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We calculate the single transverse spin asymmetries (SSA) for forward inclusive particle production in
pp and pA collisions using a hybrid approach. It is shown that the Sivers type contribution to the SSA drops
out due to the color entanglement effect, whereas the fragmentation contribution to the spin asymmetry is
not affected by the color entanglement effect. This finding offers a natural solution for the sign mismatch
problem.
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I. INTRODUCTION

During the past three decades, the studies of transverse
single spin asymmetries in high energy scatterings have
greatly deepened our understanding of some central aspects
of the quantum chromodynamics (QCD) factorization
theorem, among which the universality issue attracted a
lot of attention. Within the transverse momentum depen-
dent (TMD) factorization framework [1], a TMD distribu-
tion, known as the Sivers function f⊥1T [2] was proposed to
account for the observed large SSAs. It has been found
that the Sivers function reverses sign between the semi-
inclusive deeply inelastic scattering (SIDIS) and the
Drell-Yan process [3–5]. The discovery of such a novel
and unique universality property has stimulated a lot of
theoretical progress over the past decade. The preliminary
results from the STAR Collaboration and the COMPASS
Collaboration [6,7] seem to confirm the sign change. This
is undoubtedly one of the most remarkable achievements in
high energy spin physics.
However, the situation with the SSA for the forward

inclusive hadron production in pp collisions (denoted as
AN) p↑p → hX is more complicated. Because of the lack of
an additional hard scale, it is more appropriate to compute
this observable using the collinear twist-3 approach [8–12]
instead of the TMD factorization. Phenomenologically, it
was also studied in the generalized parton model [13,14].
The twist-3 effects leading to the SSA can be factorized
into various three-parton correlation functions. One of these
is the Qiu-Sterman function TF [9], which can be related to
the Sivers function [15],

TFðx; xÞ ¼ −
Z

d2p⊥
p2⊥
M

f⊥1Tðx; p2⊥ÞjSIDIS; ð1Þ

where M is the nucleon mass. Because of this relation, one
can determine TF using the date on the SSA measured in
SIDIS and compared with the Qiu-Sterman function
extracted from the inclusive hadron production in pp

collisions. Very surprisingly, TF extracted from these
two observables actually differ in sign [16]. To resolve
this sign mismatch problem, the authors of Ref. [17]
suggested that a genuine twist-3 function ImÊF [11]
(Ĥℑ

FU in a different notation) instead of TF gives rise to
the dominant contribution to AN . It is worthy to mention
that the data on the SSA in SIDIS [18,19] do not disfavor
this point of view because the Sivers function is not well
constrained at a large x in SIDIS, allowing flexible para-
metrizations of TF. Note that all other possible sources
contributing to AN in the collinear twist-3 approach were
shown to be small [20–22].
The study of the SSA for an inclusive hadron production

in pA collisions p↑A → hX could play an important role in
pining down the true main cause of AN since the different
sources contributing to AN are affected by the saturation
effect in the different ways. In fact, no strong nuclear
suppression was observed in a recent measurement of AN in
forward pA collisions [23]. This implies that the dominant
pieces must be these which are not affected by the
saturation effect. It is thus of a great interest to take into
account the saturation effect on the unpolarized target side.
Some earlier work in this direction have been done in
Refs. [24–27].
In this paper, we compute AN using a hybrid approach

[28,29], where a target nucleus (or proton) is treated in the
color glass condensate (CGC) framework [30], while the
collinear twist-3 approach is applied to the transversely
polarized projectile. It is a natural and powerful approach to
take into account the color entanglement effect that was
first discovered in Ref. [31] (for the relevant work, see
Refs. [32–34]). Actually, it has been found that the SSAs
for the prompt photon production and photon-jet produc-
tion in pp or pA collisions receive the contribution from
the color entanglement effect [28,35]. In contrast, the
color entanglement effect is absent in the Drell-Yan process
at a low transverse momentum due to the trivial color
flow [29].
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We notice that the hybrid approach has been used to
compute AN in Refs. [36,37] in the dilute limit. To include
the saturation effect, the authors of Ref. [36] derived the
Wilson line structure using some heuristic argument,
which, however, differs from that we directly derived in
the hybrid approach for the Sivers type contribution. To be
more explicit, the Wilson line structure we obtained can be
cast into the combination GDP − N2

cG4, where GDP is the
normal dipole type gluon distribution and G4 is the gluon
distribution that arises from the color entanglement effect.
Quite dramatically, the relation GDP ¼ N2

cG4 held in a
quasiclassical model indicates that the Sivers type contri-
bution completely drops out. As explained below, the
heuristic argument used in Ref. [37] to work out the
Wilson line structure in the fragmentation case is well
justified. It is shown [37] that the contribution from the
twist-3 fragmentation function related to the moment of
the TMD Collins function [3,11] is strongly suppressed
by the saturation effect. In view of the recent measurement
at RHIC [23], the genuine twist-3 fragmentation
function turns out to be the only candidate for the main
cause of AN .

II. THE COMPUTATION OF AN
IN THE HYBRID APPROACH

We start the computation of AN in the hybrid approach
by introducing the relevant kinematics. The dominant
partonic channel for the spin independent forward particle
production is

qpðxPÞ þ gAðx0gP̄þ k⊥Þ → qðlqÞ; ð2Þ

which represents a quark qp from a proton scattering
off classical background gluon field gA inside the target.
The light cone momenta are defined as P̄μ ¼ P̄−nμ and
Pμ ¼ Pþpμ with the usual light cone vectors, nμ and pμ,
normalized according to p · n ¼ 1.
To generate an imaginary phase necessary for the non-

vanishing spin asymmetry, one additional gluon attachment
from the remanent of the polarized proton projectile must
be taken into account. It is convenient to formulate such a
twist-3 calculation in the covariant gauge in which this
extra gluon is longitudinally polarized. One then has to sum

the multiple rescatterings of the incoming quark and the
collinear gluon with a small x gluon field inside target to all
orders simultaneously.
The incoming quark and gluon with the physical

polarization scattering off CGC state can be summed into
aWilson line in the fundamental and adjoint representation,
respectively,

Uðx⊥Þ ¼ P exp

�
ig
Z þ∞

−∞
dzþA−

Aðzþ; x⊥Þ · t
�

ð3Þ

~Uðx⊥Þ ¼ P exp

�
ig
Z þ∞

−∞
dzþA−

Aðzþ; x⊥Þ · T
�

ð4Þ

with T and t being the generators in the adjoint and
fundamental representation. However, the multiple scatter-
ing of a longitudinally polarized gluon with the background
gluon field of a target can not be simply described by a
Wilson line in the CGC formalism. Instead, the expression
for the gauge field created through the fusion of a
longitudinally polarized gluon from the proton and small
x gluons from the target takes a quite complicated form
[38]. It contains both the singular terms [proportional to
δðzþÞ] and the regular terms: Aμ ¼ Aμ

reg þ δμ−A−
sin g, whose

explicit expressions can be found in Refs. [38].
When computing the spin dependent amplitude, all

possible insertions of the fields Aμ
reg and A−

sin g on the quark
line must be taken into account as illustrated in Fig. 1 and
Fig. 2, respectively. We calculate the contributions from
Fig. 1 and Fig. 2 following the method outlined in
Refs. [28,29]. Note that Figs. 1(c) and 1(d) do not
contribute to the amplitude because the two poles are lying
on the same half plane. The final expression for the spin
dependent amplitude takes the form,

M ¼ −g
Z

dk−1 d
2k1⊥d2x⊥d2x1⊥
ð2πÞ3 eix⊥·ðk⊥−k1⊥−p⊥Þeix1⊥·k1⊥ ūðlqÞ

CU=ðq; p⊥Þ
q2 þ iϵ

tbSFðlq − qÞnUðx⊥ÞuðxPÞ½ ~Uðx1⊥Þ − 1�ba

þ g
Z

d2x⊥eiðk⊥−p⊥Þ·x⊥ ūðlqÞnt
bUðx⊥ÞuðxPÞ

xgPþ þ iϵ
½ ~Uðx⊥Þ − 1�ba

þ ig
Z

d2x⊥eiðk⊥−p⊥Þ·x⊥ ūðlqÞtapSFðlq − xgP − p⊥ÞnuðxPÞ½Uðx⊥Þ − 1�; ð5Þ

(a) (b) (c) (d)

FIG. 1. The contribution from the regular terms to the spin
dependent amplitude. A black dot denotes a classical field Areg
insertion.
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where the color index a is associated with the collinear
gluon from the polarized projectile, which carries a
momentum xgPþ p⊥. SFðlq − qÞ and SFðlq − xgP − p⊥Þ
denoting the standard quark propagators. The four vector
Cμ
Uðq; p⊥Þ is defined as

Cþ
Uðq; p⊥Þ ¼ −

p2⊥
q− þ iϵ

; C−
Uðq; p⊥Þ ¼

k21⊥ − q2⊥
qþ þ iϵ

;

Ci
Uðq; p⊥Þ ¼ −2pi⊥; ð6Þ

where qμ ¼ x0g1P̄
μ þ kμ1⊥ þ xgPμ þ pμ

⊥. The notation p⊥ is
used to denote the four dimension vector with p2⊥ ¼ −p2⊥.
It is worthy to point out that the second term in Eq. (5),

which describes the interaction between the collinear gluon
from the projectile and the color source inside the target is
missing in Ref. [36], and the Wilson line structure in the
rest two terms are also organized in different ways as
compared to that in Ref. [36]. Before computing the twist-3
piece, as a consistency check, let us first have a look at the
twist-2 part of the derived amplitude by setting p⊥ ¼ 0.
The first term vanishes due to Cμ

Uðq; p⊥ ¼ 0Þ ¼ 0. The
leading twist contribution of the amplitude is simplified as

Mtwist−2 ¼
g
Pþ

Z
d2x⊥eik⊥·x⊥

×

��
P

1

xg
þ iπδðxgÞ

�
½Uðx⊥Þ− 1�ūðlqÞntauðxPÞ

− iπδðxgÞūðlqÞntauðxPÞ2½Uðx⊥Þ− 1�
�
: ð7Þ

In arriving at the above expression, we used the algebraic
identity, Uðx⊥ÞtbU†ðx⊥Þ ¼ ta ~Ubaðx⊥Þ. After integrating
out the incoming quark transverse momentum, the con-
tributions proportional to the delta function δðxgÞ are
canceled out between the different cut diagrams. The
additional gluon exchange from the proton can be incorpo-
rated into the gauge link that appears in the matrix element
definition of a quark PDF by carrying out the xg integration
over the principal value part. As expected, the correspond-
ing hard part is just the Born diagram contribution to a
quark scattering off CGC state [39]. At this point, one can
readily see that it is critical to keep the scattering amplitude
gauge invariant by taking into account the initial interaction

with the color source inside target. Note that the result
derived in Ref. [36] fails to pass this consistency check.
If one applies TMD factorization on the polarized

projectile side, the terms proportional to the delta function
contribute to the gauge link in the Sivers TMD function.
But unlike the photon-jet production [35], such a hybrid
approach might not be well justified in the process
under consideration because of the lack of an additional
hard scale.
We now proceed to compute the spin dependent twist-3

contribution by first isolating the imaginary part from
different poles. We start with analyzing the pole structure
in the first term in Eq. (5). By carrying out the xg and k−1
integration, two propagators are effectively put on shell,

q2 ¼ 0; ðlq − qÞ2 ¼ 0: ð8Þ

Three particle lines connected by a quark-gluon vertex
being simultaneously on shell implies that three momenta
qμ, lμq − qμ, lμq must be collinear to each other. This leads to

ūðlqÞCU=ðq; p⊥Þðlq − qÞ
¼ −ūðlqÞlqCU=ðq; p⊥Þð1 − βÞ ¼ 0; ð9Þ

where qμ ¼ βlμq for 0 ≤ β ≤ 1. When commuting CU with
lq − q in the above formula, we used the property
Cμ
Uðq; p⊥Þ · qμ ¼ 0. One thus concludes that the hard gluon

pole (or the soft fermion pole for β ¼ 1) contribution is
completely washed out by the saturation effect. This
analysis is in agreement with that made in Ref. [36].
One should notice that the first term in Eq. (5) also

contains the soft gluon pole (SGP) contribution, which
comes from the minus component of Cμ

U. Combining it
with the last two terms in Eq. (5), the SGP contribution is
given by

MSGP ¼ −iπg
Z

d2k1⊥d2x⊥d2x1⊥
ð2πÞ2 eix⊥·ðk⊥−k1⊥−p⊥Þeix1⊥·k1⊥

× δðxgPþÞ k
2
1⊥
q2⊥

ūðlqÞntbUðx⊥ÞuðxPÞ ~Uðx1⊥Þba

þ iπg
Z

d2x⊥eiðk⊥−p⊥Þ·x⊥δððlq − xgP − p⊥Þ2Þ

× ūðlqÞtapðlq − xgp − p⊥ÞnuðxPÞ½Uðx⊥Þ − 1�;
ð10Þ

where the last term gives rise to the so-called derivative
term contribution. At this point, we would like to mention
that the spin dependent amplitude takes a slightly different
form for the left cut diagrams due to the different p⊥ flow.
In the collinear twist-3 approach, the spin asymmetry arises
from the interference between the imaginary part identified
above and the conjugate Born scattering amplitude without
an additional gluon attachment from the projectile. It is

(a) (b) (c) (d)

FIG. 2. The contribution from the singular terms to the spin
dependent amplitude. A black dot denotes a classical field Asin g
insertion.
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straightforward to compute the later in the CGC formalism
[39]. Following the standard procedure, the next step is to
make the p⊥ expansion and factorize the soft part of the
polarized proton side into the Qiu-Sterman function.
Finally, in order to express the spin dependent cross

section in terms of the known gluon distributions, we
simplify the relevant color structure, starting with the one
associated with the delta function δðxgPþÞ,

Tr½taU†ðy⊥ÞtbUðx⊥Þ� ~Uðx1⊥Þba
¼ −1

2Nc
Tr½U†ðy⊥ÞUðx⊥Þ�

þ 1

2
Tr½U†ðy⊥ÞUðx1⊥Þ�Tr½U†ðx1⊥ÞUðx⊥Þ�; ð11Þ

where U†ðy⊥Þ is from the conjugate amplitude. Note that
the forward scattering amplitude contribution has been
neglected as we do so below. The contribution from
½U†ðy⊥ÞUðx⊥Þ� drops out because one can trivially carry
out the x1⊥ integration, resulting in k1⊥ ¼ 0. In the large
Nc approximation, hTr½U†ðy⊥ÞUðx1⊥Þ�Tr½U†ðx1⊥ÞUðx⊥Þ�i
can be related to the convolution of two dipole type gluon
distributions. After summing the left and right cut diagrams
contribution and making the p⊥ expansion, we encounter
the following structure:

Z
d2k1⊥

�
lαq⊥−kα1⊥

ðlq⊥−k1⊥Þ2
Fðl2q⊥Þþ

lαq⊥
2

∂Fðl2q⊥Þ
∂l2q⊥

�
Fðk21⊥Þ; ð12Þ

where Fðl2q⊥Þ is the Fourier transform of the dipole
amplitude whose definition is given below. Using the
method introduced in Ref. [37], it is easy to verify that
the two terms are completely canceled out in the dilute limit
and are strongly suppressed in the saturation regime. One
thus can safely neglect the SGP contribution induced by the
initial state interaction.
We now turn to discuss the Wilson lines associated with

the derivative term contribution, which reads

Tr½taU†ðy⊥ÞtaUðx⊥Þ� ¼
1

2
Tr½U†ðy⊥Þ�Tr½Uðx⊥Þ�

−
1

2Nc
Tr½U†ðy⊥ÞUðx⊥Þ�; ð13Þ

where the nontrivial color structure Tr½U†ðy⊥Þ�Tr½Uðx⊥Þ�
arises from the color entanglement effect as explained in
Refs. [28,29,35]. The extra gluon attachment from the
polarized proton plays a crucial role in yielding such a
unique structure. With all these calculation recipes, we
derive the spin dependent partonic cross section,

dσ
dyd2lq⊥

¼ 2π2αsxx0g
NcðN2

c−1Þ
ϵαβS

β
⊥lαq⊥

l2q⊥

×
�

1

l2q⊥
½GDPðx0g; l2q⊥Þ−N2

cG4ðx0g; l2q⊥Þ�x
dTFðx;xÞ

dx

þ∂½GDPðx0g; l2q⊥Þ−N2
cG4ðx0g; l2q⊥Þ�

∂l2q⊥ TFðx;xÞ
�
;

ð14Þ

where S⊥ is the transverse spin vector of the proton. The
momentum fractions x and x0g are fixed according to x ¼
eyjlq⊥j=

ffiffiffi
s

p
and x0g ¼ e−yjlq⊥j=

ffiffiffi
s

p
with y being the out-

going quark rapidity. GDP is the normal dipole type gluon
distribution and related to the Fourier transform of the

dipole amplitude x0gGDPðx0g; l2q⊥Þ ¼
l2q⊥Nc

2π2αs
Fðl2q⊥Þ. G4 intro-

duced in Ref. [28] is the gluon distribution that arises from
the color entanglement effect. Their operator definitions are
given by

x0gGDPðx0g; l2q⊥Þ ¼
l2q⊥Nc

2π2αs

Z
d2x⊥d2y⊥
ð2πÞ2 eilq⊥·ðx⊥−y⊥Þ

×
1

Nc
hTr½U†ðy⊥ÞUðx⊥Þ�i

x0gG4ðx0g; l2q⊥Þ ¼
l2q⊥Nc

2π2αs

Z
d2x⊥d2y⊥
ð2πÞ2 eilq⊥·ðx⊥−y⊥Þ

×
1

N2
c
hTr½U†ðy⊥Þ�Tr½Uðx⊥Þ�i; ð15Þ

which can be evaluated and related to each other in the MV
model [28],

x0gG4ðx0g; l2q⊥Þ ¼
1

N2
c
x0gGDPðx0g; l2q⊥Þ: ð16Þ

This simple relation leads to a complete cancellation
between the contributions from GDP and G4 in Eq. (14).
Therefore, the Sivers type contribution to AN drops out.
Obviously, this conclusion remains true after promoting
the partonic spin dependent cross section to the hardron
production cross section.
We now comment on the twist-3 fragmentation function

contribution to AN . The derivative term contribution to AN
in pp collisions was first computed in Ref. [11] in the
purely collinear twist-3 approach. The complete result was
obtained in Ref. [12] (see recent reviews Refs. [40,41]). In
order to take into account the multiple gluon rescattering
effect on the target side, the similar hybrid approach can
also be applied in the fragmentation case [37]. As is
well-known, it is highly nontrivial to compute the SGP
contribution in the light cone gauge [42,43]. Since the SGP
contribution vanishes for the twist-3 fragmentation
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contribution [44,45], it is more convenient to carry out the
calculation in the light cone gauge, where the additional
gluon exchange from the twist-3 fragmentation function is
physically polarized [37]. A gluon with a physical polari-
zation scattering off the background gluon field can be
summarized into a normal Wilson line in the adjoint
representation. In this sense, the derivation of the Wilson
line structure in Ref. [37] is well justified. If one formulates
such a calculation in the covariant gauge, the fact that an
imaginary phase from the scattering amplitude is not
required in the twist-3 fragmentation case would make
an essential difference in deriving the color structure.
However, the detailed investigation is beyond the scope
of the current work.
We close this section with few further remarks:
(1) Following the standard procedure, one can derive

the BK type evolution equation for the gluon
distributionG4, which will be presented in a separate
publication. In the large Nc limit, the relation
Eq. (16) holds under small x evolution.

(2) The relation Eq. (16) is a model dependent result. In
the general case, an incomplete cancellation between
two gluon distributions leaves some room for having
a tiny spin asymmetry for inclusive jet production in
pp or pA collisions [46].

(3) If the G4 contribution is neglected, Eq. (14) is
consistent with the collinear twist-3 result [10] in
the dilute limit.

(4) The color entanglement effect is a leading power
effect and should be taken into account in the
genuine collinear twist-3 approach as well. We plan
to redo the calculation in the purely collinear
framework by going beyond one gluon exchange
approximation on the target side.

(5) T-even objects like the unpolarized twist-2 ampli-
tude, are not affected by the color entanglement

effect. The observed color entanglement effect is
the consequence of the nontrivial interplay among
the T-odd effect, multiple gluon rescattering, and the
non-Abelin feature of QCD [28,29,31,35].

III. SUMMARY

Let us now summarize the recent progress on the topic
addressed in this paper. The sign mismatch problem was
first observed in Ref. [16]. To find a way out, one naturally
questions the dominance of the Sivers type contribution to
AN (other possible solutions, see Refs. [47,48]). It was
indeed found that the genuine twist-3 fragmentation func-
tion could play an important role in generating the spin
asymmetry [17]. Later, the authors of Ref. [37] have sorted
out the piece of the contribution from the twist-3 fragmen-
tation functions that is not suppressed by the saturation
effect using a hybrid approach first developed in
Refs. [28,29]. The saturation suppressed fragmentation
contribution being the major source of AN has been ruled
out by the recent measurement [23]. In this work, we
demonstrate that the Sivers type contribution to the spin
asymmetry drops out due to the color entanglement effect.
The nuclear independent part of the genuine twist-3
fragmentation contribution turns out to be the only candi-
date for the main cause of AN . A recent work [49] shows
that it is almost sufficient to account for AN by taking into
account this fragmentation term alone with the input con-
strained by the Lorentz invariance relation [50]. We thus
believe that the sign mismatch problem has been solved.
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