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A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic
structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the
experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers
Q2 ≈ 8 GeV2. There are measurable differences between the distribution of strange and normal matter
within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q2 ≈ 6 GeV2.
Its subsequent Q2 evolution is accurately described by the hard scattering formulas. Projections for the
ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented.
These results and projections should prove useful in planning next-generation experiments.
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I. INTRODUCTION

Kaons and strange quarks are a bridge between strong
and electroweak interactions. For instance, they opened the
first window on CP violation, responsible for the matter-
antimatter asymmetry in our Universe, and characterize
strong interactions in a sector where the Higgs-generated
quark current mass cannot be treated as a perturbation, i.e. a
domain where flavor dependence of the strong interaction
becomes important and measurable. Indeed, at perturbative
Standard-Model (SM) scales the strange-to-upþ down
quark mass ratio is 2ms=½mu þmd� ¼ 27.3ð7Þ [1]; but,
as the resolving scale is reduced, this ratio evolves so that,
in the far infrared, its value is much smaller (∼1.2–1.5
[2–4]) owing to emergent phenomena peculiar to the strong
interaction. Consequently, comparisons between kaon
and pion properties provide direct access to the interplay
between strong and electroweak mass-generating mecha-
nisms. Such qualities make the kaon a tantalizing subject
for study, providing a challenging target for both experi-
ment and theory, and demanding that connections be drawn
between them.
There are four types of kaon: K�, K0, K̄0, whose

valence-quark content is, respectively, us̄, ūs, ds̄, d̄s,
where q̄ identifies an antiquark; and, within the SM’s
strong-interaction sector, quantum chromodynamics
(QCD), one of the most pressing empirical challenges is

to map the distribution of electric charge within the kaons.
Since the charge of u- and s-quarks is different, this
translates into a fairly direct measure of the relative
distribution of normal and strange matter within the kaon;
and also, importantly, its scale dependence. Further, given
that the charge-conjugation operation executes Kþ ↔ K−,
K0 ↔ K̄0, and assuming isospin symmetry (no difference
between u- and d-quarks, other than their electric charge),
there are just two distinct charge distributions: u in Kþ is
the same as d in K0; s̄ in Kþ is the same as s̄ in K0;
and these distributions also describe those in the charge-
conjugated states. A third distribution is accessible in the
isospin-symmetric limit, viz. the u distribution in the pion,
which is the elastic pion form factor itself, and this provides
an excellent counterpoint.
At low-momentum transfers, Q2 ≲ 0.2 GeV2, charged-

pion and -kaon elastic form factors, FMðQ2Þ,M ¼ πþ, Kþ,
can be measured directly by scattering high-energy mesons
from atomic electrons [5–10]. These data constrain
the charge radii: rπ ¼ 0.657ð12Þ fm, rK ¼ 0.58ð6Þ fm. The
kaon is expected to be smaller because it contains the heavier
s-quark [11–18]. Owing to kinematic limitations on the
energy of meson beams and unfavorable momentum
transfers, one must use other methods to reach higher
spacelike Q2. Meson electroproduction off nucleon targets
is a reliable tool [19], which has already been used for
the pion out to Q2 ¼ 2.45 GeV2 [20–24]. Importantly,
approved pion experiments [25,26] will extend this reach
to Q2 ≈ 8.5 GeV2, i.e. a domain upon which longstanding
issues in QCD might be resolved [27]; and a forthcoming
kaon experiment [28] can potentially provide kaon data out
to Q2 ≈ 5.5 GeV2 [29]. Existing and anticipated spacelike
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data are complemented by measurements of eþe− annihi-
lation into πþπ−, KþK−, which afford access to pion
and kaon form factors at timelike momenta out to t ≈
17 GeV2 [30,31].
The impetus for measuring FMðQ2Þ at large momentum

transfers is a need to understand and validate a strict
prediction of QCD [32–34], viz. ∃Q0 ≫ ΛQCD such that

Q2FMðQ2Þ ≈
Q2>Q2

0
16παsðQ2Þf2Mw2

MðQ2Þ; ð1Þ

where αs is the one-loop strong running coupling, ΛQCD ≈
0.3 GeV, fπ ¼ 0.092 GeV, fK ¼ 0.110 GeV [1]; and
w2

M ¼ eq̄w2
q̄ðQ2Þ þ euw2

uðQ2Þ,

wf ¼
1

3

Z
1

0

dxgfðxÞφMðx;Q2Þ; ð2Þ

guðxÞ ¼ 1=x, gq̄ðxÞ ¼ 1=ð1 − xÞ, eu ¼ 2eq̄ ¼ ð2=3Þ, q̄ ¼
s̄ (Kþ) or d̄ (πþ) and φMðx;Q2Þ is the meson’s scale-
dependent leading-twist parton distribution amplitude
(PDA). The π0 elastic form factor is identically zero owing
to charge-conjugation invariance; and a prediction for the
neutral kaon is obtained via eu → ed ¼ ð−1=3Þ.
The value of Q0 is not predicted by perturbative QCD;

but, fortunately, continuum bound-state methods have
reached the point where FMðQ2Þ can be calculated directly
on the entire domain of spacelike momenta, thereby
enabling Q0 to be located. This was accomplished for
the pion in Ref. [27]. Herein, we both refine the method and
extend it to produce a wide range of verifiable form-factor
predictions, including statements, e.g. about their behavior
at large timelike momenta.

II. COMPUTATIONAL METHOD

At leading order in the symmetry-preserving scheme
for bound-state computations reviewed in Refs. [35,36], i.e.
the Dyson-Schwinger equation rainbow-ladder (RL) trun-
cation, kaon form factors can be computed as follows
(q ¼ u, d) [15]:

FKðQ2Þ ¼ eqF
q
KðQ2Þ þ es̄Fs̄

KðQ2Þ; ð3aÞ

PμF
q
KðQ2Þ ¼ trCD

Z
d4k
ð2πÞ4 χ

q
μðkþ po; kþ piÞ

× ΓKðki;piÞSsðkÞΓKðko;−poÞ; ð3bÞ

with a similar expression for Fs̄
KðQ2Þ, where Q is the

incoming photon momentum, the trace is over color and
spinor indices, po;i ¼ P�Q=2, ko;i ¼ kþ po;i=2, p2

o;i ¼
−m2

K , mK is the kaon mass. The calculation also requires
quark propagators, Sf, f ¼ uð¼ dÞ, s, which, consistent
with Eq. (3b), are obtained from the rainbow-truncation
gap equation; the kaon Bethe-Salpeter amplitude, ΓK ,

computed in RL truncation; and consistent unamputated
dressed-quark-photon vertices, χfμ.
The leading-order result for FKðQ2Þ is now determined

once an interaction kernel is specified for the rainbow
gap equation. We use that explained in Ref. [37], whose
interaction strength is determined by a product: Dω ¼ m3

G.
With mG fixed, results for properties of numerous ground-
state hadrons are independent of the value of ω ∈
½0.4; 0.6� GeV [35–40]: we use ω ¼ 0.5 GeV. With this
kernel, fπ ¼ 0.092 GeV, mπ ¼ 0.14 GeV and fK ¼
0.11 GeV, mK ¼ 0.49 GeV are obtained with mζ¼2 GeV

G ¼
0.87 GeV and one-loop evolved current-quark masses
mζ¼2 GeV

u ¼ 4.7 MeV, mζ¼2 GeV
s ¼ 112 MeV.

One may now evaluate the integrals in Eq. (3) using the
algorithms introduced in Refs. [27,41]. Namely, the inte-
grands are represented using the generalized Nakanishi
interpolations of Su;s and ΓK described in Ref. [42], of
which the former also serve to express the unamputated
photon-quark vertices, χqμ [27]. With each element in
Eq. (3) expressed via a generalized spectral representation,
computation of FKðQ2Þ reduces to the act of summing
a series of terms, all of which involve a single four-
momentum integral. The integrand denominator in every
term is a product of k-quadratic forms, each raised to some
power. Within each such term, one employs a Feynman
parametrization in order to combine the denominators into
a single quadratic form, raised to the appropriate power. A
sensible change of variables then enables one to evaluate
the four-momentum integration using standard algebraic
methods. After calculation of the four-momentum integra-
tion, evaluation of the individual term is complete after
one computes a finite number of simple integrals; namely,
integrations over Feynman parameters and the spectral
integral. The complete result for FKðQ2Þ follows after
summing the series.

III. RESULTS AND PROJECTIONS

The Kþ form factor, computed from Eq. (3) as described
above,1 is depicted in Figs. 1 and 2. The result is practically
equivalent to that described in Ref. [15] on Q2 ≲ 4 GeV2,
which is the entire domain accessible with the algorithms
employed therein. Here, however, we deliver a prediction
for FKðQ2Þ that extends to the entire domain of spacelike
momenta; and this enables the first, realistic comparison
with the prediction of Eq. (1), so long as the kaon PDA
is known.

1For completeness, the χfμ include a parameter, ηf, which
modulates the dressed-quark anomalous magnetic moment
[43–46]. With ηu ¼ 0.5, ηs ¼ 0.4, matching modern estimates
[46–49]: rπ ¼ 0.66 fm, rK ¼ 0.58 fm. Setting ηu ¼ 0 ¼ ηs re-
duces rπ;K by≲3% and has no visible impact on the curves drawn
herein. Hence, the impact of realistic dressed-quark anomalous
magnetic moments on pseudoscalar meson form factors is
small [27].
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A simultaneous computation of π and K PDAs is
reported in Ref. [42]; and pointwise forms inferred from
lattice-QCD computations of the distributions’ low-order
Mellin moments [51,52] are reported in Refs. [29,53]. For
the π, a clear picture has emerged [41,54–56]: φπðxÞ is
concave and markedly dilated compared to the conformal-
limit result, φclðxÞ ¼ 6xð1 − xÞ, viz. in RL truncation [41],

φπðxÞ ¼ 1.77½xð1 − xÞ�0.30: ð4Þ

The Kþ PDA has similar characteristics; but, in addition,
it is skewed, so that the s̄-quark carries more of the bound-
state’s light-front momentum. However, the precise amount
of skewing and dilation are unknown owing to disagree-
ments between extant estimates. One may only say [29,42]:
φK is less dilated than φπ; and the maximum of φKþ lies in
the neighbourhood of x ¼ 0.56.
A benefit of our simultaneous computation of π and K

form factors (Fig. 2) can be exploited here, viz. using
Eq. (1) and the method in Ref. [19], the above constraints
can be employed to determine φK from the computed value
of FKðQ2Þ=FπðQ2Þ on Q2 ≃ 8 GeV2, with the result

φKðxÞ ¼ nαβxαð1 − xÞβ; α ¼ 0.39ð4Þ; β ¼ 0.31ð4Þ;
ð5Þ

nαβ ¼ Γðαþ β þ 2Þ=½Γðαþ 1ÞΓðβ þ 1Þ�. We have intro-
duced an error to express uncertainty in the dilation,
measured by hð2x − 1Þ2iK ¼ 0.271ð5Þ. The size of the
error is chosen to match that in modern lattice-QCD
estimates for this moment of the pion’s PDA [52]. The
associated result hð2x − 1ÞiK ¼ 0.0296ð9Þ has greater
uncertainty but far lesser impact [29].
Using Eq. (5) in Eq. (1) yields the (green) dashed curve

and band in the upper panel of Fig. 2. Like the (blue)
dashed curve in the lower panel, it is a near match in
magnitude to our complete prediction, but far above the
(red) dotted curve, obtained from Eq. (5) by using
wq̄ ¼ wu ¼ 1, i.e. frozen at their conformal-limit values.
Crucially, too, its evolution matches that of the RL
prediction on Q2 ≳ 12 GeV2. Contrasting this with the
evolution of the frozen-PDA conformal-limit result leads us
to describe a qualitative improvement over Ref. [27].
It has long been known [33] that, while producing the

right 1=Q2 behavior, symmetry-preserving computations
via Eq. (3) (or its analogues for related processes) typically
fail to generate the correct anomalous dimension and
therefore yield form factors with wrong-power logarithmic
scaling violations. This can be understood by noting that
the meson’s wave function must evolve with resolving scale
just as its leading-twist PDA so that the dressed-quark and -
antiquark degrees of freedom, in terms of which the wave
function is expressed at a given scaleQ2, can split into less-
well-dressed partons via the addition of gluons and sea
quarks as prescribed by QCD dynamics. Such effects are
incorporated in bound-state problems when the complete
quark-antiquark scattering kernel is used; but aspects are
lost when that kernel is truncated, and so it is with the RL
truncation. As emphasized in recent studies of neutral
pseudoscalar meson transition form factors [57,58], this is a
critical flaw now that one can use QCD-connected input to
make predictions at arbitrarily largeQ2 because it precludes

FIG. 2. Upper panel: Solid curve, Eq. (3) prediction for
Q2FKðQ2Þ; dot-dashed curve (indigo), result from Ref. [15],
which is limited to the domain Q2 < 4 GeV2; and dashed curve
and band (green), result produced by the hard scattering formula,
Eqs. (1), (5). Filled diamonds, data anticipated from a forth-
coming experiment [28]: The two error estimates differ in their
assumptions about the t and model dependence of the form-
factor extractions [29]. Lower panel: Solid curve: Prediction for
Q2FπðQ2Þ; and dashed curve (blue), result produced by the hard
scattering formula, Eqs. (1), (4). Data: Star [23], circles and
squares [50]; and diamonds and triangle, anticipated reach and
accuracy of forthcoming experiments [25,26]. In both panels, the
dotted curve (red) is Eq. (1) computed with the conformal-limit
PDA, φclðxÞ ¼ 6xð1 − xÞ.

FIG. 1. Solid curve—our Kþ form factor; and dot-dashed curve
(green)—result from Ref. [15]. Data: Refs. [9,10].
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any valid attempt to match theory with experiment.
Recognizing that, Refs. [57,58] introduced a remedy;
and the Appendix explains how we adapt and employ that
method herein for elastic form factors.
A flavor separation of the Kþ form factor is depicted in

Fig. 3. With sK ¼ Fs̄
K , uK ¼ Fu

K from Eq. (3a), current
conservation ensures sK=uK ¼ 1 atQ2 ¼ 0. This ratio must
increase on some domain of Q2 > 0 because the effective
mass of a dressed s-quark is greater than that of a dressed
u-quark or, equally, the lightest vector meson that can
couple to a s̄γμs current (ϕ) is heavier than that which can
couple to a ūγμu current (ρ) [15,17]. Notwithstanding
that, all analyses which faithfully preserve the structure
of pseudoscalar meson bound-state amplitudes generated
by a vector ⊗ vector interaction [17,59–65], thereby
ensuring Eq. (3) yields internally consistent leading-twist
power-law behavior, produce a ratio sK=uK that reaches
a maximum at some nonzero value of Q2. Thereafter,
sK=uK → 1þ. The height and location of the maximum
are a measure of dynamics, and we predict a peak value
sK=uK ≈ 1.5 atQ2 ≈ 6 GeV2. Given that Eq. (1) provides a

semiquantitatively accurate description of the Kþ form
factor onQ2 ≳ 8 GeV2 (Fig. 2), then thereupon one should
also obtain a reliable estimate of sK=uK using the elements
of the hard scattering formula. This is evidently the case.
The ratio in Fig. 3 was computed from the form factors

qK , q ¼ u, s, depicted in the panels of Fig. 4, which
additionally reveal some notable features of the three
independent charge distributions that contribute to pion
and kaon elastic electromagnetic form factors in the
isospin-symmetric limit. Evidently, uπ ≈ uK on the entire
domain of spacelike Q2. At low Q2, this near equality was
apparent in the calculation described in Ref. [15]; and our
analysis reveals that it is preserved at all accessible
spacelike momenta. (A similar result is obtained when
using a symmetry-preserving treatment of a vector ⊗
vector contact interaction: see the discussion of Fig. 2 in
Ref. [17].) To quantify somewhat further, one may define a
charge radius via ðrqMÞ2 ¼ −6ðdqM=dQ2ÞjQ2¼0 and obtain
(in fm)

ruπ ¼ 0.65; ruK ¼ 0.62; rsK ¼ 0.43: ð6Þ

Plainly, ruK ≈ ruπ , but rsK=r
u
K ¼ 0.69 ∼Mu=Ms, whereMq is

the relevant dressed-quark mass function evaluated in the
neighborhood of k2 ¼ 0. Here, then, the mass of the
spectator has little impact on the charge distribution of a
given light quark, and the difference between the pion and
kaon form factors is almost completely determined by sK,
the charge distribution of the s̄-quark in the Kþ. The right
panel of Fig. 4 also compares our predictions for qK, q ¼ u,
s, with the results obtained when the hard-scattering
formula is computed using the kaon PDA of Eq. (5) to
calculate the factors in Eq. (2). Notably, the pattern of
agreement for the flavor-separated form factors is similar
to that we have already seen for the compound results;

FIG. 4. Flavor separation of kaon form factor and comparison with complete π and K results. Left panel: Solid (blue) curve,
uK ¼ Fu

KðQ2Þ, i.e. u-quark in the Kþ; dot-dashed (green) curve, sK ¼ Fs̄
K ; dashed (black) curve, uπ ¼ Fπ (we assume isospin

symmetry); and dotted (red) curve, FK . Right panel: Q2-weighted form factors. The (blue) band containing the solid (blue) curve is the
hard-scattering formula prediction for Q2uK, and the (green) band and curve correspond to Q2sK , both obtained using Eq. (5) in Eq. (2)
for the appropriate flavour and including the multiplicative factors specified in Eq. (1). Recall that quark-charge factors are not included
when defining the quark contributions, Eq. (3a), so all form factors are unity at Q2 ¼ 0.

FIG. 3. Solid curve, ratio of s̄- and u-quark contributions to the
Kþ form factor; and dashed curve and band (green), prediction of
the hard-scattering formula, Eqs. (1), (5).
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and consequently, the QCD-scaling patterns we have
highlighted are not accidental.
We depict form-factor ratios in Fig. 5. In accordance with

Eq. (1), our calculated result for FK=Fπ rises logarithmi-
cally to f2K=f

2
π ≈ 1.42 as Q2 → ∞, whereas FK0=FKþ

vanishes. As was to be anticipated from Fig. 2, we predict
that these conformal-limit values are inaccessible at ter-
restrial facilities. On the other hand, used with the PDAs
appropriate to the probe scale, the hard scattering formulas
are applicable. We therefore capitalize on the fact that
spacelike and timelike form factors are identical at leading
order in αs, and use Eqs. (1), (4), (5) to make projections for
these ratios at timelike momenta beyond the resonance
region, i.e. on t ¼ −Q2 ≳ 8 GeV2. Evidently, the predic-
tion for FK0=FKþ at t ¼ 17.4 GeV2 obtained in this way is
consistent with the only existing measurement and explains
it as the natural outcome of using PDAs appropriate to the
scale of the experiment.
The situation is less clear for FK=Fπþ : we predict

FK=Fπþ > 1 on t > 8 GeV2, whereas extant data lie
below unity [30]. We can identify no reasonable means
by which our direct computation of this ratio at spacelike
momenta could be less than one at any value of Q2:
charge conservation means FK=Fπþ ¼ 1 at Q2 ¼ 0, the
ordering of charge radii ensures it rises asQ2 increases, and

the absence of another set of mass scales suggests that the
conformal limit (f2K=f

2
π ≈ 1.42) should be approached

monotonically from below. These features are expressed
in the semiquantitative agreement between the hard-
scattering formulas and our direct calculations
(Figs. 2, 3), and support the soundness of the timelike
prediction based on Eqs. (1), (4), (5). Studying the separate
empirical results for the π and K form factors at timelike
momenta [30], one might question their normalizations
because, mapped simply to spacelike momenta and com-
pared with our direct calculations, the π measurements are a
factor of ∼2 larger, and those for the K, greater by a factor
of ∼1.5. Notably, a mismatch of relative normalizations
would cancel in FK0=FKþ . (See Ref. [67] for a comple-
mentary perspective on π and proton form factors at
timelike momenta.)

IV. CONCLUDING REMARKS

Using a single bound-state interaction kernel, fully
determined by just one parameter, we presented a unified
description of π and K elastic form factors. This enabled us
to show that, when used with PDAs computed at the probe
scale, which express dynamical consequences of emergent
phenomena within the SM, leading-order, leading-twist
hard-scattering formulas derived for π and K elastic form
factors are both accurate to 25% on Q2 ≃ 8 GeV2, becom-
ing more reliable as lnQ2 is increased.
Our analysis also yields projections for the separate

s̄- and u-quark contributions to the Kþ form factor.
Eliminating the quark-charge weight factors, the ratio of
these contributions is unity at Q2 ¼ 0, increases monoton-
ically to a peak value of roughly 1.5 at Q2 ≈ 6 GeV2, and
thereafter returns logarithmically to unity, again in agree-
ment with the SM. We found in addition that the u-quark
contributions to the πþ and Kþ form factors are almost
identical, in consequence of which the manifest difference
between pion and kaon form factors is almost completely
determined by the charge distribution of the s̄-quark in
the Kþ.
With continuing developments in the numerical simu-

lation of lattice-regularized quantum chromodynamics, it
should be possible to validate this unified body of pre-
dictions in the foreseeable future [68,69].
Having established the domain of reliability for the hard

scattering formulas, we argued that they may be used to
make predictions for ratios involving π and K form factors
at timelike momenta beyond the resonance region. Some
data exist on this domain, but a comparison between
experiment and our predictions is currently inconclusive.
Notwithstanding that, the prospects for improving mea-
surements in the timelike region are excellent given the
capabilities of existing and planned eþe− colliders [70].
Our study reveals noticeable differences between the

distribution of strange and normal matter within the strong

FIG. 5. Upper panel: Charged kaon-to-pion ratio. Solid curve at
spacelike momenta, direct calculation, Eq. (3). Dashed curve and
band (green), prediction for the timelike behavior, derived from
Eqs. (1), (4), (5). Data from Ref. [30]. Lower panel: Ratio of
neutral-to-charged kaon form factors. Solid curve, direct calcu-
lation. We compute r2K0 ¼ −ð0.21 fmÞ2 cf. experiment [66]:
r2K0 ¼ −ð0.24� 0.08 fmÞ2. Dashed curve and band (green),
prediction for the timelike behavior of this ratio derived from
Eqs. (1), (5). Datum from Ref. [31]: the error bar marks the
90% confidence interval.
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interaction’s pseudo-Nambu-Goldstone modes. Conse-
quently, they should serve to spur and guide new experi-
ments at both spacelike and timelike momenta.
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APPENDIX: EVOLUTION OF MESON
WAVE FUNCTIONS

Consider Eq. (3). If one uses SfðkÞ ¼ 1=½iγ · kþMf�,
where the dressed-quark masses are constant, with Ms ≈
1.2Mu, then symmetries ensure χfμ ¼ SfðkoutÞγμSfðkinÞ is
an adequate representation of the photon-quark vertex. The
remaining element is the kaon Bethe-Salpeter amplitude.
Following Refs. [18,41,59,60], one learns that realistic
outcomes are ensured by

ΓKðk;PÞ ¼ αK
ΛK

fK

�Z
1

−1
dz

Λ2
K

ðkþ z
2
PÞ2 þ Λ2

K

×

�
iγ5ð1þ εzÞρνEðzÞ

þ gFγ5

�
γ · P − 4

�
3

2
þ νF

�
zγ · k

�
ρνFðzÞ

��
;

ðA1Þ
with

ρνðzÞ ¼
Γð3

2
þ νÞffiffiffi

π
p

Γð1þ νÞ ð1 − z2Þν: ðA2Þ

The γ5-term sets the scale of low-momentum observables;
the γ5γ · P, γ5γ · k contributions are necessary to ensure the
correct form-factor power-law behavior at large momentum
transfers, and they are combined with relative-weight
½−4ð3

2
þ νFÞ� so as to eliminate a renormalizable divergence

from the integral that defines the kaon’s leptonic decay
constant, fK .

With these structures in hand, one can also evaluate the
kaon’s leading-twist PDA:

fKφðx;Q2Þ ¼ trCD

Z
Q2

dk
δunðkηÞγ5γ · nχKðkη; kη̄Þ; ðA3Þ

where
RQ2

dk is a Poincaré-invariant regularization of the
four-dimensional integral, with Q2 setting the PDA’s scale;
δunðkηÞ ¼ δðn · kη − xn · PÞ, n2 ¼ 0, n · P ¼ −mK;

χKðkη; kη̄Þ ¼ SuðkηÞΓPðkηη̄;PÞSsðkη̄Þ; ðA4Þ

kηη̄¼ ½kηþkη̄�=2, kη ¼ kþηP, kη̄¼ k− ð1−ηÞP, η ∈ ½0; 1�.
Inserting Eq. (A1) in Eq. (A3), one arrives at an algebraic
result:

φðx;Q2Þ ¼ nαβxαð1 − xÞβ; ðA5Þ

where the Q2-dependent exponents α, β are fixed by the
values of νE and ε in Eq. (A1).
Now, setting mK ¼ 0.49 GeV and Q2 ¼ 4 GeV2 ≕ Q2

2,
one obtains unit charge, fK ¼ 0.11 GeV, and the PDA in
Eq. (5) with Mu ¼ 0.4 GeV, ΛK ¼ 1.1Mu, νE ¼ −0.78,
νF ¼ 1, gF ¼ 0.1 GeV−1, ε ¼ 0.10, αK ¼ 1.48.
It is now straightforward to chart the impact on the kaon

form factor of leading-order QCD evolution [32–34]. One
evolves the PDA from Q2

2 to some new value, Q2. The
evolved PDAmay still be expressed using Eq. (A5) and can
therefore be recovered using Eqs. (A1), (A3) so long as
evolved values of νE and ε are used. In fact, on the domain
Q2

2 < Q2 ≤ 40 GeV2 one may use ε ¼ constant; and the
impact of evolution is accurately incorporated simply by
using ðζ2 ¼ Q2 −Q2

2Þ:

νEðζ2Þ ¼ −
0.78þ 0.059ζ2

1þ 0.098ζ2
: ðA6Þ

Thus informed, one evaluates the s̄- and u-quark con-
tributions to the Kþ form factor, defined by Eq. (3), on
ζ2 > 0, using the simple propagators and vertices described
above and νEðζ2Þ from Eq. (A6) in the expression for the
Bethe-Salpeter amplitude, Eq. (A1). Normalizing to the
values at ζ2 ¼ 0, one obtains the following evolution
functions for these separate contributions:

EuK ðζ2 > 0Þ ¼ 1þ 0.10ζ2 þ 0.0011ζ4

1þ 0.12ζ2 þ 0.0019ζ4
; ðA7aÞ

EsKðζ2 > 0Þ ¼ 1þ 0.033ζ2 − 0.000011ζ4

1þ 0.049ζ2 þ 0.000044ζ4
: ðA7bÞ

Our final results for the meson form factors are obtained
by incorporating these evolution factors into the individual
pieces of Eq. (3a):
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Ff
KðQ2Þ ¼ F̂f

KðQ2Þ
× ½θðQ2

2 −Q2Þ þ θðQ2 −Q2
2ÞEfK ðQ2 −Q2

2Þ�;
ðA8Þ

where F̂f
KðQ2Þ is the result obtained directly from Eq. (3b).

At Q2 ¼ 20 GeV2, each of these functions introduces a
∼15% suppression.
The procedure described in this appendix [57,58]

assumes that the dressed-quark degrees of freedom defined

by a RL computation renormalized at Q2
2 ¼ 4 GeV2

capture all relevant dynamics below that scale, an
assumption supported by comparisons with extant data,
and thereafter enables those degrees of freedom to
evolve as prescribed by QCD. As Figs. 2, 3 demonstrate,
the method repairs a known failing [33] of symmetry-
preserving computations of meson form factors via Eq. (3),
viz. it solves the problem of wrong-power logarithmic
scaling violations. The method is readily simplified to suit
the pion.
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