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We study chemical-potential dependence of confinement and mass gap in QCD with adjoint fermions in
spacetime with one spatial compact direction. By calculating the one-loop effective potential for the Wilson
line in the presence of a chemical potential, we show that a center-symmetric phase and a center-broken
phase alternate when the chemical potential in units of the compactification scale is increased. In the center-
symmetric phase we use semiclassical methods to show that photons in the magnetic bion plasma acquire a
mass gap that grows with the chemical potential as a result of anisotropic interactions between monopole-
instantons. For the neutral fermionic sector which remains gapless perturbatively, there are two possibilities
at a nonperturbative level: either to remain gapless (unbroken global symmetry) or to undergo a novel
superfluid transition through a four-fermion interaction (broken global symmetry). If the latter is the case,
this leads to an energy gap of quarks proportional to a new nonperturbative scale L−1 exp½−1=ðg4μLÞ�,
where L denotes the circumference of S1, the low-energy physics is described by a Nambu-Goldstone mode
associated with the baryon number, and there exists a new type of BEC-BCS crossover of the diquark
pairing as a function of the compactification scale at a small chemical potential.
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I. INTRODUCTION

Semiclassical analysis is a powerful tool to study
quantum systems nonperturbatively. In QCD, instantons
have long been a subject of intensive research [1–4]. They
played crucial roles in phenomenological models of spon-
taneous chiral symmetry breaking, as well as the U(1)
problem and the strong CP problem. In dense quark matter,
instanton effects are semiclassically reliable as it has been
widely recognized [5–11].
Our understanding of semiclassical aspects of non-

Abelian gauge theories including QCD was significantly
advanced with two related areas of progress:

(i) KvBLL monopole-instantons on R3 × S1 [12–14],
(ii) Semiclassically calculable domains on R3 × S1 in

(nonsupersymmetric) QCD-like and Yang-Mills the-
ories [15–17].

Monopole-instantons carry fractional topological charge and
obey the Nye-Singer index theorem [18,19] (which is a
refinement of the Atiyah-Singer index). The sum of the
fermion zero modes of the monopole-instantons is equal to
the one of instantons in four dimensions (4d); hence, they are
more relevant for chiral symmetry breaking. In sharp contrast
to 4d instantons, monopole-instantons onR3 × S1 explicitly
depend on the background holonomy (Wilson line) field.
Therefore, monopole-instantons provide a concrete connec-
tion between center-symmetry realization (confinement in a
thermal context) and chiral symmetry realization.
In N ¼ 1 supersymmetric Yang-Mills (SYM) theory on

S1 ×R3, the ensemble of monopole-instantons generates

the gluino condensate [20]. The applicability of semiclassics
to nonsupersymmetric QCD-like theories was shown in
Refs. [15–17,21–23]. (Also see Ref. [24].) In such theories
gauge symmetry “breaking” occurs at small S1 (at weak
coupling) due to the Hosotani mechanism [25]. In SYM as
well as in adjoint QCD, in the Abelian regime, topologically
neutral molecules of monopoles called “magnetic bions”
form and generate a bosonic potential that engenders a mass
gap of gluons and confines quarks [15,17].
In this work, we study phases of compactified adjoint

QCD on R3 × S1 at nonzero quark chemical potential μ. It
should be noted that S1 in this paper is a compactified
spatial direction along which fermions obey the periodic
boundary condition (PBC); the imaginary-time direction is
infinite and the system is at zero temperature. This setup
must not be confused with previous studies of a holonomy
potential for thermal S1 at μ ≠ 0 [26–30].
This theory is weakly coupled at small S1 for any value

of μ.1 For generic colors ðNcÞ and Dirac flavors ðND
f Þ we

compute the perturbative one-loop potential for the Wilson
line holonomy. We find that turning on a small μ weakens
gauge symmetry breaking, while a larger μ induces an
infinite number of oscillatory transitions between a gauge-
symmetry-restored phase and a broken phase. In the

1At large μ and for sizes of S1 larger than the strong length
scale, there are subsectors of the theory amenable to the weak
coupling treatment; however, there are sectors of the theory which
are still strongly coupled, in particular, the gauge sector.
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specific case of Nc ¼ 2 and ND
f ¼ 1, we show that

perturbatively induced four-fermion operators2 that have
so far been neglected in studies of the Hosotani phase can
play a pivotal role in generating diquark condensation and
drive the system into a superfluid phase with broken Uð1ÞB
baryon number symmetry. Our calculations are performed
in a theoretically controlled setting thanks to the small
running coupling and complete Abelianization of the gauge
group at small S1. This is a unique opportunity in which
one can derive both continuous symmetry breaking and
confinement from first principles analytically, providing a
valuable laboratory to study the strongly coupled QCD
vacuum.
As a quick guide to readers, we summarize a cascade of

symmetry breaking in the presence of μ for Nc ¼ 2 and
ND

f ¼ 1 when μ is small compared to the compactification
scale L−1:

Uð2Þf × ½SUð2Þ�c ð1Þ

⟶
anomaly ððZ8ÞA × SUð2ÞfÞ=Z2 × ½SUð2Þ�c ð2Þ

⟶
μ ≠ 0 ððZ8ÞA × Uð1ÞBÞ=Z2 × ½SUð2Þ�c ð3Þ

⟶
Adj Higgs ððZ8ÞA × Uð1ÞBÞ=Z2 × ½Uð1Þ�c ð4Þ

⟶
hχi¼0;π ððZ4ÞA × Uð1ÞBÞ=Z2 × ½Uð1Þ�c ð5Þ

⟶
hψψi≠0 ðZ2ÞR × ðZ2ÞL × ½Uð1Þ�c: ð6Þ

Here ½:::�c denotes the unbroken part of the gauge group and
χ is the dual photon field. In (2)–(5) we have factored a
common Z2 group to avoid double counting. Detailed
explanations will follow later.
In Fig. 1 we present a schematic phase diagram of adjoint

QCD with the aim to illustrate how our analysis in this
paper in the small-S1 regime should fit in the global phase
diagram from small to large S1. Adjoint QCD on R4 is
believed to exhibit a relativistic analogue of the BEC-BCS
crossover [31,32] when the chemical potential is swept
across ΛQCD [33–41]:

(i) At μ ¼ 0 and large L, the center symmetry is
preserved, while the flavor symmetry is believed
to be spontaneously broken as SUð2Þf → SOð2Þf
for ND

f ¼ 1 [42]. The physical spectrum contains a
light diquark that undergoes a Bose condensation
for μ > mπ=2 and breaks Uð1ÞB. This onset of

superfluidity is well described by chiral perturbation
theory [33].

(ii) In the asymptotic region μ ≫ ΛQCD, on R4, quarks
acquire a large energy gap Δ ∼ μe−1=g from the
perturbative one-gluon exchange at the Fermi sur-
face [43,44] and the low-energy effective theory is
anisotropic Yang-Mills theory with a confining scale
Λ0 that goes down to zero as μ → ∞ due to medium
effects [45]. The compactification L < ∞ acts on
gluons as a thermal scale and triggers a deconfine-
ment transition at L−1 ∼ Λ0. This is why the phase
transition line must emanate from the top right
corner of the phase diagram in Fig. 1.

(iii) At μ ¼ 0, if LΛQCD ≪ 1, the system enters a center-
symmetric weakly coupled regime where the dis-
crete chiral symmetry remains broken, while the
continuous chiral symmetry is restored [15]. This is
indicated by a red line in the bottom left corner
of Fig. 1.

(iv) The above three domains are well understood by
now. In this paper, we venture into the novel regime
of small S1 and any μ. Among other things we
uncover, in addition to a series of confinement-
deconfinement transitions, we find that a novel
mechanism which can engender superfluidity even
for arbitrarily small L and μ, as long as μ ≠ 0, is a
logical possibility. The condition under which this
possibility may be realized will be carefully exam-
ined later. The estimated nonperturbative gap of
quarks is of order Δ ∼ L−1e−1=ðg4μLÞ.3

Now, if the adiabatic continuity of center symmetry at
μ ¼ 0 from small to large S1 (conjectured in Refs. [15–17]
and tested numerically in Refs. [47,48]) holds, then it
follows that a double crossover should emerge on the
phase diagram (Fig. 1), uniting two weakly coupled
BCS superfluids: one at small S1 and the other at large
S1 and μ ≫ ΛQCD. It is highly nontrivial that such a
continuity may exist, because the two phases have distinct
physical mechanisms for quark pairing: two-charged-boson
exchange interaction on one hand (at small S1; see Fig. 12
below) and the one-gluon-exchange interaction on the
other hand.
This paper is organized as follows. In Sec. II we examine

the perturbative holonomy potential and reveal a complex
phase diagram at μ ≠ 0 and nonzero masses forNc ¼ 2 and
3. The quark number density is also computed. In Sec. III
we analyze how the monopole-binding interaction due to
fermion-zero-mode exchange is modified at μ ≠ 0. It is

2The monopole operators which also possess four fermionic
zero modes are nonperturbatively weak in the semiclassical
domain.

3It is intriguing to draw a comparison between dense QCD, the
Nambu–Jona-Lasinio (NJL) model, and our case. In dense QCD
the gap is ∼e−1=g due to unscreened magnetic gluons [43]. In the
NJL-type model with a pointlike four-fermion interaction, the gap
is generally ∼e−1=g2 [46]. The dependence e−1=g

4

found in this
work differs from either of them.
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shown for Nc ¼ 2 that the chemical potential renders the
intermonopole potential strongly anisotropic, favoring a
temporal separation. A fermionic low-energy effective theory
is also examined and the conditions underwhich spontaneous
Uð1ÞB breaking occurs at an arbitrarily small chemical
potential are derived. The fermion gap Δ is shown to be
proportional to e−1=ðg4μLÞ, which is smaller than any finite
order of the semiclassical expansion in powers of e−Sm where
Sm ¼ 8π2=ðg2NcÞ ¼ 4π2=g2. The effective Lagrangian of
the Nambu-Goldstone mode associated with the Uð1ÞB
breaking is also derived. We conclude in Sec. IV.
Technical details on the derivation of the perturbative poten-
tial and properties of a free fermion propagator at μ ≠ 0 are
summarized in Appendixes A and B, respectively.

II. HOSOTANI MECHANISM WITH
CHEMICAL POTENTIAL

We consider SUðNcÞ gauge theory on R3 × S1 with ND
f

flavors of four-component Dirac fermions Ψf ¼ ΨA
f t

A in
the adjoint representation, obeying PBC on S1. We will use
f; g;… to label flavors f1; 2;…; ND

f g and A;B;… to label
the adjoint colors f1; 2;…; N2

c − 1g. (The fundamental
colors f1; 2;…; Ncg will be labeled by a;b;….) The
generators are normalized as trðtAtBÞ ¼ δAB=2. The

circumference of S1 is denoted by L. The asymptotic
freedom requires ND

f < 2.75 and this is hereafter assumed
unless stated otherwise. The Lagrangian reads

L ¼ tr

�
1

2g2
F2
αβ þ 2Ψf½DðμÞ þm�Ψf

�
; ð7Þ

where Fαβ ¼ FA
αβt

A and DðμÞ ¼ D − μγ4. In this paper we
will always work in Euclidean spacetime, using α; β;… to
denote the entire four directions f1; 2; 3; 4g while reserving
i; j;… for noncompact directions f1; 2; 4g only. The
compactified spatial direction is x3 in our setting.
For ND

f ≥ 1 and μ ¼ 0 the gauge symmetry is known to
be dynamically broken to the maximal torus Uð1ÞNc−1 by
quantum effects of periodic fermions if both LΛQCD and
Lm are sufficiently small [15,25,49]. In this section we
examine how the chemical potential term μΨ†Ψ influences
gauge symmetry breaking at small S1, putting aside the
issue of photon mass gap and fermion bilinear condensa-
tion. This treatment is justified because the latter effects are
nonperturbatively small while gauge symmetry is broken at
one loop.

A. Perturbative potential for the Wilson line

We consider a uniform background gauge field that is
zero in R3 directions and nonvanishing along S1. The
holonomy is given by

Ω≡ P exp

�
i
I

dx3A3

�
: ð8Þ

We employ the gauge in which Ω is diagonal,

A3 ¼ diagða1; a2;…; aNc
Þ;

XNc

a¼1

aa ¼ 0; ð9Þ

and define dimensionless variables for later convenience:

μ̂≡ Lμ; m̂≡ Lm; and âa ≡ Laa: ð10Þ
The object to be calculated is the one-loop effective
potential for the holonomy at μ ≠ 0. It consists of several
pieces,

VðΩ; μÞ ¼ VYMðΩÞ þ ND
f ½VFðΩÞ þ δVFðΩ; μÞ�: ð11Þ

The first term is the contribution of the gauge fields and
ghosts [1],

VYMðΩÞ ¼
1

24π2L4

XNc

a;b¼1

F1ðâa − âbÞ; ð12Þ

FIG. 1. Phase diagram of Nc ¼ 2 adjoint QCD on R3 × S1 in
the chiral limit based on the result of our investigation, with L the
circumference of S1. The blue region represents the center-
symmetric phase and the white region the center-broken phase.
The diquark condensate hψψi vanishes on the L≲ Λ−1

QCD part of
the L axis (represented by a red line with a critical end point). The
weakly coupled superfluid phase at small L labeled as “BCS”
relies on the assumption that the four-quark interaction induced in
the center-symmetric phase has an attractive channel (see Sec. III
C for more details). The phase structure at intermediate L is
currently unknown.
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with F1ðâÞ≡ ½â�2ð2π − ½â�Þ2, where 0 ≤ ½â� ≤ 2π is equal
to â mod 2π. VFðΩÞ is the potential induced by a single
adjoint Dirac fermion with PBC at μ ¼ 0 [49,50],

VFðΩÞ ¼
2m̂2

π2L4

X∞
n¼1

1

n2
jtrΩnj2K2ðnm̂Þ

¼ 2

π2L4

XNc

a;b¼1

F2ðm̂; âa − âbÞ; ð13Þ

with

F2ðm̂; âÞ≡ m̂2
X∞
n¼1

1

n2
K2ðnm̂Þ cosðnâÞ: ð14Þ

What remains is to compute δVFðΩ; μÞ, which controls
the μ dependence of the effective potential. In terms of the
quark determinant

ΓqðΩ; μÞ≡ log det½DðμÞ þm�; ð15Þ

we have

δVFðΩ; μÞ ¼ −
1

VR3L
fΓqðΩ; μÞ − ΓqðΩ; 0Þg; ð16Þ

where VR3 formally denotes the infinite volume of the
spacetime in x1;2;4 directions. Technical details of the
evaluation of Γq are given in Appendix A. The result is

δVFðΩ; μÞ

¼ −
1

2πL4

�XNc

a;b¼1

F3ðμ̂; m̂; âa − âbÞ − F3ðμ̂; m̂; 0Þ
�
;

ð17Þ

with

F3ðμ̂; m̂; âÞ≡ X∞
n¼−∞

θðμ̂2 − m̂2 − ðâþ 2nπÞ2Þ

×

�
1

3
μ̂3 − μ̂fðâþ 2nπÞ2 þ m̂2g

þ 2

3
fðâþ 2nπÞ2 þ m̂2g3=2

�
; ð18Þ

where θðxÞ is the Heaviside step function. It is immediately
clear from (18) that δVFðΩ; μÞ vanishes when μ < m. This
is expected because μ below the energy gap (mass of
adjoint fermion) has no physical effect at zero temperature.
Collecting (11), (12), (13), and (17), we obtain the one-

loop effective potential. Next we proceed to numerical
analysis of the phase diagram for Nc ¼ 2 and 3 based on
minimization of VðΩ; μÞ.

B. Nc = 2

For Nc ¼ 2 the holonomy can be parametrized as
Ω ¼ diagðeiâ; e−iâÞ. In numerical minimization of the
potential VðΩ; μÞ we encounter the two phases in
Table I. Let us summarize the bosonic spectrum in
each phase.

(i) In the first phase with broken center symmetry, the
A3 component of gluons acquires a mass of Oðg=LÞ
(called the electric screening mass in the case of
thermal S1) while the other components A1;2;4 are
perturbatively massless and interact strongly with
periodic fermions. In the limit L → 0 with fixed μ,
the system would reduce to three-dimensional
adjoint QCD at finite μ.

(ii) The second phase entails Abelianization of the gauge
group due to theHosotanimechanism. Similarly toW
bosons in the electroweak theory, AA¼1;2

1;2;4 acquire a

massmW ¼ π=L by eatingAA¼1;2
3 ; the “Higgsmode”

AA¼3
3 gains a mass mH ∼ g=L; and the photons AA¼3

1;2;4
are massless to all orders in perturbation theory.

In Fig. 2 the holonomy potential for ND
f ¼ 1 in the chiral

limit is plotted. As μ̂ increases, the center-symmetric phase
is turned into a center-broken phase via a first-order
transition. Namely μ counteracts the Hosotani mechanism
in this parameter range.4 To explain why, let us look at the
quark number density

nq ≡ −ND
f
∂
∂μ δVFðΩ; μÞ

¼ ND
f

2πL3
f2F0

3ðμ̂; m̂; 2âÞ þ F0
3ðμ̂; m̂; 0Þg; ð19Þ

with

F0
3ðμ̂; m̂; âÞ ¼

X∞
n¼−∞

fμ̂2 − m̂2 − ðâþ 2nπÞ2g

× θðμ̂2 − m̂2 − ðâþ 2nπÞ2Þ: ð20Þ
The first term in (19) represents the density of ΨA¼1;2,
which are charged under the unbroken U(1) gauge sym-
metry. The second term in (19) represents the density of
neutral fermions ΨA¼3; since it does not depend on the
holonomy it can be ignored for the moment.
As (20) implies, due to compactification, the Fermi sea

becomes a union of multiple disks in momentum space,
labeled as

TABLE I. Phases for Nc ¼ 2.

Minimum Z2 center Gauge symmetry

â ¼ 0; π Broken SU(2)
â ¼ π=2 Unbroken U(1)

4This is in contrast with the case of an external magnetic field
[51], which enlarges the center-symmetric phase.
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KKl ≡
�
ðp1; p2; p3Þ

����p3 ¼
lπ
L

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
≤ μ

�
ð21Þ

with l ∈ Z. (Precisely speaking, this p3 is the eigenvalue
of i∂3 þ A3 rather than i∂3.) Such a discrete structure
of energy levels is analogous to the Landau levels in a
magnetic field. As shown in Fig. 3, charged fermions
occupy either KKl¼even or KKl¼odd with jlj ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 − m̂2

p
=π depending on the holonomy. Namely, in

the center-symmetric phase ðâ ¼ π=2Þ the holonomy
dynamically changes the boundary condition of charged
fermions along S1 from periodic to antiperiodic. We note
that every time μ reaches a new KKl level, a second-order
phase transition occurs; the quark number susceptibility
jumps. Indeed there are an infinite number of second-order
transitions as a function of μ.5

Let us examine what happens at small μ̂. When
m̂ ≤ μ̂ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ m̂2

p
, μ lies between KK0 and KK�1.

Hence KK0 forms the charged Fermi sea in the center-
broken phase. On the other hand, no Fermi sea exists yet in
the center-symmetric phase. This means that the pressure in
the center-broken phase is higher, by the amount of the
degenerate Fermi sea, implying that center symmetry
breaking is favored by δVFðΩ; μÞ for μ̂ in this range.
This explains the first-order transition in Fig. 2.
Interestingly, this is not the whole story. As μ̂ increases

further, many KKl join the Fermi sea and the competition
between KKl¼even and KKl¼odd becomes quite subtle. In
Fig. 4 we plot the difference of F3, (18), in the two vacua at
m̂ ¼ 0. It shows a growing oscillation in μ̂ with period
≈ 2π. At small μ̂ the oscillation starts with a negative value,
implying that the center-broken vacuum is favored by
medium. As μ̂ increases, however, the zero is crossed
infinitely many times and consequently it leads to an

endless alternation of the two vacua. In Fig. 5 we show
the phase diagram of center symmetry, showing the
presence of infinitely many center-symmetric phases.6

One can tune μ̂ to bring the system into a center-symmetric
phase, however large the mass m̂.
It should be noted that the center-symmetric phases at

μ̂ > 1 are different from the well-studied center-symmetric
phase at m̂ ∼ μ̂ ∼ 0 in that there is a Fermi sea of charged
fermions ΨA¼1;2 in the former but not in the latter.
The stripe structure of the phase diagram in Fig. 5 is

reflected in the μ dependence of other observables as well.
Figure 6 plots the quark density nq (divided by μ2 to
make the stratified structure clearer). The lines of center-
symmetry-changing first-order transitions are clearly visible.
In addition, mH (the mass of AA¼3

3 ) oscillates with μ̂, but it
stays at Oðg=LÞ and never vanishes because the transitions
are first order.

C. Nc = 3

For Nc ¼ 3 the holonomy can be parametrized as
Ω ¼ diagðeiâ1 ; eiâ2 ; e−iðâ1þâ2ÞÞ. In numerical minimization
of the potential VðΩ; μÞ with respect to â1 and â2 we found
three phases in Table II. The phase in the second row, often
called the split (or skewed) phase, was found in Ref. [53] in
a deformed SU(3) Yang-Mills theory and has been studied
in a variety of setups [27,47,48,54]. The other two phases
are natural generalizations of those for Nc ¼ 2.
As for Nc ¼ 2, we again find that the addition of μ̂

destabilizes the center-symmetric vacuum realized at
μ̂ ¼ 0. Figure 7 displays the evolution of the holonomy
potential for increasing μ̂. We observe that each phase in the
above table is realized successively (from bottom to top) for
increasing μ̂. An explanation in terms of KKl levels
becomes rather cumbersome and is not as useful as for
SU(2).
When μ̂ is further increased, the three phases periodically

alternate and there are an infinite number of first-order

FIG. 3. The structure of KKl energy levels for the center-
broken (â ¼ 0, π) and center-symmetric (â ¼ π=2) phases. In this
example, the Fermi sea of charged fermions consists of
KK0∪KK�2 or KK�1, depending on the holonomy.

FIG. 2. Effective potential for Nc ¼ 2 and ND
f ¼ 1 in the chiral

limit. In this figure, V is normalized to 0 at â ¼ 0.

5This phenomenon, analogous to the de Haas–van Alphen
effect in solid state physics, has been studied in NJL models with
spatial compactification [52].

6A similar phase structure was observed in QCD on S1 × S3
with nonzero chemical potential [28].
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transitions. The phase diagram for ND
f ¼ 1 is displayed in

Fig. 8. Again we find that a center-symmetric phase can be
realized for an arbitrarily large fermion mass by tuning μ
judiciously. The global features of Fig. 8 are similar to
Fig. 5 except for the presence of the split phase. The quark
density nq=μ2 is plotted in Fig. 9. It increases monoton-
ically with μ̂ and exhibits tiny jumps along the first-order
transition lines in Fig. 8.
It is tempting to conjecture that, as we increase Nc, the

phase diagram will contain a variety of more exotic phases

FIG. 4. Difference of the free energy with a center-symmetric
vs center-broken holonomy in the massless limit [with F3 defined
in (18)].

FIG. 5. Phase diagram of center symmetry for Nc ¼ 2 and
ND

f ¼ 1. The shaded (empty) region is a center-symmetric
(center-broken) phase, respectively. They are separated by
first-order transitions. The dashed line represents m̂ ¼ μ̂.

0

0.5

1.0

1.5

FIG. 6. The rescaled quark number density Lnq=μ2 for Nc ¼ 2
and ND

f ¼ 1. The m̂ > μ̂ region where the density is strictly zero
is left empty.

FIG. 8. Phase diagram for Nc ¼ 3 and ND
f ¼ 1. The hatched

region is the Uð1Þ × Uð1Þ center-symmetric phase, the shaded
region is the SUð2Þ × Uð1Þ split phase, and the empty region is
the SU(3) center-broken phase. The phase boundaries are first
order. The dashed line represents m̂ ¼ μ̂.

FIG. 7. Effective potential L4VðΩ; μÞ for Nc ¼ 3 and ND
f ¼ 1

in the chiral limit, normalized to 0 at â1 ¼ â2 ¼ 0. Each μ̂
corresponds to the three different phases (see the main text and
Fig. 8). First-order phase transitions occur at μ̂ ¼ 1.42 and
μ̂ ¼ 1.98.

TABLE II. Phases for Nc ¼ 3.

ðâ1; â2Þ at the minimum Z3 center Gauge symmetry

(0, 0), �ð2π
3
; 2π
3
Þ Broken SU(3)

�ðπ
3
; π
3
Þ, �ðπ

3
;− 2π

3
Þ, �ð− 2π

3
; π
3
Þ Broken SUð2Þ × Uð1Þ

ð0;� 2π
3
Þ, ð� 2π

3
;∓ 2π

3
Þ, ð� 2π

3
; 0Þ Unbroken Uð1Þ × Uð1Þ
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with partial center symmetry breaking, such as those
found in Refs. [27,49,55]. However, when L is made
larger, all such center-breaking phases must somehow
disappear because adjoint QCD on R4 is a strongly
coupled confining theory (cf. Fig. 1). Although revealing
the phase structure at intermediate L is beyond the realm
of the weak-coupling method in this paper, this can be
studied in lattice simulations in principle as the path-
integral measure of adjoint QCD is positive semidefinite
even at μ ≠ 0 [56].

III. LOW-ENERGY EFFECTIVE THEORY
AND SYMMETRY BREAKING

A. General discussion

In the previous section we have shown by using the one-
loop effective potential of holonomy that there are three
phases (below we assume Nc ¼ 2 for simplicity):

(i) Phase I: Center-broken phase with Ω ¼ �12
(ii) Phase II: Center-symmetric phase at μ̂ > π
(iii) Phase III: Center-symmetric phase at μ̂ < π (the

small square next to the origin in Fig. 5)
Phases II and III are similar in terms of center symmetry, but
it is useful to distinguish them for later purposes. In the
following, we aim to analyze the low-energy dynamics in
each phase,with a focus on Phase III. Before doing so, itmay
be useful to remind global symmetries of adjoint QCD as it
has unique features that are absent in ordinary QCD. The
classical massless Lagrangian of this theory with ND

f Dirac
flavors at μ ¼ 0 is invariant under Uð1ÞA × SUð2ND

f Þ
symmetry due to the reality of the adjoint representation
[42,57], with Uð1ÞB ⊂ SUð2ND

f Þ the baryon number sym-
metry acting as Ψ → eiφΨ. Chiral anomaly reduces Uð1ÞA
down to Z4NcND

f
. In R4 (i.e., L → ∞), if ND

f is below the

conformal window, the continuous part of the flavor
symmetry will be spontaneously broken by the chiral
condensate htrΨΨi ≠ 0 as SUð2ND

f Þ → SOð2ND
f Þ [42,57].

The chemical potential μ ≠ 0 spoils the symmetry between

fermions and antifermions and breaks the flavor symmetry
explicitly as SUð2ND

f Þ → Uð1ÞB × SUðND
f ÞL × SUðND

f ÞR
for ND

f ≥ 2 and SUð2ND
f Þ → Uð1ÞB for ND

f ¼ 1 [33].
From here on, we will focus our attention on the minimal
ND

f ¼ 1 case, so that the nonanomalous global symmetry
that can be spontaneously broken atμ ≠ 0 is ðZ8ÞA × Uð1ÞB,
as noted earlier in (3).
Let us begin with Phase I in the list above. This phase,

having intact SU(2) gauge symmetry, bears similarity to the
deconfined phase of thermal QCD, except that fermions
obey PBC along S1 here. In the limit L → 0 all modes other
than KK0 will decouple and we end up with adjoint QCD in
R3 with μ, with a dimensionful coupling7

g23 ≡ g2

L
: ð22Þ

This is a strongly coupled theory and not amenable to
semiclassical analysis, but we can guess the physics
qualitatively. Because there is a nonzero density of fer-
mions for μ > m and there is an attractive channel in the
color interaction mediated by SU(2) gluons, the BCS
mechanism will most likely trigger diquark condensation
htrΨTΨi that breaks Uð1ÞB spontaneously and generates a
pairing gap for fermions. While this scenario sounds
plausible, a serious study must incorporate the pairing of
fermions and the nonperturbative mass gap of gluons
simultaneously. This is an interesting open problem.
Next we consider Phase II. At energy scales far below

mW ¼ π=L andmH ¼ Oðg=LÞ, one can adopt a description
in terms of compact U(1) gauge theory with fermionsΨ. At
μ ¼ 0, charged fermions Ψ� ≡ ðΨA¼1 � iΨA¼2Þ= ffiffiffi

2
p

can
also be integrated out due to their large “screening mass”
π=L [15]. However, at μ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=LÞ2 þm2

p
(or μ̂ > π in the

chiral limit), there is a Fermi surface of Ψ� on top of that of
neutral ΨA¼3, so the charged fermions cannot be dropped
from the long-distance effective description.8 The attractive
Coulomb interaction between Ψþ and Ψ− will destabilize
their Fermi surface and engender a condensate hΨþΨ−i≠0
that breaks Uð1ÞB symmetry spontaneously. [Note that
ΨþΨ− is charge neutral and does not break U(1) gauge
symmetry.]
In Phase III the long-distance theory comprises a

massless photon and neutral fermions ΨA¼3 at finite μ. It
naively appears as though Uð1ÞB symmetry is unbroken,
but as will be shown in Sec. III C, it could be spontaneously
broken through an effective interaction mediated by heavy
charged particles. Recalling the intuitive pictures for Phases

0

1

2

3

4

FIG. 9. The rescaled quark number density Lnq=μ2 for Nc ¼ 3

and ND
f ¼ 1. The m̂ > μ̂ region where the density is strictly zero

is left empty.

7Notice that the scale of μ is extremely high in this dimen-
sionally reduced theory: μ=g23 ¼ μ̂=g2 ∼ 1=g2 ≫ 1.

8This situation is analogous to center-stabilized QCD with
fundamental fermions in R3 × S1 [16,58].
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I and II above, we conjecture that actually Uð1ÞB is broken
everywhere in the phase diagram (Fig. 6).9

B. Monopoles, bions, and semiclassical confinement

Let us focus on Phase III for Nc ¼ 2 and ND
f ¼ 1. We

assume m ¼ 0 for simplicity and switch to the two-

component notation ΨA¼3 ¼ L−1=2



ψ1

σ2ψ�
2

�
, thereby ensur-

ing that ψ1;2 possess the canonical dimension of spinors in
three dimensions. The tree-level effective theory at small L
reads

S¼
Z

d3x

�
1

4g23
F2
ijþψ†

1ðiσi∂i−μÞψ1þψ†
2ðiσi∂iþμÞψ2

�
;

ð23Þ

where σ1;2;4 ≡ ðσ1; σ2;−i12Þ and g3 is defined in (22).
Notice that μ ≠ 0 breaks the global SUð2Þf symmetry down
to Uð1ÞB that rotates ψ1 → eiφψ1 and ψ2 → e−iφψ2.
At a nonperturbative level, we also have instanton-

monopoles, reflecting the compact nature of the U(1)
gauge group. At first sight, Polyakov’s mechanism of
confinement due to Debye screening by monopoles [60]
seems to apply, but this is not the case here: monopoles are
accompanied by fermionic zero modes10 and do not
generate a mass gap for photons [62].11,12 The effective
theory at length scales≫ L=g gains an additional piece that
accounts for this effect [15,17]:

δS ¼ G
Z

d3x½cos χ · det
1≤I;J≤2ND

f

ðψT
I σ

2ψJÞ þ H:c:�; ð24Þ

where the scalar field χðxÞ is a dual photon with 2π-
periodicity, related to the original field via the Abelian
duality relation as Fij ∼ εijk∂kχ. The monopole operator
(’t Hooft–type vertex for the monopole) (24) evidently
respects the SUð2Þf flavor symmetry. One can also check
that (24) is invariant under the anomaly-free discrete

subgroup ðZ8ÞA, which acts as ψ → ei2π=8ψ , and
χ → χ þ π. The factor G can be extracted from the
monopole measure; see Sec. 4 of Ref. [17].13 Up to an
Oð1Þ numerical factor,

G ∼ g−4e−4π
2=g2L4ND

f −3

¼ g−4e−4π
2=g2L for ND

f ¼ 1; ð25Þ

where g ¼ gðL−1Þ is the renormalized coupling at the
scale L−1.

1. Magnetic bion formation at μ ≠ 0

In order to see mass gap generation for photons, one
needs to go to the next order in the semiclassical expansion.
The point is that due to the compactness of the A3

holonomy there is an additional class of monopole-instan-
ton (called KK monopoles) in R3 × S1 [12–14].
There exists a topologically neutral, but magnetically

charged combination of the BPS-monopole with a KK-
antimonopole called the “magnetic bion” [15], which
induces the operator ðcos 2χÞ. Note that this operator is
invariant under the action of discrete chiral symmetry
χ → χ þ π. In some respect, this phenomenon is similar
to the formation of instanton–anti-instanton molecules in
thermal QCD [65,66], and in others it differs from it as the
magnetic bion still has a topological quantum number for
its magnetic charge. The physics of multi-instanton corre-
lation in QCD with chemical potential has been studied in,
e.g., Refs. [8,9,11]. In quark matter at high density,
instantons of large sizes are exponentially suppressed
due to the Debye screening of color-electric fields inside
instantons [5]. In contrast, this is of no concern here
because the medium of ΨA¼3 is transparent for monopoles.
Below, we would like to explicitly calculate the effect of

chemical potential μ on the magnetic bion formation. The
operator BðxÞ of a magnetic bion involves a connected
correlator of two monopole operators [15,17],

BðxÞ ∼G2e2iχðxÞ
Z

d3ye−VCðyÞhdetðψψðyÞÞ detðψ†ψ†ð0ÞÞi;

ð26Þ

with the repulsive Coulomb potential

VCðyÞ≡ 4π

g23

1

jyj : ð27Þ

At distances ≫ L the correlator of ’t Hooft vertices in (26)
can be computed with a free fermion propagator SFðx; μÞ ¼
hψ1ðxÞψ†

1ð0Þi and SFðx;−μÞ ¼ hψ2ðxÞψ†
2ð0Þi, resulting in

9This is a hypothesis at exactly zero temperature. As soon as
the imaginary-time direction is compactified, the true symmetry
breaking would be replaced with a quasi-long-range order [59].

10For the index theorem at finite μ, see Refs. [29,40,61].
11The fermionic zero modes of monopoles are absent if one

starts from a genuine compact U(1) theory rather than breaking a
non-Abelian group with a Higgs mechanism. In such a case the
dynamics of monopoles at long distances can be different from
that in R3 × S1; see, e.g., Refs. [63].

12When m ≠ 0, fermionic zero modes can be soaked up by the
mass term and monopoles are allowed to yield a bosonic potential
[49,64]. Similarly, if the difermion condensate hψψi forms
dynamically, it would lift the fermionic zero modes and induce
a potential. As we will see in Sec. III C, indeed such a condensate
can form, but it occurs only at a supersoft scale and can be safely
ignored at the scale of average monopole-monopole separation
∼L expðSm=3Þ.

13Normalization of the fermion kinetic term in (23) is different
from that in Ref. [17].
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hdetðψψðxÞÞ detðψ†ψ†ð0ÞÞi
∝ tr½SFðx; μÞS†Fðx; μÞ�tr½SFðx;−μÞS†Fðx;−μÞ�
∝ fð∂1DþÞ2 þ ð∂2DþÞ2 þ ½ð∂4 − μÞDþ�2g
× fð∂1D−Þ2 þ ð∂2D−Þ2 þ ½ð∂4 þ μÞD−�2g; ð28Þ

where D�ðxÞ≡Dðx;�μÞ is a bosonic propagator that
solves the Klein-Gordon-type equation

½−∂2
1 − ∂2

2 − ð∂4 − μÞ2�Dðx; μÞ ¼ δðxÞ: ð29Þ

The explicit form of Dðx; μÞ and its properties are sum-
marized in Appendix B. In the abovewe used (B3) there. At
μ ¼ 0,D ∝ jxj−1 and the correlator (28) is just proportional
to jxj−8. However, once μ ≠ 0, there is anisotropy in space
(x1;2) and imaginary time (x4); the weight (28) exhibits a
Friedel-type oscillation in spatial directions, reflecting the
presence of a sharp Fermi surface, which tends to render
bions anisotropic.
Recalling that the three-dimensional Coulomb interac-

tion is governed by the dimensionful coupling g23 ≡ g2=L, it
naturally follows that the strength of the bion deformation
is measured by the ratio

~μ≡ μ

g23
¼ μL

g2
: ð30Þ

If we fix μ and let L → 0, then ~μ ∼ μL log 1
LΛ → 0; i.e., the

effect of μ on bions inevitably disappears. In order to see a
nontrivial deformation of bions one has to increase μ in the
course of compactification so that μ ≳ 1

L log 1
LΛ
. At the same

time, the condition μ < 1.98
L must also be satisfied, in order

to stay inside Phase III (cf. Fig. 2).
To simplify the ~μ dependence of the weight we make all

variables dimensionless in units of g23:

~y≡ g23y; ð31Þ

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~y21 þ ~y22

q
; ð32Þ

τ≡ ~y4; ð33Þ

~D�ðρ; τÞ≡ g−23 Dðy;�μÞ: ð34Þ

Using (25) we find that the bion amplitude is given by

BðxÞ ∼ L−3g2e−8π
2=g2Wð~μÞe2iχðxÞ ð35Þ

with a dimensionless function W defined by

Wð~μÞ≡
Z

∞

0

dρρ
Z

∞

−∞
dτwðρ; τ; ~μÞ; ð36Þ

wðρ; τ; ~μÞ≡ e−4π=
ffiffiffiffiffiffiffiffiffi
ρ2þτ2

p
fð∂ρ

~DþÞ2 þ ½ð∂τ − ~μÞ ~Dþ�2g
× fð∂ρ

~D−Þ2 þ ½ð∂τ þ ~μÞ ~D−�2g: ð37Þ

The prefactors in (35) are in precise agreement with
Refs. [17,67] for the case of two Weyl fermions.
All the ~μ dependence is now encapsulated in w. As

displayed in Fig. 10, w dramatically changes its profile as a
function of ~μ. At ~μ ¼ 0, w is isotropic with a sharp peak
along the circle

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ τ2

p
¼ π=2≃ 1.57. This implies that

the typical size of a magnetic bion is π=ð2g23Þ ¼ πL=ð2g2Þ,
as noted in Refs. [17,67]. As ~μ grows, the weight of w
gradually moves to higher τ, with a peak position at τ ∼ 3.
At ~μ ¼ 10, w is further focused on the τ axis with a quite
narrow range of ρ ≪ 1. This means that the magnetic bion
tends to be rigidly oriented in the x4 direction. One can also
see a ripplelike pattern in the rightmost plot of Fig. 10,
caused by a Friedel oscillation of ~D.
Our numerical analysis indicates that the global maxi-

mum of w is always located on the τ axis, so let us examine
the behavior of w at ρ ¼ 0more closely. Using ∂ρ

~D → 0 as

FIG. 10. The probability density wðρ; τ; ~μÞ of a magnetic bion (37). Brighter regions have larger w.
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ρ → 0, one gets wð0; τ; ~μÞ ¼ e−4π=τ½ð∂τ − ~μÞ ~Dþ�2½ð∂τþ
~μÞ ~D−�2. Substituting the analytic form (B7) of ~D in
Appendix B one obtains

wð0;τ; ~μÞ¼e−4π=τ

ð4πÞ4
ð1þ ~μτÞ2ð−1þ ~μτþ2e− ~μτÞ2

τ8
ð38Þ

for τ > 0. It shows that the peak of w evolves from τ ¼ π=2
at ~μ ¼ 0 to τ ¼ π at ~μ ≫ 1. This behavior is illustrated
in Fig. 11.
In summary, we have found two features of magnetic

bions at μ ≳ 1
L log 1

LΛ
. First, the monopole-antimonopole pair

inside a bion is predominantly oriented in the imaginary-
time direction. This is due to the fact that fermions with μ
favor hopping in the temporal direction, which has been
observed in the context of instantons in dense matter as well
[9,11]. Secondly, the bion has a typical size π=g23 ¼ πL=g2.
This is twice as large as that at μ ¼ 0.

2. Semiclassical confinement at μ ≠ 0

If we replace the integral of w with its peak value, we
obtain a crude estimate:

Wð~μÞ ∝ ~μ4 at ~μ ≫ 1: ð39Þ

It has an interesting implication for the dual photon mass.
Let us recall that in addition to (35) there are also operators
associated with antibions. Their sum reads

B þ B† ∼ L−3g2e−8π
2=g2Wð ~μÞ cosð2χÞ: ð40Þ

This potential has minima at χ ¼ 0 and π associated with
the spontaneous breaking of discrete chiral symmetry.
(Note that an order parameter for the discrete chiral
symmetry is eiχ and the two vacua correspond to
heiχi ¼ �1.) At these points the dual photon χ acquires
a nonperturbative mass gap, given by

Mχ ∼
1

L
e−4π

2=g2
ffiffiffiffiffiffiffiffiffiffiffi
Wð ~μÞ

p
: ð41Þ

This means that the perturbatively massless photon is
Debye-screened by the plasma of magnetic bions [15].
The fact that Wð~μÞ asymptotically increases with ~μ implies
that μ tends to enhance the nonperturbative effect on the
gauge field.
Using (39) and the one-loop β function for g,

e−4π
2=g2 ∼ ðLΛÞ7=3; ð42Þ

one finds

Mχ

Λ
∼ ðLΛÞ4=3 ~μ2

∼
�
log

1

LΛ

�
2

ðLΛÞ10=3
�
μ

Λ

�
2

; ð43Þ

with a renormalization-group invariant scale Λ. The mass
gap for the dual photon implies that the fundamental
Wilson loop in R3 obeys area law; quarks are permanently

confined. The string tension is given by T ∼ g2

L Mχ [60]. The
L dependence follows from (42) and (43) as

T
Λ2

∼
�
log

1

LΛ

�
ðLΛÞ7=3

�
μ

Λ

�
2

: ð44Þ

This estimate is valid for μ in the range

1

L log 1
LΛ

≪ μ <
1.98
L

: ð45Þ

C. Superfluidity

Generically a fermionic system at finite density can be
unstable toward pair condensation if there is an attractive
channel in their interaction. It is therefore important to ask
what interactions can happen for ψ1;2 in the effective theory
(23). Although they do not couple to photons by them-
selves, they interact through two mechanisms of different
physical origins. The first one is mediated by monopole-
instantons. As was shown in the previous section, the dual
photons are screened at distances beyond 1=Mχ . As χ
settles in one of the two minima f0; πg of the potential
(40),14 one obtains from (24) a four-fermion operator:

�G½det
I;J

ðψT
I σ

2ψJÞ þ H:c:�: ð46Þ

Note that the 4d instanton would induce an eight-fermion
operator, with much weaker coefficient (of order G2). In
this sense, the monopole-instantons are much more impor-
tant than 4d instantons.
Yet another kind of interaction stems from integrating

out heavy Ψ� and W� that are charged under U(1). As an

FIG. 11. Comparison of w at ρ ¼ 0, (38), for ~μ ¼ 0 and ~μ ¼ 10.
The scale on the left (right) vertical axis applies to ~μ ¼ 0
( ~μ ¼ 10), respectively.

14This breaks the anomaly-free axial Z8 down to Z4 sponta-
neously.
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example, we show in Fig. 12 an effective interaction in the
diquark channel where the four-component Dirac spinor in
the Cartan subalgebra ΨA¼3 is notated by Ψ. There are a
myriad of operators that can be perturbatively generated
this way, e.g., ðΨγ3ΨÞ2, ðΨγiΨÞ2, and ðΨγ3γiγjΨÞ2, to
name but a few. They are all invariant under Uð1ÞA and
hence do not couple to the dual photon. Here we do not
systematically enumerate all possible forms of the inter-
action, but instead try to capture an essential physical
outcome by considering the minimal interaction in the
(pseudo)scalar channel,

−H½ðΨΨÞ2 þ ðΨiγ5ΨÞ2 þ jΨTCΨj2 þ jΨTCγ5Ψj2�; ð47Þ

with a charge-conjugation matrix C ¼ diagð−σ2; σ2Þ and
γ5 ¼ diagð12;−12Þ. This interaction, being perturbatively
induced, preserves Uð1ÞA × SUð2Þf [68]. The coupling H
should be ∝ L according to dimensional analysis, and it
must be multiplied by g4 because there are at least four bare
vertices in the process of Fig. 12. Thus

H ∝ g4L: ð48Þ

Since G [cf. (25)] is proportional to e−4π
2=g2 ≪ 1, (48)

means that jHj ≫ G.
The sign of H is not fixed by symmetries alone. In this

regard we would like to note that the process of Fig. 12 is of
the same kind as the van der Waals interaction in QED,
which originates from the two-photon exchange and is
attractive because it arises at second order in perturbation
theory [69]. A similar long-range force between color-
singlet hadrons in QCD, originating from the two-gluon
exchange process, is also known to be attractive [70–72].
Therefore in the following analysis we will assume H > 0
and pursue its physical consequences, leaving a micro-
scopic verification to future work. We remark that the phase
diagram shown earlier as Fig. 1 was also based on the
assumption that H > 0.

1. Fermionic effective theory

Incorporating both types of interactions [(46) and (47)]
and dropping the quark-antiquark vertices because they are
not relevant to the BCS instability, we end up with the
fermionic effective theory

S ¼
Z

d3xfΨðγi∂i − μγ4ÞΨ� G½det
I;J

ðψT
I σ

2ψJÞ þ H:c:�

−HðjΨTCΨj2 þ jΨTCγ5Ψj2Þg; ð49Þ

where the sign in front of G depends on whether hχi ¼ 0 or
π. Analogous four-fermion models in three and four
dimensions have been studied before [73,74]. We note
that while the models in Refs. [73,74] were introduced on
phenomenological grounds, (49) is a faithful description of
the microscopic dynamics of adjoint QCD in the circle-
compactification limit.
A remark on the parity of the ground state is in order.

Because the second line of (49) does not distinguish
between 0þ and 0− diquarks, one shall look at the
monopole-induced operator. With the help of the relation

det
I;J

ðψT
I σ

2ψJÞ þ H:c: ¼ 3

2
½ðψT

1σ
2ψ1ÞðψT

2σ
2ψ2Þ þ H:c:�

¼ 3

4
ðjΨTCΨj2 − jΨTCγ5Ψj2Þ; ð50Þ

we observe that interaction in the 0þ channel is stronger
than 0− for hχi ¼ 0. However the opposite happens in the
other vacuum hχi ¼ π. Thus, after all, the effective theory
(49) per se does not uniquely determine the parity of the
ground state and prompts us to add a small but nonzero
external source field to resolve the ambiguity. If one inserts
to the action a real mass termmΨΨwith an arbitrarily small
m, the ambiguity is resolved.15 There are two ways to check
this. First, one can invoke QCD inequalities generalized to
μ ≠ 0 [40,75,77] to argue that ΨTCγ5Ψ is the lightest
bilinear field.16 We stress that this argument works equally
in both R4 and R3 × S1. The second argument to check
parity only works in the semiclassical small-L regime.
Namely, when the above sources are present in the action,
they will absorb the fermionic zero modes inhabiting the
monopoles and allow for a bosonic potential ∼m2 cos χ to
be generated on top of the bion-induced potential (40). This
potential, however small in magnitude, can and does lift the
degeneracy between χ ¼ 0 and π, and consequently fixes
the parity of the ground state.
From the consideration above, one may assume that the

interaction is stronger for the 0þ channel than for 0−, tacitly
assuming the presence of a suitable infinitesimal external
field in the action. Now, since the monopole-induced
interaction is nonperturbatively small, it can be safely
dropped, and we arrive at a simpler theory that sufficiently

FIG. 12. A four-fermion operator that arises from integrating
out heavy charged particles.

15In QCD-like theories at finite density [33,75,76], the parity
of the diquark or pion condensate was automatically determined
because the parity of the ground state at zero chemical potential
was fixed by a real mass term.

16This observation lends support to our strategy to consider a
simplified effective theory (47) from the very beginning.
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serves our purpose of probing the ground state of the
fermionic sector:

S ¼
Z

d3x½Ψðγi∂i − μγ4ÞΨ −HjΨTCγ5Ψj2�: ð51Þ
2. Gap equation

We solve the theory in the mean-field approximation
following the standard procedure [46,78]. This is expected
to be accurate, given the smallness of the coupling
Hμ ∝ g4μ̂ ≪ 1. The Hubbard-Stratonovich transformation
applied to (51) with an auxiliary complex field ΔðxÞ yields

S ¼
Z

d3x

�
Ψðγi∂i − μγ4ÞΨþ jΔj2

4H

−
1

2
ðΔ�ΨTCγ5Ψþ H:c:Þ

�
: ð52Þ

With a suitable Uð1ÞB rotation, one can take Δ ≥ 0 without
loss of generality. In the Nambu-Gor’kov basis ðΨ; CΨTÞ
we have for the energy density

UðΔÞ≡ −
1

VR3

logZ

¼ Δ2

4H
−
1

2

Z
d3p
ð2πÞ3 tr log

� Δγ5 ipþ μγ4

ip − μγ4 −Δγ5

�

¼ Δ2

4H
−
Z

d3p
ð2πÞ3 flog½p

2
4 þ ðjp⊥j − μÞ2 þ Δ2�

þ log½p2
4 þ ðjp⊥j þ μÞ2 þ Δ2�g

¼ Δ2

4H
−
Z 0 dp1dp2

ð2πÞ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjp⊥j − μÞ2 þ Δ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⊥j þ μÞ2 þ Δ2

q �
: ð53Þ

The final integral with a prime is to be regularized with a
cutoff. Then the gap equation ∂UðΔÞ=∂Δ ¼ 0 for a non-
trivial solution Δ ≠ 0 is given by

1

H
¼

Z 0 dpp
π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − μÞ2 þ Δ2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ μÞ2 þ Δ2
p

�
:

ð54Þ

As Δ → 0 the first term yields IR divergence at the Fermi
surface. Retaining only the first term and imposing a
momentum cutoff Λ0ð> μÞ, one obtains

1

H
≃ μ

π
log

4μðΛ0 − μÞ
Δ2

; ð55Þ

or

Δ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðΛ0 − μÞ

p
exp

�
−

π

2Hμ

�
: ð56Þ

Physically, this means that fermions acquire an energy gap
Δ and the Uð1ÞB symmetry is spontaneously broken by the
condensate hΨTCγ5Ψi ≠ 0; the system is in a superfluid
phase.17 We stress that the parity of the diquark condensate
is the same at small L and large L [recall our remarks below
(50)]. Note that in this analysis the density of fermions need
not be high; the computation in this section is valid for any
μ > 0 as long as we are in Phase III (μ < 1.98=L), which
means that superfluidity may take place at arbitrarily small
μ. This is a remarkable result.
Plugging (48) and Λ0 ∼ L−1 into (56), we gain the crude

estimate

Δ ∝
ffiffiffî
μ

p
L

exp

�
−

1

g4μ̂

�
: ð57Þ

Notably, this ultrasoft scale is far smaller than the dual
photon mass Mχ ∝ L−1 expð−4π2=g2Þ and is invisible at
any finite order of the semiclassical expansion. Since the
extent of the Cooper pair 1=Δ far exceeds the typical bion
size, the diquark condensate is not expected to modify the
fermion-binding mechanism of bions in Sec. III B.
The various length scales in Phase III may be summa-

rized as follows:

rm ≲ dψ−ψ ≪ rb ≪ dm−m ≪ db−b ≪ 1
Mχ

≪ 1
Δ

↓ ↓ ↓ ↓ ↓ ↓ ↓

L 1
μ

L
g2 LeSm=3 Le2Sm=3 LeSm Lffiffî

μ
p exp



1
g4μ̂

�
;

ð58Þ

where rm is the monopole size, dψ−ψ is the interquark distance, rb is the bion size, dm−m is the intermonopole distance, db−b
is the interbion distance, 1=Mχ is the inverse Debye screening length, 1=Δ is the Cooper-pair size, and Sm ¼ 4π2=g2 is the
monopole action.

17Since Ψ does not couple to the U(1) photon, this phase is not a superconductor.
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3. Low-energy effective theory for superfluid phonons

In the far-infrared limit at energies below Δ, the effective
degree of freedom is phonon, i.e., the Nambu-Goldstone
mode associated with the baryon number. It emerges as a
phase fluctuation of the condensate and can be introduced
as Δ → Δe2iϕðxÞ. The low-energy effective theory of
phonons can be derived by expanding the functional
determinant of Ψ in powers of the derivative of ϕ (the
so-called gradient expansion [79]). The result is

Leff ¼ f2½ð∂4ϕÞ2 þ v2fð∂1ϕÞ2 þ ð∂2ϕÞ2g�; ð59Þ
with

f2 ¼ μ

2π
; v2 ¼ 1

2
: ð60Þ

The factor of 2 in the denominator of v2 reflects the
dimensionality of space. The effective theory (59) can also
be derived from the equation of state P ¼ μ3=ð6πÞ on the
basis of symmetry arguments along the lines of Ref. [80].
Equation (60) should be contrasted with f2 ∼ μ2 and v2 ¼
1=3 for the Nambu-Goldstone modes in high-density quark
matter in four dimensions [81–83].

IV. CONCLUSION

In this paper we extended the bion mechanism of
confinement [15] to nonzero quark chemical potential μ
in adjoint QCD with spatial compactification. In the first
part, we performed a perturbative analysis of theWilson line
potential (whose result gives a realization of the Hosotani
mechanism) in the presence of μ and revealed a rich phase
diagram in the space of μ and m. In the second part we
studied the μ dependence of semiclassical configurations
(monopoles and their molecules called magnetic bions) in
the center-symmetric phase. In addition to the Coulomb
interaction,monopole-instantons also talk to each other via a
fermion zero mode exchange, which at μ ≠ 0 is modified
due to the anisotropic hopping amplitude of fermions.
Consequently, bions favor a temporal orientation and their
amplitude grows with μ, leading to a larger mass gap of
photons and a greater string tension. Intriguingly, neutral
massless fermions that are free in the leading-order pertur-
bation theory may exhibit novel superfluidity triggered by
the combination of perturbatively induced four-fermion

operators and nonperturbatively induced monopole oper-
ators (’t Hooft vertex). The analysis in this paper remains
valid at any μ ≠ 0 as long as the compactified direction S1 is
small enough. It would be interesting to examine the
dimensional crossover from small to large S1 (Fig. 1) in
future lattice simulations, to clarify how the BEC-BCS
crossover region in R4 is connected to the exotic phase
structure in R3 × S1 found in this work. Dimensional
crossover of an interacting Fermi gas has been actively
investigated in the condensed matter physics community
[84] and it is of great interest to see what new physics will
emerge for the case of relativistic quark matter.

ACKNOWLEDGMENTS

We are grateful to A. Cherman and T. Sulejmanpasic for
valuable comments on themanuscript. T. K.was supportedby
the RIKEN Interdisciplinary Theoretical Science Research
Group (iTHES) project. N. Y. was supported by The Japan
Society for the Promotion of Science (JSPS) KAKENHI
Grant No. 16K17703 and theMinistry of Education, Culture,
Sports, Science andTechnologyof Japan (MEXT)-Supported
Program for the Strategic Research Foundation at Private
Universities, “Topological Science” (Grant No. S1511006).
M. Ü. was supported by the Department of Energy (DOE)
under Grant No. DE-SC0013036.

APPENDIX A: ONE-LOOP EFFECTIVE
POTENTIAL

Below we will outline the derivation of the formula (17).
Let us momentarily put the system in a box of linear extent
L⊥ × L⊥ × L × β, with β the inverse temperature and L⊥
the length in the x1;2 directions. The Euclidean Dirac
operator in the background (9) reads

DðμÞ ¼ γ1∂1 þ γ2∂2 þ γ3Dad
3 þ γ4ð∂4 − μÞ; ðA1Þ

where Dad
3 is the adjoint covariant derivative that acts on a

matrix test field v ¼ ðvabÞ as

ðDad
3 vÞab ≡ ð∂3vþ i½A3; v�Þab ðA2Þ

¼ ½∂3 þ iðaa − abÞ�vab: ðA3Þ
Since each component of v except for its trace can be
regarded as independent, we get [1]

ΓqðΩ; μÞ ¼
1

2
tr log½−DðμÞ2 þm2�

¼ 2tr log½−∂2
1 − ∂2

2 − ðDad
3 Þ2 − ð∂4 − μÞ2 þm2�

¼ 2L2⊥
Z

dp1dp2

ð2πÞ2
X
p3

X
p4

�XNc

a;b¼1

log½p2⊥ þ ðp3 þ aa − abÞ2 þ ðp4 þ iμÞ2 þm2� − log½p2 þ ðp4 þ iμÞ2 þm2�
�

¼ L2⊥
Z

dp1dp2

ð2πÞ2
X
p3

X
p4

�XNc

a;b¼1

ðlog½p2
4 þ ðEab þ μÞ2� þ log½p2

4 þ ðEab − μÞ2�Þ

− log½p2
4 þ ðE þ μÞ2� − log½p2

4 þ ðE − μÞ2�
�
; ðA4Þ
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where p2⊥ ≡ p2
1 þ p2

2, p
2 ≡ p2⊥ þ p2

3, p3 ¼ 2nπ
L ðn ∈ ZÞ, p4 ¼ ð2lþ1Þπ

β ðl ∈ ZÞ, E ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and

Eab ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ðp3 þ aa − abÞ2 þm2

q
: ðA5Þ

The summation over p4 can be taken with the standard formula [85]

X∞
l¼−∞

log½ð2lþ 1Þ2π2 þ ω2� ¼ ωþ 2 logð1þ e−ωÞ; ðA6Þ

where an ω-independent divergence has been subtracted. We thus obtain

ΓqðΩ; μÞ ¼ 2βL2⊥
Z

dp1dp2

ð2πÞ2
X
p3

�XNc

a;b¼1

�
Eab þ

1

β
log½1þ e−βðEabþμÞ� þ 1

β
log½1þ e−βðEab−μÞ�

�

− E −
1

β
log½1þ e−βðEþμÞ� − 1

β
log½1þ e−βðE−μÞ�

�
ðA7Þ

and

δVFðΩ; μÞ ¼ − lim
β→∞

1

βL2⊥L
fΓqðΩ; μÞ − ΓqðΩ; 0Þg

¼ −
2

L

Z
dp1dp2

ð2πÞ2
X
p3

�XNc

a;b¼1

ðμ − EabÞθðμ − EabÞ − ðμ − EÞθðμ − EÞ
�

for μ ≥ 0: ðA8Þ

The remaining integral may be done with the formula

Z
dp1dp2

ð2πÞ2


μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ X

q �
θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ X

q �
¼ 1

4π

�
1

3
μ3 − μX þ 2

3
X3=2

�
θðμ2 − XÞ for X ≥ 0; ðA9Þ

with the result

δVFðΩ; μÞ ¼ −
1

2πL

X
p3

�XNc

a;b¼1

�
1

3
μ3 − μX þ 2

3
X3=2

�
θðμ2 − XÞjX¼ðp3þaa−abÞ2þm2

−
�
1

3
μ3 − μY þ 2

3
Y3=2

�
θðμ2 − YÞjY¼p2

3
þm2

�
: ðA10Þ

Substituting p3 ¼ 2nπ
L ðn ∈ ZÞ into this equation, we finally arrive at (17).

APPENDIX B: FREE PROPAGATORS WITH
μ ≠ 0 IN THREE DIMENSIONS

We solve for the Euclidean propagators in 2þ 1 dimen-
sions in the presence of μ. The fermion propagator SF
solves the equation

ðiσ1∂1 þ iσ2∂2 þ ∂4 − μÞSFðx; μÞ ¼ δðxÞ12: ðB1Þ

The boson propagator solves the Klein-Gordon equation

½−∂2
1 − ∂2

2 − ð∂4 − μÞ2�Dðx; μÞ ¼ δðxÞ: ðB2Þ

They are related through

SFðx; μÞ ¼ ðiσ1∂1 þ iσ2∂2 − ∂4 þ μÞDðx; μÞ: ðB3Þ

It is easy to verify that

Dðx; x4; μÞ ¼ Dðx;−x4;−μÞ; x ¼ ðx1; x2Þ: ðB4Þ

Thus one can assume μ > 0 without loss of generality.
Writing r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

, we have
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Dðx; μÞ ¼
Z

d3p
ð2πÞ3

eipx

p2
1 þ p2

2 þ ðp4 þ iμÞ2

¼
Z

∞

−∞
dp4

Z
∞

0

dp⊥p⊥
ð2πÞ3

Z
2π

0

dθ
eip⊥r cos θþip4x4

p2⊥ þ ðp4 þ iμÞ2

¼
Z

∞

−∞
dp4eip4x4

Z
∞

0

dp⊥p⊥
ð2πÞ2

J0ðp⊥rÞ
p2⊥ þ ðp4 þ iμÞ2

¼ 1

ð2πÞ2
Z

∞

−∞
dp4eip4x4K0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp4 þ iμÞ2

q
r

�
: ðB5Þ

An alternative expression which has no singularity at r ¼ 0
can also be obtained by integrating over p4 first, with the
result

Dðx; μÞ ¼ eμx4

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ x24
p −

Z
μ

0

dp⊥J0ðp⊥rÞe−x4p⊥
�
:

ðB6Þ
These formulas give access to limiting behaviors of D in
some cases of interest:

(i) For μ ¼ 0,

Dðx; 0Þ ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x24

p : ðB7Þ

(ii) For r ¼ 0,

Dðx; μÞ ¼ 1

4πx4
f1 − θð−x4Þ2e−μjx4jg

≈
1

4πx4
for μjx4j ≫ 1: ðB8Þ

(iii) For x4 ¼ 0,

Dðx; μÞ ¼ 1

4πr

Z
∞

μr
dxJ0ðxÞ ðB9Þ

≈
1ffiffiffi
μ

p cosðμrþ π
4
Þ

ð2πrÞ3=2 for μr ≫ 1: ðB10Þ

(iv) For μr ≫ 1 with any x4,

Dðx; μÞ ≈ r cosðμrþ π
4
Þ þ x4 sinðμrþ π

4
Þ

ð2πÞ3=2ðr2 þ x24Þ
ffiffiffiffiffi
μr

p : ðB11Þ
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