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We study the global symmetries of naive and staggered lattice Dirac operators in QCD-like theories in
any dimension larger than two. In particular we investigate how the chosen number of lattice sites in each
direction affects the global symmetries of the Dirac operator. These symmetries are important since they
determine not only the infrared spectrum of the Dirac operator but also the symmetry breaking pattern and,
thus, the lightest pseudoscalar mesons. We perform the symmetry analysis and discuss the possible zero
modes and the degree of degeneracy of the lattice Dirac operators. Moreover we explicitly identify a
“reduced” lattice Dirac operator which is the naive Dirac operator apart from the degeneracy. We verify our
predictions by comparing Monte Carlo simulations of QCD-like theories in the strong coupling limit with

the corresponding random matrix theories.
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I. INTRODUCTION

QCD-like theories describing the strong interaction
between quarks and gluons are highly involved due to their
nonlinear field equations. This statement also applies to
QCD-like theories beyond the standard model like theories
with technicolor [1] or supersymmetry [2]. Therefore quite
often only numerical simulations remain as a tool to study
the theory as a whole. Here, one encounters two crucial
modifications of the continuum theory to overcome certain
problems.

First, the time axis is Wick rotated to circumvent the sign
problem resulting from a real time. Thus, the Yang-Mills
action is replaced by a Euclidean Wilson gauge action or a
Symanzik improved version of it. Furthermore, the Dirac
operator becomes a hypercubic lattice Dirac operator
which is a finite-dimensional matrix on a lattice of finite
volume V. There are several lattice discretizations of the
QCD-Dirac operator, the most prominent being the Dirac
operators of staggered fermions [3], of Wilson fermions [4],
of twisted mass fermions [5], of overlap fermions [6] and of
domain wall fermions [7].

The simplest version of a lattice Dirac operator is the
naive Dirac operator on a cubic lattice with periodic and
antiperiodic boundary conditions. The Dirac operator of
staggered fermions (without rooting) is a particular version
of the naive Dirac operator. It is the nondegenerate part of
the naive Dirac operator on a cubic lattice were each
direction consists of an even number of lattice sites.

The second problem to be solved in lattice QCD
concerns the continuum limit. It is well known that the
global symmetries of staggered fermions in four dimen-
sions do not necessarily agree with those of the continuum
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theory for QCD. For example the theories with two colors
and the fermions in the fundamental representations or with
arbitrary colors in the adjoint representation have this
problem; see Refs. [8,9]. This problem was also found
in three [10,11] and in two dimensions [12]. In particular in
two dimensions the reason for the change of the global
symmetries was recently analyzed in detail in Ref. [12].
In the present work we aim at a generalization of this
discussion to arbitrary space-time dimensions.

The global symmetries are manifest in the lowest
eigenvalues of the Dirac operator [13,14]. In the phase
of spontaneous breaking of chiral symmetry the spectral
gap is closed and chiral perturbation theory applies. The
order parameter is the chiral condensate ¥ which is given
by the Banks-Casher formula [15] in terms of the level
density p of the Dirac operator,

2mp(A)dA
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The order of the limits is crucial. The Banks-Casher
formula (1) is only true for Dirac operators exhibiting a
chiral symmetry. In three dimensions one has to consider
the following condensate:

2mp (A)dA
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Note that the expression in terms of the level density is the
same in both equations because we assumed for the latter an
even number of dynamical quarks. Then, half of the quarks
contribute a chiral condensate weighted with a plus sign
and the other half contribute one with a minus sign.
From the expressions (1) and (2) we recognize that only
those eigenvalues of the Dirac operator of order O(1/V)
are important for the spontaneous symmetry breaking. The
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corresponding modes are intimately related with those
pseudoscalar mesons whose Compton wavelength is larger
than the size of the lattice. Then the kinetic modes factorize
from the zero-momentum modes [16,17] and can be
integrated out. The remaining effective Lagrangian for
the zero-momentum modes is shared with Gaussian ran-
dom matrix models [13,14]. This theoretical prediction was
numerically verified several times; for example for the
microscopic level density

. 1 X
pmicm(x) = ‘}1_1)1;10 Z—V/)(ﬁ) s (3)

(see Ref. [8]).

For a long time it has been known that QCD-like theories
may yield different patterns of spontaneous symmetry
breaking and, hence, different kinds of Goldstone bosons;
see e.g. see Refs. [14,18,19]. In Ref. [20] the symmetry
breaking patterns were derived for an arbitrary dimension
larger than two. For QCD-like theories in one and two
dimensions the Mermin-Wagner-Coleman theorem [21,22]
forbids a spontaneous breaking of global symmetries,
though two-dimensional theories seem to be at the border-
line; see Ref. [12]. The authors of Ref. [20] found that the
Bott periodicity [23] satisfied by the y matrices carries over
to the symmetry breaking pattern and, thus, to the effective
Lagrangian for the pseudoscalar mesons. A similar clas-
sification was also found for topological insulators [24]. All
in all there are ten symmetry breaking patterns associated to
QCD-like Dirac operators. They correspond to the Cartan
classification of Hermitian random matrices [25,26] and
each of these ten random matrix ensembles yields the
effective Lagrangian of the pseudoscalar mesons at low-
est order.

Combining the two observations that the partition of the
lattice and the space-time dimension affect the global
symmetries and, hence, the symmetry-breaking pattern,
one may ask what their combined impact is for an arbitrary
QCD-like theory. Answering this question is the main task
of the present work. For this purpose we pursue similar
ideas as in Ref. [12].

We first review the symmetry analysis of the continuum
theory [20], in Sec. II. In this section we also recall the
properties of Clifford algebras built up by the y matrices
and the different kinds of antiunitary operators which are at
the heart of the classification of global symmetries. In
Sec. III we very briefly review what the naive discretization
explicitly looks like and what the corresponding symmetry
operations on a lattice are. In particular we discuss the
artificial symmetry operations which arise when one or
more directions have an even partition of lattice sites. Those
additional symmetry operators anticommute with the lattice
Dirac operator and build a Clifford algebra themselves.
They are the origin for the change of symmetries which is
analyzed in Sec. IV. In Sec. V we discuss the symmetry-
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breaking patterns and the number of zero modes and in
Sec. VI we derive an explicit representation of the non-
degenerate part of the lattice Dirac operator. This “reduced”
Dirac operator is the staggered Dirac operator when each
direction of the lattice contains an even number of sites.
We also perform lattice simulations in the strong coupling
limit and compare it with random matrix ensembles
predicted by our analysis. Those comparisons are shown
in Figs. 1 and 2. The random matrix results employed in
these comparisons are recalled in the Appendix. In Sec. VII
we summarize our results and discuss some important
implications. The Tables I, IT and III provide an overview of
the change of symmetries when varying the space-time
dimension, the number of directions with an even partition
and the representation of the gauge group. We want to
emphasize that we deal with all QCD-like gauge theories
on an equal footing and do not restrict ourselves to the
gauge groups SU(N.,).

In contrast to standard literature we do not apply
Einstein’s summation convention throughout the present
work because of computational reasons.

I1. DIRAC OPERATOR OF QCD-LIKE THEORIES
IN EUCLIDEAN CONTINUUM

We consider the Euclidean massless Dirac operator of a
QCD-like gauge theory in d dimensions, i.e.

D:

(8/4]](1, + lAﬂ(x))yﬂ (4)

u=1
where 1 is the imaginary unit. The vector fields
1A,(x) € r(g), where x is a point in space-time, are elements
in an irreducible representation r of a finite-dimensional
compact Lie algebra g; in particular A}, = A , 1s Hermitian.
The dimension of this representation is denoted by d, and
should not be confused with the space-time dimension d. In
QCD the Lie algebra is g = su(3). The dimension d, is
emphasised by the identity matrix 1, multiplied with the

partial derivative 0, in the uth direction. Since we consider
Euclidean space-time the generalized y matrices are given by
the Clifford algebra [27]
[7/47 }/zx]+ = 25;41/‘]]2l“/2J ’ tr Yu = 0 and 7; =Yu (5)
where [.,.], is the anticommutator and y, are Hermitian
21472 % 214/2] matrices. The function |d/2] is the floor
function yielding the largest integer equal to or smaller
than d/2.

The Clifford algebra above generates the fundamental
representation of the Lie algebra of the unitary group
U(219/21) via the multiplication of algebra elements and
scalars as well as the addition of algebra elements. This fact
will become helpful later on.
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TABLE L Classification of QCD-like continuum theories with respect to the spontaneous breaking of their flavor symmetry group like
chiral symmetries; see Ref. [20]. In the first line of each entry the symmetries of the continuum Dirac operator D = —D' regarding the
antiunitary operator C and the matrix y©, if applicable, are shown. In the second line we show the symmetry-breaking pattern but
without taking into account the anomalous symmetry breaking of the axial symmetry group. The space-time dimension d has to be larger
than two for these patterns while d = 2 does not necessarily exhibit a spontaneous symmetry breaking because of the Mermin-Wagner-
Coleman theorem. However it was observed in numerical simulations that some QCD-like theories might show a symmetry breaking in
two dimensions; see Ref. [12]. In the third line of the entries we recall the symmetry class of the Cartan scheme [23,24] and the
corresponding random matrix model exhibiting the same spectral statistics for the lowest eigenvalues as the corresponding Dirac
operator; see Table III. The indices n and v determine the dimension of the random matrix and play the roles of the volume and the
topological charge.

d Real representation Complex representation Quaternion representation
8m . D], =[¢.Dl_=[c.rV_ =0 .7, =0 [/®.D], =[c.D_=[C.yV]_ =0,
Cr=1 U(N;) x U(N;) — U(Ny) Ct=-1
U(2N¢) — USp(2Ny) AllL yGUE, (n),v e Z U(2N;) = O(2Ny)
B|DL yGOE, (n),v € Z CIL yGSE,(n),v € Z
8m +1 [C.,D_=0,C*>=1 no further symmetries [C.D]_=0,C* = -1
O(2Ny) —» U(Ny) U(2N;) = U(Ny) x U(Ny) USp(2N;¢) — U(Ny)
B|D,GAOE,(n),v € Z, A, GUE(n) C,GASE(n)
8m 42 [},<5>71)]+ =[C. D], =C, y<5>]+ =0, [},(S)ph =0 [y, D], =[C, D, =C, 9. =0,
Ct=-1 U(Ng) x U(Ng) = U(Ny) =1
O(2N;¢) x O(2N;) — O(2Ny) AllL yGUE, (n),v e Z USp(2N;) x USp(2N¢) — USp(2Ny)
B|DIII, GBSE, (1),v € Z, CI, GBOE(n)
8m +3 [C.D], =0.C* = -1 no further symmetries [C.D], =0.C*=1
O(2N;) = O(Ny) x O(Ny) U(2N¢) — U(N¢) x U(Ny) USp(4N;) — USp(2N;) x USp(2Ny)
All, GSE(n) A, GUE(n) AI, GOE(n)
8m +4 ¥®.D], =[¢.D]_=[C.rV_ =0, ¥®.D], =0 [/®.D], =[C.D]_=[C.yV]_=0.
Ct=-1 U(Ng) x U(Ng) = U(Ny) =1
U(2N;) - O(2N;) AllL yGUE, (n),v e Z U(2N;) — USp(2Ny)
CIL yGSE,(n),ve Z B|DI, yGOE, (n),v € Z
8m+5 [C.,D_=0,C?=-1 no further symmetries [C,D_=0,C*=1
USp(2Ny) — U(Ny) U(2Ny) — U(N¢) x U(Ny) O(2Ny) — U(Ny)
C, GASE(n) A, GUE(n) B|D,GAOE, (n),v € Z,
8m+6 [7,<5>71)}+ =[C. D], =[C, y<5>}+ =0, Y5, D], =0 [7,(5),1)]+ =[C, D], =[C.y¥], =0,
=1 U(Ny) x U(Ng) = U(Ny) Ct=-1
USp(2N;) x USp(2N;) — USp(2Ny) AllL yGUE, (n),v e Z O(2N;) x O(2N;) — O(2Ny)
CI, GBOE(n) B|DIIL, GBSE, (n),v € Z,
&m +7 [C.D], =0,C* =1 no further symmetries [C.D], =0,C* = -1

USp(4N;) — USp(2N;) x USp(2Ny)
AL GOE(n)

U(2N¢) — U(Ng) x U(Ny)
A,GUE(n)

O(2Ng) — O(Ng) x O(Ny)
AIL GSE(n)

We now recall some well-known facts about the Clifford
algebra with d generators; see also Ref. [27]. The gener-

alized y matrices can be represented in terms of the three

Pauli matrices o;, i = 1, 2, 3. However we will employ a
basis independent representation of the Dirac matrices. We
recall that for odd dimension d (odd number of generators
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anticommutes with all generators such that there is a chiral
symmetry. Moreover, the generators of the Clifford algebra
always satisfy an antiunitary symmetry

[C’ ld(d_l)/2}/1/]_ — O and [C’ ld(d_l)/zy(s)]_ g O (7)

where [.,.]_ is the commutator. The operator C can be
explicitly written as

K" T3 v, d=4m4m+1,

Klm+l HJZ»SFLZYQJ'_I, d:4m+2,4m—|—3,
(8)

where K is the complex conjugation operator and y,;, | =
y©®) for d € 2N. It satisfies

C=Ky=

C2 = (=1)@Dd+hdd-1)/8q, ., 9)

which is the origin for the Bott periodicity [23] of Clifford
algebras. The matrix y [see Eq. (8)] is a unitary, Hermitian
matrix which is either symmetric or antisymmetric depend-
ing on the sign of C2.

The antiunitary symmetry (7) has to be combined with
the one which might be satisfied by the vector fields A,.
Note that the partial derivatives are anti-Hermitian and
real, i.e. 9, = -0 =K d,K. Also the vector fields 1A, are
anti-Hermitian, i.e. (14,)" = —iA,. Additionally they might
satisfy an antiunitary symmetry,

[KCiA,)_ =0 and (K> =(¢=+1  (10)

where ¢ is a unitary matrix. If there is no such
symmetry then the representation r is called complex.
Examples are the fundamental representations of the
gauge groups SU(N. > 3) and U(N, > 2). When there
is an antiunitary operator K¢, the representation r is
called real or quaternion when (K¢)?>=1 or (K¢)? =T,
respectively. Examples of real representations are the
fundamental representation of SO(2N,+ 1 > 5) and
SO(2N.>8) and the adjoint representation of any
compact Lie algebra. The fundamental representation
of SU(N,=2)=USp(2N,=2) and in general the
unitary symplectic group USp(2N.) are examples of
quaternion representations.

The symmetry discussion above for the continuum
Dirac operator is summarized in Table I and was already
performed in Ref. [20]. For this purpose, we defined the
charge conjugation operator

C =Ky (11)

which only exists for real and quaternion representations of
the chosen gauge group. In Table I we also point out the
symmetry-breaking pattern, the symmetry class via the
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Cartan classification scheme [25,26], and the random
matrix theory describing the infrared energy spectrum of
the Dirac operator. Note that all ten symmetry classes of
Hermitian operators can be found as it is the case for
topological insulators [24].

II1. NAIVE AND STAGGERED LATTICE
DIRAC OPERATOR

On the lattice the Hilbert space H = Cchr @V cCld
is finite dimensional. It consists of three parts. The first part
is the color space C% where the gauge group acts. The
second one is the cubic lattice V = é)l CLi with the volume

j=
V=T[L,L; and L, €N being the number of lattice
sites in the direction u. The third part is the spinor space
Cl¥/2], Thus the dimension of the Hilbert space is in
total dyy = 219214, V.

In the naive discretization the covariant derivative is
replaced by the difference of the translation operator 7, and
its Hermitian adjoint, i.e.

9,1y +1A,(x) > T, —Tj. (12)

The translation operator 7, acts as follows on a state
ly(x)) € H at a fixed lattice site x = (x;,...,x,) € V:

Ty (x)) = (=1)%*t U, ()lw(x +e,)).  (13)
where e, is the d-dimensional vector with a 1 at the position
# and otherwise zero and x; € Z; . The matrices U, (x) are

elements of the representation »(G) where G is the gauge
group. This representation satisfies the same antiunitary
symmetry as the Lie algebra g if it exists. The sign in
Eq. (13) reflects the boundary conditions which are
periodic in the spatial directions u=1,...,d —1 and
antiperiodic for the temporal direction y = d. We want
to emphasize that the results of the symmetry analysis will
be independent of the periodic or antiperiodic boundary
conditions. Hence the sign only plays a minor role. The
naive lattice Dirac operator is given by

d

D=3 (T, - T}y, (14)

p=1

As already found for two dimensions (see Ref. [12]),
depending on the number of lattice sites in a fixed direction
u there might be an operator that anticommutes with the
lattice Dirac operator (14). Suppose the number L, is even.
Then we can consider the operator

Dulw(x)) = (=1)"|w(x)) (15)

which assigns to each even lattice site (according to the
parity in the direction y) a “+1” and to each odd lattice site
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a “=1.” Obviously, the operator I, is diagonal and consists
of equally many eigenvalues 41 and only acts on the lattice

part V of the Hilbert space. This artificial operator satisfies
the following commutation relations with the transfer
matrices:

r,.7,), =0 and [, 7,20, (16)

Combining this artificial operator with the y matrix y,, i.e.

ry=r

WY (17)

(note that we do not sum over u), we obtain the anti-
commutation relation

07D, =Y [ (T, = Ty, ). =0. (18)

v=1

The lattice may not only have one direction with an even
partition. For example for staggered fermions all L, are
even. For each direction with an even partition we construct

an operator F,(f) and each of them satisfies Eq. (18).
Suppose N; < d directions have an even partition and
we choose these directions as y = 1, ..., N; without loss of
generality. We emphasize again that the different boundary

conditions for spatial and temporal directions play a minor

role. Additionally we define the operator F](?Z g = y®

depending on whether the space-time dimension d is even.

.....

of Noy = N + [d + 1], generators, i.e.

e e, =261, ol =0 and

)
Gy _ (5)
()" =177 (19)

The function [d + 1], is 1 if d is even and vanishes for odd

operator; see Eq. (18).
In the case where there is a charge conjugation operator

C.i= K¢y and

= (_1)(d+2)(d+1)d(d—l)/SSign[<K€)2]ﬂdH’ (20)

namely for real and quaternion representations r, with
[Cai, 1"4=V/2D]_ =0, (21)

we have furthermore the relation

[Craee 14 D2EP)_ = 0 (22)

forall j=1,...,Nq.

PHYSICAL REVIEW D 96, 034502 (2017)
IV. SYMMETRY ANALYSIS

The relations (18), (19), (21), and (22) together with the
definitions (17) and (20) completely determine the degen-
eracy of the eigenvalues and the symmetry class of the
lattice Dirac operator D including the symmetry-breaking
pattern. This has to be done for even and odd Ny,
separately. We do this by pursuing the same ideas as in
the discussion for the two-dimensional lattice QCD Dirac
operator [12].

A. Even number N, of Clifford generators

When the number N¢; of generators of the Clifford
algebra anticommuting with the Dirac operator is even
one can construct a N¢; + 1 Hermitian, unitary operator

A

[0 = NalNa-1/2 TN FE-S) which anticommutes with all
generators but commutes with the naive Dirac operator D.

Multiplying D with ['®) one obtains the commutation
relations

[DF).TY)_ =0 forall j=1,...Ng. (23)

Since the combinations I“,(-S) + zFES) are nilpotent the set

representations of the Lie algebra of the unitary group
U(2Na/2) by multiplication of elements and of scalars and
by addition. The fundamental representation of the Clifford
algebra generated by N¢; Hermitian elements is unique up
to unitary transformations because N is even. Thus there
is a unitary matrix U € U(dy,) with

UFE-S)U? =14, var @y forall j=1,...,N¢g, (24)

with {y}};_; ., in the fundamental representation of the

Clifford algebra in 2Vc/2 dimensions. The tensor notation
shall emphasize the splitting of the Hilbert space into two
terms. We will also employ it in the following as a
bookkeeping tool.

Equation (24) also implies

Ur®uys = T4, jvar ® y' )

N

— lNc1(Nc1—1)/2]]dH/2NC|/2 ® Hy; (25)
=1

With the aid of Schur’s lerAnma [28], the commuta-
tion relation (23) yields UDI®U" = D.oq ® Tong2 or
equivalently

UDU" =D,y ® y'® (26)

with a reduced lattice Dirac operator D,y = =D, only
acting on a Hilbert space of dimension d, /2Na/2.
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TABLE II. The symmetry-breaking patterns of the naive lattice Dirac operator for the three kinds of theories with a dimension
d > 2 and the corresponding Cartan class [23,24] and the random matrix theory (see Table III and the Appendix), with which the
Monte Carlo simulations have to be compared. Instead of the dimension d of the continuum theory one obtains the symmetry of a shifted
dimension d,.y = d — Ny.. The staggered Dirac operator corresponds to d,.q = 0 = 8m though the degeneracy d,; = 2l(MNitld+11)/2)
will not be present for this operator. The degeneracy is also the reason why the number of flavors is increased to d,; Ny compared to
the continuum theory, cf. Table I. Note that the topological charge v vanishes because no zero modes are present in the naive Dirac

operator with d > 2.

deg=d— Ny Real representation Complex representation Quaternion representation
8m U(2d,;Ny) U(diNy) x U(dyiNy) U(2d,;Ny)
\: \: \:
USp(2dy;Ny) U(dyiNy) O(2d,;Ny)
DL, yGOE(n) AllL, yGUE(n) CIL, yGSE(n)
\ \:
U(diNy) U(dyiNy) x U(dyiNy) U(diNy)
D, GAOE, (n) A, GUE(n) C. GASE(n)
8m +2 O(2dy;Nt) x O(2dy;N¢) U(dyiNg) x U(dyiNy) USp(2dy;Ny) x USp(2dy;Ny)
) ) )
0O(2d,;Ny) U(dyiNy) USp(2d,;N¢)
B|DIH, GBSE(n) AIH,){GUEO(n) CI, GBOE(n)
\ \: )
O(dyiNt) x O(dyiNy) U(dyiNt) x U(dyiNy) USp(2d,iNt) x USp(2diNy)
AlL GSE(n) A, GUE(n) AL GOE(n)
8m +4 U(2d,iN¢) U(dyiNt) x U(dyiNy) U(2d;Ny)
) ) )
O(2d,iNy) U(dyiNy) USp(2dyiNy)
CIL, yGSE(n) ATl yGUE(n) DI, yGOE(n)
8m + 5 USp(deNf) U(2dme) O(deNf)
\ \: )
U(dyiNy) U(dyiNt) x U(dyiNr) U(dyiNy)
C. GASE(n) A, GUE(n) D, GAOE,(n)
8+ 6 USp(2diiN;) x USp(2d,iNy) UldyiNe) x U(dyiNy) O(2dyiN;) x O(2d;iNy)
USp(2dy;Ny) U(dyiNy) O(2d,iNy)
CI, GBOE(n) AIIL yGUE,(n) B|DIIL, GBSE,(n)
8m + 7 USp(4dme) U(zdme) O(zdme)
I I
USp(2dyiNy) x USp(2dy:iNy) U(dyiNy) x U(dyiNy) O(dyiNt) x O(dyiNt)
AL GOE(n) A, GUE(n) AIL GSE(n)

In Sec. VI we write D4 more explicitly by choosing a

basis in the spinor space.

In the case that there is no additional antiunitary sym-
metry (complex representation of the gauge group) the
eigenvalues of D are 2Va/2-1_fold degenerate. Moreover

all eigenvalues come in “chiral” pairs (4, —A) apart from the

case N¢; = 0. These “chiral” pairs are reminiscent of the
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chirality of the original lattice Dirac operator D. The Dirac
operator will have the global symmetries of the three-
dimensional continuum theory.
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In the case of a real or quaternion representation, we also
have to consider the transformation of the charge con-
jugation operator C,. We define C|,, = UC,, U' =K{' ® 5/
with unitary matrices ' €U(dy/2V9/?) and y' €U(2Na/?),
The commutation relations (22) and (21) become

[C{ " pdd 1)/2]]dH/2NC|/2 ® yﬂ_ =0
= [Ciat’ lNCl(NCl_l)/z]]dH/ZNcMZ ® 7/(5)}— =0 (27)
and
+ [Clyo 19Dy ® 7))

= [Cred’ldred(dred_l)/zDred}_ ® lNCl(NCl_l)/2)(/y/( ) — 0
8)

with C..q = K¢’ and d,.qy = d — Ny, respectively. To derive
Eq. (28) we need

1 Ad=1)/2 — 4 jdrea(drea=1)/2+Nei(Na—=1)/2 (29)
which is true because Ny, = N —
1 and d[d + 1]2 is always even.
What remains to be calculated is the square C2
purpose we notice that (Cj,)? = C2,.
unitary matrix y’ can be chosen as

[d+ 1], with [d+ 1], =0,

g~ Tor this
Furthermore the

X’ — (yl(s))drcd(drcd_l)/z

% " ?r—n1 7’2/" N¢| = 4m, (30)
erl H2m+2 yzj . NC] — 4dm + 2,

because of the commutation relations
[Ky 14V =0 forall j=1,...Ng. (31)

All other choices of y/ are unitarily equivalent. The
commutation relations (31) directly follow from the first
line of Eq. (27), since the first component of the tensor
product is trivial. Employing the relation C,, = (C},)* =
C2, ® (Ky')*> we obtain

C2 4 = (—1)lrat2) (dreat Delealdrea=1)/8
x Sign[(KC)QHdH/zNCI/Z- (32)
To simplify the sign we have used the identity
(=1)(@+D(d+1)d(d=1)/8+(Na+2)(Ner+1Na(Na-1)/8
= (=1)(reat2) (dreat 1) drea(drea=1)/B+ drea (drea=T)Ner(Ner=1) /4

(33)

which is even true for odd N¢; as can be checked by
choosing d, Ny, = 1, ..., 8 because of the periodicity in 8.
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The symmetries of the Dirac operator D experience a
shift in the Bott periodic Table I due to the lattice directions
with even partition. Moreover, the degeneracy of the
eigenvalues of the lattice Dirac operator D is either
2Na/2=1fold or 2Ne/2-fold depending on whether D,
exhibits Kramers degeneracy or “chiral pairs” of eigenval-
ues or not. We emphasize that the whole Dirac operator D
always exhibits “chiral pairs” of eigenvalues.

Summarizing the discussion for an even number N¢; of
Clifford generators anticommuting with the Dirac operator,
the symmetries of D are shifted via the Bott periodic Table I
from the original symmetries of the continuum theory in d
dimensions to a theory sharing the symmetries of the same
continuum theory but only in d,.y = d — Ny, dimensions.
This is true for all representations. Thus, for any representa-
tion the shift of the symmetry class is always to an odd-
dimensional continuum theory because N¢ = Ny + [d +
1], is even. This will be different for the case of odd N¢,. The
symmetry-breaking patterns are summarized in Table II.

B. Odd number N, of Clifford generators

For an odd number N of Clifford generators the
corresponding fundamental representation of the Clifford

algebra is not unique; rather, there are two. Indeed we have

in our case that the product of all generators HNC' F( )

not proportional to the identity as it would be for the case
when it is a multiple of one of the two inequivalent
fundamental representations. The product is

Na
I = NaNa-1)/2 HI";S) = 1"(5)77

J=1
(I 7,)r®, dean,

N
H/ Ll 7/]’

= NaWa-1)/2106) (34)

de2N+1,

where T'®) = H;V:Ll I'; is a diagonal matrix with an equal
number of eigenvalues +1. Also the matrix I" has the same

number of eigenvalues with 1 which follows from I" =

I"=T"and T = (') (try) = 0. Thus we have the
same number of both fundamental representations of the
Clifford algebra with N, elements. Then the matrices

____ N, build a multiple of only one of the two

fundamental representations. In particular we can find a
unitary matrix U € U(dy,) with

Ul“;s)UJr = yﬂ ®y; forall j=1,...,Ng,

Urut = ygc)l ® Tywg-n2s (35)

red
matrices w1th eigenvalues +1 each with multiplicity

where 7l = NaNa=1)/2 HNC‘ 1y§ and 7%} are diagonal
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dy/2WNetD/2 - Again the tensor notation shall help to
separate the Hilbert space into a space where the naive
Dirac operator acts trivially and a reduced Hilbert space.

In the next step we consider the Clifford algebra of

.....

commutes with the lattice Dirac operator UDU", i.e.
[UDUT, lﬂdH/z(NC]—l)/Z ® }/;VC]]/;]_ =0 (36)

because [D,FSC)IF?)]_ =0 forall j=1,...,Ng. Schur’s
lemma [28] [now the commutation of D with a fundamental
representation of U(2(Na=1)/2)] tells us that the Dirac
operator has the form

UDU" = Dyoq ® lyiwenz  with

and [Dpg. 70N, =0.  (37)

red

Dyeq = -D;

red

The last equality follows from the anticommutation relation
of [D.T] + = 0. An explicit form of D, is given in Sec. VI.

For complex representations the discussion above
implies that all eigenvalues are 2(Na=1)/2_fold degenerate.
Furthermore the reduced Dirac operator D,y has a chiral
form with no further symmetries. Thus, the lattice theory
should share the symmetries of the continuum theory in
four dimensions.

When we consider a real or a quaternion representation
r(g) of a gauge group, we have to evaluate the implications
for the antiunitary symmetries. We consider the antiunitary

operator in the new basis C}, = UClatI:NC‘(N a2yt =
K{' ® ¥/ which is equivalent to the original antiunitary
operator Cy,.. The factor [NaWa=1)/2 i5 introduced in the
new antiunitary operator because of the following anti-

commutation relation with the reduced Dirac operator:
U[ClathC](NCl_l)/z, ld(d_l)/2+NC1(NCI—1)/2D]_ Uf

= [Ciat’ ld(d_l)/2+NCI(NC‘_1)/2Dred ® Tywe-ne]_

= i[creda ldred(dred_l)/zDred]_ ®Z’ = 0’ (38)

due to the anticommutation relation [[, D] +=0 and
Eq. (21). Again we have chosen the notation C,,q = K¢’
and dred =d- NL'

Now we need to calculate C2

4 For this purpose we

need the commutation relations between C/., and UF§5>U T

lat
which read
_ 5
[l 275 @ 1)
— U[ClathCl(NCl_l)/29 ld(d—l)/2F§5)]_U’r =0, (39

for all j=1,...,N¢c. The commutation relation with

UTU' is

PHYSICAL REVIEW D 96, 034502 (2017)

_ 5
[C{at’ ldred(dmd 1)/27§e3 ® ‘HZ(NCI’I)/Z]_

N
—+4U ClathC](NCl_l)/Z’ 4d(d-1)/2 ﬁrﬁ5):| Ui =0
Jj=1 -

(40)
up to an overall sign. Combining Eqs. (39) and (40) yields
[C{at’ lNCl(NCI—l)/z]]dH/z(NC]_l)/Z ® ]/;]_ = 0. (4])

Thus we can choose

?r:nl 7/2," Neg =4m+1,

1
/
Z =
m+1 2m+2 .1
l H/=1 Y2j-1

because all other choices would be unitarily equivalent.

In the last step we employ the relation
(CrINaWa=l/2y2 — 2 '@ (Ky')*> which yields us
the sign

(42)
NCl =4m -+ 3

Cl?ed = (—1)(dred+2)(dred+l)dred<dred_1)/8
X Sign[(KC)z]ﬂdH/z(Nlel)/z (43)

because sign[(Ky')?] = (—1)Wat2)WNat)NaNe=1)/8  and
sign[(C )] = (=1)%ealda=1)/250n[C2 ]. Moreover we
used the identity (33) which is also true for odd N.

Combining Eqgs. (37), (38) and (43) we can summarize
that the eigenvalues of D are either 2(Ne=1)/2 degenerate or
2WNe+tD)/2 - degenerate if Kramers degeneracy applies.
Moreover the symmetries of D4 or equivalently of D
are those of the continuum theory at even dimension d,.q =
d — Ny and not of dimension d. Hence, also for an odd
number of Clifford generators N, anticommuting with the
lattice Dirac operator D the symmetries are shifted along
the Bott periodic Table I. Interestingly, the shift is exactly
the same as for even N¢.

V. SYMMETRY-BREAKING PATTERN AND
ZERO MODES

In the previous sections we have seen that the lattice
Dirac operator D may drastically degenerate when some or
even all (case of staggered fermions [3]) lattice directions
exhibit an even partition of lattice sites. The reduced lattice
Dirac operator D,.4 acts on a Hilbert space of dimension
dy/dy; with dy; =2WNa/2l whose value depends on
whether N¢ is even or not. The characteristic polynomial
of the lattice Dirac operator with a quark mass m is then

det(D + ml,,) = det(Dyeq + m1y, g )%/
X det(_Dred + m']]dH/dm)dui/Z (44)

for an even number N¢; of Clifford elements anticommut-
ing with D and
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det(D + ml d’H) = det(Dred + ml dH/dm)dm (45)

for odd N¢. Thus the number of physical flavors is
enhanced by d,;. In particular the symmetry-breaking
patterns are those of the continuum theory of dimension
dieq = d — Ny with d;N; flavors. This is also shown in
Table II.

The zero modes of the naive lattice Dirac operator are
also enhanced by the factor d,;. However exact zero modes
are only present when D or equivalently D 4 is in the
symmetry class B and BIII because the off-diagonal
operators are always of square form (we always have
the same number of vectors with positive and negative
chirality). The symmetry class B means that D, is a real
antisymmetric matrix of odd dimension with no additional
symmetries such that it has one exact zero mode. This zero
mode is currently interpreted as a Majorana fermion in
condensed matter physics; see Ref. [29]. The class BIII
implies that D,.q has a chiral structure whose off-diagonal
block is antisymmetric and odd dimensional such that D 4
has two zero modes: one has positive chirality and the other
one has negative chirality.

We recognize two things. First a QCD-like theory with a
complex gauge group representation will never yield a
naive Dirac operator with zero modes. Hence we can
restrict the discussion about the zero modes to real and
quaternion representations. Second, whether there is a
zero mode strongly depends on the dimension dy/dy;
of the reduced Hilbert space as well as on d;oq = d — Ny,
the effective dimension reflected by the symmetries of
D,.q- Therefore we have to go through the four cases
deqg = 8Ny + j with j =1, 3, 5, 7 where these zero modes
may appear.

First we consider d,.q € 8Ny + 1 and a real representa-
tion of the gauge group or d,.q4 € 8Ny + 5 and a quaternion
representation. Then we find a symmetry class B when N
is even, because this symmetry class does not satisfy a
chiral symmetry, and when dy/d,; = 219/21d,V /2Na/? is
odd where d, = 2¢,, with ¢; € Ny and ¢, is an odd
integer, is the dimension of the representation. We have
Ny =N¢ —[d+1], <dand V = 2M+b1p, € 2VN with
b; € Ny and b, is an odd integer. Then the equation

d Np+|d+1
O:[_J+NL+CI+[71_M
2 2
d+ Ny -1
:++cl+bl (46)

has to be satisfied to find a zero mode. However this will
only be the case for d = d,.q =1 and N, = by =¢; =0.
Since we excluded the lattice theory in one dimension
because there is no spontaneous symmetry breaking, we
conclude that the symmetry class B never shows up for the
naive discretization. In other words, when D and, thus, D,y

PHYSICAL REVIEW D 96, 034502 (2017)

are real antisymmetric matrices they will always be of even
dimension (Cartan class D) regardless of what QCD-like
lattice gauge theory one considers and which effective
dimension d,.g = d — N1, we consider.

In the third and fourth cases we consider d,.4 € 8Ny + 2
and a real representation of the gauge group or d.4 €
8Ny + 6 and a quaternion representation. Then, N has to
be odd because the symmetry class BIII exhibits a chiral
structure. For a zero mode the off-diagonal block has to be
odd dimensional, ie. dy/(2dy) = 2'421d,v/2Na+1)/2
has to be odd. The additional division by 2 comes from
the chiral structure of the matrix D,.q4. We have to solve the
equation

NL+[d+1],+1
2

d
0:[§J+NL+Cl+b1_

_d+N_ -2

) +C1+b1. (47)

This is only satisfied when d = d,.g =2 and N = b, =
¢y =0 because we exclude the one-dimensional case.
Indeed this case was found in the simulations performed
in Ref. [12]. Apart from this particular case again no generic
zero modes will be found for the naive lattice Dirac operator.
Let us summarize the discussion about the zero modes.
Excluding one- and two-dimensional theories, all naive
lattice Dirac operators will never show generic zero modes
independently of the representation of the gauge group, of
the space-time dimension and of the partition of the lattice.
We summarize the results above in Table II.

VI. EXPLICIT REPRESENTATION
OF THE DIRAC OPERATOR

At last we want to derive an explicit representation of the
reduced lattice Dirac operator D4 which is the staggered
Dirac operator for N;, = d. To achieve this we define the
dy X dy unitary matrices

m _1
1
2
vy = 5 (g + T =7+ Ljyj).
v Lo _r r 48
i *E(dH— ity +Ty)) (48)
for j=1,...,N. These matrices are Hermitian, V;I) = Vﬁm,

and, thus, self-inverse, Vﬁ»l) V‘(]-m = ﬂdH. Moreover they
satisfy

(Dy,(2) _ (Dy,03) _ (2)y,03) _
Vj Vj —F/-,VJ Vj =y; and Vj Vj =Ty,
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The product of the matrices V;l), ie.

U=vvV...vy, (50)

will serve as the change of basis we are looking for to

identify D,y We want to emphasize that U is not
necessarily equal to the unitary matrix U from the previous
subsections. In particular the charge conjugation operator

Cy, Will be different from Cj,

though it will be equivalent. Our particular choice for U is
that the transformed Dirac operator U'DU will have a
simple form where D4 can be readily read off.

For the transformation of the Dirac operator we need the
commutation relations

after conjugation with U

(T =TV = V(T =Ty,
T (1) #] 1,(2) i
(Ti - Tz‘)?’ivj =V; (T: =T)rs,
y v vy, (51)

Again we want to recall that we do not use Einstein’s
summation convention. Combining the commutation rela-
tions (51) with Egs. (14), (49), and (50) the Dirac operator
in the new basis is

d
Tt T 1 1 2 2 3 2 2
Upu=> vy - vitviy v vIve v
p=1
x (T, = TW)y,

u=1 \j=1

d Ny,
+ > <Hrj>(Tﬂ—T,i)yﬂ. (52)
pu=Np +1 \j=1

We notice that the covariant derivatives in the first Ny
directions act trivially in the spinor space. Hence, we may
choose a basis of the generalized y matrices for 4 > Ny in
the following way:

Yu = }7;4 ® ‘HQ(NCI’I)/Z (53)

for odd N¢; and

~ ®Ney/2
Yy =7, ® P (54)
for even N¢;. The matrix o?j is the tensor product of the
third Pauli matrix taken j times. The matrices y, build
the generalized y matrices in d,.q = d — N, dimensions.
The remaining y matrices y, with u < Ny are then of the

form 6%’ ® 7, forodd N¢, and 1hes ® 7, for even N¢, with

PHYSICAL REVIEW D 96, 034502 (2017)

J = d/2] = |N¢/2], but this is not important anymore.
Equation (52) is enough to read off the reduced lattice Dirac
operator which is

Ny d
red red
Dred:ZDl(l >+ Z Dl(l >7ﬂ (55)
u=1 u=Np+1

with the new covariant derivatives

D () = (=)= () Uy (o) (x + )
()M UL (e —e,))  (56)

for 4 < Ny and

Dy () = (=125 (=1 0ta U, () (x + )
— (D)W UL (=) (57)

for 4 > N;. We emphasize that the only difference between
Egs. (56) and (57) is the overall sign.

For N; =d the Dirac operator (55) automatically
reduces to the staggered Dirac operator [3]. In the case
that —U(x) is in the considered representation of the gauge
group when U(x) is, the signs can be absorbed. For
example this is the case for the fundamental representation
of SU(2).

For the formulas (55), (56) and (57) we assumed that the
temporal direction has an odd partition of lattice sites. In the
case that the temporal direction has an even number of
lattice sites we switch in the formulas the directions ¢ = 1
and u = d.

In Figs. 1 and 2 we compare Monte Carlo simulations of
quenched QCD lattice Dirac operators in the naive dis-
cretization and in the strong coupling limit (# — oo, where
group elements are drawn from the Haar measure) with
random matrix theory results. We have chosen several
lattices, dimensions and representations of the gauge
groups SU(2) and SU(3). The number of configurations
generated is 10° for the three- and four-dimensional
lattices. For the five-dimensional lattices the number of
configurations ranges from 103~10* such that the statistical
error will be only a few percent. The agreement with the
analytical random matrix results shown in the Appendix is
quite good according to the very small sizes of the lattices.

We employed two quantities to compare the lattice data
with random matrix theory results. Most symmetry classes
(namely seven of the ten) exhibit a nontrivial microscopic
level density about the origin; see Eq. (AS5). This quantity
has specific characteristics like the level repulsion from the
origin as well as between the levels themselves. Combining
these characteristics with the generic degeneracy of the
eigenvalues and the number of the zero modes uniquely
determines the symmetry class. We applied a y? fitting for
this quantity for the microscopic level density which
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o 3x3x3x3x3, SU,(3)
= 4x4x3x3x3, SU,(3)
+ dxdx4x4x3, SUf(3)

(b)

o
< 05
0 1 2 3
S
(d) o 3x3x3, SU,(2)
= 4x3x3x3, SU,(2)
1 s 4x4x3x3x3, SUL(2)
o
QU
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S
0.5
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Y
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GASE = 4x4x4x3, SU£(2)
+ 3x3x3x3x3, SU,(2)
v 4x4x4x4x3, SU(2)
0 5 10

X

Comparison of the random matrix theory predictions (black smooth curves) with lattice simulations of three-,

four- and five-dimensional quenched naive Dirac operators (colored symbols) in the strong coupling limit. The abbreviations

GUE, GOE, ...

refer to the corresponding random matrix ensembles listed in Table IIT and the abbreviations SU,(N.) and

SU,(N,) stand for the fundamental and adjoint representations of the group SU(N,). In the first plots we show the level spacing
distribution pg,(s) which is given by Wigner’s surmise (A6). The lattice data for these plots were normalized to unity for the
zeroth and first moments. For these plots we took into account 19 eigenvalues (= 18 level spacings) per configuration of
the Dirac operator about the origin. The last two plots show the microscopic level density ¢(x); see Eq. (A5). For those
plots the lattice data was rescaled via a y? fitting. We simulated 10° configurations for the three- and four-dimensional
lattices. For the five-dimensional lattices we generated below 10* configurations such that the statistical variance will be below

five percent.

comprises three to four eigenvalues that are closest to the
origin. Since we consider only very few eigenvalues the
macroscopic (or global) level density will have no curva-
ture for this short distance such that we have a trivial (only
rescaling) unfolding of the spectrum.

The other three symmetry classes, abbreviated by GOE,
GUE and GSE, have a flat microscopic level density about
the origin. Thus we have chosen for these ensembles the
level spacing distribution as an observable to determine

which symmetry class the lattice data exhibits. We com-
pared the lattice data with the Wigner surmise (A6) which is
suitable enough for our aim. For this purpose we have
chosen about 20 eigenvalues per configuration about the
origin such that we do not have to unfold the spectrum
because the macroscopic level density will be flat in this
regime to a good approximation. We normalized the
resulting probability density to the mean level spacing
equal to 1.
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FIG. 2. Continuation of the list of comparisons of Fig. 1 between random matrix theory predictions (black smooth curves) and lattice
simulations of three-, four- and five-dimensional quenched naive Dirac operators (colored symbols) in the strong coupling limit. In all
six plots we consider the microscopic level density ¢(x) only [see Eq. (A5)]. As in Fig. 1 we applied a y? fitting on the lattice data which
consist of 10° configurations for the three- and four-dimensional lattices and the number of configurations varies (< 15000) for the five-

dimensional lattices.

VII. CONCLUSIONS

One well-known consequence of the naive discretization
of the Dirac operator is the change of its spectral properties;
see Refs. [8—12]. We analyzed this change for an arbitrary
QCD-like gauge theory and at arbitrary space-time dimen-
sion d > 2. When one or more directions have an even
number of lattice sites the degeneracy increases exponen-
tially. This also results in an increase of the number of
flavors (neglecting the doublers still comprised in the
continuum  limit) by Ny—d;N; where d;=
2L(VLtd+11)/21 and Ny is the number of directions with
even parity.

For d > 2 the Dirac operator has no zero modes such that
the topological charge v will be zero. Hence all zero modes
can only appear when taking the continuum limit. For
example Follana et al. [30] have analyzed how these zero
modes show up for staggered lattice configurations which
converge to configurations with nontrivial topological
charge. Whether a mode is a “would-be” zero mode or
not was determined by measuring the chirality of the
individual modes. We have not considered this particular
issue here.

Moreover the antiunitary symmetries and chiral sym-
metries experience a shift along the symmetry classification
of the continuum symmetries; see Table I as well as
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Ref. [20]. This shift is explicitly given by d — d.q =
d— Np. Thus the symmetries of the staggered Dirac
operator [3] are always those of the corresponding con-
tinuum theories at dimension d = 8 regardless of what
original dimension was chosen as long as the dimension is
d > 2. In particular the symmetry-breaking patterns will be
those at d = 8.

Additionally we derived an explicit form of the non-
degenerate part of the Dirac operator. It reduces to the
staggered Dirac operator [3] when all directions have an
even partition. We performed Monte Carlo simulations with
this reduced Dirac operator in the strong coupling limit and
in the three-, four- and five-dimensional quenched theory.
The spectral statistics of the lowest eigenvalues were
compared with random matrix theory results. The good
agreement of the numerics with the analytical results
confirm our predictions. This agreement is at least as good
as that found in four dimensions for the staggered fermions
[8] despite the fact that the lattices we simulated are
very small.

Our results may yield a basis to understand the con-
tinuum limit of staggered and naive fermions. In particular
it is still an unsolved problem whether the global sym-
metries change to those of the correct continuum theory.
Here we have to say that the weak coupling limit studied in
Ref. [9] nurtures some doubt because on the smallest scales
the global symmetries of the lattice Dirac operator always
show up. When assuming, nonetheless, that the continuum
limit exists, one can study the infrared spectrum of the
Dirac operator and, hence, the lightest pseudoscalar mesons
with random matrix theory. First attempts in this direction
were already done in four [31] and three [11] dimensions.
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APPENDIX: CLASSES OF HERMITIAN
RANDOM MATRICES

There are ten Hermitian symmetric matrix spaces
[26,32]. Five symmetry classes satisfy a chiral symmetry
and the other five do not. Eight of the ten classes have an
antiunitary symmetry with respect to the complex con-
jugation. The corresponding antiunitary operator squares to
+1 for four classes and to —1 for the other four classes. The
ten classes are listed in Table III with the corresponding
Cartan classification label; see Refs. [25,26].

The probability density can be chosen Gaussian for all
ten classes, i.e.

PHYSICAL REVIEW D 96, 034502 (2017)

trH?

P(H) « exp {- —] (A1)

262 |’

with variance ¢ which may vary from one class to another.
The variance can be read off from the joint probability
densities (A2) and (A3). The random matrix :H exhibits the
spectral statistics of the lowest eigenvalues of QCD-like
Dirac operators satisfying the same unitary and antiunitary
symmetries as 1H.

The joint probability density of the eigenvalues 4 of the
random matrix H for the classes A (Hermitian matrices), Al
(real symmetric matrices) and AIl (Hermitian self-dual
matrices) can be summarized in one formula

s Ia b [Tew|-22]. 2

while the other seven Hermitian matrix ensembles follow
the formula

" ap p
)<l [ e -2l oy

In the latter case the eigenvalues of the matrices come in
“chiral pairs” (4;,—4;) though not all of these matrices
satisfy a chiral symmetry, e.g. the imaginary antisymmetric
matrices are not chiral but their eigenvalues appear in
“chiral pairs.” We recall the Vandermonde determinant
A, (1) =

H (/‘Lb - la) = det[iz_l]a.bzl...,,n' (A4)

1<a<b<n

The index fp is the Dyson index which determines the
strength of the level repulsion between the eigenvalues.
The parameter oy, is related to the topological charge and is
the origin of the level repulsion from the origin.

One important spectral quantity is the microscopic level
density. It is a constant for those three ensembles which do
not exhibit “chiral pairs” of eigenvalues, namely real
symmetric, Hermitian and Hermitian self-dual matrices.
For the other seven ensembles the quenched microscopic
level density is nontrivial and has the form [32]

I

= (I, () = i1 ()1 (x))

(ﬂD=1)(x)
2

pl/D

P () = 5 2, (0) = Tyt (1)t (0)),
PP (x) = x| (3, (2%) = Jayp 11 (2%) 5y -1 (2x))

— Ty, (21x]) G - /| T, (2x’)dx’> . (A5)
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TABLE III.

PHYSICAL REVIEW D 96, 034502 (2017)

The ten Gaussian random matrix models corresponding to the ten symmetries of the Cartan classification scheme [25,26].

We want to emphasize that not all of the abbreviations for these ensembles are standard. The last five classes are the chiral models while
the first five exhibit no chirality but may have “chiral pairs” of eigenvalues (4, —1); see the seventh column. Shown are their explicit
matrix representations (fourth column), the Dyson index fp (fifth column) and the exponent of the level repulsion from the origin ap
(sixth column) as well as the number of generic zero modes. Please note that some ensembles only differ in their spectral properties via
subtleties like the number of the zero modes. The indices fp, ap and vy, are needed for the analytical random matrix results (A2), (A3),

(A5) and (A6).

Abbreviation
for Gaussian Cartan chiral  generic
RMT ensemble class Random matrix H Pp ap Up pair Zeros
Hermitian matrices Lie GUE(n) A H=H eC™ neN 2 0 0 No 0
algebra of U(n)
real symmetric matrices GOE(n) Al H=H"=H"eR"™ neN 1 0 0 No 0
Hermitian self-dual GSE(n) All H = 0,H"0, = 0,H*0, 4 0 0 No 0
matrices H e C¥*2n neN
imaginary antisymmetric GAOE,(n) B|D H=-H" = -H* 2 w=0, Hl=+] Yes v=0,1
matrices, Lie algebra H € IR@n+)x(2n+) 2
of O(n) neN,v=0,1
Hermitiananti-self-dual GASE(n) C H=-0,H"0, = -0,H*0, 2 2 ! Yes 0
matrices, Lie algebra HeC*™ neN
of USp(2n)
chiral Hermitian matrices ~ yGUE,(n) Al 0o w 2 2w+l v Yes v
H=| . :
Wi 0
wWeCc™nt) pyeN
chiral real symmetric xGOE, (n) B|DI e 0o w 1 v v Yes v
matrices —lwt oo
W=W"e Rnx(nw‘—y)’ nveN
chiral Hermitian ¥GSE, (n) CII o w 4 4uv+3 v Yes 2u
self-dual matrices H= wt ol
W=0,W*0, e C*2n+) y yeN
symmetric GBOE(n) CI e 0o w' 1 1 1 Yes 0
Bogolyubov-de Gennes w0
matrices W=wleC™ neN
antisymmetric GBSE,(n) B|DII g0 wi 4 v+l sl=x1 Yes 2w=0,
Bogolyubov- w0 2

de Gennes matrices

W= —-wT c ([:(2n+b)><(2n+b)7

neN,v=0,1

The function J,(x) = [* expluxsin(p) — we|dp/(27) is
the Bessel function of the first kind. The densities are
normalized such that lim,_.p(x) = 1/z. The index vp, is
related to ap and the topological charge v and can be read

off from Table IIL
The densities (AS) together with the degree of degen-

eracy of the eigenvalues and the number of the generic zero

modes are ideal for deciding to which of the seven
symmetry classes a specific spectrum belongs. But what
about the classes of real symmetric, Hermitian and
Hermitian self-dual matrices? For these three classes
another quantity is needed which is the level spacing
distribution. It describes the distribution of the spacing
between adjacent eigenvalues. This distribution is very well
described by Wigner’s surmise [33]
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with the gamma function I'(x). A better approximation of
the level spacing distribution is via a Padé expansion which
converges rapidly to the true level spacing distribution; see

psp(s) =2

PHYSICAL REVIEW D 96, 034502 (2017)

Ref. [34]. Though the distribution (A6) is not the exact
result of the level spacing distribution for n — oo it is a
good approximation. Its root-mean-square deviation to the
correct expression is much less than one per mill.

In the Monte Carlo simulations shown in Figs. 1 and 2,
we make use of Egs. (A5) and (A6). They are the analytical
curves we compare with the numerics. In this way we
confirm our predictions.
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