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We show that quasi-parton distribution functions (quasi-PDFs) may be treated as hybrids of PDFs and
primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature
of quasi-PDFs that necessitates using large p3 ≳ 3 GeV momenta to get reasonably close to the PDF limit.
As an alternative approach, we propose using pseudo-PDFs Pðx; z23Þ that generalize the light-front PDFs
onto spacelike intervals and are related to Ioffe-time distributionsMðν; z23Þ, the functions of the Ioffe time
ν ¼ p3z3 and the distance parameter z23 with respect to which it displays perturbative evolution for small z3.
In this form, one may divide out the z23 dependence coming from the primordial rest-frame distribution and
from the problematic factor due to lattice renormalization of the gauge link. The ν dependence remains
intact and determines the shape of PDFs.
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I. INTRODUCTION

The parton distribution functions (PDFs) fðxÞ [1] are
related to matrix elements of bilocal operators on the light
cone z2 ¼ 0, which prevents a straightforward calculation
of these functions in the lattice gauge theory formulated
in Euclidean space. The usual way out is to calculate their
moments. However, recently, Ji [2] suggested a method
allowing us to calculate PDFs as functions of x. To this
end, he proposes using purely spacelike separations z ¼
ð0; 0; 0; z3Þ. Then, one deals with quasi-PDFs Qðy; p3Þ
describing sharing of the p3 hadron momentum component
and tending to PDFs fðyÞ in the p3 → ∞ limit. The same
method can be applied to distribution amplitudes (DAs).
The results of lattice calculations of quasi-PDFs were
reported in Refs. [3–5] and of the pion quasi-DA in Ref. [6].
In our recent papers [7,8], we have studied nonpertur-

bative p3 evolution of quasi-PDFs and quasi-DAs using
the formalism of virtuality distribution functions [9,10].
We found that quasi-PDFs can be obtained from the
transverse momentum-dependent distributions (TMDs)
F ðx; k2⊥Þ. We built models for the nonperturbative evolu-
tion of quasi-PDFs using simple models for TMDs. Our
results are in qualitative agreement with the p3-evolution
patterns obtained in lattice calculations.
In the present paper, our first goal is to develop a picture

for quasi-PDFs as hybrids of PDFs and primordial momen-
tum distributions of partons in a hadron at rest. As an
intermediate step, we demonstrate that the connection
between TMDs and quasi-PDFs [7] is a mere consequence
of Lorentz invariance. Then we show that, when a hadron is
moving, the parton k3 momentum comes from two sources.
The motion of the hadron as a whole gives the xp3 part,
which is governed by the dependence of the TMD F ðx; κ2Þ

on its x argument. The remaining part, k3 − xp3, is
governed by the dependence of the TMD on its second
argument, κ2, dictating the primordial rest-frame momen-
tum distribution. The convolution nature of quasi-PDFs
results in a rather complicated pattern of their p3 evolution,
necessitating rather large values p3 ∼ 3 GeV for getting
close to the PDF limit.
Thus, our second goal is to propose an alternative

approach for lattice PDF extraction. To this end, we intro-
duce pseudo-PDFs Pðx; z23Þ that generalize the light-cone
PDFs fðxÞ onto spacelike intervals, like z ¼ ð0; 0; 0; z3Þ.
The pseudo-PDFs are Fourier transforms of the Ioffe-time
[11] distributions [12] Mðν; z23Þ that are basically given
by generic matrix elements, like hpjϕð0ÞϕðzÞjpi, written as
functions of ν ¼ p3z3 and z23. Unlike quasi-PDFs, the
pseudo-PDFs have the “canonical” −1 ≤ x ≤ 1 support
for all z23. They tend to PDFs when z3 → 0, showing, in this
limit, a usual perturbative evolution with 1=z3 serving as
an evolution parameter. Finally, we discuss how these
properties of pseudo-PDFs may be used for extraction of
PDFs on the lattice.

II. PARTON DISTRIBUTIONS

A. Generic matrix element and Lorentz invariance

Historically [1], PDFs were introduced to describe
spin-1=2 quarks. Since complications related to spin do
not affect the very concept of parton distributions, we start
with a simple example of a scalar theory. In that case,
information about the target is accumulated in the generic
matrix element hpjϕð0ÞϕðzÞjpi. By Lorentz invariance, it is
a function of two scalars, ðpzÞ≡ −ν and z2 (or −z2 if we
want a positive value for spacelike z):
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hpjϕð0ÞϕðzÞjpi ¼ Mð−ðpzÞ;−z2Þ: ð1Þ

It can be shown [7,13] that, for all contributing Feynman
diagrams, its Fourier transform Pðx;−z2Þ with respect to
(pz) has the −1 ≤ x ≤ 1 support, i.e.,

Mð−ðpzÞ;−z2Þ ¼
Z

1

−1
dxe−ixðpzÞPðx;−z2Þ: ð2Þ

Note that Eq. (2) gives a covariant definition of x. There is
no need to assume that p2 ¼ 0 or z2 ¼ 0 to define x.

B. Collinear PDFs

Choosing some special cases of p and z, one can get
expressions for various parton distributions, all in terms of
the same function Mð−ðpzÞ;−z2Þ. In particular, taking a
lightlike z, e.g., that having the light-front minus compo-
nent z− only, we parametrize the matrix element by the
twist-2 parton distribution fðxÞ,

Mð−pþz−; 0Þ ¼
Z

1

−1
dxfðxÞe−ixpþz− ; ð3Þ

with fðxÞ having the usual interpretation of probability that
the parton carries the fraction x of the target momentum
component pþ. The inverse relation is given by

fðxÞ ¼ 1

2π

Z
∞

−∞
dνe−ixνMðν; 0Þ ¼ Pðx; 0Þ: ð4Þ

Since fðxÞ ¼ Pðx; 0Þ, the function Pðx;−z2Þ generalizes
PDFs onto nonlightlike intervals z2, and we will call it a
pseudo-PDF. The variable (pz) is called the Ioffe time [11],
and Mðν;−z2Þ is the Ioffe-time distribution [12].
Note that the definition of Pðx;−z2Þ is simpler than that

of fðxÞ because it does not require taking a subtle z2 → 0

limit. In renormalizable theories, the functionMðν; z2Þ has
∼ ln z2 singularities generating perturbative evolution of
parton densities. Within the operator product expansion
(OPE) approach, the ln z2 singularities are subtracted using
some prescription, say, dimensional renormalization, and
the resulting PDFs depend on the renormalization scale μ,
i.e., fðxÞ → fðx; μ2Þ.

C. Transverse momentum-dependent distributions

When z2 is spacelike, one can treat −z2 as the magnitude
squared of a two-dimensional vector fz1; z2g, and introduce
a two-dimensional Fourier transform with respect to its
components, i.e., to write

Pðx; z21 þ z22Þ ¼
Z

∞

−∞
dk1eik1z1

×
Z

∞

−∞
dk2eik2z2F ðx; k21 þ k22Þ: ð5Þ

Because of rotational invariance of Pðx; z21 þ z22Þ in the
fz1; z2g plane, the function F ðx; k21 þ k22Þ depends on k1,
k2 through k21 þ k22, which is already reflected in the
notation. Combining this representation with Eq. (2),
one has

Mðν; z21 þ z22Þ ¼
Z

1

−1
dxeixν

Z
∞

−∞
dk1eik1z1

×
Z

∞

−∞
dk2eik2z2F ðx; k21 þ k22Þ: ð6Þ

A physical interpretation of F ðx; k21 þ k22Þ may be given
in the frame where the target momentum p is longitudinal,
p ¼ ðE; 0⊥; PÞ, while the vector fz1; z2g is in the trans-
verse plane. Taking z, which has z− and z⊥ components
only, one can identify F ðx; k2⊥Þ with the TMD and write

Pðx; z2⊥Þ ¼
Z

d2k⊥eiðk⊥z⊥ÞF ðx; k2⊥Þ: ð7Þ

In this case, the pseudo-PDFs Pðx; z2⊥Þ coincide with the
impact parameter distributions, a well-known concept
actively used in TMD studies.
The ∼ ln z2⊥ terms in Mðν; z2⊥Þ are produced by the

∼1=k2⊥ hard tail of F ðx; k2⊥Þ. Thus, it makes sense to
visualize Mðν; z2⊥Þ as a sum of a soft part Msoftðν; z2⊥Þ,
which has a finite z2⊥ → 0 limit, and a hard part reflecting
the evolution. For TMDs, the soft part decreases faster than
1=k2⊥, say, like a Gaussian e−k

2⊥=Λ2

. In the z⊥ space, the
distributions are then concentrated in the z⊥ ∼ 1=Λ region.

III. QUASIDISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot have lightlike separations on the lattice,
it was proposed [2] that we consider spacelike separations
z ¼ ð0; 0; 0; z3Þ (or, for brevity, z ¼ z3). Then, in the p ¼
ðE; 0⊥; PÞ frame, one introduces the quasi-PDF Qðy; PÞ
through a parametrization

hpjϕð0Þϕðz3Þjpi ¼
Z

∞

−∞
dyQðy; PÞeiyPz3 : ð8Þ

According to this definition, the function Qðy; pÞ charac-
terizes the probability that the parton carries a fraction y of
the hadron’s third momentum component P. Viewing the
matrix element as a function of the ν and −z2 variables
(they are given by Pz3 and z23 in this case), we have

Mðν; z23Þ ¼
Z

∞

−∞
dyQðy; PÞeiyν: ð9Þ

Noticing that z23 ¼ ν2=P2, we get the inverse Fourier
transformation in the form
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Qðy; PÞ ¼ 1

2π

Z
∞

−∞
dνe−iyνMðν; ν2=P2Þ: ð10Þ

It indicates that Qðy; PÞ tends to fðyÞ in the P → ∞ limit,
as long as Mðν; ν2=P2Þ → Mðν; 0Þ.
Thus, the deviation of the quasi-PDF Qðy; PÞ from the

PDF fðyÞ is determined by the dependence of Mðν; z23Þ
with respect to its second argument. By Eq. (6), this
dependence is related to the dependence of the TMD
F ðx; κ2Þ on its second argument, κ2. Hence, the difference
between Qðy; PÞ and fðyÞ may be described in terms
of TMDs.
To this end, we incorporate the fact that Eq. (6) is a

mathematical relation between the function Mðν; z21 þ z22Þ
and the functionF ðx; k21 þ k22Þ, no matter what the physical
meaning of the variables, z1, z2 and k1, k2, is. Thus, we
substitute Eq. (6) with z1 ¼ 0 and z2 ¼ ν=P into Eq. (10) to
convert it into the expression for quasi-PDFs in terms of
TMDs:

Qðy; PÞ=P ¼
Z

∞

−∞
dk1

Z
1

−1
dxF ðx; k21 þ ðy − xÞ2P2Þ: ð11Þ

Originally, this relation was derived in Ref. [7] using a
Nakanishi-type representation of Refs. [9,10]. Now, we see
that it is a mere consequence of Lorentz invariance.

B. Quantum chromodynamics (QCD) case

The formulas derived above are directly applicable for
nonsinglet parton densities in QCD. In that case, one deals
with matrix elements of the

Mαðz; pÞ≡ hpjψ̄ð0ÞγαÊð0; z;AÞψðzÞjpi ð12Þ

type, where Êð0; z;AÞ is the standard 0 → z straight-line
gauge link in the quark (fundamental) representation. These
matrix elements may be decomposed into pα and zα parts:

Mαðz; pÞ ¼ 2pαMpð−ðzpÞ;−z2Þ
þ zαMzð−ðzpÞ;−z2Þ: ð13Þ

The Mpð−ðzpÞ;−z2Þ part gives the twist-2 distribution
when z2 → 0, whileMzððzpÞ;−z2Þ is a purely higher-twist
contamination, and it is better to get rid of it.
If one takes z ¼ ðz−; z⊥Þ in the α ¼ þ component of

Mα, the zα part drops out, and one can introduce a TMD
F ðx; k2⊥Þ that is related toMpðν; z2⊥Þ by the scalar formula
(6). For quasidistributions, the easiest way to remove
the zα contamination is to take the time component of
Mαðz ¼ z3; pÞ and define

M0ðz3; pÞ ¼ 2p0

Z
1

−1
dyQðy; PÞeiyPz3 : ð14Þ

Then the connection between Qðy; PÞ and F ðx; k2⊥Þ is
given by the scalar formula (11).
One may notice that the operator defining Mαðz; pÞ

involves a straight-line link from 0 to z rather than a stapled
link usually used in the definitions of TMDs appearing in
the description of Drell-Yan and semi-inclusive DIS proc-
esses. As is well known, the stapled links reflect initial or
final state interactions inherent in these processes. The
“straight-link” TMDs, in this sense, describe the structure
of a hadron when it is in its nondisturbed or “primordial”
state. While it is unlikely that such a TMD can be measured
in a scattering experiment, it is a well-defined QFT object,
and one may hope that it can be measured on the lattice.

C. Momentum distributions

The quasi-PDFs describe the distribution in the fraction
y≡ k3=P of the third component k3 of the parton momen-
tum to that of the hadron. One can introduce distributions in
k3 itself: Rðk3; PÞ≡Qðk3=P;PÞ=P. Then we can rewrite
Eq. (11) as

Rðk3; PÞ ¼
Z

∞

−∞
dk1

Z
1

−1
dxF ðx; k21 þ ðk3 − xPÞ2Þ ð15Þ

or, switching to the linear argument k3 − xP,

Rðk3; PÞ ¼
Z

1

−1
dxRðx; k3 − xPÞ; ð16Þ

where

Rðx; k3Þ≡
Z

∞

−∞
dk1F ðx; k21 þ k23Þ ð17Þ

is the TMD F ðx; κ2Þ integrated over the k1 component of
the two-dimensional vector κ ¼ fk1; k3g. According to
(17), Rðx; k3Þ depends on k3 through k23.
For a hadron at rest, we have

Rðk3; P ¼ 0Þ≡ rðk3Þ ¼
Z

1

−1
dxRðx; k3Þ: ð18Þ

This one-dimensional distribution may be directly
obtained through a parametrization of the density

ρðz23Þ≡Mð0; z23Þ ¼
Z

∞

−∞
dk3rðk3Þeik3z3 ; ð19Þ

given by hpjϕð0Þϕðz3Þjpijp¼0. Thus, rðk3Þ describes a
primordial distribution of k3 (or any other component of k)
in a rest-frame hadron.
The formula (16) has a straightforward interpretation.

According to this interpretation, when the hadron is
moving, the parton’s k3 momentum has two sources.
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The first part, xP, comes from the motion of the
hadron as a whole, and the probability of getting xP is
governed by the dependence of the TMD F ðx; κ2Þ on its
first argument, x.
On the other hand, the probability of getting the

remaining part, k3 − xP, is governed by the dependence
of the TMD on its second argument, κ2, describing the
primordial rest-frame momentum distribution.
The parameter x appears in both arguments of

Rðx; k3 − xPÞ in Eq. (16); i.e., Rðk; PÞ is given by a
convolution. In this sense, the momentum distributions
Rðk; PÞ and, hence, the quasi-PDFs, have a hybrid structure
influenced by the shape of both PDFs and rest-frame
distributions.

D. Factorized models

Since the two sources of k3 look independent, it is
natural to demonstrate the hybrid nature of momentum
distributions and quasi-PDFs using a factorized model
Rðx; k3 − xPÞ ¼ fðxÞrðk3 − xPÞ [the x integral of fðxÞ
is normalized to 1]. For the original Mðν;−z2Þ function,
this Ansatz corresponds to the factorization assumption
Mðν;−z2Þ ¼ Mðν; 0ÞMð0;−z2Þ.
To illustrate this, we take a Gaussian form ρGðz23Þ ¼

e−z
2
3
Λ2=4 for the rest-frame density. It corresponds to

rGðk3Þ ¼
1ffiffiffi
π

p
Λ
e−k

2
3
=Λ2

: ð20Þ

For fðxÞ, we take a simple PDF resembling nucleon
valence densities fðxÞ ¼ 4ð1 − xÞ3θð0 ≤ x ≤ 1Þ. As one
can see from Fig. 1, the curve for Rðk; PÞ changes from a
Gaussian shape for small P to a shape resembling stretched
PDF for large P.
This result is in perfect compliance with a known fact

that wave functions of moving hadrons are not given by a
mere kinematical “boost” of the rest-frame wave functions.
Indeed, with increasing P, the impact of the rest-frame
distribution rðkÞ is less and less visible, and eventually the

shape of Rðk; PÞ is determined by a completely different
function, fðk=PÞ.
Rescaling to the y ¼ k=P variable gives the quasi-PDF

Qðy; PÞ shown in Fig. 2. For large P, it clearly tends to the
fðyÞ PDF form. In particular, using a momentum P ∼ 10Λ
one gets a quasi-PDF that is rather close to the P → ∞
limiting shape. Still, since Λ ∼ hk⊥i, assuming the folklore
value hk⊥i ∼ 300 MeV, one translates the P ∼ 10Λ esti-
mate into P ∼ 3 GeV, which is uncomfortably large. Thus,
a natural question is how to improve the convergence.

E. Pseudo-PDFs

A formal reason for the complicated structure of a quasi-
PDF Qðy; PÞ is the fact that it is obtained by the ν integral
ofMðν; z23Þeiνy along a nonhorizontal line z3 ¼ ν=P in the
(ν, z3) plane [see Eq. (10)]. With increasing P, its slope
decreases, the line becomes more horizontal, and quasi-
PDFs convert into PDFs.
In contrast, pseudo-PDFs Pðx; z23Þ, by definition, are

given by integration of Mðν; z23Þeiνx over horizontal lines
z3 ¼ const. A very attractive feature of the pseudo-PDFs
is that they have the −1 ≤ x ≤ 1 support for all z3 values.
For small z3, they convert into PDFs.
More precisely, when z3 is small, 1=z3 is analogous to

the renormalization parameter μ of scale-dependent PDFs
fðx; μ2Þ of the standard OPE approach.
There is a subtlety, however, that while the μ2 depend-

ence of PDFs fðx; μ2Þ comes solely from the evolution
logarithms lnðμ2=m2Þ, the z23 dependence of pseudo-PDFs
comes both from the evolution logarithms lnðz23m2Þ and
from the ultraviolet logarithms lnðz23μ2RÞ, where μR is a
cutoff parameter for divergences related to the gauge link
renormalization (see Ref. [14]). At the leading logarithm
level, these divergences do not depend on ν. As a result, the
“reduced” Ioffe-time distribution,

Mðν; z23Þ≡Mðν; z23Þ
Mð0; z23Þ

; ð21ÞFIG. 1. Momentum distributions Rðk; PÞ in the factorized
Gaussian model for P=Λ ¼ 1, 10, 50.

FIG. 2. Evolution of quasi-PDF Qðy; PÞ in the factorized
Gaussian model for P=Λ ¼ 1, 10, 50.
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satisfies, for small z3, the leading-order evolution equation,

d
d ln z23

Mðν; z23Þ ¼ −
αs
2π

CF

Z
1

0

duBðuÞMðuν; z23Þ; ð22Þ

with respect to 1=z3, which coincides with the evolution
equation for fðx; μ2Þ with respect to μ. The leading-order
evolution kernel BðuÞ for the nonsinglet quark case is given
[12] by

BðuÞ ¼
�
1þ u2

1 − u

�
þ
; ð23Þ

with ½…�þ denoting the standard “plus” prescription.
For the model used above (and x → −x symmetrized,

as required for nonsinglet PDFs), we have Mðν; 0Þ ¼
12½ν2 − 4sin2ðν=2Þ�=ν4. The shape of this function and of
the convolution integral B ⊗ MðνÞ are shown in Fig. 3. As
one can see, B ⊗ MðνÞ vanishes for ν ¼ 0, which reflects
conservation of the vector current. Thus, the rest-frame
density Mð0; z23Þ is not affected by perturbative evolution.

F. Lattice implementation

A possible way to find the Ioffe-time distributions on the
lattice (suggested by Orginos) is to calculate MðPz3; z23Þ
for several values of P, and then to fit the results by a
function of ν and z23.
Recalling our discussion of two apparently independent

sources of obtaining k3 for a moving hadron, one may hope
thatMðν; z23Þ factorizes, i.e.,Mðν;z23Þ¼Mðν;0ÞMð0;z23Þ.
Then the reduced function Mðν; z23Þ defined by Eq. (21) is
equal to Mðν; 0Þ, and the goal of obtaining Mðν; 0Þ is
reached. Formally, what remains is just to take its Fourier
transform to get the PDF fðxÞ.
In fact, such a factorization was already observed several

years ago in the pioneering study [15] of the transverse
momentum distributions in lattice QCD.
A serious disadvantage of quasi-PDFs is that they

have the x-convolution structure (11) even in a favorable
situation when the TMD [and Mðν; z23Þ] factorizes. On the

other hand, using pseudo-PDFs in the form of the ratio
Mðν; z23Þ, one divides out the z23 dependence of the
primordial distribution without affecting the ν dependence
that dictates the shape of the PDF.
A further advantage of using the ratio (pointed out by

Orginos) is the cancellation of the z3 dependence generated
by the lattice renormalization of the gauge link Êð0; z3;AÞ.
Such a renormalization is required by linear jz3jδm (where
δm ∼ 1=a, and a is the ultraviolet cutoff) and logarithmic
lnðz23=a2Þ divergences [16,17]. Because of their local
nature, they are expected to combine into a ν-independent
factor Zðz3=aÞ that is the same in the numerator and
denominator of the ratio Mðν; z23Þ.
The multiplicative renormalizability of the linear diver-

gences of Mðν; z23Þ to all orders was recently argued in
Refs. [18,19]. A general proof for both linear and loga-
rithmic divergences was claimed in Ref. [20] on the basis of
a direct analysis of relevant Feynman graphs.
Another approach [21,22] is to treat Êð0; z;AÞ as

hð0Þh̄ðzÞ, where the auxiliary field hðzÞ is analogous
to the infinitely heavy quark field of the heavy quark
effective theory (HQET). Since HQET is known to be
multiplicatively renormalizable [23] this means that
ψ̄ð0ÞÊð0; z;AÞψðzÞ is also multiplicatively renormalizable
to all orders in perturbation theory.
In reality, Mðν; z23Þ will have a residual z23 dependence.

It comes both from a possible violation of factorization for
the soft part (according to results of Ref. [15], it is expected
to be rather mild) and from mandatory perturbative evo-
lution. For a nonzero ν, the latter should be visible as a
lnð1=z23Λ2Þ spike for small z23.
Hence, a proposed strategy is to extrapolate Mðν; z23Þ to

z23 ¼ 0 from not too small values of z23, say, from those
above 0.5 fm2. The resulting function Msoftðν; 0Þ may be
treated as the Ioffe-time distribution producing the PDF
f0ðxÞ “at a low normalization point.” The remaining
lnð1=z23Λ2Þ spikes at small z3 will generate its evolution.
To convert Mðν; z23Þ into a function of x, one should, in

principle, knowMðν; z23Þ for all ν, which is impossible. The
maximal values of ν reached in existing lattice calculations
range from 3π [3] to 5π [5] and 6π [24]. Taking a Fourier
transform in these limited ranges produces unphysical
oscillations in x. Thus, the idea is to avoid the Fourier
transform in ν, and just compare the reduced Ioffe-time
distributions obtained from the lattice with those derived
from experimentally known parton distributions.
Of course, an actual technical implementation of this

program should be discussed when the lattice data on
Mðν; z23Þ becomes available.

IV. SUMMARY

In this paper, we showed that quasi-PDFs may be seen as
hybrids of PDFs and the primordial rest-frame momentum
distributions of partons. In this context, the parton’s k3

FIG. 3. Model Ioffe-time distribution Mðν; 0Þ and the function
B ⊗ M governing its evolution.
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momentum comes from the motion of the hadron as a
whole and from the primordial rest-frame momentum
distribution. The complicated convolution nature of
quasi-PDFs necessitates using p3 ≳ 3 GeV to wipe out
the primordial momentum distribution effects and get
reasonably close to the PDF limit.
As an alternative approach, we propose using pseudo-

PDFs Pðx; z23Þ that generalize the light-front PDFs onto
spacelike intervals. By a Fourier transform, they are related
to the Ioffe-time distributions Mðν; z23Þ given by generic
matrix elements written as functions of ν ¼ p3z3 and z23.
The advantageous features of pseudo-PDFs are that they,
first, have the same −1 ≤ x ≤ 1 support as PDFs, and
second, their z23 dependence for small z23 is governed by the
usual evolution equation.
Forming the ratio Mðν; z23Þ=Mð0; z23Þ of Ioffe-time

distributions, one divides out the bulk of z23 dependence
generated by the primordial rest-frame distribution.
Furthermore, taking this ratio one can exclude the z23-
dependent factor coming from the lattice renormalization of
the Êð0; z3;AÞ link creating difficulties (see, e.g., [18]) for
lattice calculations of quasi-PDFs.
Testing the efficiency of using pseudo-PDFs for lattice

extractions of PDFs is a challenge for future studies.
In fact, while this paper was in the review process, an

actual lattice calculation [24] based on the ideas of the
present paper was performed. It has clearly demonstrated
the presence of a linear component in the z3 dependence of

the rest-frame function Mð0; z23Þ, which may be
attributed to the Zðz23Þ ∼ e−cjz3j=a behavior generated by
the gauge link. It was also observed that the ratio
MðPz3; z23Þ=Mð0; z23Þ has a Gaussian-type behavior with
respect to z3, which indicates that the Zðz23=a2Þ factors
entering into the numerator and denominator of the
MðPz3; z23Þ ratio have been canceled out, as we expected.
Furthermore, it was found that when plotted as a function

of ν and z3, the data for the reduced distribution Mðν; z23Þ
have a very mild dependence on z23. This observation
indicates that the soft part of the z23 dependence ofMðν; z23Þ
has been canceled out by the rest-frame density Mð0; z23Þ.
This phenomenon corresponds to factorization of the x and
k⊥ dependences for the soft part of the TMD F ðx; k2⊥Þ.
It was also demonstrated that the residual z3 dependence

for small z3 ≤ 4a may be explained by perturbative
evolution, with the αs value corresponding to αs=π ¼ 0.1.

ACKNOWLEDGMENTS

I thank C. E. Carlson for his interest in this work, and
also V. M. Braun and X. Ji for discussions and suggestions.
I am especially grateful to K. Orginos for stimulating
discussions and suggestions concerning the lattice imple-
mentation of the approach. This work is supported by
Jefferson Science Associates, LLC, under U.S. DOE
Contract No. DE-AC05-06OR23177 and by U.S. DOE
Grant No. DE-FG02-97ER41028.

[1] R. P. Feynman, Photon-Hadron Interactions (Westview
Press, Reading, 1972), 282pp.

[2] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[3] H.W. Lin, J. W. Chen, S. D. Cohen, and X. Ji, Phys. Rev. D

91, 054510 (2015).
[4] J. W. Chen, S. D. Cohen, X. Ji, H.W. Lin, and J. H. Zhang,

Nucl. Phys. B911, 246 (2016).
[5] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos,

K. Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese,
Phys. Rev. D 92, 014502 (2015).

[6] J. H. Zhang, J. W. Chen, X. Ji, L. Jin, and H.W. Lin,
Phys. Rev. D 95, 094514 (2017).

[7] A. Radyushkin, Phys. Lett. B 767, 314 (2017).
[8] A. V. Radyushkin, Phys. Rev. D 95, 056020 (2017).
[9] A. V. Radyushkin, Phys. Lett. B 735, 417 (2014).

[10] A. V. Radyushkin, Phys. Rev. D 93, 056002 (2016).
[11] B. L. Ioffe, Phys. Lett. 30B, 123 (1969).
[12] V. Braun, P. Gornicki, and L. Mankiewicz, Phys. Rev. D 51,

6036 (1995).

[13] A. V. Radyushkin, Phys. Lett. 131B, 179 (1983).
[14] N. S. Craigie and H. Dorn, Nucl. Phys. B185, 204 (1981).
[15] B. U. Musch, P. Hagler, J. W. Negele, and A. Schafer,

Phys. Rev. D 83, 094507 (2011).
[16] A. M. Polyakov, Nucl. Phys. B164, 171 (1980).
[17] V. S. Dotsenko and S. N. Vergeles, Nucl. Phys. B169, 527

(1980).
[18] T. Ishikawa, Y. Q. Ma, J. W. Qiu, and S. Yoshida, arXiv:

1609.02018.
[19] J. W. Chen, X. Ji, and J. H. Zhang, Nucl. Phys. B915, 1

(2017).
[20] T. Ishikawa, Y. Q. Ma, J. W. Qiu, and S. Yoshida, arXiv:

1707.03107.
[21] X. Ji, J. H. Zhang, and Y. Zhao, arXiv:1706.08962.
[22] J. Green, K. Jansen, and F. Steffens, arXiv:1707.07152.
[23] E. Bagan and P. Gosdzinsky, Phys. Lett. B 320, 123 (1994).
[24] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos,

arXiv:1706.05373.

A. V. RADYUSHKIN PHYSICAL REVIEW D 96, 034025 (2017)

034025-6

https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1103/PhysRevD.91.054510
https://doi.org/10.1103/PhysRevD.91.054510
https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://doi.org/10.1103/PhysRevD.92.014502
https://doi.org/10.1103/PhysRevD.95.094514
https://doi.org/10.1016/j.physletb.2017.02.019
https://doi.org/10.1103/PhysRevD.95.056020
https://doi.org/10.1016/j.physletb.2014.06.078
https://doi.org/10.1103/PhysRevD.93.056002
https://doi.org/10.1016/0370-2693(69)90415-8
https://doi.org/10.1103/PhysRevD.51.6036
https://doi.org/10.1103/PhysRevD.51.6036
https://doi.org/10.1016/0370-2693(83)91116-4
https://doi.org/10.1016/0550-3213(81)90372-2
https://doi.org/10.1103/PhysRevD.83.094507
https://doi.org/10.1016/0550-3213(80)90507-6
https://doi.org/10.1016/0550-3213(80)90103-0
https://doi.org/10.1016/0550-3213(80)90103-0
http://arXiv.org/abs/1609.02018
http://arXiv.org/abs/1609.02018
https://doi.org/10.1016/j.nuclphysb.2016.12.004
https://doi.org/10.1016/j.nuclphysb.2016.12.004
http://arXiv.org/abs/1707.03107
http://arXiv.org/abs/1707.03107
http://arXiv.org/abs/1706.08962
http://arXiv.org/abs/1707.07152
https://doi.org/10.1016/0370-2693(94)90834-6
http://arXiv.org/abs/1706.05373

