þ
�
α

2

�
2X

μ

ðBðxþ μ̂Þ þ Bðx − μ̂ÞÞ; ð9Þ

or in momentum space

BðpÞ ¼ 8=α2

4
P

μsin
2pμ=2þm2

B
; ð10Þ

yielding a corresponding boson mass m2
B ¼ −8þ 4

α2
. Thus

one expects both bosonic and fermionic excitations to be
gapped at strong coupling. Furthermore, this strong-
coupling expansion suggests that the mechanism of
dynamical mass generation in this model corresponds to
the condensation of a bilinear formed from the original
elementary fermions ψa and a composite three-fermion
state Ψa ¼ ϵabcdψ

bψcψd that transforms in the complex
conjugate representation of the SUð4Þ symmetry. Clearly
this is a nonperturbative phenomenon invisible in weak-
coupling perturbation theory.
The weak- and strong-coupling phases must be separated

by at least one phase transition. Previous work with similar
lattice Higgs–Yukawa models employing staggered or
naive fermions had revealed such a PMS phase in a variety
of models. However such studies also typically revealed the
presence of a third, intermediate phase in which the
symmetries of the system were spontaneously broken by
the formation of a bilinear fermion condensate [1–3]. In
these earlier studies this intermediate phase was separated
from the weak- and strong-coupling regimes by first-order
phase transitions. One of the goals of the current work is to
ascertain whether such bilinear condensates appear at
intermediate coupling in the current model.

IV. AUXILIARY FIELD REPRESENTATION

We follow the standard strategy and rewrite the original
action [Eq. (1)] in a new form quadratic in the fermions but
including an auxiliary real scalar field. In our case this
auxiliary field σþab is an antisymmetric matrix in the internal
space and possesses an important self-dual property as
described below. This transformation preserves the free
energy up to a constant,

S ¼
X
x;μ

ψa½η:Δδab þ Gσþab�ψb þ 1

4
ðσþabÞ2; ð11Þ

where

3One might have imagined that there are additional contribu-
tions arising from sites x� μ̂� ν̂ but these in fact cancel due to
the staggered fermion phases.
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σþab ¼ Pþ
abcdσcd ¼

1

2

�
σab þ

1

2
ϵabcdσcd

�
ð12Þ

and we have introduced the projectors

P�
abcd ¼

1

2

�
δacδbd �

1

2
ϵabcd

�
: ð13Þ

In principle one can now integrate over the fermions to
produce a Pfaffian PfðMÞ where the fermion operator M is
given by

M ¼ η:ΔþGσþ: ð14Þ

Rather remarkably, one can show that the Pfaffian of this
operator is in fact positive semidefinite. To see this consider
the associated eigenvalue equation

ðη:Δþ GσþÞψ ¼ λψ : ð15Þ

Since the operator is real and antisymmetric the eigenvalues
ofM are pure imaginary and come in pairs iλ and −iλ. Sign
changes in the Pfaffian would then correspond to an odd
number of eigenvalues passing through the origin as the
field σþ varies. But in our case we can show that all
eigenvalues are doubly degenerate, so no sign change is
possible.
This degeneracy stems from the fact that M is invariant

under a set of SUð2Þ transformations that form a subgroup
of the SOð4Þ symmetry of the auxiliary field representation
with SOð4Þ≃ SUð2Þ × SUð2Þ. While the fermion trans-
forms as a doublet under each of these SUð2Þ s, the
auxiliary σþ is a singlet under one of them.4 Since the
fermion operator is invariant under this SUð2Þ its eigen-
values are doubly degenerate. This conclusion has been
checked numerically and guarantees positivity of the
Pfaffian. It is of crucial importance for our later numerical
work since it is equivalent to the statement that the system
does not suffer from a sign problem—we can replace
PfðMÞ → det

1
4 ðMM†Þ.

V. PHASE DIAGRAM

To probe the phase structure of the theory we first
examine the square of the auxiliary field 1

4
σ2þ ¼

1
2

P
a<bðσabþ Þ2, which serves as a proxy for a four-fermion

condensate and can be computed analytically in the limits
G → 0 and G → ∞. Consider the modified action

SðG; βÞ ¼
X β

4
σ2þ þ

X
ψðη:Δþ GσþÞψ : ð16Þ

Clearly

�
1

4
σ2þ

�
¼ −

1

V
∂ lnZðG; βÞ

∂β : ð17Þ

Rescaling σþ by 1=
ffiffiffi
β

p
allows us to write the partition

function ZðG; βÞ as

ZðG; βÞ ¼
Z

Dσþ

Z
Dψe−S ¼ β−3V=2Z

�
Gffiffiffi
β

p ; 1

�

where we have exploited the antisymmetric self-dual
character of σþ by allowing for just three independent σ
integrations at each lattice site. Thus

�
1

4
σ2þ

�
¼ 3

2β
−
1

V

∂ lnZ
	

Gffiffi
β

p ; 1



∂β : ð18Þ

Integrating over the fermions yields

Z

�
Gffiffiffi
β

p ; 1

�
¼

Z
DσþPf

�
η:Δþ Gffiffiffi

β
p σþ

�
e−

1
4
σ2þ : ð19Þ

For G ¼ 0 the partition function is β independent, while its
β dependence is simply β−V in the strong-coupling limit
[Eq. (5)]. Using these results and setting β ¼ 1 gives

�
1

4
σ2þ

�
¼

�
3=2 as G → 0

5=2 as G → ∞:
ð20Þ

In practice we simulate the full antisymmetric σ field which
allows us to monitor the VEVof the anti-self-dual compo-
nent σ− also. Since this component does not couple to the
fermions we expect h1

4
σ2−i ¼ 3=2 independent of G.

Our numerical results for h1
4
σ2�i − 3

2
shown in Fig. 1 are

consistent with these predictions. The observed behavior of
σ2þ appears to interpolate smoothly between the weak- and
strong-coupling limits of Eq. (20), while σ2− shows no
dependence on G as expected. There are no signs of first-
order phase transitions and, indeed, on L4 lattices with
L > 4 the observed finite-volume effects are small. In our
simulations we have employed thermal boundary condi-
tions: the fermions wrapping the temporal direction pick
up a minus sign. This has the merit of removing an
exact fermion zero mode arising at G ¼ 0 and preserves
all symmetries of the system.5

The transition from weakly coupled free fields to
strongly coupled four-fermion condensates is most clearly
seen by plotting a susceptibility defined by

4σ− is a singlet under the other SUð2Þ—this is just the standard
representation theory of SOð4Þ.

5This corrects a comment in our earlier paper [10], which
stated that thermal boundary conditions break the shift sym-
metries. We thank Shailesh Chandrasekharan for the correction.
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χ ¼ 1

V

X
x;y;a;b

hψaðxÞψbðxÞψaðyÞψbðyÞi: ð21Þ

Using Wick’s theorem this can be written as sums of
products of fermion propagators. We group these into
connected and disconnected contributions

χconn ¼
1

V

X
x;y

½hψaðxÞψaðyÞihψbðxÞψbðyÞi

− hψaðxÞψbðyÞihψbðxÞψaðyÞi� ð22Þ

χdis ¼
1

V

�X
x
hψaðxÞψbðxÞi

�
2

; ð23Þ

respectively. The disconnected contribution χdis should
vanish by symmetry in finite volume, and we have verified
that this is indeed the case: see Fig. 2 in which we plot the
bilinear expectation value that is responsible for χdis. As
expected it is statistically consistent with zero for all values
of the four-fermi coupling. If one assumes a nonzero VEV
consistent with the error bars one can easily see that the
corresponding disconnected susceptibility χdis < 0.1 for
all G.

This is much smaller than the connected contribution
χconn, the logarithm of which we plot in Fig. 3. The fermion
propagators used in this measurement were obtained by
inverting the fermion operator on 16 point sources located
at ðp1; p2; p3; p4Þ with pi ∈ f0; L=2g on each configura-
tion and subsequently averaging the results over the
Monte Carlo ensemble. A well-defined peak that scales
rapidly with increasing volume is seen centered around
Gc ≈ 1.05. The position, width and height of this peak
agree well with those reported in [12], using the mapping
G2 ¼ 2

3
U to relate our coupling G to the coupling U

appearing in that work. This mapping requires rescaling the
fermions by a factor of

ffiffiffi
2

p
to fix the coefficient of the

kinetic term.
If we assume that the height of the connected suscep-

tibility peak scales as χmax ∼ Lγ we can estimate γ from a
log-log plot of the susceptibility versus the lattice size.
Such a plot is shown in Fig. 4. The value γ ¼ 3.8ð1Þ
extracted from a fit is in approximate agreement with the
volume scaling reported in [12] for the full susceptibility χ.
In the latter work the volume scaling is attributed to the
formation of an SUð4Þ-breaking fermion bilinear conden-
sate. However, such a condensate would be associated with

FIG. 1. h1
4
σ2�i − 3

2
vs G for L ¼ 4, 6 and 8 with vanishing

external sources [m ¼ 0 in Eq. (26)].
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FIG. 2. Site bilinear vs G for L ¼ 8 and 12 with zero external
sources.
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FIG. 3. ln χconn vs G for L ¼ 4, 6, 8 and 12 with zero external
sources.
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FIG. 4. ln χconn vs lnL at G ¼ 1.05 for zero external sources. A
least-squares fit to the power law χconn ∝ Lγ yields γ ¼ 3.8ð1Þ.
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the disconnected contribution χdis which is not included in
Fig. 3. We conclude that whatever is the reason for the
volume scaling of the susceptibility χ, it does not require
the appearance of a bilinear fermion condensate. Indeed, in
the following section we have looked carefully for the
appearance of such a condensate and see no evidence for it.
Instead, to explain the divergence of the connected

susceptibility, the system must develop long-range corre-
lations. One piece of evidence for this can be seen in Fig. 5
where we plot the logarithm of the smallest eigenvalue of
the fermion operator vs the four-fermi coupling. The
smallest eigenvalue falls rapidly in a region between G ≈
1.0–1.1 consistent with the peak seen in the connected
susceptibility.6

We can gain further insight into this issue by computing
the bosonic two-point function whose temporal sum yields
χconn,

χconn ¼
1

V

X
t

GðtÞ; ð24Þ

where

GðtÞ ¼ 1

V

X
x;y;a;b

ðhψaðxÞψaðyÞihψbðxÞψbðyÞi

− hψaðxÞψbðyÞihψbðxÞψaðyÞiÞδðxt − yt − tÞ ð25Þ
and the δ function picks out points separated by t units in
the time direction. This connected correlation functionGðtÞ
is shown in Fig. 6 for 83 × 16 lattices. The solid lines are
cosh fits and allow us to read off the mass of the bosonic
state created by operating on the vacuum with the bilinear
operator ψaðxÞψbðxÞ.

Figure 7 shows this mass as a function of the couplingG.
At strong coupling the mass rises quickly, as expected from
the strong-coupling expansion. But in the critical region
1.0 ≤ G ≤ 1.1, corresponding to the peak in the suscep-
tibility, the mass is very small and independent of G. This
structure together with the observed rather broad peak in
the susceptibility prompts one to conjecture that the system
may indeed possess a narrow intermediate phase as
reported in [12]. Where we differ from [12] is in the
question of whether such a phase is characterized by a
bilinear condensate. In the next section we study the model
with external symmetry-breaking source terms and find no
evidence of a fermion condensate formed from either
single-site or multilink bilinear operators.

VI. BILINEAR CONDENSATES AND
SPONTANEOUS SYMMETRY BREAKING

To probe the question of spontaneous symmetry break-
ing, we have augmented the action shown in Eq. (1) by

FIG. 5. 2 ln λmin vs G for L ¼ 8 and 12 with zero external
sources.

FIG. 6. Time slice–averaged correlator GðtÞ of bilinear density
for several couplings G around the critical region, on 83 × 16
lattices with zero external sources. The lines are cosh fits.

FIG. 7. Mass of the bilinear state Bab ¼ ψaψb vsG, for 83 × 16
lattices with zero external sources. Most error bars are smaller
than the symbols.

6This dramatic drop in the smallest eigenvalue is paired with a
corresponding rapid increase in the number of conjugate gradient
(CG) iterations needed to invert the fermion operator. It is this fact
that has limited the largest lattice that we can easily simulate; at
the critical point with zero external sources the L ¼ 12 lattice
requires approximately 20 000 CG iterations per solve.
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adding source terms which couple to both SUð4Þ-breaking
fermion bilinear terms and the shift-symmetry-breaking
one-link terms described in Eq. (4),

ΔS ¼
X
x;a;b

ðm1 þ ϵðxÞm2Þ½ψaðxÞψbðxÞ�þΣab

þm3

X
x;μ;a

ϵðxÞξμðxÞψaðxÞSμψaðxÞ; ð26Þ

where we choose the SUð4Þ-breaking source term

Σab ¼
�
iσ2 0

0 iσ2

�
: ð27Þ

Notice that we allow for both a regular and staggered
single-site fermion bilinear in this expression. The latter
operator breaks all the exact symmetries of the action but
appears as a rather natural mass term when the model is
rewritten in terms of two full staggered fields.7

We have additionally assumed a rotationally invariant
form of the coupling to the one-link term. The results for the
link and site bilinear VEVs from runs with m1¼m3¼0.1

and m2 ¼ 0 with varying G are shown in Fig. 8. While the
presence of the source terms clearly leads to nonzero VEVs
for the bilinears at any couplingG, these plots make it clear
that these VEVs are monotonically suppressed as one enters
the strongly coupled regime. Of course, to look for sym-
metry breaking we should fix the four-fermi coupling and
examine the behavior of these VEVs in the thermodynamic
limit as the external source is sent to zero. Since any would-
be symmetry breaking must occur in the critical regime
1.0 ≤ G ≤ 1.1 we initially fix G ¼ 1.05 while varying the
external sources.
The results of such a study are shown in Fig. 9 for

G ¼ 1.05, m1 ¼ m3 ¼ m and m2 ¼ 0. As expected the
VEVs vanish on any finite-volume system in the limit in
which the external field is sent to zero as a consequence of
the exact lattice symmetries which appear in that limit. A
signal of spontaneous symmetry breaking would be a
condensate that grows with volume for small enough
values of the external source. Such behavior would allow
for the possibility that the condensate remains finite in the
thermodynamic limit as the source is removed. This occurs,
for example, in the reduced staggered four-fermion model
studied by Ref. [19], where the signal for spontaneous
symmetry breaking via the formation of a bilinear is very
clear even on small lattices.
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FIG. 8. Site (left) and link (right) bilinears vs G for L ¼ 4, 6 and 8 with external source couplings m1 ¼ m3 ¼ 0.1 and m2 ¼ 0.

FIG. 9. Site (left) and link (right) bilinears vs m for L ¼ 6, 8 and 12 at G ¼ 1.05 with external source couplings m1 ¼ m3 ¼ m and
m2 ¼ 0.

7We thank Shailesh Chandrasekharan for pointing this out.
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The results shown in Fig. 9 are not consistent with this
scenario: the finite-volume effects are small for both the
single-site bilinear and the link bilinear for small external
sources. We conclude that our numerical results for these
particular bilinear terms are not compatible with sponta-
neous breaking of either the shift or SUð4Þ symmetries.
This conclusion extends to all couplings G < 1.05, as
illustrated by Fig. 10 for G ¼ 1. These results are strength-
ened by the calculation presented in Sec. VII, which shows
that the one-loop effective potential for the auxiliary field
σþ retains a minimum at the origin for any value of G—a
result consistent with the vanishing VEV of the single-site
bilinear examined here.
We have also examined the model in the presence of

the staggered single-site bilinear term corresponding to
m2 ¼ m3 ¼ 0.1 and m1 ¼ 0 and show the results in
Fig. 11. The VEV of the link operator in Fig. 11 is again
driven monotonically to zero with increasing coupling G
but the staggered site bilinear shows more interesting
behavior—its magnitude attains a maximum precisely in
the critical regime 1.0 ≤ G ≤ 1.1. This suggests that in
this region the system may be trying to form a staggered
bilinear condensate. Such a staggered VEV would be
invisible to an order parameter that simply averages over
the lattice sites without regard to site parity, such as the

single-site bilinear examined above. A nonzero staggered
VEV would nevertheless correspond to SUð4Þ symmetry
breaking.
Again, to see whether such a symmetry breaking pattern

occurs we have examined the volume dependence of this
staggered bilinear VEVas a function of the external source
m. The results are shown in Fig. 12. Again the volume
dependence for both the link and now the staggered site
bilinear is very weak and there is no sign that spontaneous
symmetry breaking will occur in the thermodynamic limit
as the source is removed. This conclusion is supported by
the Monte Carlo time-series plots in Fig. 13, which show
representative raw data for several of the points with small
m ≤ 0.02 in Fig. 12. For both the staggered site and link
bilinear these time series show no visible change between
the L ¼ 8 data and that for L ¼ 12.
To summarize we have examined three separate bilinear

operators—the single-site, staggered single-site and
one-link operators—for signals of nonzero symmetry-
breaking condensates and find a null result. The staggered
single-site operator is interesting as it shows the strongest
response to an external field, but even in this case there is
no evidence that it forms a condensate in the critical
region. Nevertheless, it is interesting to examine the
corresponding staggered susceptibility

FIG. 10. Site (left) and link (right) bilinears vs m for L ¼ 8 and 12 at G ¼ 1.0 with external source couplings m1 ¼ m3 ¼ m and
m2 ¼ 0.
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FIG. 11. Staggered site (left) and link (right) bilinears vs G for L ¼ 4, 8 and 12 with external source couplings m2 ¼ m3 ¼ 0.1 and
m1 ¼ 0.
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χstag ¼
1

V
ðhO2

stagi − hOstagi2Þ ð28Þ

with Ostag ¼
P

xϵðxÞ½ψ0ðxÞψ1ðxÞ�þ. This is shown in
Fig. 14 as a function of G with no external sources.

While this staggered susceptibility diverges in the same
critical regime as before it does so with a significantly
smaller exponent than the susceptibility considered earlier.
A least-squares fit to χstag ∼ Lp yields an exponent p ¼
1.55ð14Þ with a χ2=d:o:f: ¼ 1.2. Such an exponent would
correspond to a continuous transition and yields a scaling
dimension Δ ∼ 1.2 for the staggered bilinear. Of course
confidence in the value of this scaling exponent will
require the use of larger lattices than those employed in
the current study. This is underway.

VII. COLEMAN-WEINBERG EFFECTIVE
POTENTIAL

One standard way to look for spontaneous symmetry
breaking in four-fermi theories is to compute the one-loop
effective potential for the σþ field.8 After integrating over
the fermions the effective action takes the form
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FIG. 12. Staggered site (left) and link (right) bilinears vs m for L ¼ 4, 6, 8 and 12 at G ¼ 1.05 with external source couplings
m2 ¼ m3 ¼ m and m1 ¼ 0.

FIG. 13. Monte Carlo time-series plots for the staggered site (left) and link (right) bilinears for three small values ofm2 ¼ m3 ¼ 0.005,
0.01 and 0.02 (from top to bottom) with m1 ¼ 0 and G ¼ 1.05. In each case there is no visible change between the data for L ¼ 8
(dashed red lines) and L ¼ 12 (solid black lines), reflecting the very weak volume dependence of the corresponding VEVs shown
in Fig. 12.
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FIG. 14. Staggered susceptibility vs G for L ¼ 4, 8 and 12 with
zero external sources. 8We thank Jan Smit for pointing out this possibility.
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SeffðσþÞ ¼ −
1

2
Tr ln ðη:Δþ GσþÞ: ð29Þ

In a constant σþ ¼ μΣ background [Eq. (27)] we can
diagonalize the kinetic operator and exploit its real
antisymmetric character to derive the effective potential

VeffðμÞ ¼ −
1

4
tr
X
k

ðln ½iλk þGμΣ� þ ln ½−iλk þGμΣ�Þ

where tr denotes the remaining trace over SUð4Þ indices
and �iλk are eigenvalues of η:Δ. Collecting terms and
carrying out the final trace yields

VeffðμÞ ¼ −
X
k

ln½λ2k − G2μ2�

¼ Vð0Þ −
X
k

ln

�
1 −

G2μ2

λ2k

�
: ð30Þ

One can see that the effective potential is extremized at
μ ¼ 0 and it is trivial to further show that

∂2Veff

∂μ2
����
μ¼0

> 0 ð31Þ

independent of G. Thus the symmetric state μ ¼ 0 remains
a local minimum of the effective potential and the VEVof
σþ vanishes for all G—there can be no spontaneous
symmetry breaking at least in the one-loop approximation.

VIII. CONCLUSIONS

In this paper we have studied perhaps the simplest
relativistic lattice four-fermion model one can construct
comprising exactly four Grassmann degrees of freedom per
site arising from four reduced staggered fermions. We have
argued that the system will possess a symmetric gapped
phase for large four-fermi coupling but will describe eight
free massless Dirac fermions in the continuum limit at weak
coupling. For a narrow region of intermediate couplings we
have observed that the system develops long-range corre-
lations. In all the earlier work on lattice Higgs-Yukawa
theories the appearance of such long-range correlations was
associated with the appearance of an intermediate ferro-
magnetic phase characterized by a symmetry-breaking
fermion bilinear condensate. These earlier works typically
employed a scalar kinetic term with hopping parameter κ,
and sometimes also a quartic scalar coupling λ, in addition
to the scalar mass term and Yukawa interaction. Thus the
κ ¼ λ ¼ 0 line in these earlier phase diagrams would come
closest to the model described here. An example of such a
phase diagram is Fig. 1 in Ref. [5], which makes it clear that
even along the line κ ¼ 0 a ferromagnetic phase separates
the PMW and PMS phases.

In the current study we have searched for the appearance
of such bilinear symmetry-breaking condensates explicitly
by sourcing the system with a variety of fermion bilinear
mass terms and examined carefully the response of the
system as these source terms are sent to zero. The results of
our calculations are completely consistent with the absence
of bilinear condensates at all couplings. We have strength-
ened this conclusion with an analytic calculation of the one-
loop effective potential for the auxiliary field. For this
model we find that Veff is not of the symmetry-breaking
form, in agreement with the numerical results. Thus the
current model appears to exhibit quite different behavior
from those studied earlier.
One reason for the difference may be the different

fermion discretizations used in the various studies. The
naive, Wilson or regular staggered fermions employed in
the past enjoy a different set of exact lattice symmetries,
and in particular allow for symmetric single-site mass terms
that are absent for the reduced staggered fermions used
here. Although Ref. [15] also uses reduced staggered
fermions, it considers the limit λ → ∞ rather than λ ¼ 0
and employs a four-fermi term based on the square of a
one-link mass operator, which means that discrete shift
symmetries rather than continuous lattice symmetries are
broken by the formation of a condensate. Since the exact
lattice symmetries are not the same, we cannot assume that
the same critical behavior should be observed at non-zero
four-fermi coupling.
While we see no signs of a broken phase we do see

strong signs of critical behavior at intermediate coupling:
Susceptibilities associated with certain fermion four-point
functions diverge with increasing lattice size in a narrow
region of the four-fermi coupling and the mass of a certain
composite boson approaches zero. In Ref. [12] the volume
scaling of this susceptibility was interpreted as evidence for
a narrow intermediate phase with broken SUð4Þ symmetry.
This phase structure would necessarily imply the existence
of two phase transitions. Our results are compatible with
the appearance of a narrow intermediate phase, but indicate
that no symmetry-breaking bilinear condensate forms in
this regime. Given the absence of an obvious local order
parameter we remain agnostic as to whether the phase
diagram contains a narrow intermediate phase or a single
phase transition directly separating the weak- and strong-
coupling regimes. We plan further studies to test these two
possibilities.
The observed phase structure is somewhat reminiscent of

the two-dimensional Thirring model which develops a mass
gap without breaking chiral symmetry [20].9 In the two-
dimensional case the corresponding susceptibility is the
integral of the four-point function which develops power-
law scaling for strong coupling,

9We thank Simon Hands for bringing this and related papers to
our attention [21].
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hψ̄ð0Þψð0Þψ̄ðrÞψðrÞi ∼ 1

rx
ð32Þ

where x ∼ 1=Nf and Nf is the number of continuum
flavors. This model also possesses a phase transition
without an order parameter, driven by the condensation
of topological defects associated with the auxiliary field
introduced to represent the effects of the four-fermi
interaction. Of course the physics in two dimensions is
quite different from four dimensions so one must be careful
in pursuing this analogy too far. Even so, we note that the
would-be breaking pattern SUð2Þ → Uð1Þ does allow for
topological field configurations—Hopf defects—to exist in
the four-dimensional model.
There has been considerable interest in recent years

within the condensed matter community in the construction
of models in which fermions can be gapped without
breaking symmetries using carefully chosen quartic inter-
actions [13,14]. Although the condensed matter models are
constructed using Hamiltonian language and describe non-
relativistic fermions it is nevertheless intriguing that the 16
Majorana fermions they require match the 16 Majorana
fermions that are expected at weak coupling in this lattice
theory. It has been proposed that such quartic interactions
can be used in the context of domainwall fermion theories to
provide a path to achieve chiral lattice gauge theories [22–
24]. If indeed the current model avoids symmetry-breaking
phases it may be possible to revisit the original Eichten-
Preskill proposal for the construction of chiral lattice gauge
theories using strong four-fermion terms in the bulk to lift
fermion doubler modes [18,25]. However, it is not clear to
the authors how such constructions can work in detail; the
model described here uses reduced staggered rather than
Wilson or naive fermions which negates a simple tran-
scription of the four-fermion interaction appearing in this
model to those earlier constructions.
Independently of these speculations one can wonder

whether the phase transition(s) in the model described here

are evidence of new continuum limit(s) for strongly
interacting fermions in four dimensions. One must be
careful in drawing too strong a conclusion at this stage;
even if a new fixed point exists, it might not be Lorentz
invariant. Indeed, given the connection between staggered
fermions and Kähler-Dirac fermions such a scenario is
possible since the latter are invariant only under a twisted
group comprising both Lorentz and flavor symmetries [26].
In staggered approaches to QCD one can show that the
theory becomes invariant under both symmetries in the
continuum limit. However this may not be true when taking
the continuum limit in the vicinity of a strongly coupled
fixed point.
Clearly, further work, both theoretical and computa-

tional, will be required to understand these issues. On the
numerical front one will need to simulate larger systems
to improve control over finite-volume effects, determine
whether there is indeed an intermediate phase, explore its
nature and measure critical exponents more precisely. It is
possible that higher-resolution studies will reveal small
but nonzero bilinear condensates on larger volumes or
that the continuous transitions we observe will become
first order. Such future studies will likely require signifi-
cant improvements to the simulation algorithm, for
example by using deflation techniques and/or carefully
chosen preconditioners to handle the small fermion
eigenvalues.
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