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We study the global symmetries of naive and staggered lattice Dirac operators in QCD-like theories in
any dimension larger than two. In particular we investigate how the chosen number of lattice sites in each
direction affects the global symmetries of the Dirac operator. These symmetries are important since they
determine not only the infrared spectrum of the Dirac operator but also the symmetry breaking pattern and,
thus, the lightest pseudoscalar mesons. We perform the symmetry analysis and discuss the possible zero
modes and the degree of degeneracy of the lattice Dirac operators. Moreover we explicitly identify a
“reduced” lattice Dirac operator which is the naive Dirac operator apart from the degeneracy. We verify our
predictions by comparing Monte Carlo simulations of QCD-like theories in the strong coupling limit with
the corresponding random matrix theories.
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I. INTRODUCTION

QCD-like theories describing the strong interaction
between quarks and gluons are highly involved due to their
nonlinear field equations. This statement also applies to
QCD-like theories beyond the standard model like theories
with technicolor [1] or supersymmetry [2]. Therefore quite
often only numerical simulations remain as a tool to study
the theory as a whole. Here, one encounters two crucial
modifications of the continuum theory to overcome certain
problems.
First, the time axis is Wick rotated to circumvent the sign

problem resulting from a real time. Thus, the Yang-Mills
action is replaced by a Euclidean Wilson gauge action or a
Symanzik improved version of it. Furthermore, the Dirac
operator becomes a hypercubic lattice Dirac operator
which is a finite-dimensional matrix on a lattice of finite
volume V. There are several lattice discretizations of the
QCD-Dirac operator, the most prominent being the Dirac
operators of staggered fermions [3], of Wilson fermions [4],
of twisted mass fermions [5], of overlap fermions [6] and of
domain wall fermions [7].
The simplest version of a lattice Dirac operator is the

naive Dirac operator on a cubic lattice with periodic and
antiperiodic boundary conditions. The Dirac operator of
staggered fermions (without rooting) is a particular version
of the naive Dirac operator. It is the nondegenerate part of
the naive Dirac operator on a cubic lattice were each
direction consists of an even number of lattice sites.
The second problem to be solved in lattice QCD

concerns the continuum limit. It is well known that the
global symmetries of staggered fermions in four dimen-
sions do not necessarily agree with those of the continuum

theory for QCD. For example the theories with two colors
and the fermions in the fundamental representations or with
arbitrary colors in the adjoint representation have this
problem; see Refs. [8,9]. This problem was also found
in three [10,11] and in two dimensions [12]. In particular in
two dimensions the reason for the change of the global
symmetries was recently analyzed in detail in Ref. [12].
In the present work we aim at a generalization of this
discussion to arbitrary space-time dimensions.
The global symmetries are manifest in the lowest

eigenvalues of the Dirac operator [13,14]. In the phase
of spontaneous breaking of chiral symmetry the spectral
gap is closed and chiral perturbation theory applies. The
order parameter is the chiral condensate Σ which is given
by the Banks-Casher formula [15] in terms of the level
density ρ of the Dirac operator,

Σ ¼ jhψ̄ψij ¼ lim
a→0

lim
m→0

lim
V→∞

π

V

Z
2mρðλÞdλ
m2 þ λ2

: ð1Þ

The order of the limits is crucial. The Banks-Casher
formula (1) is only true for Dirac operators exhibiting a
chiral symmetry. In three dimensions one has to consider
the following condensate:

Σnonχ ¼ jhψ̄τ3ψij ¼ lim
a→0

lim
m→0

lim
V→∞

π

V

Z
2mρðλÞdλ
m2 þ λ2

: ð2Þ

Note that the expression in terms of the level density is the
same in both equations because we assumed for the latter an
even number of dynamical quarks. Then, half of the quarks
contribute a chiral condensate weighted with a plus sign
and the other half contribute one with a minus sign.
From the expressions (1) and (2) we recognize that only

those eigenvalues of the Dirac operator of order Oð1=VÞ
are important for the spontaneous symmetry breaking. The
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corresponding modes are intimately related with those
pseudoscalar mesons whose Compton wavelength is larger
than the size of the lattice. Then the kinetic modes factorize
from the zero-momentum modes [16,17] and can be
integrated out. The remaining effective Lagrangian for
the zero-momentum modes is shared with Gaussian ran-
dom matrix models [13,14]. This theoretical prediction was
numerically verified several times; for example for the
microscopic level density

ρmicroðxÞ ¼ lim
V→∞

1

ΣV
ρ

�
x
ΣV

�
; ð3Þ

(see Ref. [8]).
For a long time it has been known that QCD-like theories

may yield different patterns of spontaneous symmetry
breaking and, hence, different kinds of Goldstone bosons;
see e.g. see Refs. [14,18,19]. In Ref. [20] the symmetry
breaking patterns were derived for an arbitrary dimension
larger than two. For QCD-like theories in one and two
dimensions the Mermin-Wagner-Coleman theorem [21,22]
forbids a spontaneous breaking of global symmetries,
though two-dimensional theories seem to be at the border-
line; see Ref. [12]. The authors of Ref. [20] found that the
Bott periodicity [23] satisfied by the γ matrices carries over
to the symmetry breaking pattern and, thus, to the effective
Lagrangian for the pseudoscalar mesons. A similar clas-
sification was also found for topological insulators [24]. All
in all there are ten symmetry breaking patterns associated to
QCD-like Dirac operators. They correspond to the Cartan
classification of Hermitian random matrices [25,26] and
each of these ten random matrix ensembles yields the
effective Lagrangian of the pseudoscalar mesons at low-
est order.
Combining the two observations that the partition of the

lattice and the space-time dimension affect the global
symmetries and, hence, the symmetry-breaking pattern,
one may ask what their combined impact is for an arbitrary
QCD-like theory. Answering this question is the main task
of the present work. For this purpose we pursue similar
ideas as in Ref. [12].
We first review the symmetry analysis of the continuum

theory [20], in Sec. II. In this section we also recall the
properties of Clifford algebras built up by the γ matrices
and the different kinds of antiunitary operators which are at
the heart of the classification of global symmetries. In
Sec. III we very briefly review what the naive discretization
explicitly looks like and what the corresponding symmetry
operations on a lattice are. In particular we discuss the
artificial symmetry operations which arise when one or
more directions have an even partition of lattice sites. Those
additional symmetry operators anticommute with the lattice
Dirac operator and build a Clifford algebra themselves.
They are the origin for the change of symmetries which is
analyzed in Sec. IV. In Sec. V we discuss the symmetry-

breaking patterns and the number of zero modes and in
Sec. VI we derive an explicit representation of the non-
degenerate part of the lattice Dirac operator. This “reduced”
Dirac operator is the staggered Dirac operator when each
direction of the lattice contains an even number of sites.
We also perform lattice simulations in the strong coupling
limit and compare it with random matrix ensembles
predicted by our analysis. Those comparisons are shown
in Figs. 1 and 2. The random matrix results employed in
these comparisons are recalled in the Appendix. In Sec. VII
we summarize our results and discuss some important
implications. The Tables I, II and III provide an overview of
the change of symmetries when varying the space-time
dimension, the number of directions with an even partition
and the representation of the gauge group. We want to
emphasize that we deal with all QCD-like gauge theories
on an equal footing and do not restrict ourselves to the
gauge groups SUðNcÞ.
In contrast to standard literature we do not apply

Einstein’s summation convention throughout the present
work because of computational reasons.

II. DIRAC OPERATOR OF QCD-LIKE THEORIES
IN EUCLIDEAN CONTINUUM

We consider the Euclidean massless Dirac operator of a
QCD-like gauge theory in d dimensions, i.e.

D ¼
Xd
μ¼1

ð∂μ1dr þ {AμðxÞÞγμ ð4Þ

where { is the imaginary unit. The vector fields
{AμðxÞ ∈ rðgÞ, where x is a point in space-time, are elements
in an irreducible representation r of a finite-dimensional
compact Lie algebra g; in particular A†

μ ¼ Aμ is Hermitian.
The dimension of this representation is denoted by dr and
should not be confused with the space-time dimension d. In
QCD the Lie algebra is g ¼ suð3Þ. The dimension dr is
emphasised by the identity matrix 1dr multiplied with the
partial derivative ∂μ in the μth direction. Since we consider
Euclidean space-time the generalized γmatrices are given by
the Clifford algebra [27]

½γμ; γν�þ ¼ 2δμν12⌊d=2⌋ ; tr γμ ¼ 0 and γ†μ ¼ γμ ð5Þ

where ½:; :�þ is the anticommutator and γμ are Hermitian
2⌊d=2⌋ × 2⌊d=2⌋ matrices. The function ⌊d=2⌋ is the floor
function yielding the largest integer equal to or smaller
than d=2.
The Clifford algebra above generates the fundamental

representation of the Lie algebra of the unitary group
Uð2⌊d=2⌋Þ via the multiplication of algebra elements and
scalars as well as the addition of algebra elements. This fact
will become helpful later on.
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We now recall some well-known facts about the Clifford
algebra with d generators; see also Ref. [27]. The gener-
alized γ matrices can be represented in terms of the three
Pauli matrices σi, i ¼ 1, 2, 3. However we will employ a
basis independent representation of the Dirac matrices. We
recall that for odd dimension d (odd number of generators

of the Clifford algebra) there is no chiral symmetry while
for even dimensions the matrix

γð5Þ ¼ {−dðd−1Þ=2
Yd
j¼1

γj ¼ {−dðd−1Þ=2γ1γ2 � � � γd ð6Þ

TABLE I. Classification of QCD-like continuum theories with respect to the spontaneous breaking of their flavor symmetry group like
chiral symmetries; see Ref. [20]. In the first line of each entry the symmetries of the continuum Dirac operator D ¼ −D† regarding the
antiunitary operator C and the matrix γð5Þ, if applicable, are shown. In the second line we show the symmetry-breaking pattern but
without taking into account the anomalous symmetry breaking of the axial symmetry group. The space-time dimension d has to be larger
than two for these patterns while d ¼ 2 does not necessarily exhibit a spontaneous symmetry breaking because of the Mermin-Wagner-
Coleman theorem. However it was observed in numerical simulations that some QCD-like theories might show a symmetry breaking in
two dimensions; see Ref. [12]. In the third line of the entries we recall the symmetry class of the Cartan scheme [23,24] and the
corresponding random matrix model exhibiting the same spectral statistics for the lowest eigenvalues as the corresponding Dirac
operator; see Table III. The indices n and ν determine the dimension of the random matrix and play the roles of the volume and the
topological charge.

d Real representation Complex representation Quaternion representation

8m ½γð5Þ;D�þ ¼ ½C;D�− ¼ ½C; γð5Þ�− ¼ 0;
C2 ¼ 1

Uð2NfÞ → USpð2NfÞ
BjDI; χGOEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ 0
UðNfÞ × UðNfÞ → UðNfÞ
AIII; χGUEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ ½C;D�− ¼ ½C; γð5Þ�− ¼ 0;
C2 ¼ −1

Uð2NfÞ → Oð2NfÞ
CII; χGSEνðnÞ; ν ∈ Z

8mþ 1 ½C;D�− ¼ 0; C2 ¼ 1
Oð2NfÞ → UðNfÞ

BjD;GAOEνðnÞ; ν ∈ Z2

no further symmetries
Uð2NfÞ → UðNfÞ × UðNfÞ

A;GUEðnÞ

½C;D�− ¼ 0; C2 ¼ −1
USpð2NfÞ → UðNfÞ

C;GASEðnÞ

8mþ 2 ½γð5Þ;D�þ ¼ ½C;D�þ ¼ ½C; γð5Þ�þ ¼ 0;
C2 ¼ −1

Oð2NfÞ × Oð2NfÞ → Oð2NfÞ
BjDIII;GBSEνðnÞ; ν ∈ Z2

½γð5Þ;D�þ ¼ 0

UðNfÞ × UðNfÞ → UðNfÞ
AIII; χGUEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ ½C;D�þ ¼ ½C; γð5Þ�þ ¼ 0;
C2 ¼ 1

USpð2NfÞ × USpð2NfÞ → USpð2NfÞ
CI;GBOEðnÞ

8mþ 3 ½C;D�þ ¼ 0; C2 ¼ −1
Oð2NfÞ → OðNfÞ × OðNfÞ

AII;GSEðnÞ

no further symmetries
Uð2NfÞ → UðNfÞ × UðNfÞ

A;GUEðnÞ

½C;D�þ ¼ 0; C2 ¼ 1
USpð4NfÞ → USpð2NfÞ × USpð2NfÞ

AI;GOEðnÞ

8mþ 4 ½γð5Þ;D�þ ¼ ½C;D�− ¼ ½C; γð5Þ�− ¼ 0;
C2 ¼ −1

Uð2NfÞ → Oð2NfÞ
CII; χGSEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ 0

UðNfÞ × UðNfÞ → UðNfÞ
AIII; χGUEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ ½C;D�− ¼ ½C; γð5Þ�− ¼ 0;
C2 ¼ 1

Uð2NfÞ → USpð2NfÞ
BjDI; χGOEνðnÞ; ν ∈ Z

8mþ 5 ½C;D�− ¼ 0; C2 ¼ −1
USpð2NfÞ → UðNfÞ

C;GASEðnÞ

no further symmetries
Uð2NfÞ → UðNfÞ × UðNfÞ

A;GUEðnÞ

½C;D�− ¼ 0; C2 ¼ 1
Oð2NfÞ → UðNfÞ

BjD;GAOEνðnÞ; ν ∈ Z2

8mþ 6 ½γð5Þ;D�þ ¼ ½C;D�þ ¼ ½C; γð5Þ�þ ¼ 0;
C2 ¼ 1

USpð2NfÞ × USpð2NfÞ → USpð2NfÞ
CI;GBOEðnÞ

½γð5Þ;D�þ ¼ 0

UðNfÞ × UðNfÞ → UðNfÞ
AIII; χGUEνðnÞ; ν ∈ Z

½γð5Þ;D�þ ¼ ½C;D�þ ¼ ½C; γð5Þ�þ ¼ 0;
C2 ¼ −1

Oð2NfÞ × Oð2NfÞ → Oð2NfÞ
BjDIII;GBSEνðnÞ; ν ∈ Z2

8mþ 7 ½C;D�þ ¼ 0; C2 ¼ 1
USpð4NfÞ → USpð2NfÞ × USpð2NfÞ

AI;GOEðnÞ

no further symmetries
Uð2NfÞ → UðNfÞ × UðNfÞ

A;GUEðnÞ

½C;D�þ ¼ 0; C2 ¼ −1
Oð2NfÞ → OðNfÞ × OðNfÞ

AII;GSEðnÞ
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anticommutes with all generators such that there is a chiral
symmetry. Moreover, the generators of the Clifford algebra
always satisfy an antiunitary symmetry

½C; {dðd−1Þ=2γν�− ¼ 0 and ½C; {dðd−1Þ=2γð5Þ�− ¼ 0 ð7Þ

where ½:; :�− is the commutator. The operator C can be
explicitly written as

C ¼ Kχ ¼
8<
:

K{m
Q

2m
j¼1 γ2j; d ¼ 4m; 4mþ 1;

K{mþ1
Q

2mþ2
j¼1 γ2j−1; d ¼ 4mþ 2; 4mþ 3;

ð8Þ

where K is the complex conjugation operator and γdþ1 ¼
γð5Þ for d ∈ 2N. It satisfies

C2 ¼ ð−1Þðdþ2Þðdþ1Þdðd−1Þ=812⌊d=2⌋ ð9Þ

which is the origin for the Bott periodicity [23] of Clifford
algebras. The matrix χ [see Eq. (8)] is a unitary, Hermitian
matrix which is either symmetric or antisymmetric depend-
ing on the sign of C2.
The antiunitary symmetry (7) has to be combined with

the one which might be satisfied by the vector fields Aμ.
Note that the partial derivatives are anti-Hermitian and
real, i.e. ∂μ ¼ −∂†

μ ¼ K∂μK. Also the vector fields {Aμ are
anti-Hermitian, i.e. ð{AμÞ† ¼ −{Aμ. Additionally they might
satisfy an antiunitary symmetry,

½Kζ; {Aμ�− ¼ 0 and ðKζÞ2 ¼ ζ�ζ ¼ �1 ð10Þ
where ζ is a unitary matrix. If there is no such
symmetry then the representation r is called complex.
Examples are the fundamental representations of the
gauge groups SUðNc ≥ 3Þ and UðNc ≥ 2Þ. When there
is an antiunitary operator Kζ, the representation r is
called real or quaternion when ðKζÞ2¼1 or ðKζÞ2¼−1,
respectively. Examples of real representations are the
fundamental representation of SOð2Nc þ 1 ≥ 5Þ and
SOð2Nc≥8Þ and the adjoint representation of any
compact Lie algebra. The fundamental representation
of SUðNc ¼ 2Þ ¼ USpð2Nc ¼ 2Þ and in general the
unitary symplectic group USpð2NcÞ are examples of
quaternion representations.
The symmetry discussion above for the continuum

Dirac operator is summarized in Table I and was already
performed in Ref. [20]. For this purpose, we defined the
charge conjugation operator

C ¼ Kζχ ð11Þ

which only exists for real and quaternion representations of
the chosen gauge group. In Table I we also point out the
symmetry-breaking pattern, the symmetry class via the

Cartan classification scheme [25,26], and the random
matrix theory describing the infrared energy spectrum of
the Dirac operator. Note that all ten symmetry classes of
Hermitian operators can be found as it is the case for
topological insulators [24].

III. NAIVE AND STAGGERED LATTICE
DIRAC OPERATOR

On the lattice the Hilbert space H ¼ Cdr ⊗ V̂ ⊗ C⌊d=2⌋

is finite dimensional. It consists of three parts. The first part
is the color space Cdr where the gauge group acts. The

second one is the cubic lattice V̂ ¼ ⊗
d

j¼1
CLj with the volume

V ¼ Q
d
j¼1 Lj and Lμ ∈ N being the number of lattice

sites in the direction μ. The third part is the spinor space
C⌊d=2⌋. Thus the dimension of the Hilbert space is in
total dH ¼ 2⌊d=2⌋drV.
In the naive discretization the covariant derivative is

replaced by the difference of the translation operator Tμ and
its Hermitian adjoint, i.e.

∂μ1dr þ {AμðxÞ → Tμ − T†
μ: ð12Þ

The translation operator Tμ acts as follows on a state
jψðxÞi ∈ H at a fixed lattice site x ¼ ðx1;…; xdÞ ∈ V̂:

TμjψðxÞi ¼ ð−1ÞδμdδxdLdUμðxÞjψðxþ eμÞi; ð13Þ

where eμ is the d-dimensional vector with a 1 at the position
μ and otherwise zero and xj ∈ ZLj

. The matrices UμðxÞ are
elements of the representation rðGÞ where G is the gauge
group. This representation satisfies the same antiunitary
symmetry as the Lie algebra g if it exists. The sign in
Eq. (13) reflects the boundary conditions which are
periodic in the spatial directions μ ¼ 1;…; d − 1 and
antiperiodic for the temporal direction μ ¼ d. We want
to emphasize that the results of the symmetry analysis will
be independent of the periodic or antiperiodic boundary
conditions. Hence the sign only plays a minor role. The
naive lattice Dirac operator is given by

D ¼
Xd
μ¼1

ðTμ − T†
μÞγμ: ð14Þ

As already found for two dimensions (see Ref. [12]),
depending on the number of lattice sites in a fixed direction
μ there might be an operator that anticommutes with the
lattice Dirac operator (14). Suppose the number Lμ is even.
Then we can consider the operator

ΓμjψðxÞi ¼ ð−1Þxμ jψðxÞi ð15Þ

which assigns to each even lattice site (according to the
parity in the direction μ) a “þ1” and to each odd lattice site
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a “−1.” Obviously, the operator Γμ is diagonal and consists
of equally many eigenvalues�1 and only acts on the lattice
part V̂ of the Hilbert space. This artificial operator satisfies
the following commutation relations with the transfer
matrices:

½Γμ; Tμ�þ ¼ 0 and ½Γμ; Tν�− ¼μ≠ν0: ð16Þ
Combining this artificial operator with the γ matrix γμ, i.e.

Γð5Þ
μ ¼ Γμγμ ð17Þ

(note that we do not sum over μ), we obtain the anti-
commutation relation

½Γð5Þ
μ ; D�þ ¼

Xd
ν¼1

½Γμγμ; ðTν − T†
νÞγν�þ ¼ 0: ð18Þ

The lattice may not only have one direction with an even
partition. For example for staggered fermions all Lμ are
even. For each direction with an even partition we construct

an operator Γð5Þ
μ and each of them satisfies Eq. (18).

Suppose NL ≤ d directions have an even partition and
we choose these directions as μ ¼ 1;…; NL without loss of
generality. We emphasize again that the different boundary
conditions for spatial and temporal directions play a minor

role. Additionally we define the operator Γð5Þ
NLþ1 ¼ γð5Þ

depending on whether the space-time dimension d is even.

The operators fΓð5Þ
j gj¼1;…;NCl

also build a Clifford algebra
of NCl ¼ NL þ ½dþ 1�2 generators, i.e.

½Γð5Þ
i ;Γð5Þ

j �þ ¼ 2δij1dH ; trΓð5Þ
j ¼ 0 and

ðΓð5Þ
j Þ† ¼ Γð5Þ

j : ð19Þ

The function ½dþ 1�2 is 1 if d is even and vanishes for odd

d. All operators fΓð5Þ
j gj¼1;…;NCl

anticommute with the Dirac
operator; see Eq. (18).
In the case where there is a charge conjugation operator

Clat ¼ Kζχ and

C2
lat ¼ ð−1Þðdþ2Þðdþ1Þdðd−1Þ=8sign½ðKζÞ2�1dH ; ð20Þ

namely for real and quaternion representations r, with

½Clat; {dðd−1Þ=2D�− ¼ 0; ð21Þ

we have furthermore the relation

½Clat; {dðd−1Þ=2Γ
ð5Þ
j �− ¼ 0 ð22Þ

for all j ¼ 1;…; NCl.

IV. SYMMETRY ANALYSIS

The relations (18), (19), (21), and (22) together with the
definitions (17) and (20) completely determine the degen-
eracy of the eigenvalues and the symmetry class of the
lattice Dirac operator D including the symmetry-breaking
pattern. This has to be done for even and odd NCl,
separately. We do this by pursuing the same ideas as in
the discussion for the two-dimensional lattice QCD Dirac
operator [12].

A. Even number NCl of Clifford generators

When the number NCl of generators of the Clifford
algebra anticommuting with the Dirac operator is even
one can construct a NCl þ 1 Hermitian, unitary operator

Γ̂ð5Þ ¼ {NClðNCl−1Þ=2 QNCl
j¼1 Γ

ð5Þ
j which anticommutes with all

generators but commutes with the naive Dirac operator D.
Multiplying D with Γ̂ð5Þ one obtains the commutation
relations

½DΓ̂ð5Þ;Γð5Þ
j �− ¼ 0 for all j ¼ 1;…; NCl: ð23Þ

Since the combinations Γð5Þ
i � {Γð5Þ

j are nilpotent the set

fΓð5Þ
j gj¼1;…;NCl

generates a direct sum of fundamental
representations of the Lie algebra of the unitary group
Uð2NCl=2Þ by multiplication of elements and of scalars and
by addition. The fundamental representation of the Clifford
algebra generated by NCl Hermitian elements is unique up
to unitary transformations because NCl is even. Thus there
is a unitary matrix U ∈ UðdHÞ with

UΓð5Þ
j U† ¼ 1dH=2NCl=2 ⊗ γ0j for all j ¼ 1;…; NCl; ð24Þ

with fγ0jgj¼1;…;NCl
in the fundamental representation of the

Clifford algebra in 2NCl=2 dimensions. The tensor notation
shall emphasize the splitting of the Hilbert space into two
terms. We will also employ it in the following as a
bookkeeping tool.
Equation (24) also implies

UΓ̂ð5ÞU† ¼ 1dH=2NCl=2 ⊗ γ0ð5Þ

¼ {NClðNCl−1Þ=21dH=2NCl=2 ⊗
YNCl

j¼1

γ0j: ð25Þ

With the aid of Schur’s lemma [28], the commuta-
tion relation (23) yields UDΓ̂ð5ÞU† ¼ Dred ⊗ 12NCl=2 or
equivalently

UDU† ¼ Dred ⊗ γ0ð5Þ ð26Þ

with a reduced lattice Dirac operator Dred ¼ −D†
red only

acting on a Hilbert space of dimension dH=2NCl=2.
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In Sec. VI we write Dred more explicitly by choosing a
basis in the spinor space.
In the case that there is no additional antiunitary sym-

metry (complex representation of the gauge group) the
eigenvalues of D are 2NCl=2−1-fold degenerate. Moreover

all eigenvalues come in “chiral” pairs ðλ;−λÞ apart from the
case NCl ¼ 0. These “chiral” pairs are reminiscent of the
chirality of the original lattice Dirac operator D. The Dirac
operator will have the global symmetries of the three-
dimensional continuum theory.

TABLE II. The symmetry-breaking patterns of the naive lattice Dirac operator for the three kinds of theories with a dimension
d > 2 and the corresponding Cartan class [23,24] and the random matrix theory (see Table III and the Appendix), with which the
Monte Carlo simulations have to be compared. Instead of the dimension d of the continuum theory one obtains the symmetry of a shifted
dimension dred ¼ d − NL. The staggered Dirac operator corresponds to dred ¼ 0 ¼ 8m though the degeneracy dtri ¼ 2⌊ðNLþ½dþ1�2Þ=2⌋
will not be present for this operator. The degeneracy is also the reason why the number of flavors is increased to dtriNf compared to
the continuum theory, cf. Table I. Note that the topological charge ν vanishes because no zero modes are present in the naive Dirac
operator with d > 2.

dred ¼ d − NL Real representation Complex representation Quaternion representation

8m Uð2dtriNfÞ
↓

USpð2dtriNfÞ
DI; χGOE0ðnÞ

UðdtriNfÞ × UðdtriNfÞ
↓

UðdtriNfÞ
AIII; χGUE0ðnÞ

Uð2dtriNfÞ
↓

Oð2dtriNfÞ
CII; χGSE0ðnÞ

8mþ 1 Oð2dtriNfÞ
↓

UðdtriNfÞ
D;GAOE0ðnÞ

Uð2dtriNfÞ
↓

UðdtriNfÞ × UðdtriNfÞ
A;GUEðnÞ

USpð2dtriNfÞ
↓

UðdtriNfÞ
C;GASEðnÞ

8mþ 2 Oð2dtriNfÞ × Oð2dtriNfÞ
↓

Oð2dtriNfÞ
BjDIII;GBSE0ðnÞ

UðdtriNfÞ × UðdtriNfÞ
↓

UðdtriNfÞ
AIII; χGUE0ðnÞ

USpð2dtriNfÞ × USpð2dtriNfÞ
↓

USpð2dtriNfÞ
CI;GBOEðnÞ

8mþ 3 Oð2dtriNfÞ
↓

OðdtriNfÞ × OðdtriNfÞ
AII;GSEðnÞ

Uð2dtriNfÞ
↓

UðdtriNfÞ × UðdtriNfÞ
A;GUEðnÞ

USpð4dtriNfÞ
↓

USpð2dtriNfÞ × USpð2dtriNfÞ
AI;GOEðnÞ

8mþ 4 Uð2dtriNfÞ
↓

Oð2dtriNfÞ
CII; χGSE0ðnÞ

UðdtriNfÞ × UðdtriNfÞ
↓

UðdtriNfÞ
AIII; χGUE0ðnÞ

Uð2dtriNfÞ
↓

USpð2dtriNfÞ
DI; χGOE0ðnÞ

8mþ 5 USpð2dtriNfÞ
↓

UðdtriNfÞ
C;GASEðnÞ

Uð2dtriNfÞ
↓

UðdtriNfÞ × UðdtriNfÞ
A;GUEðnÞ

Oð2dtriNfÞ
↓

UðdtriNfÞ
D;GAOE0ðnÞ

8mþ 6 USpð2dtriNfÞ × USpð2dtriNfÞ
↓

USpð2dtriNfÞ
CI;GBOEðnÞ

UðdtriNfÞ × UðdtriNfÞ
↓

UðdtriNfÞ
AIII; χGUE0ðnÞ

Oð2dtriNfÞ × Oð2dtriNfÞ
↓

Oð2dtriNfÞ
BjDIII;GBSE0ðnÞ

8mþ 7 USpð4dtriNfÞ
↓

USpð2dtriNfÞ × USpð2dtriNfÞ
AI;GOEðnÞ

Uð2dtriNfÞ
↓

UðdtriNfÞ × UðdtriNfÞ
A;GUEðnÞ

Oð2dtriNfÞ
↓

OðdtriNfÞ × OðdtriNfÞ
AII;GSEðnÞ
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In the case of a real or quaternion representation, we also
have to consider the transformation of the charge con-
jugation operator Clat. We define C0

lat¼UClatU†¼Kζ0⊗ χ0

with unitary matrices ζ0∈UðdH=2NCl=2Þ and χ0∈Uð2NCl=2Þ.
The commutation relations (22) and (21) become

½C0
lat; {

dðd−1Þ=21dH=2NCl=2 ⊗ γ0j�− ¼ 0

⇒ ½C0
lat; {

NClðNCl−1Þ=21dH=2NCl=2 ⊗ γ0ð5Þ�− ¼ 0 ð27Þ

and

� ½C0
lat; {

dðd−1Þ=2Dred ⊗ γ0ð5Þ�−
¼ ½Cred; {dredðdred−1Þ=2Dred�− ⊗ {NClðNCl−1Þ=2χ0γ0ð5Þ ¼ 0

ð28Þ

with Cred ¼ Kζ0 and dred ¼ d − NL, respectively. To derive
Eq. (28) we need

{dðd−1Þ=2 ¼ �{dredðdred−1Þ=2þNClðNCl−1Þ=2 ð29Þ

which is true becauseNL¼NCl− ½dþ1�2 with ½dþ1�2¼ 0,
1 and d½dþ 1�2 is always even.
What remains to be calculated is the square C2

red. For this
purpose we notice that ðC0

latÞ2 ¼ C2
lat. Furthermore the

unitary matrix χ0 can be chosen as

χ0 ¼ ðγ0ð5ÞÞdredðdred−1Þ=2

×

(
{m

Q
2m
j¼1 γ

0
2j; NCl ¼ 4m;

{mþ1
Q

2mþ2
j¼1 γ02j−1; NCl ¼ 4mþ 2;

ð30Þ

because of the commutation relations

½Kχ0; {dðd−1Þ=2γ0j�− ¼ 0 for all j ¼ 1;…; NCl: ð31Þ

All other choices of χ0 are unitarily equivalent. The
commutation relations (31) directly follow from the first
line of Eq. (27), since the first component of the tensor
product is trivial. Employing the relation C2

lat ¼ ðC0
latÞ2 ¼

C2
red ⊗ ðKχ0Þ2 we obtain

C2
red ¼ ð−1Þðdredþ2Þðdredþ1Þdredðdred−1Þ=8

× sign½ðKζÞ2�1dH=2NCl=2 : ð32Þ

To simplify the sign we have used the identity

ð−1Þðdþ2Þðdþ1Þdðd−1Þ=8þðNClþ2ÞðNClþ1ÞNClðNCl−1Þ=8

¼ ð−1Þðdredþ2Þðdredþ1Þdredðdred−1Þ=8þdredðdred−1ÞNClðNCl−1Þ=4

ð33Þ

which is even true for odd NCl as can be checked by
choosing d;NL ¼ 1;…; 8 because of the periodicity in 8.

The symmetries of the Dirac operator D experience a
shift in the Bott periodic Table I due to the lattice directions
with even partition. Moreover, the degeneracy of the
eigenvalues of the lattice Dirac operator D is either
2NCl=2−1-fold or 2NCl=2-fold depending on whether Dred
exhibits Kramers degeneracy or “chiral pairs” of eigenval-
ues or not. We emphasize that the whole Dirac operator D
always exhibits “chiral pairs” of eigenvalues.
Summarizing the discussion for an even number NCl of

Clifford generators anticommuting with the Dirac operator,
the symmetries ofD are shifted via the Bott periodic Table I
from the original symmetries of the continuum theory in d
dimensions to a theory sharing the symmetries of the same
continuum theory but only in dred ¼ d − NL dimensions.
This is true for all representations. Thus, for any representa-
tion the shift of the symmetry class is always to an odd-
dimensional continuum theory because NCl ¼ NL þ ½dþ
1�2 is even. This will be different for the case of oddNCl. The
symmetry-breaking patterns are summarized in Table II.

B. Odd number NCl of Clifford generators

For an odd number NCl of Clifford generators the
corresponding fundamental representation of the Clifford
algebra is not unique; rather, there are two. Indeed we have

in our case that the product of all generators
QNCl

j¼1 Γ
ð5Þ
j is

not proportional to the identity as it would be for the case
when it is a multiple of one of the two inequivalent
fundamental representations. The product is

~Γ ¼ {NClðNCl−1Þ=2
YNCl

j¼1

Γð5Þ
j ¼ Γð5Þ ~γ

¼ {NClðNCl−1Þ=2Γð5Þ

8><
>:

�QNL
j¼1 γj

�
γð5Þ; d ∈ 2N;QNL

j¼1 γj; d ∈ 2Nþ 1;
ð34Þ

where Γð5Þ ¼ QNL
j¼1 Γj is a diagonal matrix with an equal

number of eigenvalues �1. Also the matrix ~Γ has the same
number of eigenvalues with �1 which follows from ~Γ ¼
~Γ† ¼ ~Γ−1 and tr ~Γ ¼ ðtr Γð5ÞÞðtr ~γÞ ¼ 0. Thus we have the
same number of both fundamental representations of the
Clifford algebra with NCl elements. Then the matrices

f{ ~ΓΓð5Þ
j gj¼1;…;NCl

build a multiple of only one of the two
fundamental representations. In particular we can find a
unitary matrix U ∈ UðdHÞ with

UΓð5Þ
j U† ¼ γð5Þred ⊗ γ0j for all j ¼ 1;…; NCl;

U ~ΓU† ¼ γð5Þred ⊗ 12ðNCl−1Þ=2 ; ð35Þ

where γ0NCl
¼ {NClðNCl−1Þ=2QNCl−1

j¼1 γ0j and γð5Þred are diagonal
matrices with eigenvalues �1 each with multiplicity
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dH=2ðNClþ1Þ=2. Again the tensor notation shall help to
separate the Hilbert space into a space where the naive
Dirac operator acts trivially and a reduced Hilbert space.
In the next step we consider the Clifford algebra of

NCl − 1 elements f{1dH=2ðNCl−1Þ=2 ⊗ γ0NCl
γ0jgj¼1;…;NCl−1 which

commutes with the lattice Dirac operator UDU†, i.e.

½UDU†; {1dH=2ðNCl−1Þ=2 ⊗ γ0NCl
γ0j�− ¼ 0 ð36Þ

because ½D;Γð5Þ
NCl

Γð5Þ
j �− ¼ 0 for all j ¼ 1;…; NCl. Schur’s

lemma [28] [now the commutation ofDwith a fundamental
representation of Uð2ðNCl−1Þ=2Þ] tells us that the Dirac
operator has the form

UDU† ¼ Dred ⊗ 12ðNCl−1Þ=2 with

Dred ¼ −D†
red and ½Dred; γ

ð5Þ
red�þ ¼ 0: ð37Þ

The last equality follows from the anticommutation relation
of ½D; ~Γ�þ ¼ 0. An explicit form ofDred is given in Sec. VI.
For complex representations the discussion above

implies that all eigenvalues are 2ðNCl−1Þ=2-fold degenerate.
Furthermore the reduced Dirac operator Dred has a chiral
form with no further symmetries. Thus, the lattice theory
should share the symmetries of the continuum theory in
four dimensions.
When we consider a real or a quaternion representation

rðgÞ of a gauge group, we have to evaluate the implications
for the antiunitary symmetries. We consider the antiunitary
operator in the new basis C0

lat ¼ UClat
~ΓNClðNCl−1Þ=2U† ¼

Kζ0 ⊗ χ0 which is equivalent to the original antiunitary
operator Clat. The factor ~ΓNClðNCl−1Þ=2 is introduced in the
new antiunitary operator because of the following anti-
commutation relation with the reduced Dirac operator:

U½Clat
~ΓNClðNCl−1Þ=2; {dðd−1Þ=2þNClðNCl−1Þ=2D�−U†

¼ ½C0
lat; {

dðd−1Þ=2þNClðNCl−1Þ=2Dred ⊗ 12ðNCl−1Þ=2 �−
¼ �½Cred; {dredðdred−1Þ=2Dred�− ⊗ χ0 ¼ 0; ð38Þ

due to the anticommutation relation ½ ~Γ; D�þ ¼ 0 and
Eq. (21). Again we have chosen the notation Cred ¼ Kζ0
and dred ¼ d − NL.
Now we need to calculate C2

red. For this purpose we

need the commutation relations between C0
lat and UΓð5Þ

j U†

which read

½C0
lat; {

dðd−1Þ=2γð5Þred ⊗ γ0j�−
¼ U½Clat

~ΓNClðNCl−1Þ=2; {dðd−1Þ=2Γð5Þ
j �−U† ¼ 0; ð39Þ

for all j ¼ 1;…; NCl. The commutation relation with
U ~ΓU† is

½C0
lat; {

dredðdred−1Þ=2γð5Þred ⊗ 12ðNCl−1Þ=2 �−

¼ �U

�
Clat

~ΓNClðNCl−1Þ=2; {dðd−1Þ=2
YNCl

j¼1

Γð5Þ
j

�
−
U† ¼ 0

ð40Þ
up to an overall sign. Combining Eqs. (39) and (40) yields

½C0
lat; {

NClðNCl−1Þ=21dH=2ðNCl−1Þ=2 ⊗ γ0j�− ¼ 0: ð41Þ
Thus we can choose

χ0 ¼
(
{m

Q
2m
j¼1 γ

0
2j; NCl ¼ 4mþ 1;

{mþ1
Q

2mþ2
j¼1 γ02j−1; NCl ¼ 4mþ 3

ð42Þ

because all other choices would be unitarily equivalent.
In the last step we employ the relation

ðClat
~ΓNClðNCl−1Þ=2Þ2 ¼ C2

red ⊗ ðKχ0Þ2 which yields us
the sign

C2
red ¼ ð−1Þðdredþ2Þðdredþ1Þdredðdred−1Þ=8

× sign½ðKζÞ2�1dH=2ðNCl−1Þ=2 ð43Þ

because sign½ðKχ0Þ2� ¼ ð−1ÞðNClþ2ÞðNClþ1ÞNClðNCl−1Þ=8 and
sign½ðClat

~ΓÞ2� ¼ ð−1Þdredðdred−1Þ=2sign½C2
lat�. Moreover we

used the identity (33) which is also true for odd NCl.
Combining Eqs. (37), (38) and (43) we can summarize

that the eigenvalues of D are either 2ðNCl−1Þ=2 degenerate or
2ðNClþ1Þ=2 degenerate if Kramers degeneracy applies.
Moreover the symmetries of Dred or equivalently of D
are those of the continuum theory at even dimension dred ¼
d − NL and not of dimension d. Hence, also for an odd
number of Clifford generators NCl anticommuting with the
lattice Dirac operator D the symmetries are shifted along
the Bott periodic Table I. Interestingly, the shift is exactly
the same as for even NCl.

V. SYMMETRY-BREAKING PATTERN AND
ZERO MODES

In the previous sections we have seen that the lattice
Dirac operator D may drastically degenerate when some or
even all (case of staggered fermions [3]) lattice directions
exhibit an even partition of lattice sites. The reduced lattice
Dirac operator Dred acts on a Hilbert space of dimension
dH=dtri with dtri ¼ 2⌊NCl=2⌋ whose value depends on
whether NCl is even or not. The characteristic polynomial
of the lattice Dirac operator with a quark mass m is then

detðDþm1dHÞ ¼ detðDred þm1dH=dtriÞdtri=2
× detð−Dred þm1dH=dtriÞdtri=2 ð44Þ

for an even number NCl of Clifford elements anticommut-
ing with D and
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detðDþm1dHÞ ¼ detðDred þm1dH=dtriÞdtri ð45Þ

for odd NCl. Thus the number of physical flavors is
enhanced by dtri. In particular the symmetry-breaking
patterns are those of the continuum theory of dimension
dred ¼ d − NL with dtriNf flavors. This is also shown in
Table II.
The zero modes of the naive lattice Dirac operator are

also enhanced by the factor dtri. However exact zero modes
are only present when D or equivalently Dred is in the
symmetry class B and BIII because the off-diagonal
operators are always of square form (we always have
the same number of vectors with positive and negative
chirality). The symmetry class B means that Dred is a real
antisymmetric matrix of odd dimension with no additional
symmetries such that it has one exact zero mode. This zero
mode is currently interpreted as a Majorana fermion in
condensed matter physics; see Ref. [29]. The class BIII
implies that Dred has a chiral structure whose off-diagonal
block is antisymmetric and odd dimensional such that Dred
has two zero modes: one has positive chirality and the other
one has negative chirality.
We recognize two things. First a QCD-like theory with a

complex gauge group representation will never yield a
naive Dirac operator with zero modes. Hence we can
restrict the discussion about the zero modes to real and
quaternion representations. Second, whether there is a
zero mode strongly depends on the dimension dH=dtri
of the reduced Hilbert space as well as on dred ¼ d − NL,
the effective dimension reflected by the symmetries of
Dred. Therefore we have to go through the four cases
dred ¼ 8N0 þ j with j ¼ 1, 3, 5, 7 where these zero modes
may appear.
First we consider dred ∈ 8N0 þ 1 and a real representa-

tion of the gauge group or dred ∈ 8N0 þ 5 and a quaternion
representation. Then we find a symmetry class B when NCl
is even, because this symmetry class does not satisfy a
chiral symmetry, and when dH=dtri ¼ 2⌊d=2⌋drV=2NCl=2 is
odd where dr ¼ 2c1c2, with c1 ∈ N0 and c2 is an odd
integer, is the dimension of the representation. We have
NL ¼ NCl − ½dþ 1�2 ≤ d and V ¼ 2NLþb1b2 ∈ 2NLN with
b1 ∈ N0 and b2 is an odd integer. Then the equation

0 ¼ ⌊ d
2
⌋þ NL þ c1 þ b1 −

NL þ ½dþ 1�2
2

¼ dþ NL − 1

2
þ c1 þ b1 ð46Þ

has to be satisfied to find a zero mode. However this will
only be the case for d ¼ dred ¼ 1 and NL ¼ b1 ¼ c1 ¼ 0.
Since we excluded the lattice theory in one dimension
because there is no spontaneous symmetry breaking, we
conclude that the symmetry class B never shows up for the
naive discretization. In other words, whenD and, thus,Dred

are real antisymmetric matrices they will always be of even
dimension (Cartan class D) regardless of what QCD-like
lattice gauge theory one considers and which effective
dimension dred ¼ d − NL we consider.
In the third and fourth cases we consider dred ∈ 8N0 þ 2

and a real representation of the gauge group or dred ∈
8N0 þ 6 and a quaternion representation. Then, NCl has to
be odd because the symmetry class BIII exhibits a chiral
structure. For a zero mode the off-diagonal block has to be
odd dimensional, i.e. dH=ð2dtriÞ ¼ 2⌊d=2⌋drV=2ðNClþ1Þ=2
has to be odd. The additional division by 2 comes from
the chiral structure of the matrix Dred. We have to solve the
equation

0 ¼ ⌊ d
2
⌋þ NL þ c1 þ b1 −

NL þ ½dþ 1�2 þ 1

2

¼ dþ NL − 2

2
þ c1 þ b1: ð47Þ

This is only satisfied when d ¼ dred ¼ 2 and NL ¼ b1 ¼
c1 ¼ 0 because we exclude the one-dimensional case.
Indeed this case was found in the simulations performed
in Ref. [12]. Apart from this particular case again no generic
zero modes will be found for the naive lattice Dirac operator.
Let us summarize the discussion about the zero modes.

Excluding one- and two-dimensional theories, all naive
lattice Dirac operators will never show generic zero modes
independently of the representation of the gauge group, of
the space-time dimension and of the partition of the lattice.
We summarize the results above in Table II.

VI. EXPLICIT REPRESENTATION
OF THE DIRAC OPERATOR

At last we want to derive an explicit representation of the
reduced lattice Dirac operator Dred which is the staggered
Dirac operator for NL ¼ d. To achieve this we define the
dH × dH unitary matrices

Vð1Þ
j ¼ 1

2
ð1dH þ Γj þ γj − ΓjγjÞ;

Vð2Þ
j ¼ 1

2
ð1dH þ Γj − γj þ ΓjγjÞ;

Vð3Þ
j ¼ 1

2
ð1dH − Γj þ γj þ ΓjγjÞ ð48Þ

for j¼1;…;NL. These matrices are Hermitian, VðlÞ
j ¼VðlÞ

j
†,

and, thus, self-inverse, VðlÞ
j VðlÞ

j
† ¼ 1dH . Moreover they

satisfy

Vð1Þ
j Vð2Þ

j ¼ Γj; V
ð1Þ
j Vð3Þ

j ¼ γj and Vð2Þ
j Vð3Þ

j ¼ Γjγj:

ð49Þ
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The product of the matrices Vð1Þ
j , i.e.

~U ¼ Vð1Þ
1 Vð1Þ

2 � � �Vð1Þ
NL
; ð50Þ

will serve as the change of basis we are looking for to
identify Dred. We want to emphasize that ~U is not
necessarily equal to the unitary matrix U from the previous
subsections. In particular the charge conjugation operator
Clat will be different from C0

lat after conjugation with ~U
though it will be equivalent. Our particular choice for ~U is
that the transformed Dirac operator ~U†D ~U will have a
simple form where Dred can be readily read off.
For the transformation of the Dirac operator we need the

commutation relations

ðTi − T†
i ÞγiVð1Þ

i ¼ Vð3Þ
i ðTi − T†

i Þγi;
ðTi − T†

i ÞγiVð1Þ
j ¼i≠j Vð2Þ

j ðTi − T†
i Þγi;

γiV
ð2Þ
j ¼i≠j Vð1Þ

j γi: ð51Þ

Again we want to recall that we do not use Einstein’s
summation convention. Combining the commutation rela-
tions (51) with Eqs. (14), (49), and (50) the Dirac operator
in the new basis is

~U†D ~U ¼
Xd
μ¼1

Vð1Þ
NL

� � �Vð1Þ
1 Vð2Þ

1 � � �Vð2Þ
μ−1V

ð3Þ
μ Vð2Þ

μþ1 � � �Vð2Þ
NL

× ðTμ − T†
μÞγμ

¼
XNL

μ¼1

�Yμ−1
j¼1

Γj

�
ðTμ − T†

μÞ

þ
Xd

μ¼NLþ1

�YNL

j¼1

Γj

�
ðTμ − T†

μÞγμ: ð52Þ

We notice that the covariant derivatives in the first NL
directions act trivially in the spinor space. Hence, we may
choose a basis of the generalized γ matrices for μ > NL in
the following way:

γμ ¼ ~γμ ⊗ 12ðNCl−1Þ=2 ð53Þ

for odd NCl and

γμ ¼ ~γμ ⊗ σ⊗NCl=2
3 ð54Þ

for even NCl. The matrix σ⊗j
3 is the tensor product of the

third Pauli matrix taken j times. The matrices ~γμ build
the generalized γ matrices in dred ¼ d − NL dimensions.
The remaining γ matrices γμ with μ ≤ NL are then of the
form σ⊗J

3 ⊗ γ0μ for oddNCl and 12⊗J ⊗ γ0μ for evenNCl with

J ¼ ⌊d=2⌋ − ⌊NCl=2⌋, but this is not important anymore.
Equation (52) is enough to read off the reduced lattice Dirac
operator which is

Dred ¼
XNL

μ¼1

DðredÞ
μ þ

Xd
μ¼NLþ1

DðredÞ
μ γμ ð55Þ

with the new covariant derivatives

DðredÞ
μ jψðxÞi ¼ ð−1Þ

P
μ−1
j¼1

xjðð−1ÞδμdδxdLdUμðxÞjψðxþ eμÞi
− ð−1ÞδμdδxdL1U†

μðxÞjψðx − eμÞiÞ ð56Þ

for μ ≤ NL and

DðredÞ
μ jψðxÞi ¼ ð−1Þ

P
NL
j¼1

xjðð−1ÞδμdδxdLdUμðxÞjψðxþ eμÞi
− ð−1ÞδμdδxdL1U†

μðxÞjψðx − eμÞiÞ ð57Þ

for μ > NL. We emphasize that the only difference between
Eqs. (56) and (57) is the overall sign.
For NL ¼ d the Dirac operator (55) automatically

reduces to the staggered Dirac operator [3]. In the case
that −UðxÞ is in the considered representation of the gauge
group when UðxÞ is, the signs can be absorbed. For
example this is the case for the fundamental representation
of SUð2Þ.
For the formulas (55), (56) and (57) we assumed that the

temporal direction has an odd partition of lattice sites. In the
case that the temporal direction has an even number of
lattice sites we switch in the formulas the directions μ ¼ 1
and μ ¼ d.
In Figs. 1 and 2 we compare Monte Carlo simulations of

quenched QCD lattice Dirac operators in the naive dis-
cretization and in the strong coupling limit (β → ∞, where
group elements are drawn from the Haar measure) with
random matrix theory results. We have chosen several
lattices, dimensions and representations of the gauge
groups SU(2) and SU(3). The number of configurations
generated is 105 for the three- and four-dimensional
lattices. For the five-dimensional lattices the number of
configurations ranges from 103–104 such that the statistical
error will be only a few percent. The agreement with the
analytical random matrix results shown in the Appendix is
quite good according to the very small sizes of the lattices.
We employed two quantities to compare the lattice data

with random matrix theory results. Most symmetry classes
(namely seven of the ten) exhibit a nontrivial microscopic
level density about the origin; see Eq. (A5). This quantity
has specific characteristics like the level repulsion from the
origin as well as between the levels themselves. Combining
these characteristics with the generic degeneracy of the
eigenvalues and the number of the zero modes uniquely
determines the symmetry class. We applied a χ2 fitting for
this quantity for the microscopic level density which
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comprises three to four eigenvalues that are closest to the
origin. Since we consider only very few eigenvalues the
macroscopic (or global) level density will have no curva-
ture for this short distance such that we have a trivial (only
rescaling) unfolding of the spectrum.
The other three symmetry classes, abbreviated by GOE,

GUE and GSE, have a flat microscopic level density about
the origin. Thus we have chosen for these ensembles the
level spacing distribution as an observable to determine

which symmetry class the lattice data exhibits. We com-
pared the lattice data with theWigner surmise (A6) which is
suitable enough for our aim. For this purpose we have
chosen about 20 eigenvalues per configuration about the
origin such that we do not have to unfold the spectrum
because the macroscopic level density will be flat in this
regime to a good approximation. We normalized the
resulting probability density to the mean level spacing
equal to 1.

0 1 2 3

0.5

1

s
p s

p
0 1 2 3

0.5

1

s

p s
p

GUEGUE

GSE
GOE

0 5 10

0.5

x
0 5 10

0.5

x

4x4x4x4x3, SU f 2
3x3x3x3x3, SUa 2

4x4x4x3, SU f 2
4x4x3, SU f 2

4x4x4x4x3, SUa 2
3x3x3x3x3, SU f 2

4x4x4x3, SUa 2
4x4x3, SUa 2

GASEGAOE0

0 1 2 3

0.5

1

s

p s
p

4x4x4x3, SU f 3
4x3x3x3, SU f 3
4x4x3, SU f 3
3x3x3, SU f 3

0 1 2 3

0.5

1

s

p s
p

4x4x4x4x3, SU f 3
4x4x3x3x3, SU f 3
3x3x3x3x3, SU f 3

4x4x3x3x3, SU f 2
4x3x3x3, SU f 2

3x3x3, SU f 2

4x4x3x3x3, SUa 2

4x3x3x3, SUa 2

3x3x3, SUa 2

(b)(a)

(d)(c)

(f)(e)

FIG. 1. Comparison of the random matrix theory predictions (black smooth curves) with lattice simulations of three-,
four- and five-dimensional quenched naive Dirac operators (colored symbols) in the strong coupling limit. The abbreviations
GUE, GOE, … refer to the corresponding random matrix ensembles listed in Table III and the abbreviations SUfðNcÞ and
SUaðNcÞ stand for the fundamental and adjoint representations of the group SUðNcÞ. In the first plots we show the level spacing
distribution pspðsÞ which is given by Wigner’s surmise (A6). The lattice data for these plots were normalized to unity for the
zeroth and first moments. For these plots we took into account 19 eigenvalues (¼ 18 level spacings) per configuration of
the Dirac operator about the origin. The last two plots show the microscopic level density ϱðxÞ; see Eq. (A5). For those
plots the lattice data was rescaled via a χ2 fitting. We simulated 105 configurations for the three- and four-dimensional
lattices. For the five-dimensional lattices we generated below 104 configurations such that the statistical variance will be below
five percent.
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VII. CONCLUSIONS

One well-known consequence of the naive discretization
of the Dirac operator is the change of its spectral properties;
see Refs. [8–12]. We analyzed this change for an arbitrary
QCD-like gauge theory and at arbitrary space-time dimen-
sion d ≥ 2. When one or more directions have an even
number of lattice sites the degeneracy increases exponen-
tially. This also results in an increase of the number of
flavors (neglecting the doublers still comprised in the
continuum limit) by Nf→dtriNf where dtri¼
2⌊ðNLþ½dþ1�2Þ=2⌋ and NL is the number of directions with
even parity.

For d > 2 the Dirac operator has no zero modes such that
the topological charge ν will be zero. Hence all zero modes
can only appear when taking the continuum limit. For
example Follana et al. [30] have analyzed how these zero
modes show up for staggered lattice configurations which
converge to configurations with nontrivial topological
charge. Whether a mode is a “would-be” zero mode or
not was determined by measuring the chirality of the
individual modes. We have not considered this particular
issue here.
Moreover the antiunitary symmetries and chiral sym-

metries experience a shift along the symmetry classification
of the continuum symmetries; see Table I as well as
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FIG. 2. Continuation of the list of comparisons of Fig. 1 between random matrix theory predictions (black smooth curves) and lattice
simulations of three-, four- and five-dimensional quenched naive Dirac operators (colored symbols) in the strong coupling limit. In all
six plots we consider the microscopic level density ϱðxÞ only [see Eq. (A5)]. As in Fig. 1 we applied a χ2 fitting on the lattice data which
consist of 105 configurations for the three- and four-dimensional lattices and the number of configurations varies (< 15000) for the five-
dimensional lattices.
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Ref. [20]. This shift is explicitly given by d → dred ¼
d − NL. Thus the symmetries of the staggered Dirac
operator [3] are always those of the corresponding con-
tinuum theories at dimension d ¼ 8 regardless of what
original dimension was chosen as long as the dimension is
d ≥ 2. In particular the symmetry-breaking patterns will be
those at d ¼ 8.
Additionally we derived an explicit form of the non-

degenerate part of the Dirac operator. It reduces to the
staggered Dirac operator [3] when all directions have an
even partition. We performedMonte Carlo simulations with
this reduced Dirac operator in the strong coupling limit and
in the three-, four- and five-dimensional quenched theory.
The spectral statistics of the lowest eigenvalues were
compared with random matrix theory results. The good
agreement of the numerics with the analytical results
confirm our predictions. This agreement is at least as good
as that found in four dimensions for the staggered fermions
[8] despite the fact that the lattices we simulated are
very small.
Our results may yield a basis to understand the con-

tinuum limit of staggered and naive fermions. In particular
it is still an unsolved problem whether the global sym-
metries change to those of the correct continuum theory.
Here we have to say that the weak coupling limit studied in
Ref. [9] nurtures some doubt because on the smallest scales
the global symmetries of the lattice Dirac operator always
show up. When assuming, nonetheless, that the continuum
limit exists, one can study the infrared spectrum of the
Dirac operator and, hence, the lightest pseudoscalar mesons
with random matrix theory. First attempts in this direction
were already done in four [31] and three [11] dimensions.
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APPENDIX: CLASSES OF HERMITIAN
RANDOM MATRICES

There are ten Hermitian symmetric matrix spaces
[26,32]. Five symmetry classes satisfy a chiral symmetry
and the other five do not. Eight of the ten classes have an
antiunitary symmetry with respect to the complex con-
jugation. The corresponding antiunitary operator squares to
þ1 for four classes and to −1 for the other four classes. The
ten classes are listed in Table III with the corresponding
Cartan classification label; see Refs. [25,26].
The probability density can be chosen Gaussian for all

ten classes, i.e.

PðHÞ ∝ exp

�
−
trH2

2σ2

�
; ðA1Þ

with variance σ which may vary from one class to another.
The variance can be read off from the joint probability
densities (A2) and (A3). The random matrix {H exhibits the
spectral statistics of the lowest eigenvalues of QCD-like
Dirac operators satisfying the same unitary and antiunitary
symmetries as {H.
The joint probability density of the eigenvalues λ of the

randommatrixH for the classes A (Hermitian matrices), AI
(real symmetric matrices) and AII (Hermitian self-dual
matrices) can be summarized in one formula

pðλÞ ∝ jΔnðλÞjβD
Yn
j¼1

exp

�
−
βD
2n

λ2j

�
; ðA2Þ

while the other seven Hermitian matrix ensembles follow
the formula

pðλÞ ∝ jΔnðλ2ÞjβD
Yn
j¼1

λαDj exp

�
−
βD
2n

λ2j

�
: ðA3Þ

In the latter case the eigenvalues of the matrices come in
“chiral pairs” ðλj;−λjÞ though not all of these matrices
satisfy a chiral symmetry, e.g. the imaginary antisymmetric
matrices are not chiral but their eigenvalues appear in
“chiral pairs.” We recall the Vandermonde determinant

ΔnðλÞ ¼
Y

1≤a<b≤n
ðλb − λaÞ ¼ det½λb−1a �a;b¼1;…;n: ðA4Þ

The index βD is the Dyson index which determines the
strength of the level repulsion between the eigenvalues.
The parameter αD is related to the topological charge and is
the origin of the level repulsion from the origin.
One important spectral quantity is the microscopic level

density. It is a constant for those three ensembles which do
not exhibit “chiral pairs” of eigenvalues, namely real
symmetric, Hermitian and Hermitian self-dual matrices.
For the other seven ensembles the quenched microscopic
level density is nontrivial and has the form [32]

ρðβD¼1Þ
νD ðxÞ ¼ jxj

2
ðJ2νDðxÞ − JνDþ1ðxÞJνD−1ðxÞÞ

þ 1

2
JνDðjxjÞ

�
1 −

Z jxj

0

JνDðx0Þdx0
�
;

ρðβD¼2Þ
νD ðxÞ ¼ jxj

2
ðJ2νDðxÞ − JνDþ1ðxÞJνD−1ðxÞÞ;

ρðβD¼4Þ
νD ðxÞ ¼ jxjðJ22νDð2xÞ − J2νDþ1ð2xÞJ2νD−1ð2xÞÞ

− J2νDð2jxjÞ
�
1

2
−
Z

∞

jxj
J2νDð2x0Þdx0

�
: ðA5Þ
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The function JνðxÞ ¼
R
π
−π exp½{x sinðφÞ − {νφ�dφ=ð2πÞ is

the Bessel function of the first kind. The densities are
normalized such that limjxj→∞ρðxÞ ¼ 1=π. The index νD is

related to αD and the topological charge ν and can be read
off from Table III.
The densities (A5) together with the degree of degen-

eracy of the eigenvalues and the number of the generic zero

modes are ideal for deciding to which of the seven
symmetry classes a specific spectrum belongs. But what
about the classes of real symmetric, Hermitian and
Hermitian self-dual matrices? For these three classes
another quantity is needed which is the level spacing
distribution. It describes the distribution of the spacing
between adjacent eigenvalues. This distribution is very well
described by Wigner’s surmise [33]

TABLE III. The ten Gaussian random matrix models corresponding to the ten symmetries of the Cartan classification scheme [25,26].
We want to emphasize that not all of the abbreviations for these ensembles are standard. The last five classes are the chiral models while
the first five exhibit no chirality but may have “chiral pairs” of eigenvalues ðλ;−λÞ; see the seventh column. Shown are their explicit
matrix representations (fourth column), the Dyson index βD (fifth column) and the exponent of the level repulsion from the origin αD
(sixth column) as well as the number of generic zero modes. Please note that some ensembles only differ in their spectral properties via
subtleties like the number of the zero modes. The indices βD, αD and νD are needed for the analytical random matrix results (A2), (A3),
(A5) and (A6).

RMT

Abbreviation
for Gaussian
ensemble

Cartan
class Random matrix H βD αD νD

chiral
pair

generic
zeros

Hermitian matrices Lie
algebra of UðnÞ

GUEðnÞ A H ¼ H† ∈ Cn×n; n ∈ N 2 0 0 No 0

real symmetric matrices GOEðnÞ AI H¼HT ¼H� ∈Rn×n;n∈N 1 0 0 No 0

Hermitian self-dual
matrices

GSEðnÞ AII H ¼ θ2HTθ2 ¼ θ2H�θ2
H ∈ C2n×2n; n ∈ N

4 0 0 No 0

imaginary antisymmetric
matrices, Lie algebra
of OðnÞ

GAOEνðnÞ BjD H ¼ −HT ¼ −H�

H ∈ {Rð2nþνÞ×ð2nþνÞ;
n ∈ N; ν ¼ 0; 1

2 2ν¼ 0,
2

ν−1
2
¼�1

2
Yes ν ¼ 0, 1

Hermitiananti-self-dual
matrices, Lie algebra
of USpð2nÞ

GASEðnÞ C H ¼ −θ2HTθ2 ¼ −θ2H�θ2
H ∈ C2n×2n; n ∈ N

2 2 1
2

Yes 0

chiral Hermitian matrices χGUEνðnÞ AIII
H ¼

�
0 W
W† 0

�
;

W ∈ Cn×ðnþνÞ; n; ν ∈ N

2 2νþ 1 ν Yes ν

chiral real symmetric
matrices

χGOEνðnÞ BjDI
H ¼

�
0 W
W† 0

�
;

W ¼ W� ∈ Rn×ðnþνÞ; n; ν ∈ N

1 ν ν Yes ν

chiral Hermitian
self-dual matrices

χGSEνðnÞ CII
H¼

�
0 W
W† 0

�
;

W¼θ2W�θ2∈C2n×2ðnþνÞ;n;ν∈N

4 4νþ 3 ν Yes 2ν

symmetric
Bogolyubov-de Gennes
matrices

GBOEðnÞ CI
H ¼

�
0 W†

W 0

�
;

W ¼ WT ∈ Cn×n; n ∈ N

1 1 1 Yes 0

antisymmetric
Bogolyubov-
de Gennes matrices

GBSEνðnÞ BjDIII
H ¼

�
0 W†

W 0

�
;

W ¼ −WT ∈ Cð2nþνÞ×ð2nþνÞ;
n ∈ N; ν ¼ 0; 1

4 4νþ 1 ν−1
2

¼ � 1
2

Yes 2ν ¼ 0,
2
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pspðsÞ ¼ 2
ðΓ½ðβD þ 2Þ=2�ÞβDþ1

ðΓ½ðβD þ 1Þ=2�ÞβDþ2
sβD

× exp

�
−
�
Γ½ðβD þ 2Þ=2�
Γ½ðβD þ 1Þ=2�

�
2

s2
�

ðA6Þ

with the gamma function ΓðxÞ. A better approximation of
the level spacing distribution is via a Padé expansion which
converges rapidly to the true level spacing distribution; see

Ref. [34]. Though the distribution (A6) is not the exact
result of the level spacing distribution for n → ∞ it is a
good approximation. Its root-mean-square deviation to the
correct expression is much less than one per mill.
In the Monte Carlo simulations shown in Figs. 1 and 2,

we make use of Eqs. (A5) and (A6). They are the analytical
curves we compare with the numerics. In this way we
confirm our predictions.
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