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We calculate the form factors of the K → πlν semileptonic decays in three-flavor lattice QCD and study
their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses.
Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly
compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice
spacing of 0.11 fm with four pion masses covering 290–540 MeVand a strange quark mass ms close to its
physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with
high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting
technique and the twisted boundary conditions for the quark fields. We compare the results for the
semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy
constants appear at this order, we make use of our data of the light meson electromagnetic form factors in
order to control the chiral extrapolation. We determine the normalization of the form factors as fþð0Þ ¼
0.9636ð36Þðþ57

−35 Þ and observe reasonable agreement of their shape with experiment.

DOI: 10.1103/PhysRevD.96.034501

I. INTRODUCTION

The kaon semileptonic decays K → πlν provide
a precise determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVusj. The decay rate
is given as

ΓðK → πlνÞ

¼ G2
FM

5
K

192π3
C2SEWð1þ δEM þ δSUð2ÞÞ2IjVusj2fþð0Þ2;

ð1Þ
where GF is the Fermi constant, the Clebsch-Gordan
coefficient C is 1 (1=

ffiffiffi
2

p
) for the K0 (K�) decay, and I

represents the phase space integral. We denote the short-
distance electroweak, long-distance electromagnetic (EM),
and isospin-breaking corrections by SEW, δEM and δSUð2Þ,
respectively.
The vector form factor fþðtÞ is defined from the relevant

hadronic matrix element,

hπðp0ÞjVμjKðpÞi ¼ ðpþ p0ÞμfþðtÞ þ ðp − p0Þμf−ðtÞ;
ð2Þ

where t ¼ ðp0 − pÞ2 is the momentum transfer. Instead of
f−ðtÞ, the scalar form factor,

f0ðtÞ ¼ fþðtÞ þ
t

M2
K −M2

π
f−ðtÞ; ð3Þ

has been widely used in phenomenological analyses of the
semileptonic decays. By definition, the normalizations of
the vector and scalar form factors coincide with each other
at the zero momentum transfer t ¼ 0,

fþð0Þ ¼ f0ð0Þ: ð4Þ

The Ademollo-Gatto theorem [1,2] states that SU(3)
breaking effects are suppressed as fþð0Þ ¼ 1þ
Oððml −msÞ2Þ, where ml ¼ ðmu þmdÞ=2 and mfu;d;sg
represent the masses of up, down and strange quarks.
The normalization fþð0Þ has been used, therefore, as an
important input to determine jVusj through the decay
rate (1).
Since the form factors describe effects due to the

strong interaction at low energy, a precise calculation of
fþð0Þ needs a nonperturbative method to study QCD. A
target accuracy is ≲1%, because other experimental and
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theoretical inputs have been determined with a similar or
even better accuracy [3,4]. Lattice QCD is the only known
method to calculate the form factors with controlled and
systematically improvable accuracy.
The phase space integral I encodes information about the

shape of the form factors, namely their t dependence. The
current determination of jVusj employs a precise estimate of
I obtained from experimental data. A lattice study of the
form factor shape and comparison with experiments can
examine the reliability of the numerical lattice determina-
tion of the normalization fþð0Þ. We note that new physics
can modify not only the normalization but also the shape,
which may, therefore, provide a different probe of new
physics if both theoretical and experimental data become
sufficiently accurate in the future.
Lattice calculation of fþð0Þ has become mature [4–6] by

realistic simulations at reasonably small pion masses and
lattice spacings. The so-called twisted boundary condition
[7] enables us to simulate near the reference point t≃ 0.
Although recent lattice studies [8–11] have achieved
subpercent accuracy, more independent calculations are
welcome to establish the lattice estimate with such a high
precision. A detailed study of the form factor shape based
on the next-to-leading order (NLO) chiral perturbation
theory (ChPT) [12–14] and model independent parametri-
zation [15–17] is also available [11].
A recent trend of precision calculations is to directly

simulate physical quark masses at t ¼ 0. In this study, we
take a different approach based on our large-scale simu-
lations with exact chiral symmetry [18]. By exploiting
exact symmetry, we directly compare our lattice data with
next-to-next-to-leading order (NNLO) ChPT [19,20], and
determine the normalization fþð0Þ, relevant low-energy
constants (LECs) in the ChPT Lagrangian, and study the
form factor shape. We note that chiral symmetry is
explicitly violated with conventional lattice actions. The
explicit violation makes the direct comparison between
lattice QCD and NNLO ChPT difficult because of modified
functional form of the ChPT formulas and additional
unknown LECs.
For a rigorous comparison with ChPT, we calculate the

form factors with high precision by using the so-called all-
to-all quark propagator [21,22]. The strange quark mass
dependence and the form factor shape near the reference
point t ¼ 0 are studied by employing the reweighting
technique [23,24] and the twisted boundary conditions,
respectively. While many unknown LECs appear at NNLO,
we control the chiral extrapolation by making use of our
lattice data of the light meson EM form factors obtained in
Ref. [25]. We also employ a linear combination of f0 and
the decay constant ratio FK=Fπ [20], which has a reduced
number of the LECs. Our preliminary analyses have been
reported in Refs. [26–29].
This paper is organized as follows. In Sec. II, we

introduce our method to generate our gauge ensembles

and to calculate relevant meson correlators. The kaon
semileptonic form factors are extracted at our simulation
points in Sec. III. Section IV details comparison with
NNLO ChPT to study the chiral behavior of the form
factors, and summarizes the numerical results for the
normalization, shape and relevant LECs. We summarize
our conclusions in Sec. V.

II. SIMULATION METHOD

A. Configuration generation

We simulate Nf ¼ 2þ 1 QCD using the overlap quark
action [30,31] defined by the Dirac operator,

DðmqÞ ¼
�
1 −

mq

2m0

�
Dð0Þ þmq; ð5Þ

where mq represents the quark mass, and

Dð0Þ ¼ m0ð1þ γ5sgn½HWð−m0Þ�Þ ð6Þ

is the overlap-Dirac operator in the massless limit. The
parameter m0 for the Hermitian Wilson-Dirac operator HW
is set to m0 ¼ 1.6 from our study of the locality of D [32].
Numerical simulations are remarkably accelerated by
modifying the Iwasaki gauge action [33] with an auxiliary
Boltzmann weight [34,35]

ΔW ¼ det½HWð−m0Þ2�
det½HWð−m0Þ2 þ μ2� ðμ ¼ 0.2Þ ð7Þ

and by simulating the trivial topological sector. The effect
of the fixed global topology can be considered as a finite
volume effect suppressed by the inverse lattice volume
[36]. In fact, the effect turns out to be small in our previous
study of the pion EM form factor on similar and even
smaller lattice volumes [25,37]. We also note that local
topological excitations are active in our gauge ensembles.
Indeed, the topological susceptibility calculated in our
simulations is nicely consistent with the prediction of
ChPT [38].
The lattice spacing a determined from theΩ baryon mass

is 0.112(1) fm with our choice of the gauge coupling
β ¼ 6=g2 ¼ 2.30. We simulate four values of the degen-
erate up and down quark masses ml. The bare masses are
0.015, 0.025, 0.035 and 0.050 in lattice units, and cover a
range of Mπ ∼ 290–540 MeV. The gauge ensembles are
generated at a strange quark mass ms ¼ 0.080, close to its
physical value ms;phys ¼ 0.081. The ms dependence of the
form factors is studied by calculating them at a different
msð¼ 0.060Þ using the reweighting technique [23,24].
The spatial lattice size is set to Ns ¼ L=a ¼ 24 or 16

depending onml, so that a conditionMπL≳ 4 is satisfied to
control finite volume effects. The temporal lattice size is
fixed to Nt ¼ T=a ¼ 48. The statistics are 2,500 HMC
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trajectories at each simulation point ðml;msÞ. We estimate
the statistical error by the jackknife method with a bin size
of 50 trajectories. Figure 1 shows that the jackknife error of
three-point functions is stable against the choice of the bin
size. Our simulation parameters are summarized in Table I.

B. Calculation of meson correlators

We calculate the three-point functions of the kaon and
pion,

CPQ
μ;ϕϕ0 ðΔx4;Δx04;p;p0Þ

¼ 1

Nt

XNt

x4¼1

X
x;x0;x00

hOQ;ϕ0 ðx00; x4 þ Δx4 þ Δx04;p0Þ

× Vμðx0; x4 þ Δx4ÞOP;ϕðx; x4;pÞ†i; ð8Þ

where P (Q) specifies the initial (final) meson, and is “K”
or “π.” The vector current Vμ is the weak current for P ≠ Q,
and light (l̄γμl) or strange current (s̄γμs) for P ¼ Q. The
initial (final) meson momentum is denoted by pð0Þ, whereas
Δx4ð0Þ is the temporal separation between Vμ and the meson
source (sink) operator O†

P;ϕ (OQ;ϕ0 ). We also calculate the
two-point function,

CP
ϕϕ0 ðΔx4;pÞ ¼

1

Nt

XNt

x4¼1

X
x0;x

hOP;ϕ0 ðx0; x4 þ Δx4;pÞ

×OP;ϕðx; x4;pÞ†i; ð9Þ

to extract the form factors below the maximum value of the
momentum transfer tmax ¼ ðMK −MπÞ2 (see Sec. III for
details).

The meson interpolating field is given as

OP;ϕðx; x4;pÞ ¼
X
r

ϕðrÞq̄0ðxþ r; x4Þγ5qðx; x4Þ: ð10Þ

In addition to the simple local operator with ϕlðrÞ ¼ δr;0,
we also use an exponentially smeared operator with
ϕsðrÞ ¼ exp½−0.4jrj� to reduce the excited state contami-
nation in the meson correlation functions.
There are no explicit Fourier factors in the above

expressions (8) and (9). The meson momentum pð0Þ is
induced through the twisted boundary condition for the
valence quark fields [7]

qðxþ Lk̂; x4Þ ¼ eiθqðx; x4Þ;
q̄ðxþ Lk̂; x4Þ ¼ e−iθq̄ðx; x4Þ ðk ¼ 1; 2; 3Þ: ð11Þ

Here k̂ is a unit vector in the k-th direction, and we take a
common twist angle θ in all three spatial directions for
simplicity. This condition induces a quark momentum of
pk ¼ θ=L ≤ 2π=L, and hence a meson momentum pk ¼
ðθ − θ0Þ=L by using different twist angles, θ and θ0, for
the quark and anti-quark components. With our choices of
the twist angle listed in Table I, we simulate a region of the
momentum transfer −ð300 MeVÞ2 ≲ t ≤ tmax. The impor-
tant reference point t ¼ 0 is located inside this region. Our
studies of the EM form factors of charged pion and kaon
[25,37] suggest that the next-to-next-to-next-to-leading
order (N3LO) chiral correction, which is not known in
ChPT, is small in this region of t.
In Eqs. (8) and (9), the summation over the source

location ðx; x4Þ is not mandatory, but is helpful to remark-
ably improve the statistical accuracy. To this end, we need
the so-called all-to-all quark propagator, which flows from
any lattice site to any site. Since a naive calculation is
prohibitively time consuming, we construct the all-to-all
propagator by using low-lying modes of the overlap-Dirac
operator [21,22] and the stochastic noise method [39].
Namely, the low-mode contribution is calculated as
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FIG. 1. Jackknife error of three-point function CKπ
4;ϕs;ϕs

ðΔx4;
Δx04;p;p0Þ as a function of bin size. We plot data at ðmud;msÞ ¼
ð0.015; 0.080Þ with Δx4 ¼ Δx04 ¼ 9, θ ¼ 0.00, and θ0 ¼ 1.68.
See Sec. II B for the definition and parameters of the three-point
function.

TABLE I. Simulation parameters. Meson masses, Mπ and MK ,
are in units of MeV.

lattice ml ms Mπ MK θ

163 × 48 0.050 0.080 540(3) 617(4) 0.00, 0.40, 0.96, 1.60
163 × 48 0.035 0.080 453(4) 578(4) 0.00, 0.60, 1.28, 1.76
243 × 48 0.025 0.080 379(2) 548(3) 0.00, 1.68, 2.64
243 × 48 0.015 0.080 293(2) 518(1) 0.00, 1.68, 2.64
163 × 48 0.050 0.060 540(4) 567(4) 0.00, 0.40, 0.96, 1.60
163 × 48 0.035 0.060 451(6) 524(5) 0.00, 0.60, 1.28, 1.76
243 × 48 0.025 0.060 378(7) 492(7) 0.00, 1.68, 2.64
243 × 48 0.015 0.060 292(3) 459(4) 0.00, 1.68, 2.64
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fDðmqÞ−1glowðx; yÞ ¼
XNe

k¼1

1

λðqÞk

ukðxÞu†kðyÞ; ð12Þ

where λðqÞk and uk represent the k-th lowest eigenvalue of
DðmqÞ and its associated eigenvector. The number of
the low-modes is Ne ¼ 240 and 160 on the 243 × 48

and 163 × 48 lattices, respectively.
We estimate the remaining contribution from higher

modes stochastically by using the noise method together
with the dilution technique [22]. A complex Z2 noise vector
is prepared for each configuration, and is split into Nd ¼
3 × 4 × Nt=2 vectors ηdðxÞðd ¼ 1;…; NdÞ. These diluted
noise vectors have nonzero elements only for a single
combination of color and spinor indices and at two
consecutive time slices. We solve a linear equation for
each diluted noise vector

DðmqÞxq ¼ Phighηd ðd ¼ 1;…; NdÞ; ð13Þ

where Phigh ¼ 1 − Plow, and Plow ¼ PNe
k¼1 uku

†
k is the

projector to the eigenspace spanned by the low-modes.
The high-mode contribution is then estimated as

fDðmqÞ−1ghighðx; yÞ ¼
XNd

d¼1

xðqÞd ðxÞη†dðyÞ: ð14Þ

We refer the readers to Refs. [25,37] for more details on our
implementation.
Figure 2 shows the statistical fluctuation of the three-

point function CKπ
μ;ϕsϕs

ðΔx4;Δx04;p;p0Þ with a certain
choice of Δx4ð0Þ and pð0Þ. Averaging over the temporal
coordinate x4 reduces the statistical error by about a factor
of 3 for the temporal component μ ¼ 4 and a factor of 5 for
spatial μ ¼ 1.

The ms dependence of the form factors is studied by
repeating our calculation at a different value of the strange
quark mass m0

s ¼ 0.060 using the gauge ensemble at ms ¼
0.040 and the reweighing technique [23,24]. For instance,
the three-point function can be calculated as

hCPQ
μ;ϕϕ0 im0

s
¼ hCPQ

μ;ϕϕ0 ~wðm0
s; msÞims

; ð15Þ

where h� � �i
mð0Þ

s
represents the Monte Carlo average at mð0Þ

s .

The reweighting factor ~w from ms to m0
s is defined as

~wðm0
s; msÞ ¼

wðm0
s; msÞ

hwðm0
s; msÞims

; wðm0
s; msÞ ¼ det

�
Dðm0

sÞ
DðmsÞ

�

ð16Þ

for each gauge configuration. In order to remarkably reduce
the computational cost, w is decomposed into contributions
from low and high modes

wðm0
s; msÞ ¼ wlowðm0

s; msÞwhighðm0
s; msÞ; ð17Þ

wlowðhighÞðm0
s; msÞ ¼ det

�
PlowðhighÞ

Dðm0
sÞ

DðmsÞ
PlowðhighÞ

�
: ð18Þ

We exactly calculate the low mode contribution wlow by
using the low-lying eigenvalues, whereas the high-mode
contribution whigh is estimated through a stochastic esti-
mator for its square

w2
highðm0

s; msÞ ¼
1

Nr

XNr

r¼1

e−
1
2
ðPhighξrÞ†ðΩ−1ÞPhighξr ; ð19Þ

where Ω≡DðmsÞ†fDðm0
sÞ−1g†Dðm0

sÞ−1DðmsÞ. In our
study of the EM form factors [25], the full reweighting
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FIG. 2. Statistical fluctuation of three-point function CKπ
μ;ϕsϕs

ðΔx4;Δx04;p;p0Þ for μ ¼ 4 (left panel) and 1 (right panel). We plot the
value for each jackknife sample normalized by the statistical average. The horizontal axis represents the HMC trajectory count of the
excluded configuration in the jackknife analysis. The data are obtained at ðml;msÞ ¼ ð0.015; 0.080Þ with Δx4 ¼ Δx04 ¼ 10, θ ¼ 0.00,
θ0 ¼ 1.68. Triangles and circles are data before and after averaging over the temporal location of the source operator x4, respectively.
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factor ω turned out to be largely dominated by the low-
mode contribution wlow with our simulation setup. For each
configuration, therefore, we use only ten Gaussian random
vectors fξ1;…; ξ10g (Nr ¼ 10) with which the uncertainty
of ~w due to the stochastic estimator is negligibly small
compared to its statistical fluctuation.

III. FORM FACTORS AT SIMULATION POINTS

In the limit of large temporal separationsΔx4,Δx04 → ∞,
the light meson three-point function (P, Q ¼ π or K) is
dominated by the ground state contribution as

CPQ
μ;ϕϕ0 ðΔx4;Δx04;p;p0Þ⟶

Δx4;Δx04→∞

ZQ;ϕ0 ðp0Þ�ZP;ϕðpÞ
4EQðp0ÞEPðpÞ

1

ZV
hQðp0ÞjVμjPðpÞi

× e−EQðp0ÞΔx0
4e−EPðpÞΔx4 ; ð20Þ

where ZP;ϕðpÞ ¼ hPðpÞjOP;ϕi is the overlap of the meson interpolating field to the physical state, and ZV is the
renormalization factor for the vector current. These factors and the exponential damping factors e−EPðQÞðpð0ÞÞΔx4ð0Þ cancel in the
following double ratio [40,41]

Rϕϕ0 ðΔx4;Δx40Þ ¼
CKπ
4;ϕϕ0 ðΔx4;Δx04; 0; 0ÞCπK

4;ϕϕ0 ðΔx4;Δx04; 0; 0Þ
CKK
4;ϕϕ0 ðΔx4;Δx04; 0; 0ÞCππ

4;ϕϕ0 ðΔx4;Δx04; 0; 0Þ

⟶
Δx4;Δx04→∞

ðMK þMπÞ2
4MKMπ

f0ðtmaxÞ2; ð21Þ

from which we calculate the scalar form factor f0ðtmaxÞ at the largest momentum transfer tmax. Figure 3 shows the effective
value of f0ðtmaxÞ as a function of Δx4. The accuracy of f0ðtmaxÞ is typically≲1% with our simulation setup. The figure also
demonstrates that the all-to-all quark propagator greatly helps us increase the reliability of the precision calculation of
f0ðtmaxÞ: it enables us to confirm the consistency in f0ðtmaxÞ among different values of Δx4 þ Δx04 and different smearing
functions for the meson interpolating fields.
At smaller momentum transfer t < tmax, the vector form factor fþðtÞ and the ratio ξðtÞ ¼ f−ðtÞ=fþðtÞ are calculated from

the following ratios [41–43]

~Rϕϕ0 ðp;p0;Δx4;Δx04Þ ¼
CKπ
4;ϕϕ0 ðΔx4;Δx04;p;p0ÞCK

ϕϕl
ðΔx4; 0ÞCπ

ϕlϕ
0 ðΔx04; 0Þ

CKπ
4;ϕϕ0 ðΔx4;Δx04; 0; 0ÞCK

ϕϕl
ðΔx4;pÞCπ

ϕlϕ
0 ðΔx04;p0Þ

⟶
Δx4;Δx04→∞

�
EKðpÞ þ Eπðp0Þ

MK þMπ
þ EKðpÞ − Eπðp0Þ

MK þMπ
ξðtÞ

�
fþðtÞ

f0ðtmaxÞ
; ð22Þ
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FIG. 3. Effective value of f0ðtmaxÞ estimated from double ratio Rϕϕ0 ðΔx4;Δx04Þ at ðml;msÞ ¼ ð0.050; 0.080Þ (left panel) and
(0.015,0.080) (right panel). Blue circles, squares and diamond show data with the smeared source and sink for different values of
Δx4 þ Δx04. On the other hand, black triangles show data with local source and/or sink with Δx4 þ Δx04 kept fixed. All data are shifted
along the horizontal axis so that the meson source and sink operators are located at T=4 − ðΔx4 þ Δx04Þ=2 and T=4þ ðΔx4 þ Δx04Þ=2,
respectively. Solid and dashed lines show a constant fit to data with different values of Δx4 and Δx4 þ Δx04.
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Rk;ϕϕ0 ðp;p0;Δx4;Δx04Þ ¼
CKπ
k;ϕϕ0 ðΔx4;Δx04;p;p0ÞCKK

4;ϕϕ0 ðΔx4;Δx04;p;p0Þ
CKπ
4;ϕϕ0 ðΔx4;Δx04;p;p0ÞCKK

k;ϕϕ0 ðΔx4;Δx04;p;p0Þ

⟶
Δx4;Δx04→∞

EKðpÞ þ EKðp0Þ
ðpþ p0Þk

ðpþ p0Þk þ ðp − p0ÞkξðtÞ
EKðpÞ þ Eπðp0Þ þ fEKðpÞ − Eπðp0ÞgξðtÞ : ð23Þ

The last line of Eq. (22) assumes the asymptotic form of the
two-point function

CP
ϕϕ0 ðΔx4;pÞ⟶Δx4→∞

ZP;ϕ0 ðpÞ�ZP;ϕðpÞ
2EPðpÞ

e−EPðpÞΔx4 : ð24Þ

We evaluate f0ðtÞ from fþðtÞ and ξðtÞ at t < tmax. Note
that, at tmax, we only have results for f0ðtmaxÞ from Rϕϕ0 ,
since ~Rϕϕ0 and Rk;ϕϕ0 have no sensitivity to fþ and ξ.
In Figs. 4 and 5, we plot the vector and scalar form

factors as a function of t. At ms ¼ 0.080, the statistical
accuracy of the nontrivial chiral correction ffþ;0gðtÞ − 1

due to ms ≠ ml and t ≠ 0 is typically 10%–20%.
Analyses based on ChPT suggest that finite volume
effects including those due to the twisted boundary
condition [44] are below this accuracy: Oðexp½−MπL�Þ ≲
Oð2%Þ or less [44–46].
In Fig. 6, we observe that the statistical error is about a

factor of two larger at ms ¼ 0.060 due to reweighting.
We parametrize the t dependence of the form factors

ffþ;0g to estimate the normalization fþð0Þ ¼ f0ð0Þ and the
slopes dffþ;0g=dtjt¼0 at simulated quark masses. For the
vector form factor fþ, we use the following parametrization
based on the vector meson dominance (VMD) hypothesis
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FIG. 4. Vector (left panel) and scalar form factors (right panel) as a function of t at ðml;msÞ ¼ ð0.050; 0.080Þ. Solid circles show the
results at simulated t’s. Solid, dashed and dot-dashed lines are linear, quadratic (26) and free-pole fits (27), respectively. We also plot the
fit with the K� pole (25) for fþ. The dotted lines show their statistical error. The value interpolated to t ¼ 0 is shown by the open
diamond. The blue thicker lines show the fit to estimate the central value and statistical error of the interpolated value.
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FIG. 5. Same as Fig. 4, but for ðml;msÞ ¼ ð0.015; 0.080Þ.
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fþðtÞ ¼ fþð0Þ
�

1

1 − t=M2
K�

þ at

�
; ð25Þ

where MK� represents the strange-light vector meson mass
calculated at simulation points. There could be contribution
of the higher poles and cuts, which is well approximated by
the additional linear term at our small values of jtj. We note
that our data of the pion and kaon EM form factors in a
similar region of t are well described by this type of the
parametrization [25].
Since we simulate small values of jtj, our data of

ffþ;0g does not show any strong curvature in Figs. 4–6,
and simple polynomial parametrization also describes our
data well

ffþ;0gðtÞ ¼ fþð0Þ
�
1þ λ0fþ;0g

t
M2

π�;phys

þ λ00fþ;0g

�
t

M2
π�;phys

�
2
�

ð26Þ

even without the quadratic term. The conventional free-
pole form

ffþ;0gðtÞ ¼
ffþ;0gð0Þ

1 − t=M2
pole;fþ;0g

ð27Þ

also works well.
In this study, we estimate fþð0Þ and dffþ;0g=dtjt¼0 by a

simultaneous fit using the VMD-based form (25) for fþ
and the quadratic form (26) for f0. The uncertainty due to
the choice of the fitting form is estimated by testing the
polynomial and free-pole forms for fþ and the linear and
free-pole forms for f0. Fit results are summarized in
Table II, where we list the phenomenologically familiar
slope parameter λ0fþ;0g in the quadratic parametrization (26)

instead of dffþ;0g=dtjt¼0 ¼ fþð0Þλ0fþ;0g=M
2
π�;phys.

In the simulated region of t, all the aforementioned
parametrizations describe our data well with χ2=d:o:f ≲
0.5. The choice of the parametrization leads to small
uncertainty for fþð0Þ compared to the statistical accuracy.
For the slope parameter λ0fþ;0g, the systematic error is more

important, but not so large compared to the statistical one.

IV. CHIRAL EXTRAPOLATION
OF FORM FACTORS

A. ChPT formulas and LECs

The momentum transfer and quark mass dependence of
the form factors is known up to NNLO in SU(3) ChPT
[19,20]. Let us denote the chiral expansion as

fXðtÞ ¼ fX;0 þ fX;2ðtÞ þ fX;4ðtÞ þ fX;6ðtÞ ðX ¼ þ;−; 0Þ;
ð28Þ

wherefX;0,fX;2, andfX;4, represent theLO,NLO,andNNLO
contributions, respectively. We add a possible higher order
term fX;6, the functional form of which is not yet known.
The current conservation fixes the normalization of the

vector form factor in the chiral limit as fþ;0 ¼ 1. The NLO
contribution can be decomposed into two parts
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FIG. 6. Same as Fig. 4, but for ðml;msÞ ¼ ð0.050; 0.060Þ.

TABLE II. Fit results for normalization fþð0Þ and slope
parameters λ0fþ;0g.

ml ms fþð0Þ λ0þ × 102 λ00 × 102

0.050 0.080 0.9986ð11Þðþ2
−1 Þ 2.02(7)(12) 1.10(28)(11)

0.050 0.060 0.99991ð25Þð−8Þ 2.12(14)(22) 0.84(51)(27)
0.035 0.080 0.9937ð31Þðþ8Þ 2.37(11)(18) 1.42(29)(11)
0.035 0.060 0.9977ð20Þðþ4

−2 Þ 2.52(19)(19) 1.72(42)(26)
0.025 0.080 0.9919ð18Þðþ7

−5 Þ 2.51(5)(21) 1.46(17)(7)
0.025 0.060 0.9969ð46Þðþ1

−11Þ 2.74(14)(26) 1.59(52)(18)
0.015 0.080 0.9847ð34Þðþ4

−5 Þ 2.72(10)(22) 1.70(15)(1)
0.015 0.060 0.9922ð74Þðþ18

−7 Þ 2.75(13)(32) 1.92(32)(14)
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fþ;2ðtÞ ¼ fþ;2;LðtÞ þ fþ;2;BðtÞ: ð29Þ

The first part fþ;2;L represents the analytic term arising
from the tree diagram with a vertex arising from the Oðp4Þ
chiral Lagrangian L4,

F2
πfþ;2;LðtÞ ¼ 2Lr

9t: ð30Þ

Note that p symbolically represents the Nambu-Goldstone
(NG) boson momentum, and Lr

9 is a LEC in L4. This
contribution does not involve quark masses to be compat-
ible with the current conservation fþ;2;Lð0Þ ¼ 0.
The other part is the contribution of loop diagrams

F2
πfþ;2;BðtÞ ¼

3

8
fĀðM2

πÞ þ 2ĀðM2
KÞ þ ĀðM2

ηÞg

−
3

2
fB̄22ðM2

π;M2
K; tÞ þ B̄22ðM2

K;M
2
η; tÞg;

ð31Þ
where Ā and B̄22 represent one-loop integral functions.
We refer the readers to Refs. [25,47] for their definition
and expression. Note that the so-called ξ-expansion is
employed in this study: the form factors are expanded in
terms of ξfπ;K;ηg ¼ M2

fπ;K;ηg=ð4πFπÞ2, where Fπ represents
the pion decay constant. In Ref. [48], we demonstrated that
the ξ-expansion of the meson masses and decay constants
has a better convergence than the expansion in terms of
mq=ð4πF0Þ2. Here F0 is the decay constant in the chiral
limit. The ξ-expansion has another important advantage
that ChPT formulas are free from the unknown LEC F0.
This is also the case for the NNLO contribution

fþ;4ðtÞ ¼ fþ;4;CðtÞ þ fþ;4;LðtÞ þ fþ;4;BðtÞ: ð32Þ

Here fþ;4;B represents the contribution of two-loop dia-
grams without any vertices from L4 and Oðp6Þ chiral
Lagrangians L6 [49]. While its expression is rather lengthy
[50], it does not contain any LECs in the ξ-expansion, and
is not an obstacle to obtaining a stable chiral extrapolation.
The term fþ;4;L mainly arises from the one-loop dia-

grams with one vertex from L4, and hence depends on the
Oðp4Þ couplings Lr

i . At the level of NLO, only Lr
9 appears

in fþ;2;L, and we fix it to an estimate obtained from our

study of the EM form factors [25]. Other Lf1−8g appear
only in small NNLO term fþ;4;L. We fix them to a recent
phenomenological estimate in Ref. [51]. These input values
are listed in Table III.
The NNLO analytic term fþ;4;C arises from tree dia-

grams with one vertex from L6. A central issue in our
analysis based on NNLO ChPT is how to deal with many
Oðp6Þ couplings Cr

i appearing in this contribution

F4
πfþ;4;C ¼ −8crþ;πKðM2

K −M2
πÞ2 − 4crþ;πtM

2
πt

− 4crþ;KtM
2
Kt − 4crt2t

2; ð33Þ

where the coefficients crX’s are linear combinations of
Oðp6Þ couplings

crþ;πK ¼ Cr
12 þ Cr

34; ð34Þ

crþ;πt ¼ 2Cr
12 þ 4Cr

13 þ Cr
64 þ Cr

65 þ Cr
90; ð35Þ

crþ;Kt ¼ 2Cr
12 þ 8Cr

13 þ 2Cr
63 þ 2Cr

64 þ Cr
90; ð36Þ

crt2 ¼ Cr
88 − Cr

90: ð37Þ

Similar to the case of Lr
i , the chiral behavior of the EM

form factors provides helpful information about Cr
i . The

coefficient of the Oðt2Þ term, namely crt2, is the same as the
NNLO analytic term of the EM form factors

F4
πFπþ

V;4;CðtÞ ¼ −4crπþ;πtM
2
πt − 8crπþ;KtM

2
Kt − 4crt2t

2; ð38Þ

F4
πFKþ

V;4;CðtÞ ¼ −4crKþ;πtM
2
πt − 4crKþ;KtM

2
Kt − 4crt2t

2; ð39Þ

F4
πFK0

V;4;CðtÞ ¼ −
8

3
crK0ðM2

π −M2
KÞt; ð40Þ

where

crπþ;πt ¼ 4Cr
12 þ 4Cr

13 þ 2Cr
63 þ Cr

64 þ Cr
65 þ 2Cr

90; ð41Þ

crπþ;Kt ¼ 4Cr
13 þ Cr

64; ð42Þ

crKþ;πt ¼ 4Cr
13 þ

2

3
Cr
63 þ Cr

64 −
1

3
Cr
65; ð43Þ

TABLE III. Input values for Oðp4Þ couplings Lr
i at renormalization scale μ ¼ Mρ. We use Lr

9 from our study of the EM form factors
[25], whereas Lf1–8g are taken from a phenomenological study [51]. In that paper, authors presented two estimates obtained from
different ChPT fits of experimental data. The central value and the first statistical error of Lf1–8g are from the authors’ preferred fit,
whereas we assign the difference between the two estimates as the second systematic error.

Lr
1 × 103 Lr

2 × 103 Lr
3 × 103 Lr

4 × 103 Lr
5 × 103

0.53ð6Þðþ11Þ 0.81ð4Þð−22Þ −3.07ð20Þðþ27Þ 0.3ð0Þðþ0.46Þ 1.01ð6Þð−51Þ
Lr
6 × 103 Lr

7 × 103 Lr
8 × 103 Lr

9 × 103

0.14ð5Þðþ35Þ −0.34ð9Þðþ15Þ 0.47ð10Þð−30Þ 4.6ð1.1Þðþ0.1
−0.5 Þ
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crKþ;Kt ¼ 4Cr
12 þ 8Cr

13 þ
4

3
Cr
63 þ 2Cr

64 þ
4

3
Cr
65 þ 2Cr

90;

ð44Þ

crK0 ¼ 2Cr
63 − Cr

65: ð45Þ

In addition, two coefficients for the K → π decays, crþ;πt

and crþ;Kt, are written in terms of those for the EM form
factors as

crþ;πt ¼
1

2
ðcrπþ;πt þ crπþ;Kt − crK0Þ; ð46Þ

crþ;Kt ¼
1

2
ðcrπþ;πt þ 3crπþ;Kt þ crK0Þ: ð47Þ

Therefore, we have only single free parameter crþ;πK in our
chiral extrapolation of fþ at the level of NNLO. The term
−8crþ;πKðM2

K −M2
πÞ2 in fþ;4;C describes the SU(3) break-

ing effects at t ¼ 0, and hence is absent in the EM form
factors. The coefficient crþ;πK is, therefore, to be determined
from the data of fþ. For other coefficients crþ;πt, c

rþ;πt and
crt2 , we use our estimate [25], which is summarized in
Table IV. The uncertainty due to the choice of the input in
Tables III and IV is estimated by repeating the following
analysis with the input shifted by its uncertainty quoted in
the tables.
The LO contribution to the other form factors are given

as f−;0 ¼ 0 and f0;0 ¼ 1. At higher orders, however,
additional LECs appear through f−, which is absent in
the EM form factors. For instance, the coefficients

cr−;t ¼ −2Cr
12 þ Cr

88 − Cr
90; ð48Þ

cr−;π ¼ 6Cr
12 þ 4Cr

13 þ 2Cr
15 þ 4Cr

17 þ 2Cr
34 þ Cr

64

þ Cr
65 þ Cr

90; ð49Þ

cr−;K ¼ 6Cr
12 þ 8Cr

13 þ 4Cr
14 þ 4Cr

15 þ 2Cr
34 þ 2Cr

63

þ 2Cr
64 þ Cr

90 ð50Þ

for the NNLO analytic terms for f−

f−;4;C ¼ 4cr−;tðM2
K −M2

πÞtþ 4cr−;πðM2
K −M2

πÞM2
π

þ 4cr−;KðM2
K −M2

πÞM2
K ð51Þ

have Cr
14, C

r
15 and Cr

17. The information of fþ and the EM
form factors is not so helpful in constraining them. In this
study, therefore, we calculate the following quantity,

~f0ðtÞ ¼ f0ðtÞ þ
t

M2
K −M2

π

�
1 −

FK

Fπ

�
; ð52Þ

using our data of FK=Fπ obtained in Ref. [52]. As proposed
in Ref. [20], the Callan-Treiman and Dashen-Weinstein
theorems [53,54],

f0ðM2
K −M2

πÞ ∼
FK

Fπ
; ð53Þ

suggest a large cancellation between f0 and FK=Fπ even
out of the Callan-Treiman point t ¼ M2

K −M2
π . Actually, in

the chiral expansion of ~f0,

~f0ðtÞ ¼ ~f0;0 þ ~f0;2ðtÞ þ ~f0;4ðtÞ þ ~f0;6ðtÞ; ð54Þ

~f0;2ðtÞ ¼ ~f0;2;LðtÞ þ ~f0;2;BðtÞ; ð55Þ

~f0;4ðtÞ ¼ ~f0;4;CðtÞ þ ~f0;4;LðtÞ þ ~f0;4;BðtÞ; ð56Þ

the Lr
i -dependent NLO term vanishes, ~f0;2;L ¼ 0. The

NNLO analytic term has a rather simple form,

F4
π
~f0;4;CðtÞ ¼ −8ðC2

12 þ Cr
34ÞðM2

K −M2
πÞ2

þ 8ð2Cr
12 þ Cr

34ÞðM2
K þM2

πÞt − 8Cr
12t

2

¼ −8crþ;πKðM2
K −M2

πÞ2
þ 8ðCr

12 þ crþ;πKÞðM2
K þM2

πÞt − 8Cr
12t

2:

ð57Þ

Genuine loop contributions, ~f0;2;B and ~f0;4;B, are free from
the LECs, and we use the input in Table III for Lr

i -
dependent NNLO contribution ~f0;4;L. Therefore, a simul-
taneous fit to fþ and ~f0 has only two fit parameters crþ;πK

and Cr
12 (or Cr

34).

B. Chiral extrapolation and normalization
of form factors

The Ademollo-Gatto theorem [1,2] states that SU(3)
breaking effects in fþðtÞ is second order in (ms −ml) at
t ¼ 0. The chiral expansion (28)–(37) is reduced into a
simpler form with

fþ;2;Lð0Þ ¼ 0; ð58Þ

fþ;2;Bð0Þ ¼
3

2
HKπ þ

3

2
HKη; ð59Þ

fþ;4;Cð0Þ ¼ −8crþ;πKðM2
K −M2

πÞ2; ð60Þ

TABLE IV. Input values for the linear combinations of Oðp6Þ
couplings obtained in our study of EM form factors [25].

crπþ;πt × 105 crπþ;Kt × 105 crt2 × 105

−1.95ð84Þðþ38
−21 Þ −1.4ð1.2Þðþ0.1

−0.7 Þ −6.4ð1.1Þð0.1Þ
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where

HPQ ¼ −
1

128π2F2
π

�
M2

P þM2
Q −

2M2
PM

2
Q

M2
P −M2

Q
ln

�
M2

P

M2
Q

��
:

ð61Þ

In previous lattice studies, therefore, one often determines
fþð0Þ at simulated quark masses by assuming a phenom-
enological parametrization of the t dependence of the form
factors, and then extrapolates fþð0Þ to the physical point
ðml;phys; ms;physÞ based on NLO or NNLO ChPT.
We carry out this type of the conventional analysis using

the data of fþð0Þ in Table II. As plotted in Fig. 7, the data
are well described by the NNLO ChPT formula with a good
value of χ2=d:o:f: ∼ 0.2. Numerical fit results are summa-
rized in Table V. The value extrapolated to the physical
point ðml;phys; ms;physÞ is consistent with recent lattice
estimates fþð0Þ ≈ 0.97 [8–11].
The chiral expansion has reasonable convergence

fþð0Þ ¼ 0.9636ð40Þ ¼ 1 − 0.0232 − 0.0132ð40Þ at the
physical point. However, Fig. 8 shows that the NLO and
NNLO contributions, fþ;2ð0Þ and fþ;4ð0Þ, are com-

parable at unphysically heavy Mπ ∼ 300–500 MeV, and
there is a significant cancellation between the analytic
(fþ;4;Cð0Þ) and nonanalytic (fþ;4;Lð0Þ and fþ;4;Bð0Þ)
NNLO contributions.
In order to estimate the systematic error due to neglected

higher order corrections, we also test a fitting form
including a N3LO analytic term fþ;6 ¼ dþM2

πðM2
K −

M2
πÞ2=F6

π , where the factor ðM2
K −M2

πÞ2 is motivated by
the Ademollo-Gatto theorem. However, the coefficient
dþ ¼ −1.1ð1.6Þ × 106 is poorly determined, and the
extrapolated value fþð0Þ ¼ 0.971ð13Þ is statistically con-
sistent with that from the NNLO fit. This observation and
the good value of χ2=d:o:f: for the NNLO fit suggest that
the uncertainty due to the truncation of the chiral expansion
at NNLO is not large compared to the statistical accuracy.
We treat the difference in fþð0Þ between the fits with and
without the N3LO term as a systematic uncertainty in
Table V.
We can examine the significance of the higher order

correction without assuming the form of fþ;6. Let us
consider a quantity

Δfð0Þ ¼ fþð0Þ − fþ;0 − fþ;2;Lð0Þ − fþ;2;Bð0Þ
− fþ;4;Lð0Þ − fþ;4;Bð0Þ; ð62Þ

which is the sum of the NNLO analytic term and the
possible higher order correction fþ;4;Cð0Þ þ fþ;6ð0Þ. Note
that fþ;0ð0Þ, fþ;2;Bð0Þ and fþ;4;Bð0Þ are LEC-free in
ξ-expansion, and hence Δf can be calculated from our
data of fþð0Þ and inputs in Tables III. We can define an
effective value of crþ;πK ¼ Cr

12 þ Cr
34 as

crþ;πK;eff ¼ −
F4
π

8ðM2
K −M2

πÞ2
Δf ¼ crþ;πK þOðM2

π;M2
KÞ;

ð63Þ

which deviates from crþ;πK and shows a nontrivial quark
mass dependence, if the higher order correction fþ;6 is
significant in the simulation region. As shown in Fig. 9,
however, our result has small dependence on ml and ms
suggesting that the higher order correction is not large
compared to the statistical accuracy.
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Mπ
2
 [GeV

2
]

0.96
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1.00
f +

(0
)

m
s
 = 0.080

m
s
 = 0.060

FIG. 7. Chiral extrapolation of fþð0Þ as a function ofM2
π . Solid

circles and squares show our data at ms ¼ 0.080 and 0.060. The
blue diamond is the value extrapolated to the physical point
ðml;phys; ms;physÞ. We note that the physical strange quark mass
ms;phys (diamond) is slightly off the simulated values (solid lines).

TABLE V. Numerical results of NNLO ChPT fits to form factors. The first line shows results of the conventional fit to fþð0Þ in terms
of the NG boson massesM2

fπ;Kg. The second (third) line is from the fit to fþðtÞ (fþðtÞ and ~f0ðtÞ) in terms ofM2
fπ;Kg and t. The first error

is statistical. The second and third are systematics due to the choice of the input Lr
i , and truncation of the chiral expansion at NNLO.

Note crþ;πK ¼ Cr
12 þ Cr

34 (Eq. (34)).

fit data fþð0Þ crþ;πK × 105 Cr
12 × 105 Cr

34 × 105

fþð0Þ 0.9636ð40Þðþ42
−6 Þðþ79Þ 0.53ð7Þð−6Þð−17Þ – –

fþðtÞ 0.9691ð42Þðþ45
−5 Þð−45Þ 0.429ð73Þðþ5

−71Þðþ90Þ – –
fþðtÞ, ~f0ðtÞ 0.9636ð36Þðþ41

−4 Þðþ28
−19 Þ 0.524ð62Þðþ1

−80Þðþ33
−58 Þ −0.23ð7Þðþ34

−13 Þðþ5
−93Þ 0.76ð11Þðþ9

−42Þðþ95
−11 Þ
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It is advantageous to use not only fþð0Þ but all the data
of fþðtÞ to better constrain the possible higher order chiral
corrections. Parametrizing both the t and quark mass
dependences based on ChPT reduces the model depend-
ence of our analysis. We, therefore, carry out a fit for fþðtÞ
using the chiral expansion (28) as a function of t, M2

π and
M2

K . As shown in Fig. 10, the t dependence of our data is
also described well by the NNLO formula with an
acceptable value of χ=dof ∼ 0.7, because we simulate a
limited region of t ∼ 0.
Results for the LEC crþ;πK and the normalization fþð0Þ at

the physical point in Table V show good consistency with
those from the conventional analysis. Their systematic error
due to the truncation of the chiral expansion at NNLO is
estimated by repeating the fit with each of the following
higher order terms

F6
πfþ;6 ¼ dþM2

πðM2
K −M2

πÞ2; dþM4
πt; dþM2

πt2;

dþM2
πM2

Kt: ð64Þ

This uncertainty is slightly smaller than the conventional
analysis, because the coefficient dþ is better constrained
with more data at nonzero t’s.
In order to make use of all the available data, we

performed a simultaneous fit to fþðtÞ and ~f0ðtÞ as a
function of t, M2

π and M2
K . As shown in Fig. 11, the

NNLO formulas (28) and (54) describe our data well with a
good value of χ2=d:o:f: ∼ 0.7. Numerical results of the fit
are summarized in Table V. We estimate the uncertainty due
to possible higher order corrections by testing the N3LO
terms (64) for fþ;6 and the followings for ~f0;6

F6
π
~f0;6 ¼ dþM2

πðM2
K −M2

πÞ2; d0M4
πt; d0M2

πt2;

d0M2
πM2

Kt: ð65Þ
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Table V shows good consistency in crþ;πK and fþð0Þ at the
physical point among the three types of the chiral fit: namely,
the fit to fþð0Þ, that to fþðtÞ, and the simultaneous fit to
fþðtÞ and ~f0ðtÞ. This is also demonstrated in Fig. 12, where
the Mπ dependence of fþð0Þ at ms ¼ 0.080 ∼ms;phys is
reproduced from the three fits. We observe good agreement
within ∼1σ in the whole simulation region of M2

π .
Table V shows that the statistical accuracy of the fit

results is not largely different between the conventional fit
and the fit to fþ. Indeed, these two fits use the same data of
fþ but different parametrizations for the t dependence:
Eq. (25) or ChPT. The statistical error is slightly reduced by
using ~f0. The uncertainty due to the choice of the input
(Tables III and IV) is more or less the same among the three
fits. However, the uncertainty due to the truncation of the
chiral expansion is significantly reduced by including more

data into the ChPT fit. From this observation, we consider
the simultaneous fit to fþ and ~f0 as our best fit.
We investigate the convergence of this best fit in Fig. 13.

Our observations on fþ at large spacelike momentum
transfer −t ≫ 0 are similar to those on the charged meson

EM form factors Ffπþ;Kþg
V in Ref. [25]. The analytic term

fþ;2;L (fþ;4;C) is dominant NLO (largest NNLO) contri-
bution to fþ;2 (fþ;4). We note that our estimate of the
relevant LECs in Tables III–V is not unexpectedly large,
and consistent with an order estimate [51]

Lr
i ¼ Oðð4πÞ−2Þ ¼ Oð6 × 10−3Þ;

Cr
i ¼ Oðð4πÞ−4Þ ¼ Oð4 × 10−5Þ: ð66Þ

The large analytic terms, fþ;2;L and fþ;4;C, suggest the
importance of the first-principle determination of the
relevant LECs. While we employ the input in Table III
for other LECs involved in fþ;4;L, this term turns out to be
small. Therefore, the systematic uncertainty due to the
choice of the input is not large.
The convergence at −t ≫ 0 is reasonably good

and becomes better toward smaller Mπ. This is because
the dominant NLO term fþ;2;L ∝ t=F2

π is not suppressed
by the NG boson masses and even enhanced by the factor
F−2
π in the ξ-expansion. A similar convergence property

is also observed for the EM form factors Ffπþ;Kþg
V [25].

There is a property of fþ different from Ffπþ;Kþg
V near

the important reference point t ¼ 0. Unless ml ≠ ms, each
chiral correction does not necessarily vanish except fþ;2;L,
which is dominantly large at −t ≫ 0 (blue thin dashed lines
in Fig. 13). As a result, the chiral expansion has a poorer
convergence towards t ¼ 0 as already observed in Fig. 8.
Note, however, that our analysis in Fig. 9 does not suggest
statistically significant N3LO nor higher order corrections.
In our analysis, the quantity ~f0 is used to obtain addi-

tional constraints on the relevant Oðp6Þ couplings, Cr
12 and
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Cr
34. For this purpose, ~f0 is designed to have no NLO

analytic term,which is a dominant contribution tofþ, and its
dependence on Lr

i starts from NNLO. The right panels of
Fig. 13 show that the Li-dependent NNLO correction ~f0;4;L
is not large with our choice of the input in Table III. The
remaining loop corrections, ~f0;2;B and ~f0;4;B, are parameter

free in the ξ-expansion. Therefore, ~f0 has reasonable

sensitivity to the NNLO analytic term ~f0;4;C. This leads

to our observation in TableV: incorporating ~f0 into the chiral
extrapolation is helpful in improving the statistical accuracy
of crþ;πK and fþð0Þ, and also in reducing their systematic
error due to the truncation of the chiral expansion.
For phenomenological applications, it is preferable to

separately fix Cr
12 and C

r
34 rather than their sum crþ;πK . This
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is only possible with the data of ~f0 by disentangle theirM2
π,

M2
K and t dependences in the NNLO correction (57). As

mentioned above, however, ~f0 is designed to have the small
NLO correction ~f0;2. This quantity is sensitive to not only
NNLO but the even higher order corrections (64) and (65)
added by hand to estimate the systematic uncertainty due to
the truncation of the chiral expansion. As a result, this
uncertainty for Cr

12 and C
r
34 is rather large in Table V. In this

study, therefore, we only confirm that our results are
consistent with the order estimate (66). We note that a
better determination of Cr

12 and Cr
34 needs more data of ~f0

at smaller values of Mπ and MK .

C. Form factor shape

In order to support the reliability of the determination of
fþð0Þ with the subpercent-level accuracy, it is important to
check the consistency of the form factors’ shape on the
lattice with experiments. In recent analyses of experimental
data, it is popular to employ the so-called dispersive
parametrization of the t dependence [16,17] based on
the analyticity of the form factors. In this study, however,
we consider the slope λ0fþ;0g in the conventional quadratic
parametrization (26). These are convenient in our analysis
based on ChPT, since the chiral expansion is the expansion
in terms of t (and the NG boson masses). We note that the
quadratic parametrization has been also well studied
phenomenologically and experimentally. Its relation to
the dispersive one has been established [16]. From recent
experimental data [3], the slopes are estimated as

λ0þ ¼ 2.58ð7Þ × 10−2; λ00 ¼ 1.36ð7Þ × 10−2: ð67Þ

In this paper, we treat M2
π� in Eq. (26) just as

the normalization factor to make λfþ;0g dimensionless,

and fix it to its physical value. The slope is then
given as

λ0fþ;0g ¼
M2

π�;phys

ffþ;0gð0Þ
dffþ;0gðtÞ

dt

				
t¼0

: ð68Þ

We evaluate both the normalization fþð0Þ ¼ f0ð0Þ
(Table V) and derivatives dffþ;0g=dtjt¼0 from our chiral

fit of fþ and ~f0 based on NNLO ChPT.
It is straightforward to calculate dfþ=dtjt¼0. From the

chiral expansion (28), (29) and (32), it is given as

dfþðtÞ
dt

¼ dfþ;2ðtÞ
dt

þ dfþ;4ðtÞ
dt

þ dfþ;6ðtÞ
dt

; ð69Þ

dfþ;2ðtÞ
dt

¼ dfþ;2;LðtÞ
dt

þ dfþ;2;BðtÞ
dt

; ð70Þ

dfþ;4ðtÞ
dt

¼ dfþ;4;CðtÞ
dt

þ dfþ;4;LðtÞ
dt

þ dfþ;4;BðtÞ
dt

: ð71Þ

The derivatives of fþ;2;L, fþ;2;B, fþ;4;C and fþ;6 are
analytically calculable from their expressions (30), (31),
(33) and (64). Since the NNLO nonanalytic terms, fþ;4;L

and fþ;4;B, have rather lengthy expressions, we numerically
evaluate their derivatives as in our study of the light meson
charge radii [25].
We evaluate df0=dtjt¼0 through

df0ðtÞ
dt

¼ d ~f0ðtÞ
dt

−
1

M2
K −M2

π

�
1 −

FK

Fπ

�
: ð72Þ

Here d ~f0=dtjt¼0 is calculated in a similar way to
dfþ=dtjt¼0, whereas FK=Fπ is estimated from our
NNLO chiral fit in Ref. [52].
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Our results for λ0fþ;0g are plotted in Fig. 14 as a function
ofM2

π . We observe reasonable agreement with the values in
Table II, which are estimated by assuming the VMD-based
parametrization (25) for fþ and the quadratic form (26) for
f0. This agreement does not necessarily hold, since the
nonanalytic chiral behavior is not explicitly taken into
account in the model assumptions. The reasonable con-
sistency in λ0þ is, therefore, compatible with our observation
in Fig. 13 that nonanalytic corrections to fþ are not large at
the simulation points.
The dashed line in the left panel of Fig. 14 shows λ0þ

up to NLO. The NNLO correction turns out to be
significant at the simulation points and down to the
physical point. In the whole region, the analytic term
fþ;4;C gives rise to a dominant part of the NNLO correction
suggesting the importance of the first-principle determi-
nation of the relevant LECs. We observe that contribution
from the NNLO nonanalytic term fþ;4;L become significant
below the simulation points Mπ ≲ 0.09 GeV2 and leads to
the nonmonotonous M2

π dependence of λ0þ. It is, therefore,
important to study the form factor shape by taking account
of the chiral logarithmic terms.
In the right panel of Fig. 14, dashed and dot-dashed lines

show contributions to λ00 from ~f0, which are not large. The
slope is, therefore, dominated by the second term in the
right-hand side of Eq. (72). This is because a large part of
the NLO and NNLO analytic terms, which give rise to a
large contribution to λ0þ, are absorbed into the second term.
This suggests that a modified version [14] of the Dashen-
Weinstein relation [54]

f00ð0Þ
f0ð0Þ

¼ λ00
M2

π�;phys

∼
1

M2
K −M2

π

�
FK

Fπ
− 1

�
ð73Þ

holds reasonably well in a wide region of Mπ ≲ 500 MeV.

D. Numerical results for form factors and LEC

Our numerical result for the normalization is

fþð0Þ ¼ 0.9636ð36Þstatðþ49
−19Þchiralð29Þa≠0: ð74Þ

The first error is statistical. The second error is due to the
chiral extrapolation and is a quadrature sum of the
uncertainties from the choice of the input Lf1;…;8g
(Table III) and the truncation of the chiral expansion at
NNLO. The third one represents discretization errors at our
finite lattice spacing. Since the LO term fþ;0 ¼ 1 is fixed
from symmetry, we assign discretization errors to the
nontrivial chiral correction fþ;2 þ fþ;4 by an order count-
ing OððaΛQCDÞ2Þ ∼ 8% with ΛQCD ¼ 500 MeV. We
expect that fþ;2 þ fþ;4 also receives finite volume effects
of Oðe−MπLÞ ∼ 1%–2%. This is, however, well below other
uncertainties. As shown in Fig. 15, recent lattice estimates
[8–11] are consistent with our result.

A latest analysis of available experimental data together
with analytic calculations of the isospin and EM corrections
[3,55–57] obtains jVusjfþð0Þ ¼ 0.21654ð41Þ [3]. Our
results lead to

jVusj ¼ 0.2247ðþ16
−12Þthð4Þex; ð75Þ

and a measure of the unitarity violation in the first row

ΔCKM ¼ jVudj2 þ jVusj2 þ jVubj2 − 1 ¼ −0.0004ðþ7
−8Þ:

ð76Þ

Here we use recent estimate jVudj ¼ 0.97420ð21Þ [58]
from the super-allowed nuclear β decays. Note that jVubj ≈
4 × 10−3 [59] is too small to affect this test of CKM
unitarity, and the long-standing tension between the exclu-
sive and inclusive decays does not change ΔCKM signifi-
cantly. CKM unitarity fulfilled at the level ofOð0.1%Þmay
have sensitivity to new physics at the TeV scale [60].
For the LEC and form factor shape, we obtain

crþ;πKðMρÞ ¼ Cr
12ðMρÞ þ Cr

34ðMρÞ
¼ 0.524ð62Þstatðþ33

−99Þchiralð42Þa≠0 × 10−5; ð77Þ

λ0þ ¼ 3.08ð14Þstatðþ12
−4 Þchiralð25Þa≠0 × 10−2; ð78Þ

λ00 ¼ 1.98ð15Þstatðþ31
−41Þchiralð16Þa≠0 × 10−2; ð79Þ

where we assign OððaΛQCDÞ2Þ discretization errors, and
1%–2% finite volume effects are well below other uncer-
tainties. We note that our chiral fit to fþð0Þ and that to
fþðtÞ yield consistent results for the normalization and
LEC. Recent lattice estimate [8–11] and the current world

0.95 0.96 0.97 0.98
f
+
(0)

this work

FNAL/MILC

RBC/UKQCD

FNAL/MILC

ETM

N
f
 = 2 + 1

N
f
 = 2 + 1 + 1
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filled circle shows our result (74). Recent results in Nf ¼ 2þ 1

[8,9]. and 2þ 1þ 1 [10,11] QCD are plotted by open circles and
squares, respectively.
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average [5] for fþð0Þ are in good agreement with our result.
We also observe reasonable consistency with a previous
lattice estimate of the LEC crþ;πKðMρÞ ¼ 0.46ð10Þ × 10−5

[8] and experimental results for the slopes (67).

V. CONCLUSIONS

In this article, we have presented our study of the chiral
behavior of the K → π semileptonic form factors. Relevant
meson correlators are precisely calculated by using the all-
to-all quark propagator. Our data of the form factors are
directly compared with NNLO ChPT in the continuum
limit by exploiting exact chiral symmetry preserved by the
overlap quark action.
Similar to our observation in our study of the EM form

factors, the nontrivial chiral correction to the vector form
factor fþ − 1 is largely dominated by the NLO analytic
term fþ;2;L ∝ t. As a result, the NNLO chiral expansion
exhibits reasonably good convergence particularly at t≪ 0,
and describes our data reasonably well. While fþ;2;L

vanishes and the convergence becomes poorer towards
t ¼ 0, our analysis suggests that N3LO and even higher
order corrections are not large compared to the statistical
accuracy.
We determined the normalization fþð0Þ within ≤ 1%

accuracy from our chiral fit to fþðtÞ and ~f0ðtÞ based on
NNLO ChPT. The result is nicely consistent with CKM
unitarity in the first row. We also estimate the relevant
Oðp6Þ coupling Cr

12 þ Cr
34 and the slope parameters λ0fþ;0g

from the same fit, and observe reasonable consistency with
a previous lattice study and experiments, respectively.
The statistical and systematic uncertainties of fþð0Þ turn

out to be comparable to each other with our simulation
setup. Its accuracy can be improved in the future by more
realistic simulations with higher statistics. Note that the
uncertainty of the isospin breaking and EM corrections are

typically 0.1%–0.2%. Good control of these corrections
will be increasingly important, as the accuracy of fþð0Þ
approaches this level.
Towards the continuum limit and the physical point,

the computational cost of the low-lying modes rapidly
increases, since the number of the necessary modes and
the computational cost of the Dirac operator multiplica-
tion are both expected to scale as ∝ N3

sNt. While it is
possible to add another lattice spacing or lighter pion
mass on currently available computers, it is better in the
long term to pursue a more realistic calculation of the
kaon form factors and extension to heavy meson decays
with a computationally inexpensive fermion formulation.
We have carried out a comparative study of such
formulations with good chiral symmetry [61], and sim-
ulations on finer lattices are underway [62]. Preliminary
results have been reported for the D and B meson decay
constants [63] and the D → π and D → K form fac-
tors [64].
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