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We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted
mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations
and three analysis methods to probe ground-state dominance. We evaluate both the connected and
disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop
contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the
connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and
magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the
momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon
electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well
as to other recent lattice QCD calculations.
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I. INTRODUCTION

Electromagnetic form factors probe the internal structure
of hadrons mapping their charge and magnetic distribu-
tions. The slope of the electric and magnetic form factors at
zero momentum yields the electric and magnetic root mean
square radius, while the value of the form factors at zero
momentum gives its electric charge and magnetic moment.
Extensive electron scattering experiments have been carried
out since the fifties for the precise determination of the
nucleon form factors, including recent experiments at
Jefferson Lab, MIT-Bates and Mainz. For a recent review
on electron elastic scattering experiments, see Ref. [1]. The
proton radius can also be obtained spectroscopically,
namely via the Lamb shifts of the hydrogen atom and of
muonic hydrogen [2] and via transition frequencies of
electronic and muonic deuterium. In these measurements,
including a recent experiment using muonic deuterium [3],
discrepancies are observed in the resulting proton radius
between hydrogen and deuterium and their corresponding
muonic equivalents. Whether new physics is responsible
for this discrepancy, or errors in the theoretical or exper-
imental analyses, a first principles calculation of the
electromagnetic form factors of the nucleon can provide
valuable insight. Although nucleon electromagnetic form
factors have been extensively studied in lattice QCD, most
of these studies have been carried out at higher than
physical pion masses, requiring extrapolations to the

physical point, which for the case of baryons carry a large
systematic uncertainty.
In this paper, we calculate the electromagnetic form

factors of the nucleon using an ensemble of two degenerate
light quarks (Nf ¼ 2) tuned to reproduce a pion mass of
about 130 MeV, in a volume with mπL≃ 3 [4]. We use the
twisted mass fermion action with clover improvement
[5,6]. We employ Oð105Þ measurements to reduce the
statistical errors and multiple sink-source separations to
study excited state effects using three different analyses.
We extract the momentum dependence of the electric and
magnetic Sachs form factors for both isovector and iso-
scalar combinations, i.e. for both the difference (p − n) and
sum (pþ n) of proton and neutron form factors. For the
latter, we compute the computationally demanding dis-
connected contributions and find them to be smaller than
the statistical errors of the connected contributions. To fit
the momentum dependence we use both a dipole form as
well as the z expansion [7]. From these fits, we extract the
electric and magnetic radii, as well as the magnetic
moments of the proton, the neutron and the isovector
and isoscalar combinations. For the electric root mean

squared (rms) radius of the proton we find
ffiffiffiffiffiffiffiffiffiffiffi
hr2Eip

q
¼

0.767ð25Þð21Þ fm where the first error is statistical and the
second a systematic due to excited states. Although this
value is closer to the value of 0.84087(39) fm extracted
from muonic hydrogen [3], a more complete analysis of
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systematic errors using multiple ensembles is required to
assess accurately all lattice artifacts.
The remainder of this paper is organized as follows: in

Sec. II, we provide details of the lattice setup for this
calculation, and in Sec. III, we present our results. In
Sec. IV, we compare our results with other lattice calcu-
lations and, in Sec. V, we summarize our findings and
conclude.

II. SETUP AND LATTICE PARAMETERS

A. Electromagnetic form factors

The electromagnetic form factors are extracted from the
electromagnetic nucleon matrix element given by

hNðp0; s0ÞjOV
μ jNðp; sÞi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N

ENðp⃗0ÞENðp⃗Þ

s
ūNðp0; s0ÞΛV

μ ðq2ÞuNðp; sÞ ð1Þ

with Nðp; sÞ the nucleon state of momentum p and spin s,
ENðp⃗Þ ¼ p0 its energy and mN its mass, q⃗ ¼ p⃗0 − p⃗, the
spatial momentum transfer from initial (p⃗) to final (p⃗0)
momentum, uN the nucleon spinor and OV the vector
current. In the isospin limit, where an exchange between up
and down quarks (u ↔ d) and between proton and neutron
(p ↔ n) is a symmetry, the isovector matrix element can be
related to the difference between proton and neutron form
factors as follows:

hpj 2
3
ūγμu −

1

3
d̄γμdjpi − hnj 2

3
ūγμu −

1

3
d̄γμdjni

⟶
u↔d

p↔n
hpjūγμu − d̄γμdjpi: ð2Þ

Similarly, for the isoscalar combination we have

hpj 2
3
ūγμu −

1

3
d̄γμdjpi þ hnj 2

3
ūγμu −

1

3
d̄γμdjni

⟶
u↔d

p↔n

1

3
hpjūγμuþ d̄γμdjpi: ð3Þ

We will use these relations to compare our lattice results,
obtained for the isovector and isoscalar combinations, with
the experimental data for the proton and neutron matrix
elements.
We use the symmetrized lattice conserved vector current,

OV
μ ¼ 1

2
½jμðxÞ þ jμðx − μ̂Þ�, with

jμðxÞ ¼
1

2
½ψ̄ðxþ μ̂ÞU†

μðxÞð1þ γμÞτaψðxÞ
− ψ̄ðxÞUμðxÞð1 − γμÞτaψðxþ μ̂Þ�; ð4Þ

where ψ̄ ¼ ðū; d̄Þ and τa acts in flavor space. We consider
τa ¼ τ3, the third Pauli matrix, for the isovector case, and

τa ¼ 1=3 for the isoscalar case. μ̂ is the unit vector in
direction μ and UμðxÞ is the gauge link connecting site x
with xþ μ̂. Using the conserved lattice current means that
no renormalization of the vector operator is required.
The matrix element of the vector current can be

decomposed in terms of the Dirac F1 and Pauli F2 form
factors as

ΛV
μ ðq2Þ ¼ γμF1ðq2Þ þ

iσμνqν

2mN
F2ðq2Þ: ð5Þ

F1 and F2 can also be expressed in terms of the nucleon
electric GE and magnetic GM Sachs form factors via the
relations

GEðq2Þ ¼ F1ðq2Þ þ
q2

ð2mNÞ2
F2ðq2Þ; and

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð6Þ

B. Lattice extraction of form factors

On the lattice, after Wick rotation to Euclidean time,
extraction of matrix elements requires the calculation of a
three-point correlation function shown schematically in
Fig. 1. For simplicity we will take x0 ¼ ð0⃗; 0Þ from here on.
We use sequential inversions through the sink, fixing the
sink momentum p⃗0 to zero, which constrains p⃗ ¼ −q⃗:

FIG. 1. Three-point nucleon correlation function with source at
x0, sink at xs and current insertion Oμ at xins. The connected
contribution is shown in the upper panel and the disconnected
contribution in the lower panel.
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GμðΓ; q⃗; ts; tinsÞ ¼
X
x⃗sx⃗ins

e−iq⃗:x⃗insΓαβhχ̄βNðx⃗s; tsÞj

×Oμðx⃗ins; tinsÞjχαNð0⃗; 0Þi
⟶
ts−tins→∞

tins→∞

X
ss0

ΓαβhχβN jNð0; s0Þi

× hNðp; sÞjχ̄αNihNð0; s0ÞjOμðqÞjNðp; sÞi
× e−ENðp⃗Þtinse−mNðts−tinsÞ; ð7Þ

where Γ is a matrix acting on Dirac indices α and β and χN
is the standard nucleon interpolating operator given by

χαNðx⃗; tÞ ¼ ϵabcuaαðxÞ½ub⊺ðxÞCγ5dcðxÞ�: ð8Þ

with C ¼ γ0γ2 the charge conjugation matrix. In the second
line of Eq. (7), we have inserted twice a complete set of
states with the quantum numbers of the nucleon, of which,
after assuming large time separations, only the nucleon
survives with higher energy states being exponentially
suppressed. We use Gaussian smeared point-sources
[8,9] to increase the overlap with the nucleon state with
APE smearing applied to the gauge links, with the same
parameters as in Ref. [10], tuned so as to yield a rms radius
of about 0.5 fm. These are the same parameters as in
Ref. [11], namely ðNG;αGÞ ¼ ð50; 4Þ for the Gaussian
smearing and ðNAPE; αAPEÞ ¼ ð50; 0.5Þ for the APE
smearing.
We construct an optimized ratio dividing Gμ by a

combination of two-point functions. The optimized ratio
Rμ is given by

RμðΓ; q⃗;ts;tinsÞ

¼GμðΓ; q⃗;ts;tinsÞ
Gð0⃗;tsÞ

�
Gð0⃗;tsÞGðq⃗;ts− tinsÞGð0⃗;tinsÞ
Gðq⃗;tsÞGð0⃗;ts− tinsÞGðq⃗;tinsÞ

�1
2 ð9Þ

with the two-point function given by

Gðp⃗; tÞ ¼
X
x⃗

e−ip⃗ x⃗Γαβ
0 hχ̄βNðx⃗; tÞjχαNð0⃗; 0Þi: ð10Þ

Γ0 is the unpolarized projector, Γ0 ¼ 1þγ0
4
. After taking the

large time limit, unknown overlaps and energy exponentials
cancel in the ratio, leading to the time-independent quantity
ΠμðΓ; q⃗Þ, defined via:

RμðΓ; q⃗; ts; tinsÞ ⟶
ts−tins→∞

tins→∞
ΠμðΓ; q⃗Þ: ð11Þ

Having ΠμðΓ; q⃗Þ, different combinations of current inser-
tion directions (μ) and nucleon polarizations determined by
Γ yield different expressions for the form factors [12,13].
Namely, we have

Π0ðΓ0; q⃗Þ ¼ C
EN þmN

2mN
GEðQ2Þ;

ΠiðΓ0; q⃗Þ ¼ C
qi

2mN
GEðQ2Þ;

ΠiðΓk; q⃗Þ ¼ C
ϵijkqj
2mN

GMðQ2Þ; ð12Þ

where Q2 ¼ −q2, is the Euclidean momentum transfer

squared, C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2
N

ENðENþmNÞ

q
, and the polarized projector is

given by Γk ¼ iγ5γkΓ0, and i, k ¼ 1, 2, 3.
In what follows, we will use three methods to extract Πμ

from lattice data:
(i) Plateau method. We seek to identify a range of

values of tins where the ratio Rμ is time-independent
(plateau region). We fit, within this window, Rμ to a
constant and use multiple ts values. Excited states
are considered suppressed when our result does not
change with ts.

(ii) Two-state fit method. We fit the time dependence of
the three- and two-point functions keeping contri-
butions up to the first excited state. Namely, we
truncate the two-point function of Eq. (10) keeping
only the ground and first excited states to obtain

Gðp⃗; tÞ ¼ c0ðp⃗Þe−Eðp⃗Þt½1þ c1ðp⃗Þe−ΔE1ðp⃗Þt

þOðe−ΔE2ðp⃗ÞtÞ�: ð13Þ

Similarly, the three-point function of Eq. (7) becomes

GμðΓ;q⃗;ts;tinsÞ¼aμ00ðΓ;q⃗Þe−mðts−tinsÞe−Eðq⃗Þtins

× ½1þaμ01ðΓ;q⃗Þe−ΔE1ðq⃗Þtins

þaμ10ðΓ; q⃗Þe−Δm1ðts−tinsÞ

þaμ11ðΓ; q⃗Þe−Δm1ðts−tinsÞe−ΔE1ðq⃗ Þtins

þO½minðe−Δm2ðts−tinsÞ;e−ΔE2ðq⃗ÞtinsÞ��;
ð14Þ

where ΔEkðp⃗Þ ¼ Ekðp⃗Þ − Eðp⃗Þ is the energy differ-
ence between the kth nucleon excited state and the
ground state at momentum p⃗ and m ¼ Eð0⃗Þ and
Δmk ¼ ΔEkð0⃗Þ. The desired ground state matrix
element is given by

ΠμðΓ; q⃗Þ ¼
aμ00ðΓ; q⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ð0⃗Þc0ðq⃗Þ

q : ð15Þ

In practice, we fit simultaneously the three-point
function and the finite and zeromomentum two-point
functions in a twelve parameter fit to determine m,
Eðq⃗Þ, Δm1, ΔE1ðq⃗Þ, c0ðq⃗Þ, c0ð0⃗Þ, c1ðq⃗Þ, c1ð0⃗Þ,
aμ00ðΓ; q⃗Þ, aμ01ðΓ; q⃗Þ, aμ10ðΓ; q⃗Þ and aμ11ðΓ; q⃗Þ. The
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two-point function is evaluated using the maximum
statistics available at time separation ts=a ¼ 18.

(iii) Summation method. We sum the ratio of Eq. (9) over
the insertion time-slices. From the expansion up to
first excited state of Eq. (14) one sees that a
geometric sum arises, which yields

Xts−a
tins¼a

RμðΓ; q⃗; ts; tinsÞ

⟶
ts→∞

cþ ΠμðΓ; q⃗Þts þOðtse−Δm1tsÞ: ð16Þ

The summed ratio is then fitted to a linear form and
the slope is taken as the desired matrix element. We
note that, in quoting final results, we do not use the
values extracted from summation method However,
it does provide an additional consistency check for
the plateau values.

C. Lattice setup

The simulation parameters of the ensemble we use are
tabulated in Table I. We use an Nf ¼ 2 ensemble of twisted
mass fermion configurations with clover improvement with
quarks tuned to maximal twist, yielding a pion mass of
about 130 MeV. The lattice volume is 483 × 96 and the
lattice spacing is determined at a ¼ 0.0938ð3Þ fm yielding
a physical box length of about 4.5 fm. The value of the
lattice spacing is determined using the nucleon mass, as
explained in Ref. [14]. Details of the simulation and first
results using this ensemble were presented in Refs. [4,10].
The parameters used for the calculation of the correlation

functions are given in Table II. We use increasing statistics

with increasing sink-source separation so that statistical
errors are kept approximately constant. Furthermore, as
will be discussed in Sec. III, GEðQ2Þ is found to be more
susceptible to excited states compared to GMðQ2Þ, requir-
ing larger separations for ensuring their suppression.
Therefore, we carry out sequential inversions for five
sink-source separations using the unpolarized projector
Γ0, which yields GEðQ2Þ according Eq. (12). To obtain
GMðQ2Þ, we carry out three additional sequential inver-
sions, one for each polarized projector Γk, k ¼ 1, 2, 3, for
each of the three smallest separations.

III. RESULTS

A. Analysis

1. Isovector contributions

We use the three methods, described in the previous
section, to analyze the contribution due to the excited states
and extract the desired nucleon matrix element.
We demonstrate the quality of our data and two-state fits

in Figs. 2 and 3 for the isovector contributions to GEðQ2Þ
and GMðQ2Þ, respectively, for three momentum transfers,
namely the first, second and fourth nonzero Q2 values of
our setup. In these figures, we show the ratio after the
appropriate combinations of Eq. (12) are taken to yield
either Gu−d

E ðQ2Þ or Gu−d
M ðQ2Þ. We indeed observe larger

excited state contamination in the case of Gu−d
E ðQ2Þ, which

is the reason for considering larger values of ts for this
case. We note that for fitting the plateau and summation
methods, the ratios of Eq. (9) are constructed with two- and

TABLE I. Simulation parameters of the ensemble used in this
calculation, first presented in Ref. [4]. The nucleon and pion mass
and the lattice spacing have been determined in Ref. [14].

β ¼ 2.1, cSW ¼ 1.57751, a ¼ 0.0938ð3Þ fm, r0=a ¼ 5.32ð5Þ

483 × 96, L ¼ 4.5 fm

αμ ¼ 0.0009
mπ ¼ 0.1304ð4Þ GeV

mπL ¼ 2.98ð1Þ
mN ¼ 0.932ð4Þ GeV

TABLE II. Parameters of the calculation of the form factors.
The first column shows the sink-source separations used, the
second column the sink projectors and the last column the total
statistics (Nst) obtained using Ncnf configurations times Nsrc
source-positions per configuration.

ts [a] Proj. Ncnf · Nsrc ¼ Nst

10,12,14 Γ0, Γk 578 · 16 ¼ 9248
16 Γ0 530 · 88 ¼ 46640
18 Γ0 725 · 88 ¼ 63800

FIG. 2. Ratio yielding the isovector electric Sachs form factor.
We show results for three representative Q2 values, namely the
first, second and fourth nonzeroQ2 values from top to bottom, for
ts ¼ 12a (open circles), ts ¼ 14a (filled squares), ts ¼ 16a
(filled circles) and ts ¼ 18a (filled triangles). The curves are
the results from the two-state fits, with the fainter points excluded
from the fit. The band is the form factor value extracted using the
two-state fit.
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three-point functions with the same source positions and
gauge configurations. For the two-state fit, as already
mentioned, we use the two-point correlation function at
the maximum statistics available, namely 725 configura-
tions times 88 source positions, as indicated in Table II.
These are the ratios shown in Figs. 2 and 3, which differ
from those used for the plateau fits.
The investigation of excited states is facilitated further by

Figs. 4 and 5. These plots indicate that excited state
contributions are present in Gu−d

E ðQ2Þ for the first three
sink-source separations of ts=a ¼ 10, 12 and 14 in par-
ticular for larger momentum transfer. For the two larger
sink-source separations we see convergence of the results
extracted from the plateau method, which are in agreement
with those from the summation method and the two-state
fits when the lower fit range is tlows ¼ 12a ¼ 1.1 fm. For
Gu−d

M ðQ2Þ, all results from the three sink-source separations
are in agreement and consistent with the summation and
two-state fit methods within their errors. The values
obtained at ts ¼ 18a ¼ 1.7 fm for the case of Gu−d

E ðQ2Þ
and ts ¼ 14a ¼ 1.3 fm for the case of Gu−d

M ðQ2Þ are shown
in Figs. 4 and 5 with the open symbols and associated error
band that demonstrates consistency with the values
extracted using the summation and two-state fit methods.
Our results for the isovector electric Sachs form factor

extracted using all available ts values and from the
summation and two-state fit methods are shown in
Fig. 6. On the same plot we show the curve obtained from
a parameterization of experimental data for Gp

EðQ2Þ and
Gn

EðQ2Þ according to Ref. [15], using the parameters
obtained in Ref. [16], and taking the isovector combination

Gp
EðQ2Þ −Gn

EðQ2Þ. We see that as the sink-source separa-
tion is increased, our results tend towards the experimental
curve. The results from the two-state fit method using
tlows ¼ 1.1 fm is consistent with those extracted from the
plateau for ts ¼ 1.7 fm for all Q2 values. Results extracted
using the summation method are consistent within their
large errors to those obtained from fitting the plateau
for ts ¼ 1.7 fm.

FIG. 3. Ratio yielding the isovector magnetic Sachs form factor.
We show results for three representative Q2 values, namely the
first, second and fourth nonzeroQ2 values from top to bottom, for
ts ¼ 10a (open squares), ts ¼ 12a (open circles), and ts ¼ 14a
(filled squares). The curves are the results from the two-state fits,
with the fainter points excluded from the fit. The band is the form
factor value extracted using the two-state fit.

FIG. 4. Isovector electric form factor, for four nonzero Q2

values, extracted from the plateau method (squares), the sum-
mation method (circles) and the two-state fit method (triangles).
The plateau method results are plotted as a function of the
sink-source separation while the summation and two-state fit
results are plotted as a function of tlows , i.e. of the smallest sink-
source separation included in the fit, with thighs kept fixed at
ts ¼ 18a ¼ 1.7 fm. The open square and band shows the selected
value and its statistical error used to obtain our final results.

FIG. 5. Isovector magnetic form factor. The notation is the
same as that in Fig. 4. For the summation and two-state fit
methods, the largest sink-source separation included in the fit is
kept fixed at thighs ¼ 14a ¼ 1.3 fm.
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In Fig. 7, we show our results for the isovector magnetic
form factor. We observe that excited state effects are milder
than in the case of Gu−d

E ðQ2Þ, corroborating the conclusion
drawn by observing Fig. 5. We also see agreement with the
experimental curve for Q2 values larger than ∼0.2 GeV2.
However, our lattice results underestimate the experimental
ones at the two lowest Q2 values. Excited state effects are
seen to be small for this quantity, and thus they are unlikely
to be the cause of this discrepancy given the consistency of
our results at three separations, as well as with those
extracted using the summation and the two-state fit method.
This small discrepancy could be due to suppressed pion

cloud effects, due to the finite volume, that could be more
significant at low momentum transfer. For example, a study
of the magnetic dipole form factor GM1 in the N → Δ
transition using the Sato-Lee model predicts larger pion
cloud contributions at low momentum transfer [17]. Lattice
QCD computations also observe a discrepancy at lower Q2

for GM1 when compared to experiment [18]. Analysis on a
larger volume is ongoing to investigate volume effects not
only in GMðQ2Þ but also for other nucleon matrix elements
and the results will be reported in subsequent publications.
Our results for the form factors at all sink-source separa-
tions and using the summation and two-state fit methods
are included in Appendix A in Tables VIII–XI. Preliminary
results for the isovector electromagnetic form factors have
been presented for this ensemble in Refs. [19,20].

2. Isoscalar contributions

We perform a similar analysis for the isoscalar contri-
butions, denoted by Guþd

E ðQ2Þ and Guþd
M ðQ2Þ. As men-

tioned, we use the combination ðuþ dÞ=3 in the matrix
element for the isoscalar such that it yields Guþd

E;MðQ2Þ ¼
Gp

E;MðQ2Þ þ Gn
E;MðQ2Þ. Having also the isovector combi-

nation Gu−d
E;MðQ2Þ ¼ Gp

E;MðQ2Þ − Gn
E;MðQ2Þ the individual

proton and neutron form factors can be extracted. While
isovector matrix elements receive no disconnected contri-
butions since they cancel in the isospin limit, the isoscalar
form factors do include disconnected fermion loops, shown
schematically in Fig. 1. These disconnected contributions
are included for the first time here at the physical point to
obtain the isoscalar form factors.
The connected isoscalar three-point function is com-

puted using the same procedure as in the isovector case. We
show results for the connected contribution to Guþd

E ðQ2Þ
and Guþd

M ðQ2Þ in Figs. 8 and 9, respectively. These results
are for the same momentum transfer values as used in
Figs. 4 and 5. In the case of the isoscalar electric form
factor, we observe contributions due to excited states that
are similar to those observed for the isovector case.
Namely, we find that a separation of about ts ¼ 1.7 fm
is required for their suppression. For the isoscalar magnetic
form factor, we observe that the values extracted from
fitting the plateau at time separations ts ¼ 1.1 fm and ts ¼
1.3 fm are consistent and also in agreement with the values
extracted using the two-state fit and summation methods.
The disconnected diagrams of the electromagnetic form

factors are particularly susceptible to statistical fluctua-
tions, even at larger pion masses of 370 MeVas reported in
Refs. [21,22]. Here we show results, at the physical pion
mass, for the disconnected contribution to Guþd

E ðQ2Þ and
Guþd

M ðQ2Þ in Fig. 10 for the first nonzero momentum
transfer. The results are obtained using the same ensemble
used for the connected contributions, detailed in Table I,
using 2120 configurations, with two-point functions com-
puted on 100 randomly chosen source positions per

FIG. 7. Isovector magnetic Sachs form factor as a function of
the momentum transfer squared. The notation is the same as that
of Fig. 6.

FIG. 6. Isovector electric Sachs form factor as a function of the
momentum transfer squared (Q2). Symbols for the plateau
method follow the notation of Figs. 2 and 3. Results from the
summation method are shown with open diamonds and for the
two-state fit method with the crosses. The solid line shows
Gp

EðQ2Þ − Gn
EðQ2Þ using Kelly’s parameterization of the exper-

imental data [15] with parameters taken from Alberico et al. [16].
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configuration. 2250 stochastic noise vectors are used for
estimating the fermion loop. Averaging the proton and
neutron two-point functions and the forward and back-
wards propagating nucleons yields a total of 8 × 105

statistics. More details of this calculation are presented
in Ref. [23], where results for the axial form factors
are shown.
In the case of the electric form factor, we obtain

Guþd;disc
E ðQ2 ¼ 0.074 GeV2Þ ¼ −0.002ð3Þ, which is con-

sistent with zero and about 0.2% of the value of the
connected contribution and four times smaller than its
statistical error. For the magnetic form factor, fitting to
the plateau we obtain Guþd;disc

M ðQ2 ¼ 0.074 GeV2Þ ¼
−0.016ð7Þ which is 2% of the value of the connected
contribution at this Q2 and half the value of the statistical

error. These values are consistent with a dedicated study of
the disconnected contributions using an ensemble of clover
fermions with pion mass of 317 MeV [24] and a recent
result at the physical point presented in Ref. [25]. There it
was shown that Guþd;disc

M ðQ2Þ is negative and largest in
magnitude at Q2 ¼ 0 while Guþd;disc

E ðQ2Þ is largest at
around Q2 ¼ 0.4 GeV2. In our case, at our largest momen-
tum transfer, we find Guþd;disc

E ðQ2 ¼ 0.280 GeV2Þ ¼
−0.0056ð40Þ, which is 1% of the value of the connected
contribution at this momentum transfer and smaller than
the associated statistical error. Investigation of methods
for increasing the precision at the physical point is
ongoing, with preliminary results presented in Ref. [26]
for the ensemble used here, and will be reported in a
separate work.
We show our results for the connected contribution

to the isoscalar electric and magnetic form factors in
Figs. 11 and 12 extracted from the plateau method
for all available sink-source separations, and from the

FIG. 9. Connected contribution to the Guþd
M ðQ2Þ form factor.

The notation is the same as in Fig. 5.

FIG. 10. Disconnected contribution to the electric (upper panel)
and magnetic (lower panel) isoscalar Sachs form factors for sink-
source separation ts ¼ 8a ¼ 0.75 fm (inverted triangles) and
ts ¼ 10a ¼ 0.94 fm (squares) for the first nonzero momentum
transfer of Q2 ¼ 0.074 GeV2. The horizontal bands show the
values obtained after fitting with the plateau method to the results
at ts ¼ 10a ¼ 0.94 fm.

FIG. 8. Connected contribution to the Guþd
E ðQ2Þ form factor,

for four nonzero Q2 values, extracted from the plateau method
(squares), the summation method (filled circles) and the two-state
fit method (filled triangles). The notation is the same as in Fig. 4.
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summation and the two-state fit methods. The isoscalar
electric form factor tends to decrease as the sink-source
separation increases approaching the experimental param-
eterization. This may indicate residual excited state effects,
that need to be further investigated by going to larger time
separations. For the isoscalar magnetic form factor, we
observe a weaker dependence on ts pointing to less severe
excited state effects.

B. Q2 dependence of the form factors

1. Isovector and isoscalar form factors

We fit GEðQ2Þ and GMðQ2Þ to both a dipole ansatz
and the z-expansion form. The truncated z expansion is

expected to model better the low-Q2 [7] dependence of the
form factors, while the dipole form is motivated by vector-
meson pole contributions to the form factors [27]. For the
case of the dipole fits, we use

GiðQ2Þ ¼ Gið0Þ
ð1þ Q2

M2
i
Þ2
; ð17Þ

with i ¼ E, M, allowing both GMð0Þ and MM to vary for
the case of magnetic form factor, while constraining
GEð0Þ ¼ 1 for the case of the electric form factor. For
the z expansion, we use the form [7]

GiðQ2Þ ¼
Xkmax

k¼0

aikz
k; where z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
þ ffiffiffiffiffiffi

tcut
p ð18Þ

and take tcut ¼ 4m2
π. For both isovector and isoscalar

GEðQ2Þ we fix aE0 ¼ 1 while for GMðQ2Þ we allow all
parameters to vary. We use Gaussian priors for aik for k ≥ 2

with width w ¼ 5maxðjai0j; jai1jÞ as proposed in Ref. [28].
We observe larger errors when fitting with the z expansion
compared to the dipole form. In Fig. 13, we show aM0 and
aM1 from fits to the magnetic isovector form factor and aE1
from fits to the electric as a function of kmax and observe no
significant change in the fitted parameters beyond kmax ≥ 2.
We also note that the resulting values for aik for k ≥ 2

obtained are well within the Gaussian priors, i.e.
jaikj ≪ 5maxðjai0j; jai1jÞ. We, therefore, quote results using
kmax ¼ 2 from here on.
Fits to the Q2 dependence of Gu−d

E ðQ2Þ are shown in
Fig. 14 using the values extracted from the plateau at
ts ¼ 18a ¼ 1.7 fm. The line and error band are the result of
fitting to either dipole or the z expansion for all available
Q2 values. Both the dipole and z-expansion form describe
the lattice QCD results well. In this plot, we also show
results from experiment, using data for Gp

EðQ2Þ obtained

FIG. 11. Connected contribution to the isoscalar electric Sachs
form factor as a function of the momentum transfer, using the
notation of Fig. 11. The solid line shows Gp

EðQ2Þ þ Gn
EðQ2Þ

using the Kelly parameterization of experimental data from
Ref. [15] with parameters taken from Alberico et al. [16].

FIG. 12. Connected contribution to the isoscalar magnetic
Sachs form factor as a function of the momentum transfer.
The notation is the same as in Fig. 11.

FIG. 13. Results from fitting using the z expansion as a function
of kmax for aE1 (lower panel), aM1 (center panel) and aM0 (top panel)
of Eq. (18).
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from Ref. [29] and data for Gn
EðQ2Þ from Refs. [30–44]. To

subtract the two form factors and obtain the isovector
combination, we linearly interpolate the more accurate
experimental data of Gp

EðQ2Þ to the Q2 values for which
Gn

EðQ2Þ is available.
For both the dipole and z-expansion fit, the resulting

curve lies about one standard deviation above the exper-
imental data. This small discrepancy may be due to small
residual excited state effects, which would require signifi-
cant increase of statistics at larger sink-source separations
to identify. Having only performed the calculation using
one ensemble we cannot check directly for finite volume
and cutoff effects. However, in a previous study employing
Nf ¼ 2 twisted mass fermions at heavier than physical pion
masses and three values of the lattice spacing, we found no
detectable cutoff effects in these quantities for a lattice
spacing similar to the one used here [13]. We have also
performed a volume assessment using the aforementioned
heavier mass twisted mass ensembles with mπL values
ranging from 3.27 to 5.28. Namely, we found no volume
dependence within our statistical accuracy between two
ensembles withmπL ¼ 3.27 andmπL ¼ 4.28, respectively,
and similar pion mass of mπ ≃ 300 MeV. We plan to carry
out a high accuracy analysis of the volume dependence at
the physical point on a lattice size of 643 × 128 keeping the
other parameters fixed in a forthcoming publication.
The same analysis carried out for Gu−d

E ðQ2Þ is also
performed for Gu−d

M ðQ2Þ in Fig. 15, where we use the result
from fitting to the plateau at the largest sink-source
separation available, namely ts ¼ 14a ¼ 1.3 fm. As for
the case of Gu−d

E ðQ2Þ, both the dipole ansatz and z
expansion describe well the lattice QCD data. The plots

show two bands, one when including all Q2 values,
resulting in the smaller error band, and one in which the
first twoQ2 values are omitted, resulting in the larger band.
The experimental data shown are obtained using Gp

MðQ2Þ
from the same experiment as for Gp

EðQ2Þ shown in Fig. 14,
namely Ref. [29], and Gn

MðQ2Þ from Refs. [45–50].
In both the dipole and z-expansion fits of Gu−d

M ðQ2Þ, we
find that the Q2 dependence is consistent with experiment
after Q2 ≃ 0.2 GeV2. We suspect that the deviation at the
two smallest Q2 values is due to finite volume effects. As
already mentioned, we plan to further investigate this using
an ensemble of Nf ¼ 2 twisted mass fermions on a larger
volume of 643 × 128. As can be seen, discarding the two
lowest Q2 values results in a larger error for Gu−d

M ð0Þ, in
particular in the case of the z expansion.
We show the momentum dependence of the discon-

nected contribution to Guþd
M ðQ2Þ in Fig. 16. The large

errors do not permit as thorough analysis as for the
connected contribution. Since the disconnected isoscalar
contributions do not follow a dipole form, and in the
absence of any theoretically motivated form for the dis-
connected contributions, we use a z-expansion fit with
kmax ¼ 2, fixing a0 ¼ 0 for Guþd;disc

E ðQ2Þ and with
kmax ¼ 1, allowing both a0 and a1 to vary. For the case
of Guþd;disc

E ðQ2Þ we find results consistent with zero. For
the magnetic case, the disconnected contribution decreases
the form factor by at most 3% at Q2 ¼ 0.
We add connected and disconnected contributions to

obtain the isoscalar contributions shown in Figs. 17 and 18.
There are small discrepancies between our lattice data and

FIG. 15. Isovector magnetic Sachs form factor as a function of
the momentum transfer extracted from the plateau method at
ts ¼ 14a ¼ 1.3 fm (squares). We show fits using the dipole form
(left) and the z expansion (right). The smaller error band
corresponds to fitting to all Q2 values, while the larger band
is obtained after omitting the two smallest values. The black
points are obtained using experimental data for Gp

MðQ2Þ from
Ref. [29] and for Gn

MðQ2Þ from Refs. [45–50].

FIG. 14. Isovector electric Sachs form factor as a function of the
momentum transfer extracted from the plateau method at ts ¼
18a ¼ 1.7 fm (triangles). We show fits using the dipole form
(left) and the z expansion (right). The black points are obtained
using experimental data for Gp

EðQ2Þ from Ref. [29] and for
Gn

EðQ2Þ from Refs. [30–44].

NUCLEON ELECTROMAGNETIC FORM FACTORS USING … PHYSICAL REVIEW D 96, 034503 (2017)

034503-9



experiment at larger Q2 values. Whether these are due to
volume effects or other lattice artifacts will be investigated
in a follow-up study.
The slope of the form factors at Q2 ¼ 0 is related to the

isovector electric and magnetic radius as follows,

∂
∂Q2

GiðQ2ÞjQ2¼0 ¼ −
1

6
Gið0Þhr2i i; ð19Þ

with i ¼ E, M for the electric and magnetic form factors,
respectively. For the z expansion, this is given by

hr2i i ¼ −
6

4tcut

ai1
ai0

ð20Þ

and for the dipole fit

hr2i i ¼
12

M2
i
: ð21Þ

Furthermore, the nucleon magnetic moment is defined as
μ ¼ GMð0Þ and is obtained directly from the fitted param-
eter in both cases. As for the form factors, we will denote
the isovector radii and magnetic moment with the u − d
superscript and for the isoscalar with uþ d. We tabulate
our results for the isovector radii and magnetic moment
from both the dipole and z-expansion fits in Tables III and

FIG. 16. Disconnected contribution to the isoscalar magnetic
Sachs form factor as a function of the momentum transfer for
ts ¼ 8a ¼ 0.7 fm (inverted triangles) and ts ¼ 10a ¼ 0.9 fm
(squares). The bands show fits to the z-expansion form
with kmax ¼ 1.

FIG. 17. Isoscalar electric Sachs form factor with fits to the
dipole form (left) and to the z expansion (right). We show with
triangles the sum of connected and disconnected contributions,
with the plateau result for ts ¼ 18a ¼ 1.7 fm for the connected
and for ts ¼ 10a ¼ 0.9 fm for the disconnected. The black points
show experiment using the same data as for Fig. 14.

FIG. 18. Isoscalar magnetic Sachs form factor with fits to the
dipole form (left) and to the z expansion (right). We show with
triangles the sum of connected and disconnected contributions,
with the plateau result for ts ¼ 14a ¼ 1.3 fm for the connected
and for ts ¼ 10a ¼ 0.9 fm for the disconnected. The black points
show experiment using the same data as for Fig. 15.

TABLE III. Results for the isovector electric charge radius of
the nucleon (hr2Eiu−d) from fits to Gu−d

E ðQ2Þ. In the first column,
we show ts for the plateau method and the ts fit range for the
summation and two-state fit methods.

Dipole z expansion
ts [fm] hr2Eiu−d [fm2] χ2

dof
hr2Eiu−d [fm2] χ2

dof

Plateau
0.94 0.523(08) 2.0 0.562(19) 1.2
1.13 0.562(14) 1.9 0.677(37) 0.7
1.31 0.580(26) 1.2 0.718(75) 0.7
1.50 0.666(33) 0.9 0.61(10) 0.3
1.69 0.653(48) 0.6 0.52(14) 0.2

Summation
0.9–1.7 0.744(55) 0.3 0.79(14) 0.2

Two-state
1.1–1.7 0.623(33) 1.0 0.56(10) 0.8
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IV, and from fits to the isoscalar form factors in Tables V
and VI. For the isoscalar results shown in Tables V and VI,
we show two results for each case, namely the result of
fitting only the connected contribution in the first column of

each case and the total contribution, by combining con-
nected and disconnected, in the second column.
For our final result for the isovector electric charge

radius, we use the central value and statistical error of the
result from the plateau method at ts ¼ 18a ¼ 1.7 fm using
a dipole fit to all Q2 values. We also include a systematic
error from the difference of the central values when
comparing with the two-state fit method to account for
excited states effects. Similarly, for the magnetic radius and
moment, we take the result from the dipole fits to our
largest sink-source separation, which for this case is ts ¼
14a ¼ 1.31 fm and as in the case of the electric charge
radius, we take the difference with the two-state fit method
as an additional systematic error. In this case, the values at
the two lowest momenta are not included in the fit. Our
final values for the isovector radii and isovector nucleon
magnetic moment are:

hr2Eiu−d ¼ 0.653ð48Þð30Þ fm2;

hr2Miu−d ¼ 0.536ð52Þð66Þ fm2; and

μu−d ¼ 4.02ð21Þð28Þ; ð22Þ

where the first error is statistical and the second error is a
systematic obtained when comparing the plateau method to
the two-state fit method as a measure of excited state
effects. For the isoscalar radii and moment we follow a

TABLE IV. Results for the isovector magnetic charge radius of
the nucleon (hr2Miu−d) and the isovector magnetic moment
GMð0Þ ¼ μu−d from fits to Gu−d

M ðQ2Þ. In the first column, we
show ts for the plateau method and the ts fit range for the
summation and two-state fit methods. The two smallestQ2 values
are omitted from the fit.

Dipole z expansion

ts [fm] hr2Miu−d [fm2] χ2

d:o:f hr2Miu−d [fm2] χ2

d:o:f

Plateau
0.94 0.404(10) 0.3 0.59(13) 0.3
1.13 0.434(22) 0.3 0.82(23) 0.3
1.31 0.536(52) 0.3 0.79(40) 0.3

Summation
0.9-1.3 68(16) 0.1 1.83(49) 0.1

Two-state
0.9-1.3 0.470(31) 0.3 1.15(25) 0.3

Dipole z expansion

ts [fm] Gu−d
M ð0Þ χ2

d:o:f
Gu−d

M ð0Þ χ2

d:o:f

Plateau
0.94 3.548(52) 0.3 3.85(16) 0.3
1.13 3.595(90) 0.3 4.13(31) 0.3
1.31 4.02(21) 0.3 4.31(57) 0.3

Summation
0.9-1.3 4.32(57) 0.1 6.35(1.35) 0.1

Two-state
0.9-1.3 3.74(14) 0.3 4.71(42) 0.3

TABLE V. Results for the isoscalar electric charge radius of the
nucleon (hr2Eiuþd). In the first column, we show ts for the plateau
method and the ts fit range for the summation and two-state fit
methods. For each ts and for each fit ansatz, we give the result
from fitting to the connected contribution in the first column and
to the total contribution of connected plus disconnected in the
second column.

Dipole z expansion
hr2Eiuþd [fm2] hr2Eiuþd [fm2]

ts [fm] Connected Total χ2

d:o:f Connected Total χ2

d:o:f

Plateau
0.94 0.440(3) 0.449(49) 4.5 0.418(9) 0.427(49) 0.9
1.13 0.469(6) 0.478(49) 1.9 0.464(17) 0.474(52) 0.7
1.31 0.494(12) 0.503(50) 0.9 0.485(34) 0.495(59) 0.5
1.50 0.502(14) 0.512(50) 0.3 0.494(41) 0.503(63) 0.4
1.69 0.527(22) 0.537(53) 0.9 0.493(60) 0.503(77) 0.8

Summation
0.9–1.7 0.565(20) 0.576(53) 0.9 0.555(54) 0.564(72) 0.6

Two-state
1.1–1.7 0.490(16) 0.499(51) 0.5 0.453(77) 0.462(91) 0.7

TABLE VI. Results for the isoscalar magnetic charge radius of
the nucleon (hr2Miuþd) and the isoscalar magnetic moment
Guþd

M ð0Þ. The notation is as in Table V.

Dipole z expansion
hr2Miuþd [fm2] hr2Miuþd [fm2]

ts [fm] Connected Total χ2

d:o:f Connected Total χ2

d:o:f

Plateau
0.94 0.392(13) 0.302(34) 0.2 0.41(19) 0.32(20) 0.2
1.13 0.419(29) 0.329(47) 0.1 0.84(28) 0.78(32) 0.1
1.31 0.476(59) 0.394(82) 0.4 0.4(1.0) 0.4(1.1) 0.5

Summation
0.9–1.3 0.50(18) 0.42(24) 0.2 1.94(92) 2.0(1.3) 0.2

Two-state
0.9–1.3 0.439(44) 0.353(65) 0.2 0.89(47) 0.83(52) 0.2

Dipole z expansion
Guþd

M ð0Þ Guþd
M ð0Þ

ts [fm] Connected Total χ2

d:o:f Connected Total χ2

d:o:f

Plateau
0.94 0.838(16) 0.808(18) 0.2 0.867(50) 0.837(50) 0.2
1.13 0.841(29) 0.811(30) 0.1 0.981(90) 0.951(90) 0.1
1.31 0.900(59) 0.870(60) 0.4 0.90(19) 0.87(19) 0.5

Summation
0.9–1.3 0.88(16) 0.85(16) 0.2 1.51(45) 1.48(45) 0.2

Two-state
0.9–1.3 0.861(47) 0.831(48) 0.2 1.01(14) 0.98(14) 0.2

NUCLEON ELECTROMAGNETIC FORM FACTORS USING … PHYSICAL REVIEW D 96, 034503 (2017)

034503-11



similar analysis after adding the disconnected contribution
from the plateau method for ts ¼ 10a ¼ 0.9 fm. We obtain

hr2Eiuþd ¼ 0.537ð53Þð38Þ fm2;

hr2Miuþd ¼ 0.394ð82Þð42Þ fm2; and

μuþd ¼ 0.870ð60Þð39Þ: ð23Þ

C. Proton and neutron form factors

Having the isovector and isoscalar contributions to the
form factors, we can obtain the proton (GpðQ2Þ) and
neutron (GnðQ2Þ) form factors via linear combinations
taken from Eqs. (2) and (3) assuming isospin symmetry
between up and down quarks and proton and neutron.
Namely, we have:

GpðQ2Þ ¼ 1

2
½GuþdðQ2Þ þ Gu−dðQ2Þ�

GnðQ2Þ ¼ 1

2
½GuþdðQ2Þ − Gu−dðQ2Þ� ð24Þ

where GpðQ2Þ (GnðQ2Þ) is either the electric or magnetic
proton (neutron) form factor. In Figs. 19 and 20, we show
results for the proton electric and magnetic Sachs form
factors, respectively. As for the isoscalar case, the dis-
connected contributions have been included. The bands are
from fits to the dipole form of Eq. (17). In these plots, we
compare to experimental results from the A1 collaboration
[29]. We observe a similar behavior when comparing to
experiment as for the case of the isovector form factors.
Namely, the dipole fit to the lattice data has a smaller slope
for small values of Q2 as compared to experiment, while

Gp
MðQ2Þ reproduces the experimental momentum depend-

ence for Q2 > 0.2 GeV2.
In Figs. 21 and 22, we show the same for the neutron

form factors. For the neutron electric form factor we fit to
the form [15]:

Gn
EðQ2Þ ¼ τA

1þ τB
1

ð1þ Q2

Λ2Þ2
ð25Þ

FIG. 19. Proton electric Sachs form factor as a function of the
momentum transfer. We show with triangles the sum of con-
nected and disconnected contributions, with the plateau result for
ts ¼ 18a ¼ 1.7 fm for the connected and for ts ¼ 10a ¼ 0.9 fm
for the disconnected. The band is a fit to the dipole form. The
black points show experimental data from Ref. [29].

FIG. 20. Proton magnetic Sachs form factor as a function of the
momentum transfer. We show with squares the sum of connected
and disconnected contributions, with the plateau result for ts ¼
14a ¼ 1.3 fm for the connected and for ts ¼ 10a ¼ 0.9 fm for
the disconnected. The band is a fit to the dipole form. The black
points show experimental data from Ref. [29].

FIG. 21. Neutron electric Sachs form factor as a function of the
momentum transfer. Triangles are from the sum of connected and
disconnected contributions, with the plateau result for ts ¼
18a ¼ 1.7 fm for the connected and for ts ¼ 10a ¼ 0.9 fm for
the disconnected. The band is a fit to the form of Eq. (25).
Experimental data are shown with the black points, obtained from
Refs. [30–44].
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with τ ¼ Q2=ð2mNÞ2 and Λ2 ¼ 0.71 GeV2 and allow A
and B to vary. This ansatz reproduces our data well. We
compare to a collection of experimental data from
Refs. [30–44]. For Gn

MðQ2Þ, we agree with the experimen-
tal data for Q2 > 0.2 GeV2, however we underestimate the
magnetic moment by about 20%. Experimental data for
Gn

MðQ2Þ shown in Fig. 22 are taken from Refs. [45–50].
We use Eq. (19) to obtain the radii using the dipole fits.

For the case of Gn
EðQ2Þ, the neutron electric radius is

obtained via: hr2Ein ¼ − 3A
2m2

N
, where A is the parameter of

Eq. (25). In all cases, we have combined connected and
disconnected. We obtain:

hr2Eip ¼ 0.589ð39Þð33Þ fm2;

hr2Mip ¼ 0.506ð51Þð42Þ fm2; and

μp ¼ 2.44ð13Þð14Þ; ð26Þ

for the proton, and:

hr2Ein ¼ −0.038ð34Þð6Þ fm2;

hr2Min ¼ 0.586ð58Þð75Þ fm2; and

μn ¼ −1.58ð9Þð12Þ; ð27Þ

for the neutron, where as in the case of the isoscalar and
isovector, the first error is statistical and the second is a
systematic obtained when comparing the plateau method to
the two-state fit method as a measure of excited state
effects.

IV. COMPARISON WITH OTHER RESULTS

A. Comparison of isovector and isoscalar
form factors

Recent lattice calculations for the electromagnetic form
factors of the nucleon include an analysis from the Mainz
group [51] using Nf ¼ 2 clover fermions down to a pion
mass of 193 MeV, results from the PNDME collaboration
[52] using clover valence fermions on Nf ¼ 2þ 1þ 1
HISQ sea quarks down to pion mass of ∼220 MeV and
Nf ¼ 2þ 1þ 1 results from the ETM collaboration down
to 213 MeV pion mass [53]. Simulations directly at the
physical point have only been possible recently. The LHPC
has published results in Ref. [54] using Nf ¼ 2þ 1 HEX
smeared clover fermions, which include an ensemble with
mπ ¼ 149 MeV. Preliminary results for electromagnetic
nucleon form factors at physical or near physical pion
masses have also been reported by the PNDME collabo-
ration in Ref. [55] using clover valence quarks on HISQ sea
quarks at a pion mass of 130 MeV and by the RBC/
UKQCD collaboration using Domain Wall fermions at
mπ ¼ 172 MeV in Ref. [56].
In Fig. 23, we compare our results forGu−d

E ðQ2Þ from the
plateau method using ts ¼ 18a ¼ 1.7 fm to published
results. We show results from Ref. [54] extracted from
the summation method using three sink-source separations
from 0.93 to 1.39 fm for their ensemble at the near-physical
pion mass of mπ ¼ 149 MeV. We note that their statistics
of 7752 are about six times less than ours at the sink-source
separation we use in this plot (see Table II).
In Fig. 24, we plot our results for Gu−d

M ðQ2Þ from the
plateau method using ts ¼ 14a ¼ 1.3 fm and compare to
those from LHPC. At this sink-source separation the
statistics are similar, namely 7752 for the LHPC data
and 9248 for the results from this work, however their
errors are larger, possibly due to the fact that the summation

FIG. 22. Neutron magnetic Sachs form factor as a function of
the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau result
for ts ¼ 14a ¼ 1.3 fm for the connected and for ts ¼ 10a ¼
0.9 fm for the disconnected. The band is a fit to the dipole form.
The black points show experimental data from Refs. [45–50].

FIG. 23. Comparison of Gu−d
E ðQ2Þ between results from this

work (circles) denoted by ETMC and from the LHPC taken from
Ref. [54] (squares). The dashed line shows the parameterization
of the experimental data.
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method is used for their final quoted results. Within errors,
we see consistent results at all Q2 values.
In Figs. 25 and 26 we compare our results for the

isovector Dirac and Pauli form factors Fu−d
1 ðQ2Þ and

Fu−d
2 ðQ2Þ with those from Ref. [54]. We use Eq. (6) to

obtain Fu−d
1 ðQ2Þ and Fu−d

2 ðQ2Þ from Gu−d
E ðQ2Þ and

Gu−d
M ðQ2Þ extracted from the plateau method at the same

sink-source separations used in Figs. 23 and 24. As in the
case ofGu−d

E ðQ2Þ andGu−d
M ðQ2Þwe see agreement between

these two calculations. We also note that the discrepancy
with experiment of Gu−d

M ðQ2Þ at low Q2 values carries over
to Fu−d

2 ðQ2Þ.
For the isoscalar case, we compare the connected

contributions to the Sachs form factors with Ref. [54] in
Figs. 27 and 28. The agreement between the two lattice
formulations is remarkable given that the results have not
been corrected for finite volume or cutoff effects. The
gauge configurations used by LHPC were carried out using
the same spatial lattice size as ours but with a coarser lattice

FIG. 24. Comparison of Gu−d
M ðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

FIG. 25. Comparison of Fu−d
1 ðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

FIG. 26. Comparison of Fu−d
2 ðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

FIG. 27. Comparison of Guþd
E ðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

FIG. 28. Comparison of Guþd
M ðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

C. ALEXANDROU et al. PHYSICAL REVIEW D 96, 034503 (2017)

034503-14



spacing yieldingmπL ¼ 4.2 compared to ours ofmπL ¼ 3.
Although the LHPC results for the isovector magnetic form
factor at low Q2 are in agreement with experiment, they
carry large statistical errors that do not allow us to draw any
conclusion as to whether the origin of the discrepancy in
our much more accurate data is due to the smaller
mπL value.
For the radii and magnetic moment, we compare our

result to recent published results, which are available for the
isovector case, from Refs. [51–54]. We quote their values
obtained before extrapolation to the physical point, using
the smallest pion mass available. In Fig. 29, we see that the
two results at physical or near-physical pion mass, namely
the result of this work and from LHPC, are within one
standard deviation from the spectroscopic determination of
the charged radius using muonic hydrogen [2].
A similar comparison is shown in Fig. 30 for the

magnetic radius. We see that all lattice results under-
estimate the experimental band by at most 2σ, with the
exception of the LHPC value that used the summation
method. Similar conclusions are drawn for the isovector

magnetic moment GMð0Þ ¼ μu−d ¼ μp − μn, which we
show in Fig. 31.

B. Comparison of proton form factors

Published lattice QCD results for the proton form factors
at physical or near-physical pion masses are available from
LHPC [54]. We compare our results in Figs. 32 and 33 for

FIG. 29. Our result for hr2Eiu−d at mπ ¼ 130 MeV (circle)
compared to recent lattice results from LHPC [54] at mπ ¼
149 MeV (square), PNDME [52] at mπ ¼ 220 MeV (triangle),
the Mainz group [51] at mπ ¼ 193 MeV (diamond) and ETMC
[53] (pentagon). We show two error bars when systematic errors
are available, with the smaller denoting the statistical error and
the larger denoting the combination of statistical and systematic
errors added in quadrature. The vertical band denoted with μH is
the experimental result using muonic hydrogen from Ref. [2] and
the band denoted with CODATA is from Ref. [57].

FIG. 30. Comparison of results for hr2Miu−d with the notation of
Fig. 29. The experimental band is from Ref. [57].

FIG. 31. Comparison of results for the isovector nucleon
magnetic moment μu−d with the notation of Fig. 29.

FIG. 32. Comparison of Gp
EðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of the experimental data.

FIG. 33. Comparison of Gp
MðQ2Þ between results from this

work (circles) and Ref. [54] (squares). The dashed line shows the
parameterization of experimental data.
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the proton electric and magnetic Sachs form factors,
respectively. We see agreement with their results and note
that their relatively larger errors at small Q2 for the case of
the magnetic form factor are consistent with both the
experimentally determined curve and our results.

V. SUMMARY AND CONCLUSIONS

A first calculation of the isovector and isoscalar electro-
magnetic Sachs nucleon form factors including the dis-
connected contributions is presented directly at the physical
point using an ensemble of Nf ¼ 2 twisted mass fermions
at maximal twist at a volume of mπL≃ 3. Using five sink-
source separations for GEðQ2Þ between 0.94 fm and
1.69 fm, we confirm our previous findings that excited
state contributions require a separation larger than ∼1.5 fm
to be sufficiently suppressed. For the case of GMðQ2Þ we
use three sink-source separations between 0.94 fm and
1.31 fm and observe that for the isovector no excited state
effects are present within statistical errors, while for the
connected isoscalar, the largest separation of ts ¼ 1.31 fm
is sufficient for their suppression. Our results for both the
isovector and isoscalar GEðQ2Þ lie higher than experiment
by about a standard deviation. This may be due to small
residual excited state contamination since this difference is
found to decrease as the sink-source separation increases.
Our results for Gu−d

M ðQ2Þ at the two lowest Q2 values
underestimate the experimental ones but are in agreement
for Q2 > 0.2 GeV2. Volume effects are being investigated
to determine whether these could be responsible for this
discrepancy.
The isoscalar matrix element requires both connected

and disconnected contributions, the latter requiring an order
of magnitude more statistics. We have computed the
disconnected contributions to Guþd

E ðQ2Þ and Guþd
M ðQ2Þ

for the first four nonzero momentum transfers up to Q2 ¼
0.28 GeV2 and find that their magnitude is smaller or
comparable to the statistical error of the connected con-
tribution. We include the disconnected contributions to
combine isovector and isoscalar matrix elements and obtain
the proton and neutron electromagnetic Sachs form factors
at the physical point.
We have used two methods to fit the Q2-dependence of

our data, both a dipole ansatz and the z expansion. These
two methods yield consistent results, however the latter
method yields parameters with larger statistical errors.
Using the dipole fits to determine the electric and magnetic
radii, as well as the magnetic moment, we find agreement
with other recent lattice QCD results for the isovector case,
and are within 2σ with the experimental determinations.
Our result for the proton electric charge radius

hr2Eip ¼ 0.589ð39Þð33Þ fm2, is two sigmas smaller than
the muonic hydrogen determination [58] of hr2pi ¼
0.7071ð4Þð5Þ fm2, which may be due to remaining excited
state effects or volume effects, which will be investigated
further.
Our final results are collected in Table VII. We plan to

analyze the electromagnetic form factors using both an
ensemble of Nf ¼ 2 twisted mass clover-improved fer-
mions simulated at the same pion mass and lattice spacing
as the ensemble analyzed in this work but with a lattice size
of 643 × 128, yielding mπL ¼ 4 as well as with an Nf ¼
2þ 1þ 1 ensemble of finer lattice spacing. In addition, we
are investigating improved techniques for the computation
of the disconnected quark loops at the physical point. These
future calculations will allow for further checks of lattice
artifacts and resolve the remaining small tension between
lattice QCD and experimental results for these important
benchmark quantities.
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TABLE VII. Our final results for the isovector (p − n), iso-
scalar (pþ n), proton (p) and neutron (n) electric radius (hr2Ei),
magnetic radius (hr2Mi) and magnetic moment (μ). The first error
is statistical and the second a systematic due to excited state
contamination.

hr2Ei [fm2] hr2Mi [fm2] μ

p-n 0.653(48)(30) 0.536(52)(66) 4.02(21)(28)
pþ n 0.537(53)(38) 0.394(82)(42) 0.870(60)(39)
p 0.589(39)(33) 0.506(51)(42) 2.44(13)(14)
n −0.038ð34Þð6Þ 0.586(58)(75) −1.58ð9Þð12Þ
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APPENDIX: TABLES OF RESULTS

TABLE VIII. Results for the isovector GEðQ2Þ using the plateau method for five sink-source separations and the summation and
two-state fit methods fitted to all separations. Results where the operand of the square root in Eq. (9) becomes negative are denoted
with “NA”.

Plateau, ts [fm] Summation Two-state
Q2 [GeV2] 0.94 1.13 1.31 1.50 1.69 [0.94, 1.69] [1.13, 1.69]

0.000 0.9982(08) 0.998(2) 0.996(41) 1.003(4) 1.006(8) 1.000(6) -
0.074 0.8460(31) 0.832(6) 0.826(11) 0.819(15) 0.841(23) 0.798(20) 0.849(18)
0.145 0.7337(34) 0.713(6) 0.703(12) 0.701(16) 0.711(24) 0.664(21) 0.717(17)
0.214 0.6423(45) 0.618(8) 0.598(15) 0.615(21) 0.608(29) 0.556(26) 0.617(19)
0.280 0.5753(54) 0.553(10) 0.549(19) 0.514(24) 0.521(36) 0.483(35) 0.535(22)
0.345 0.5222(43) 0.503(7) 0.497(15) 0.461(19) 0.478(26) 0.435(26) 0.474(16)
0.407 0.4761(49) 0.456(8) 0.450(17) 0.391(20) 0.378(30) 0.357(30) 0.407(19)
0.527 0.4000(62) 0.380(12) 0.379(22) 0.326(31) 0.291(39) 0.283(49) 0.334(24)
0.584 0.3676(57) 0.353(10) 0.365(22) 0.265(27) 0.287(37) 0.269(42) 0.296(22)
0.640 0.3500(67) 0.338(13) 0.339(25) 0.256(35) 0.260(53) 0.229(52) 0.292(25)
0.695 0.3273(72) 0.320(13) 0.303(26) 0.236(31) 0.219(43) 0.208(54) 0.279(26)
0.749 0.284(11) 0.282(20) 0.343(47) 0.138(68) NA NA 0.181(46)
0.802 0.2847(85) 0.262(16) 0.215(28) 0.196(49) 0.12(21) 0.058(79) 0.203(35)
0.853 0.2707(81) 0.273(15) 0.257(34) 0.144(33) 0.156(52) 0.160(74) 0.186(35)

TABLE IX. Results for the isovector GMðQ2Þ using the plateau method for three sink-source separations and the summation and two-
state fit method fitted to all separations.

Plateau, ts [fm] Summation Two-state
Q2 [GeV2] 0.94 1.13 1.31 [0.94, 1.31] [0.94, 1.31]

0.074 3.225(36) 3.220(54) 3.230(99) 3.18(18) 3.292(82)
0.145 2.841(28) 2.807(38) 2.832(70) 2.73(13) 2.847(54)
0.214 2.538(26) 2.505(38) 2.596(67) 2.53(13) 2.546(54)
0.280 2.288(26) 2.281(39) 2.262(75) 2.23(13) 2.294(59)
0.344 2.098(21) 2.042(31) 2.037(55) 1.85(11) 2.033(46)
0.407 1.941(19) 1.873(32) 1.899(56) 1.67(12) 1.863(45)
0.526 1.665(20) 1.611(35) 1.583(70) 1.37(15) 1.593(50)
0.583 1.565(17) 1.515(31) 1.469(64) 1.29(14) 1.483(40)
0.640 1.481(22) 1.420(39) 1.304(77) 1.14(17) 1.354(53)
0.694 1.387(20) 1.339(37) 1.219(68) 1.12(17) 1.299(52)
0.748 1.330(25) 1.275(54) 1.23(14) 0.99(29) 1.247(58)
0.800 1.218(21) 1.128(44) 0.999(83) 0.86(22) 1.063(77)
0.852 1.173(20) 1.140(46) 1.054(98) 0.98(23) 1.116(46)
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