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As with parton distributions, flexible phenomenological parametrizations of generalized parton
distributions (GPDs) are essential for their extraction from data. The large number of constraints imposed
on GPDs make simple Lorentz covariant models viable; but, such models are often incomplete in that they
employ the impulse approximation. Using the GPD of the pion as a test case, we show that the impulse
approximation can lead to violation of the positivity bound required of GPDs. We focus on a particular
model of the pion bound-state vertex that was recently proposed and demonstrate that satisfying the bound
is not guaranteed by Lorentz covariance. Violation of the positivity bound is tied to a problematic mismatch
between the behavior of the quark distribution at the end point and the crossover value of the GPD.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–5] contain
the physics of form factors and parton distributions, and
thereby allow for the study of correlations between trans-
verse position and longitudinal momentum inside hadrons.
In impact-parameter space, GPDs elegantly describe the
transverse structure of fast moving hadrons [6–8]. Intense
activity has been generated in this field, which is largely
due to the ability to measure GPDs in deeply virtual
Compton scattering, and resolve the angular momentum
content of hadrons. A number of insightful reviews have
appeared on the subject; see, for example, Refs. [9–12].
From a theoretical perspective, GPDs are rather compli-

cated objects to model. As with ordinary parton distribution
functions, flexible phenomenological parametrizations
would be welcome to aid in their extraction from data.
The large number of constraints imposed on GPDs, how-
ever,makes such parametrizations challenging to devise.We
restrict our attention to twist-two GPDs throughout. One
such nontrivial constraint required of twist-two GPDs is a
general bound due to the positivity of the norm on the
hadronic light-front Fock space. These so-called positivity
bounds are introduced and discussed in several works
[13–18].
As an example of a positivity bound, consider the single-

particle density operator, ρΨ ¼ jΨihΨj, in a many-body
Hilbert space. The coordinate-space density matrix has the
definition ρðr0; rÞ ¼ hr0jρΨjri. In particular, the forward
matrix element, ρðrÞ≡ hrjρΨjri, is the average density of
particles at the position r in the multiparticle state jΨi,

which is strictly a positive semidefinite quantity, ρðrÞ ≥ 0.
Accordingly, the mixed density satisfies the bound

jρðr0; rÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0ÞρðrÞ

p
; ð1Þ

as a consequence of the Cauchy-Schwarz inequality. In the
case of GPDs, the underlying parton distribution, qðxÞ, is a
probability distribution and thereby satisfies the positivity
condition qðxÞ ≥ 0. The GPD is similar in structure to a
mixed plus-momentum density in the bound state. With
symmetrical kinematic variables and for x > ξ, the incom-
ing parton has momentum fraction xi ¼ ðxþ ξÞ=ð1þ ξÞ,
and the outgoing parton has momentum fraction xf ¼
ðx − ξÞ=ð1 − ξÞ. On account of the Cauchy-Schwarz
inequality, the pion GPD, which we denote by Hðx; ξ; tÞ,
is bounded by

jHðx; ξ; tÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxfÞqðxiÞ

q
; ð2Þ

when x > ξ. If the GPD is expressed in terms of quark
light-front wave functions, this positivity bound is an
immediate consequence that arises from the convolution
of diagonal Fock-state wave functions [19,20]. While not
manifestly Lorentz covariant, the light-front Fock-space
expansion makes the positivity bound transparent. On the
other hand, the large number of constraints on GPDs
stemming from Lorentz invariance are best satisfied within
Lorentz covariant frameworks, for which purpose the
double distributions (DDs) have been devised [16,21].
Such frameworks, however, obfuscate the positivity bound.
This situation is addressed in the present work, and we
argue that the impulse approximation, while Lorentz
covariant, is insufficient to describe the higher Fock
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components self-consistently. As a result, the positivity
bound on GPDs can be violated in the impulse approxi-
mation, and we use the particular model of Ref. [22] to
exemplify this fact.
The calculation of model GPDs in Lorentz covariant

frameworks is not entirely new; however, the line of
investigation pursued in Ref. [22] represents a physically
motivated departure from earlier models. Such models have
largely employed the pointlike bound-state vertex arising in
the Nambu–Jona-Lasinio model, a couple examples of
which are Refs. [23,24]. While simple, the pointlike ansatz
provides a solution of the Bethe-Salpeter equation with a
contact interaction that includes a binding effect. As the
particular contact interaction cannot be gauged, the point-
like model is complete in the impulse approximation. The
corresponding model GPDs should then satisfy all known
constraints, modulo difficulties arising from the regulari-
zation of ultraviolet divergences. The potential danger of
these subtractions on the positivity bound was discussed in
Ref. [24], where it was found that a particular Pauli-Villars
subtraction [25] maintains the positivity bound on GPDs.
As pointed out in Ref. [26], one can construct further
consistent models of GPDs by summing over these basic
contributions evaluated at different constituent masses.
This is the essence of the consistency of the spectral quark
model GPDs computed in Ref. [24]; however, it must be
stressed that, unlike two-point functions, GPDs do not
possess a spectral representation. In contrast to these
models, that employed in Ref. [22] introduces a nonpoint-
like Bethe-Salpeter vertex for the bound state. This covar-
iant smearing has the salient feature that ultraviolet
divergences are cured; however, such an ansatz arises from
a nontrivial kernel. Without knowledge of the underlying
dynamics, one does not know how to gauge the kernel
and such contributions must be omitted. Due to this malady,
the model is incomplete in the impulse approximation.
Consequently the positivity bound cannot be guaranteed
and, indeed, we find that it is (rather severely) violated.1

The organization of this work is as follows. We begin
with a short reminder about the definitions of the Lorentz
invariant DDs in Sec. II, and determine the DDs for the
covariant model of the pion proposed in Ref. [22].

Technical details in the computation of the DDs are
relegated to Appendix A. The DDs are used to compute
the twist-two pion GPD, and the positivity bound is shown
to be violated, both in strong and weak forms. Investigating
the cause of this violation leads us to the light-front
Fock-space representation of GPDs in Sec. III. Here, an
analysis of the pole structure leading to the light-front
representation of the GPD is given. We argue that positivity
violation arises from the mismatch between the end-point
behavior of the quark distribution and the crossover value
of the GPD. Appendix B provides details about light-front
spinors, normalization factors, and other conventions
employed. A brief summary, which is given in Sec. IV,
concludes this work.

II. THE MODEL AND ITS DOUBLE
DISTRIBUTIONS

While GPDs are not Lorentz invariant objects, they
nonetheless inherit a number of constraints related to the
underlying Lorentz covariance of their defining QCD
matrix elements. These constraints (in particular, the
polynomiality of GPD moments) are elegantly satisfied
by employing the DD representation. The DD for a given
model is Lorentz invariant, and the GPD is obtained by
noncovariant integration over a slice in the space where the
DD has support [16,21].
As our focus is with Lorentz covariant models for twist-

two GPDs, we begin with the DD representation. Pertinent
definitions and conventions for pion DDs are reviewed,
followed by the determination of the DDs in a covariant
model of the pion. The positivity bound is then tested in this
model, and found to be violated.

A. Double distributions

Matrix elements of twist-two operators with a t-channel
momentum transfer define moments which can be summed
into the so-called DDs. Using the symmetric derivative,

which we define by Dμ
↔ ¼ 1

2
ðD⃗μ − D⃖μÞ, the quark bilinear

twist-two operators have the form

Oμμ1���μn ¼ ψ̄ð0ÞγfμiDμ1
↔ � � � iDμn

↔ g
ψð0Þ; ð3Þ

where the curly brackets denote the complete symmetriza-
tion and trace subtraction of the enclosed Lorentz indices.
Matrix elements, Mμμ1���μn , of these operators within the
pion are defined by

Mμμ1���μn ≡ hP0jOμμ1���μn jPi; ð4Þ

where P0 ¼ Pþ Δ, and the matrix elements can be para-
metrized in the form

1Beyond writing down flexible parametrizations of GPDs,
there is also interest in computing GPDs using dynamical models.
Considerable interest has been recently generated [27–29] by the
ability to obtain light-front solutions from Bethe-Salpeter wave
functions by way of the Nakanishi integral representation [30,31].
In light of the present work, the positivity bound on GPDs
provides an essential test of the consistency of form factors and
quark distributions obtained in such an approach. In another
direction, valence quark distributions of pseudoscalar mesons
have been obtained from solutions to a model based on truncated
Dyson-Schwinger equations [32]. While incorporating some of
the features of QCD, it is already recognized that the impulse
approximation is insufficient to describe GPDs within this
approach [33].
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Mμμ1���μn ¼
Xn
k¼0

�
n

k

�
ð2P̄Ank − ΔBnkÞfμP̄μ1 � � � P̄μn−k

×

�
−
Δ
2

�
μn−kþ1 � � �

�
−
Δ
2

�
μng

; ð5Þ

where the ðnkÞth moments are Lorentz invariant functions
of the t-channel momentum transfer, Ank ¼ AnkðtÞ and
Bnk ¼ BnkðtÞ, with t ¼ Δ2. The momentum P̄μ is defined
to be the average between the initial and final states,
P̄μ ¼ 1

2
ðP0 þ PÞμ. For n ¼ k ¼ 0, the matrix element is

simply that of the vector current. Consequently, we have
A00ðtÞ ¼ FðtÞ, where FðtÞ is the vector form factor of the
pion, and B00ðtÞ ¼ 0, due to vector-current conservation.
Time-reversal invariance restricts the allowed values of k in
the binomial sums. For the AnkðtÞ moments, k must be
even, while for the BnkðtÞ moments, k must be odd.
The DDs are generating functions for the moments of

twist-two operators. Written in terms of the moments, we
can define two2 DDs Fðβ; α; tÞ and Gðβ; α; tÞ as

AnkðtÞ ¼
Z

β

0

dβ
Z þ1−β

−1þβ
dα βn−kαkFðβ; α; tÞ;

BnkðtÞ ¼
Z

β

0

dβ
Z þ1−β

−1þβ
dα βn−kαkGðβ; α; tÞ; ð6Þ

which satisfy the α-symmetry properties Fðβ;α; tÞ ¼
Fðβ;−α; tÞ and Gðβ; α; tÞ ¼ −Gðβ;−α; tÞ. These proper-
ties express the consequences of time-reversal invariance.
Throughout, we consider β > 0 for the quark distribution in
the pion.
Using a vector zμ that is lightlike, z2 ¼ 0, and such that

zμ ¼ λffiffi
2

p ð1; 0; 0; 1Þ, we can sum the moments into the

matrix element of the quark bilocal operator3

OðzÞ ¼ ψ̄

�
−
z
2

�
=zψ

�
z
2

�

¼
X∞
n¼0

ð−iÞn
n!

zμzμ1 � � � zμnOμμ1���μn ; ð7Þ

which, on account of Eq. (5), can be written in terms of the
generating functions in the form

hP0jOðzÞjPi ¼
Z

1

0

dβ
Z þ1−β

−1þβ
dα e−iðβP̄−αΔ2Þ·z

× ½2P̄ · zFðβ;α; tÞ − Δ · zGðβ; α; tÞ�: ð8Þ

The pion GPD is defined from the Fourier transform of this
light-cone correlation of quark fields. Writing the skewness
variable as

ξ ¼ −
1

2
Δ · z=P̄ · z; ð9Þ

we have the conventional definition of the GPD as an off-
forward matrix element of the bilocal operator

Hðx; ξ; tÞ≡
Z

dλ
4π

eixP̄·zhP0jOðzÞjPi: ð10Þ

Expressing the GPD in terms of its underlying Lorentz
invariant DDs, we have the relation

Hðx; ξ; tÞ ¼
Z

1

0

dβ
Z þ1−β

−1þβ
dα δðx − β − ξαÞ

× ½Fðβ; α; tÞ þ ξGðβ; α; tÞ�: ð11Þ

All constraints on the GPDs associated with Lorentz
invariance are built into the DD representation that appears
in Eq. (11). For example, notice that the nth moment of the
GPD with respect to x,

Z
1

0

dxxnHðx; ξ; tÞ ¼
Z

1

0

dβ
Z þ1−β

−1þβ
dαðβ þ ξαÞn

× ½Fðβ; α; tÞ þ ξGðβ; α; tÞ�; ð12Þ

is at most an nth [(nþ 1)st] degree polynomial in ξ, for n
even (odd). The zeroth moment, which must be ξ inde-
pendent, produces the so-called GPD sum rule for the form
factor

Z
1

0

dxHðx; ξ; tÞ ¼ FðtÞ; ð13Þ

having used B00ðtÞ ¼ 0. Finally, the quark distribution
function, which we denote by qðxÞ, is contained in the
forward limit, Δμ ¼ 0, of the GPD:

qðxÞ ¼ Hðx; 0; 0Þ ¼
Z þ1−x

−1þx
dαFðx; α; 0Þ: ð14Þ

Notice that contributions from Gðβ; α; tÞ to both the form
factor and quark distribution vanish due to time-reversal
invariance. In this way, GPDs naturally contain additional
information unconstrained by their zeroth moment and

2As it stands, there is freedom in the decomposition of
moments, Eq. (5), which ultimately implies that the DDs
Fðβ; α; tÞ and Gðβ; α; tÞ are not unique. This redundancy is akin
to gauge freedom [34], and a minimal gauge is one in which there
is only an F-type DD, and what is called the D-term [35], which
reduces the G-type DD to a δðβÞ contribution. There is a way,
furthermore, to write these two contributions as the projection of
a single function; see Ref. [36]. Nonetheless, we use two DDs for
computational ease, and note that the more minimal descriptions
can be straightforwardly obtained therefrom.

3With QCD gauge interactions, one needs to assume the light-
cone gauge, z · A ¼ 0, to arrive at Eq. (7); otherwise a gauge link
proportional to z ·Uð− z

2
; z
2
Þ will appear in the bilocal operator in

order to maintain gauge invariance.
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forward limit.4 Consequently, the positivity bound provides
essential guidance for constructing consistent models
for GPDs.

B. The model and violation of the positivity bound

The model of the pion proposed in Ref. [22] employs an
ansatz for the covariant Bethe-Salpeter wave function. It is
written in the form

Ψðk; PÞ ¼ SðkÞiγ5Γðk; PÞSðk − PÞ; ð15Þ

where SðkÞ denotes the constituent quark propagator,
which is assumed to have the free-particle form

SðkÞ ¼ i
=k −mþ iε

; ð16Þ

and Γðk; PÞ is the Bethe-Salpeter vertex. Within this
particular model, the latter is taken as

Γðk; PÞ≡N ½k2 −m2
R þ iε�−1½ðk − PÞ2 −m2

R þ iε�−1;
ð17Þ

where N is a normalization factor. The covariant vertex is
symmetric under the interchange of quark momentum,
ΓðP − k; PÞ ¼ Γðk; PÞ, as one expects for isospin sym-
metric valence quarks. The mass mR is a model parameter,
which additionally serves as a built-in regulator for ultra-
violet divergences.5 Previous covariant models (see, for
example, Ref. [38]) have adopted a pointlike vertex
between the quarks and pion. While there is a binding
effect in such models (as well as those of the Nambu–Jona-
Lasinio type), the pointlike bound-state vertex is an
approximation that the model of Ref. [22] seeks to remedy.
Notice that beyond γ5, there are additional structures that
can contribute to the Bethe-Salpeter vertex, but these have
been dropped in the interest of simplicity.
The DDs, and in turn the GPDs, can be computed from

matrix elements of the twist-two operators [Eq. (5)].
Because the model employs an ansatz for the Bethe-
Salpeter vertex, the DDs are computed within the impulse

approximation. The triangle diagram formed from the
insertion of the twist-two operators is shown in Fig. 1.
Using the Bethe-Salpeter wave function, these matrix
elements are given by

Mμμ1���μn ¼
Z
k
Tr½Ψðk; PÞS−1ðk − PÞΨ̄ðk0; P0Þγfμ�

× ðkþ Δ=2Þμ1 � � � ðkþ Δ=2Þμng; ð18Þ

where the shorthand
R
k indicates the Minkowski four-

momentum integration,
R
k ¼

R
d4k=ð2πÞ4. The primed

variables are defined to be boosted by the momentum
transfer Δ, so that k0 ¼ kþ Δ for the struck quark, along
with P0 ¼ Pþ Δ for the final-state pion. With a real-valued
normalization factor, N ∈ R, the conjugate Bethe-Salpeter
wave function is given by

Ψ̄ðk0; P0Þ ¼ Sðk0 − P0Þiγ5Γðk0; P0ÞSðk0Þ: ð19Þ

Notice the equality of the momentum differences for the
spectator quark, k0 − P0 ¼ k − P.
Determination of the DDs from the above equation is

rather technical; however, the procedure outlined in
Refs. [39,40] can be adapted to the present model. We
provide the essential details leading to the extraction of
Fðβ; α; tÞ and Gðβ; α; tÞ from Eq. (18) in Appendix A.
From these DDs, we obtain the pion GPD via Eq. (11). To
evaluate the GPD, we require model parameters. In
Ref. [22], central values for the model parameters are
adopted: m ¼ 0.220 GeV and mR ¼ 1.192 GeV. These
values reproduce the pion decay constant determined
within the model, and give a good description of the
experimentally measured vector form factor of the pion.
Once the model parameters are fixed, the normalization
factor N 2 follows from the value of the vector form
factor at vanishing momentum transfer, Fðt ¼ 0Þ ¼ 1 or
equivalently from normalizing the quark distribution,R
dxqðxÞ ¼ 1. For reference, we determine the normaliza-

tion factor to be N ¼ 1.207 GeV4. The model’s quark
distribution is shown in Fig. 2. This quark distribution is
contrasted with that obtained from the two-body light-front
wave function, which will be determined below in Sec. III.

FIG. 1. Required Feynman diagram for bound-state matrix
elements of twist-two operators computed within the impulse
approximation. Pions are depicted by double lines, with the
bound-state vertices labeled by Γ. Quarks are depicted by directed
lines, with insertion of the quark bilocal operator appearing in
Eq. (3) shown by a cross.

4It was pointed out in Ref. [37] that the ambiguity inherent in
defining DDs can be used in reverse to reduce the entirety of the
F-type DD to a contribution proportional to δðαÞ. In this
representation, all of the skewness dependence of the GPD arises
from the G-type DD, specifically in the form Hðx; ξ; tÞ ¼
Fðx; 0; tÞ þ ξ

R
1
0 dβ

Rþ1−β
−1þβ dαδðx − β − ξαÞ ~Gðβ; α; tÞ. The only

constraint on the skewness dependence is through the time-
reversal condition, ~Gðβ; α; tÞ ¼ − ~Gðβ;−α; tÞ, and, of course, the
positivity bound.

5Notice that because this is an ingredient of the model, one
does not attempt to take the limit mR → ∞ to produce regulari-
zation independent results. The covariant smearing of the ultra-
violet behavior of the vertex is assumed to be due to the physical
structure of the bound state.
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One attributes the differences as due to higher Fock
components introduced by the covariant ansatz for the
Bethe-Salpeter vertex.
To test the self-consistency of the model, we investigate

the positivity bound, which arises from the positivity of the
normonFock space. The strongest bound arises at vanishing
momentum transfer.6 To this end, we form the ratio

Rðx; ξÞ≡ jHðx; ξ; 0Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxfÞqðxiÞ

p ≤ 1; ð20Þ

which is bounded by unity from above for x > ξ. The
momentum fractions carried by the struck quark before
and after interacting with the current are given by

xi ¼
xþ ξ

1þ ξ
; and xf ¼ x − ξ

1 − ξ
: ð21Þ

Investigation of this ratio as a function of x is shown in Fig. 3
using a few values for the skewness parameter ξ. The model
of Ref. [22] violates the positivity bound in a window
ξ < x < xmðξÞ, encompassing the majority of x values.

The turnover point, xmðξÞ ∼ 0.95, depends mildly on ξ as
can be discerned from the figure. In the narrow end-point
region, xmðξÞ < x < 1, the bound is satisfied; however, this
region shrinks to zero as the skewness approaches zero.
Notice that as ξ → 0, the positivity bound must be saturated
according to the limiting behavior of the GPD in Eq. (14);
however, the approach is from above rather than below. This
is exactly the opposite from the behavior required by the
positivity of the norm onFock space. Saturation of the bound
is investigated in Fig. 4.
Due to violation of the positivity bound in Eq. (20), we

investigate the severity of violation by considering a
weaker bound. Weaker than the bound involving the
geometric mean of quark distributions, there is a positivity
bound required due to the inequality between geometric
and arithmetic means:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxfÞqðxiÞ

q
≤
qðxfÞ þ qðxiÞ

2
: ð22Þ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 2. Quark distribution function in the pion. Using
the model Bethe-Salpeter vertex in Eq. (17), the normalized
quark distribution function, qðxÞ, is obtained using Eq. (14), and
plotted as a function of x (solid curve). Additionally shown
(dashed curve) is the quark distribution function obtained from
the two-body light-front wave function, Eq. (25). The effect of
higher Fock-state contributions in this model reduces the average
x; however, higher Fock states only account for 16% of the
probability distribution.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

FIG. 3. Investigation of the positivity bounds required on the
GPD within the model. The top panel shows the ratio Rðx; ξÞ in
Eq. (20), which tests the strongest bound. This bound is tested
using the listed values of ξ, with the dashed vertical lines showing
the corresponding starting points, where x ¼ ξ. The bottom panel
shows the ratio Rðx; ξÞ appearing in Eq. (23). This ratio tests the
weaker positivity bound. For x > ξ, both ratios are required to be
less than unity.

6At t ¼ 0, the consideration of nonzero skewness, ξ ≠ 0,
places one in an unphysical regime, which technically requires
analytic continuation. In terms of the Lorentz invariant DDs, this
analytic continuation is trivially carried out by evaluating Eq. (11)
at t ¼ 0. In the light-front wave function overlap representation,
one first performs the integration over the transverse momentum,
which produces functions of Δ2⊥, and then evaluates at the point
Δ2⊥ ¼ −4ξ2M2. We have checked that the two procedures
produce identical results. Additionally in the physical regime,
with t < 0 and 0 < ξ < ð1 − 4M2

t Þ−1=2, violation of the positivity
bound is qualitatively quite similar to what is shown in Fig. 3.
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Hence, we consider an additional ratio to test the weaker
bound:

Rðx; ξÞ ¼ jHðx; ξ; 0Þj
1
2
½qðxfÞ þ qðxiÞ�

≤ 1: ð23Þ

This ratio is shown in Fig. 3 for the same values of ξ.
Violation of the weaker bound qualitatively follows the
same trend as seen in violation of the stronger bound. The
violation is less severe, but that is precisely what is
expected of a weaker bound.
Despite the fully covariant nature of the model, the

positivity bounds required of the GPD are violated. This
points to the model not being self-consistent. Without
knowledge of the dynamics giving rise to the Bethe-
Salpeter vertex function, it is not at all obvious how to
consistently couple the quark bilocal operator to the
dynamics. Investigation of the light-front representation
for the GPD provides considerable intuition about the
shortcomings of the model, and it is to this representation
that we now turn.

III. LIGHT-FRONT WAVE
FUNCTION ANALYSIS

A. Two-body analysis

The two-body wave function for the pion is obtained by
the overlap of the Bethe-Salpeter wave function onto on-
shell quark and antiquark spinors. Subsequent integration
over the minus component of momentum produces the
restriction to the plane xþ ¼ 0, and the light-front wave
function reads (see, e.g., [41])

ψ ð2Þ
λλ0 ðx; k⊥Þ ¼

Z
dk−

2π

ūλðkþ; k⊥Þffiffiffiffiffiffi
kþ

p γþΨðk; PÞγþ

×
vλ0 ðPþ − kþ;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pþ − kþ
p ; ð24Þ

where we have taken P⊥ ¼ 0 for simplicity. In the wave
function, the variable x is the plus-momentum fraction of
the quark relative to that of the pion, x ¼ kþ=Pþ. Because
the transverse boosts generate a kinematic subgroup of the
Poincaré group, the boosted wave function, P⊥ ≠ 0, can be
obtained by the simple replacement k⊥ → k⊥ − xP⊥,
which is the relative transverse momentum.
Using the Bethe-Salpeter wave function in Eq. (15), the

two-body (valence) light-front wave function can be
obtained. For manipulations involving the light-front spin-
ors, consult Appendix B. Treating the factor of θ½xð1 − xÞ�
implicitly, we arrive at the wave function

ψ ð2Þ
λλ0 ðx; k⊥Þ ¼ N

k−λδλ;λ0 − λmδλ;−λ0

m2
R −m2

× ½φðx; k⊥;m;m;mRÞ
− φðx; k⊥;mR;m;mRÞ�; ð25Þ

which has been written with the help of the helicity
independent amplitude:

φðx; k⊥;ma;mb;mcÞ ¼ DWðx; k⊥;ma;mbÞ

×
DWðx; k⊥;ma;mcÞ

x2ð1 − xÞ : ð26Þ

This amplitude has been expressed in terms of the propa-
gator for the Weinberg equation [42],

DWðx; k⊥;ma;mbÞ ¼
1

M2 − k2⊥þxm2
aþð1−xÞm2

b
xð1−xÞ

; ð27Þ

in the unequal mass case. At this stage, the first mass
argument of the amplitude φ is redundant; however, the
dependence on three different masses will be utilized below
in computing the GPD. The light-front helicity structure of
the wave function in Eq. (25) has both opposite helicity,
δλ;−λ0 , and same helicity, δλ;λ0 , contributions. The latter are
accompanied by a unit of quark orbital angular momentum
to preserve the spin of the pion. This is reflected by the
factor of transverse momentum, kλ ¼ k1 þ iλk2, appearing
in the numerator of the wave function. Such contributions
are symmetric under the interchange of the mass param-
eters, m ↔ mR. The contributions from opposite helicity
states are not symmetric under this interchange.
The two-body light-front wave function is not symmetric

under the interchange of quark and antiquark, i.e.
x ↔ 1 − x. The wave function vanishes linearly at both
end points, x ¼ 0 and x ¼ 1. The vanishing at x ¼ 0 is

0.0 0.2 0.4 0.6 0.8 1.0

0.995

1.000

1.005

1.010

1.015

1.020

FIG. 4. Saturation of the (strong) positivity bound in the limit
ξ → 0. The ratio Rðx; ξÞ appearing in Eq. (20) is plotted as a
function of x for the skewness ξ ¼ 0.001, for which the value
x ¼ ξ is indicated by the dashed vertical line. Notice the
considerable reduction in the range plotted compared to that in
Fig. 3. Violation of the bound appears linked with the two limits:
x → ξ and ξ → 0.

BRIAN C. TIBURZI and GAURAV VERMA PHYSICAL REVIEW D 96, 034020 (2017)

034020-6



particularly interesting because it arises from an exact
cancellation between the two terms appearing in Eq. (25).
The quark distribution obtained from the two-body light-
front wave function takes the simple quantum mechanical
form

qð2ÞðxÞ ¼
X
λ;λ0

Z
dk⊥

2ð2πÞ3 jψ
ð2Þ
λλ0 ðx; k⊥Þj

2; ð28Þ

and is plotted in Fig. 2. The absolute normalization
is closely examined in Appendix B. Qualitatively this
two-body quark distribution is similar to the full quark
distribution function obtained in the model. The full
distribution has a smaller value of hxi, for example, which
is consistent with expectations from higher Fock compo-
nents. The difference is not very appreciable: hxi ¼ 0.47 in
the full model, while hxið2Þ ¼ 0.50 within the two-body
sector. The x ↔ 1 − x asymmetry is practically negligible
for the two-body quark distribution, which is a fortunate
circumstance on physical grounds. Integrating the two-
body quark distribution over x, we find that the two-body
Fock state accounts for 84% of the quark distribution.
From the two-body wave function, one can obtain the

GPD only in a limited kinematic regime. In the region
x > ξ, we have

Hð2Þðx; ξ; tÞ ¼
X
λ;λ0

Z
dk⊥

2ð2πÞ3 ψ
ð2Þ
λλ0 ðxi; k⊥Þψ ð2Þ�

λλ0 ðxf; k0⊥Þ;

ð29Þ

where the boosted transverse momentum is given by

k0⊥ ¼ k⊥ þ
�
1 −

xi þ xf
2

�
Δ⊥: ð30Þ

Due to the convolution of the initial- and final-state wave
functions, the two-body GPD self-consistently satisfies the
positivity bound. The tradeoff is that the two-body approxi-
mation violates Lorentz invariance (for example, the sum
rule for the form factor does not hold). Additionally when
x < ξ, higher Fock components are necessarily required for
nonvanishing contributions to the GPD.

B. Complete light-front analysis

One similarity between the two-body and higher Fock-
state contributions is that they both vanish at x ¼ 0. While
this is required of the former, the latter are generally
nonvanishing at x ¼ 0. Elaboration on this point is made
in Refs. [43,44]. The vanishing of this model’s quark
distribution at x ¼ 0 is the culprit of positivity violation. To
demonstrate this, we turn to the light-front representation of
the model’s GPD.
Complementary to the representation in terms of DDs,

the GPD can be evaluated directly from the bilocal matrix

element in Eq. (10) computed within the model. This
alternative expression for the GPD is

Hðx; ξ; tÞ ¼ 1

2P̄þ

Z
k
δ

�
xþ ξ −

kþ

P̄þ

�
Tr½Ψðk; PÞ

× S−1ðk − PÞΨ̄ðk0; P0Þγþ�: ð31Þ

Results for the quark distribution and GPD obtained from
Eq. (31) agree numerically with those determined from
DDs. Our investigation of the violation of the positivity
bound leads us to consider the GPD at the crossover point,
x ¼ ξ. We show in the form of an integral that the GPD is
nonvanishing at the crossover, Hðξ; ξ; tÞ ≠ 0, using light-
front integration. This result can also be established
analytically from the DDs; however, the light-front inte-
gration offers a more intuitive picture, not to mention the
ability to display using more compact expressions.
To obtain the GPD, we integrate the expression in

Eq. (31) over k−. The integral is performed by the residue
theorem, and different residues are required depending on
the value of kþ. A particularly illustrative discussion of the
contour integration for light-front and instant-form dynam-
ics can be found in Ref. [45]. We restrict our attention to the
region x > ξ, for which residues at the spectator poles are
required. There are two such poles: one for the spectator
quark, and one for the spectator regulator particle having
mass mR. Due to the ansatz in Eq. (17), the spectator
propagator for the regulator is squared in the bilocal current
matrix element. For ease in evaluating and displaying the
results, we use the standard trick to rewrite the square of a
propagator in terms of a derivative of the propagator,
namely

1

½ðP − kÞ2 −m2
R�2

¼ ∂
∂m2

A

1

ðP − kÞ2 −m2
A

����
mA¼mR

: ð32Þ

A different mass, mA, is required for this intermediate step
because mR appears elsewhere in the expression for the
GPD. Carrying out the light-front integration, we arrive at
the result

θðx − ξÞHðx; ξ; tÞ ¼ N 2

Z
dk⊥

2ð2πÞ3
∂

∂m2
A

Hm −HA

m2 −m2
A

����
mA¼mR

ð33Þ

where Hm and HA denote contributions to the integrand
that arise from taking the residue at the spectator quark pole
and spectator regulator pole, respectively. The former is
given by

Hm ¼ 2ðk⊥ · k0⊥ þm2Þ
× φðxi; k⊥;m;mR;mÞφðxf; k0⊥;m;mR;mÞ; ð34Þ

while the latter takes the form
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HA ¼ 2

�
k⊥ · k0⊥ þ 1 − x2

1 − ξ2
m2 þ xixfm2

A

�

× φðxi; k⊥;mA;m;mRÞφðxf; k0⊥;mA;m;mRÞ: ð35Þ

Using Eq. (33), we derive the crossover behavior by
taking the limit x → ξ from above. To this end, it is useful
to note the finite limit

lim
x→0

φðx; k⊥;ma;mb;mcÞ ¼
1

ðk2⊥ þm2
bÞðk2⊥ þm2

cÞ
; ð36Þ

which is independent of the mass ma. As a consequence,
we have the nonvanishing result

Hðξ;ξ; tÞ

¼N 2

Z
dk⊥
ð2πÞ3

k⊥ ·kð0Þ⊥ þm2

½ðkð0Þ⊥ Þ2þm2�½ðkð0Þ⊥ Þ2þm2
R�

×
∂

∂m2
A

φðx0;k⊥;m;mR;mÞ−φðx0;k⊥;mA;m;mRÞ
m2−m2

A

����
mA¼mR

;

ð37Þ

where we have defined the crossover values

x0 ¼ xiðx ¼ ξÞ ¼ 2ξ

1þ ξ
; ð38Þ

for the initial quark’s momentum fraction, and

kð0Þ⊥ ¼ k⊥ þ 1

1þ ξ
Δ⊥; ð39Þ

for the relative transverse momentum of the final-state
quark. Finally, taking the limit ξ → 0 results in

lim
ξ→0

Hðξ; ξ; tÞ ¼ 0; ð40Þ

which can be easily demonstrated upon noting that x0 → 0
in this limit, then subsequently applying Eq. (36) to the
expression for the GPD at the crossover, Eq. (37).7

A plot of the ξ-dependence of the GPD at the crossover is
shown in Fig. 5, and confirms its nonvanishing value, as
well as the vanishing forward limit. These two features are
directly at odds with the positivity of the norm on the light-
front Fock space. The vanishing of the crossover’s forward
limit confirms that the model’s quark distribution function
vanishes at x ¼ 0, as we have numerically shown above. In
terms of the general light-front wave function representa-
tion, we have schematically

qðx ¼ 0Þ ¼ Hð0; 0; 0Þ ¼
X
n

jψ ðnÞðx ¼ 0; � � �Þj2 ¼ 0:

ð41Þ

We write the n-body Fock component of the bound state as
ψ ðnÞ, and only indicate the active quark’s momentum
fraction x, which is at the end point, x ¼ 0. Due to the
positivity of the norm, the vanishing quark distribution at
the end point implies that

ψ ðnÞðx ¼ 0; � � �Þ ¼ 0; ∀ n: ð42Þ

Approaching the crossover from above, the GPD at
the crossover has an expansion in terms of diagonal
Fock-component overlaps, which schematically takes the
form

Hðξ; ξ; tÞ ¼
X
n

ψ ðnÞðxi; � � �Þψ�ðnÞðxf ¼ 0; � � �Þ: ð43Þ

Given the end-point behavior of the wave functions
deduced from the norm, Eq. (42), we should very likely
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FIG. 5. Value of the GPD at the crossover point, x ¼ ξ, plotted
as a function of ξ. For simplicity, we determine the value using
t ¼ 0. The vanishing ξ → 0 limit of the crossover value implies
vanishing of the quark distribution function at the end point,
x ¼ 0. The nonvanishing value of Hðξ; ξ; tÞ for ξ ≠ 0 then leads
to (infinite) violation of the positivity bound in Eq. (20). Close
inspection shows that Hðξ; ξ; tÞ ∝ ξ2, for ξ ≪ 1.

7One can generalize these findings in the following way.
Adopting a more general (but asymmetric) ansatz for the
Bethe-Salpeter amplitude having the form

Γðk; PÞ ¼ N ½k2 −m2
R þ iε�−1½ðP − kÞ2 −m2

R þ iε�−ν=2;
for ν ¼ 1, 2, � � �, it is straightforward to show using light-front
integration that the corresponding crossover value of the GPD,
Hðξ; ξ; tÞ, is nonvanishing, but vanishes in the limit of vanishing
skewness, ξ → 0. Thus models of this type will violate the
positivity bound in an analogous way to the ν ¼ 2model detailed
above. The model with ν ¼ 0, by contrast, satisfies the positivity
bound, and was considered previously in Refs. [39,40]. This
particular case is best viewed as smearing the bilocal current
rather than the bound-state vertex; see Ref. [46].
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haveHðξ; ξ; tÞ ¼ 0 for self-consistency, which is in contra-
diction with Eq. (37).8 This contradiction is precisely the
source of the observed (infinite) violation of the positivity
bound in Eq. (20) at x ¼ ξ. Away from the crossover,
violation then persists until the relatively large value of
x ¼ xmðξÞ, as discussed above.

IV. SUMMARY

We investigate GPDs in the quark model for the pion
proposed in Ref. [22]. A feature of this model is the
covariant smearing of the Bethe-Salpeter vertex, which was
put forward in order to provide a realistic bound-state
structure beyond the pointlike approximation. The covar-
iant nature of the model, moreover, guarantees that all
constraints associated with Lorentz invariance of the
underlying matrix element are automatically satisfied.
This fact enables us in Sec. II to derive the DDs for the
model; see Eq. (A15). The GPD obtained from the DDs is
then scrutinized using the ratios in Eqs. (20) and (23).
Positivity of the norm on the light-front Fock space requires
both of these ratios to be less than unity, with the former
bound stronger than the latter. Both bounds, however, are
violated for nearly all values of x > ξ. This is shown in
Fig. 3. Such violation, moreover, is tied to a mismatch
between the end-point behavior of the quark distribution
and the crossover value of the GPD; see Eq. (37). As the
former vanishes and the latter is nonvanishing, the mis-
match leads to an infinite violation of the positivity bound.
The GPDs encompass physics of both quark distribu-

tions and form factors. We have shown that fully covariant
models, which can be tuned to reproduce the experimen-
tally measured quark distributions and form factors, need
not give a good description of GPDs. In fact, the behavior
of the model’s GPD at the crossover is inconsistent with its
quark distribution. While the model is defined at a low
scale, QCD radiation will drive the model’s quark distri-
bution at the end point away from zero as the renormaliza-
tion scale is raised. The positivity bounds, however, are
stable with respect to evolution. Thus, the defect in the
model at a low scale will persist at higher scales. The value
of the GPD at the crossover, moreover, directly enters the
imaginary part of the deeply virtual Compton scattering
amplitude. This imaginary part then appears in the cross
section through interference terms with Bethe-Heitler
processes, which enable GPDs to be accessed experimen-
tally. The model therefore fails to describe GPDs at the
most phenomenologically relevant point. The mismatch in
end-point and crossover behavior requires proper treatment
of higher Fock states in order to resolve. Such treatment
requires one to go beyond the impulse approximation.

While theoretically challenging, consistent modeling of
GPDs presents an essential test in the phenomenological
description of hadron structure. Passing this test will help
enable great insight into the nature of bound states in QCD.
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APPENDIX A: DERIVATION OF THE
DOUBLE DISTRIBUTIONS

In this Appendix, we calculate the pion matrix element of
the twist-two operators,Mμμ1���μn , in the model specified by
the Bethe-Salpeter vertex in Eq. (17). Thereby, we extract
the DDs, Fðβ; α; tÞ and Gðβ;α; tÞ, appearing in Eq. (6).
These are utilized in the main text to put the model under
scrutiny.
The key observation to obtain the DDs from Eq. (18) is

that the required binomial coefficients can readily be
obtained after reducing momentum factors appearing in
the numerator. Such factors arise due to the trace over
spinor indices, which appear in the numerator as

Nμ ¼ Tr½ðkþmÞγ5ðk − =PþmÞγ5ðk0 þmÞγμ�: ðA1Þ

The trace can be uniquely expressed in terms of factors
appearing in the denominator. In terms of the momentum
dependence, there are three such factors due to the inverse
propagators, which we write as

Aa ¼ ðk − PÞ2 −m2
a þ iε;

Bb ¼ ðkþ ΔÞ2 −m2
b þ iε;

Cc ¼ k2 −m2
c þ iε: ðA2Þ

These definitions allow us to refer to the constituent quark
mass and regulator mass as A and AR, respectively. It will
sometimes be convenient to writeAm for the former. Due to
its dependence on only the constituent quark mass, the trace
can be written as

Nμ ¼ 2P̄μðt − B − CÞ þ ΔμðB − CÞ
þ 4ðkþ Δ=2ÞμðM2 − t=2 −AÞ: ðA3Þ

Consequently there are four types of contributions to
consider: those without a momentum reduction, and the
three momentum reductions corresponding to canceling A,
B, and C.
In terms of the quantities defined in Eq. (A2), the

momentum denominators of Eq. (18) take the form

1

AA2
RBBRCCR

¼ ∂
∂m2

A

1

AAABBRCCR

����
mA¼mR

: ðA4Þ

8Mathematically speaking, it is possible that the crossover
value, as the sum of infinitely many vanishing contributions, need
not itself vanish. If this scenario is realized, however, the
positivity bound in Eq. (20) will nevertheless be violated.
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Notice that there are three factors from constituent quark
propagators in the above expression, ABC, which reflect
those appearing in the triangle diagram, Fig. 1. The factors
from propagators of the regulator particle with mass mR
appropriately reflect those resulting from the initial-state
Bethe-Salpeter vertex, ARCR, as well as the final state,
ARBR. This, of course, leads to the squaring of AR, which
is adeptly handled by the differentiation and subsequent
evaluation that is shown above. Products of two propa-
gators with identical momenta, such as BBR, can be written
as differences between single propagators, for example,

1

BBR
¼ 1

m2 −m2
R

�
1

B
−

1

BR

�
: ðA5Þ

It will be convenient to define the multiplicative factor

μj ¼
1

m2 −m2
j
; ðA6Þ

with j ¼ A and j ¼ R as the two cases required below. In
light of such relations, we can turn all products of multiple
propagators into various instances of an elementary product
of three propagators. As an example of this, we write the
following product as

1

AAABBRCCR
¼ 1

AaBbCc
μAμ

2
Rðδa;m − δa;AÞ

× ðδb;m − δb;RÞðδc;m − δc;RÞ; ðA7Þ

where we treat a, b, and c as indices that keep track of the
required masses in the various contributions.
At this point, it is useful to completely detail one

particular contribution to the model’s DDs, with the
understanding that the general procedure is quite similar
for all contributions. From the trace appearing in the
numerator, Eq. (A3), we focus on the term proportional
toM2, which does not require a momentum reduction. As a
result, this term depends on (a derivative of) the propa-
gators appearing in Eq. (A7). Up to multiplicative con-
stants, all contributions from this terms are of the form

δMμμ1���μn
abc ¼

Z
k

i
AaBbCc

4ðkþ Δ=2Þfμ

× ðkþ Δ=2Þμ1 � � � ðkþ Δ=2Þμng: ðA8Þ

Evaluation of the momentum integral can be carried out
using Feynman parametrization. With malice aforethought,
the Feynman parameters are chosen so that the α, β
variables of the DDs can be identified. To this end, notice
that we can write

1

AaBbCc
¼

Z
1

0

dβ
Z þ1−β

−1þβ
dα

1

D3
abc

; ðA9Þ

where the denominators have been combined according to
the recipe

Dabc ¼ βAa þ
1

2
ð1þ α − βÞBb þ

1

2
ð1 − α − βÞCc:

ðA10Þ

In terms of the shifted momentum variable lμ, given by
lμ ¼ ½k − βP̄þ ð1þ αÞΔ=2�μ, the combined denominator
takes the form

Dabc ¼ l2 −Dabc þ iε ðA11Þ

where

Dabc ¼ βm2
a þ

1

2
ð1þ α − βÞm2

b þ
1

2
ð1 − α − βÞm2

c

− βð1 − βÞM2 − ½ð1 − βÞ2 − α2� t
4
: ðA12Þ

As a result of the momentum shift, this particular con-
tribution to the twist-two matrix element is given by

δMμμ1���μn
abc ¼

Z
1

0

dβ
Z þ1−β

−1þβ
dα

Z
l

4i
½l2 −Dabc þ iε�3

× ðβP̄ − αΔ=2ÞfμðβP̄ − αΔ=2Þμ1 � � �
× ðβP̄ − αΔ=2Þμng; ðA13Þ

where we have appealed to Lorentz invariance and the
traceless property of the tensor. The four-momentum
integration can be performed, and the binomial expansion
carried out. This procedure allows for the direct identi-
fication of contributions to the F- and G-type DDs. For the
contribution in Eq. (A8), we thus find

δFðβ; α; tÞ ¼ 1

ð4πÞ2
β

Dabc
; δGðβ; α; tÞ ¼ 1

ð4πÞ2
α

Dabc
:

ðA14Þ

Having spelled out the necessary steps to obtain the DDs,
we carry out this procedure on each of the four contribu-
tions required by the momentum dependence of the
numerator appearing in Eq. (A3). Reducing the numerator
appropriately, forming propagator differences, and then
carrying out the Feynman parametrization and momentum
integration produces the DDs. Writing the F- and G-type
DDs in the form of a column vector, we find
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�
Fðβ; α; tÞ
Gðβ; α; tÞ

�
¼ N 2μR

ð4πÞ2
∂

∂m2
A

1

Dabc

�
μRðδb;m − δb;RÞðδc;m − δc;RÞ

�
μAðδa;m − δa;AÞ

�
βðM2 − t

2
Þ þ t

2

αðM2 − t
2
Þ

�
− δa;A

�
β

α

��

−
μA
2
ðδa;m − δa;AÞ

�
δb;Rðδc;m − δc;RÞ

�
1

1

�
þ ðδb;m − δb;RÞδc;R

�
1

−1

���
mA¼mR

: ðA15Þ

In the above expression, the first grouping of terms in
the first line arises from the nonreduced contribution,
while the second grouping in the first line arises from the
A-reduced contribution. The second line is the sum of B-
reduced and C-reduced contributions. Notice that under the
sign reversal of α, we have Dabcðβ;−α; tÞ ¼ Dacbðβ; α; tÞ.
Because the contributions to the DDs on the first line are
symmetric under the interchange b ↔ c, these terms
produce even and odd contributions to the F- and G-type
DDs, respectively. The oddness of contributions to
Gðβ; α; tÞ is due to the overall factor of α in the first
line. In the second line, the contributions to Fðβ; α; tÞ are
even under b ↔ c, while those for Gðβ; α; tÞ are odd under
this interchange. Thus the α-symmetry of the model’s DDs
is consistent with the required time-reversal invariance
properties.

APPENDIX B: CONVENTIONS AND
LIGHT-FRONT SPINORS

In this Appendix, we make explicit the conventions
employed above. This includes those for the light-front
spinors and the normalization leading to the two-body
wave function, which is detailed using a simple model with
a pointlike Bethe-Salpeter vertex.

1. Spinors

For any Lorentz four-vector, aμ, we define its light-
front components as a� ¼ 1ffiffi

2
p ða0 � a3Þ, along with

a⊥ ¼ ða1; a2Þ. Similarly, for Dirac matrices γμ, we have
γ� ¼ 1ffiffi

2
p ðγ0 � γ3Þ, and γ⊥ ¼ ðγ1; γ2Þ. The former can be

used to construct the Hermitian projection matrices
Λ� ¼ 1

2
γ∓γ�, which satisfy the usual properties:

Λþ þ Λ− ¼ 1, along with ðΛ�Þ2 ¼ Λ�, and Λ�Λ∓ ¼ 0.
It is also convenient to employ the Hermitian matrices
β ¼ γ0, and α⊥ ¼ γ0γ⊥. Manipulations of light-front spin-
ors are made more economical by the use of the identities:
βΛ� ¼ Λ∓β and α⊥Λ� ¼ Λ∓α⊥.
In the main text, we utilize light-front spinors for quarks

and antiquarks. These are solutions to the Dirac equation
and its conjugate

ðkon −mÞuλðkþ; k⊥Þ ¼ 0;

ðkon þmÞvλðkþ; k⊥Þ ¼ 0; ðB1Þ

where the light-front energy is on shell, k−on ¼ k2⊥þm2

2kþ . Such
solutions can be written in terms of the Dirac basis spinors

Xþ ¼ 1ffiffiffi
2

p

0
BBB@

1

0

1

0

1
CCCA; X− ¼ 1ffiffiffi

2
p

0
BBB@

0

1

0

−1

1
CCCA; ðB2Þ

which are eigenstates of the projector onto the so-called
good spinor components, ΛþXλ ¼ Xλ. Explicit solutions
for the light-front spinors are

uλðkþ; k⊥Þ ¼
1

ð ffiffiffi
2

p
kþÞ12 ½

ffiffiffi
2

p
kþ þ βmþ α⊥ · k⊥�Xλ;

vλðkþ; k⊥Þ ¼
1

ð ffiffiffi
2

p
kþÞ12 ½

ffiffiffi
2

p
kþ − βmþ α⊥ · k⊥�X−λ: ðB3Þ

The normalization of these spinors is such that

ūλðkþ; k⊥Þγþuλ0 ðqþ; q⊥Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
kþqþ

p
δλ;λ0 ; ðB4Þ

and similarly for the vλ. These spinors have been chosen to
agree with those of Ref. [47].
In computing the two-body light-front wave function

above, it is useful to note the product relations

ūλðkþ; k⊥ÞγþðkþmÞ ¼ 2kþūλðkþ; k⊥Þ;
ðk −mÞγþvλðkþ; k⊥Þ ¼ 2kþvλðkþ; k⊥Þ; ðB5Þ

which hold for any value of k− by virtue of the property
ðγþÞ2 ¼ 0. Additionally, we note that the spinors are eigen-
vectors of light-front helicity γ5, namely γ5Xλ ¼ λXλ, which
leads to the relation γ5vλðkþ; k⊥Þ ¼ −λu−λðkþ; k⊥Þ. In
computing the two-body light-front wave function, we
need the spinor product

ūλðkþ; k⊥Þγ5vλ0 ðqþ; q⊥Þ

¼ δλ;λ0
kþq−λ − qþk−λffiffiffiffiffiffiffiffiffiffiffi

kþqþ
p þ λmδλ;−λ0

kþ þ qþffiffiffiffiffiffiffiffiffiffiffi
kþqþ

p : ðB6Þ

In the case where qμ ¼ ðP − kÞμ, we arrive at the helicity
structure in Eq. (25).
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2. Normalization

To obtain the correct normalization of the two-body
light-front wave function from the covariant Bethe-Salpeter
wave function, we return to Eq. (15) in the case of a
pointlike vertex, Γðk; PÞ≡N . In such a simple model,
there are no higher Fock components. Thus the normali-
zation condition for the two-body wave function in this
case is fixed by that of the form factor at vanishing
momentum transfer. We use this fact to establish the
normalization convention for the two-body wave function
in more general models where there are nonvanishing
contributions from higher-Fock components.
In the pointlike case, the two-body light-front wave

function obtained from Eq. (24) reads

ψ ð2Þ
λλ0 ðx; k⊥Þ ¼ N

k−λδλ;λ0 −mλδλ;−λ0

xð1 − xÞ DWðx; k⊥;m;mÞ:

ðB7Þ
We omit the factor of θ½xð1 − xÞ� for simplicity. It remains
to show that the normalization condition is

X
λ;λ0

Z
dxdk⊥
2ð2πÞ3 jψ

ð2Þ
λλ0 ðx; k⊥Þj2 ¼ Nð2Þ; ðB8Þ

which is that implicitly used above in defining the two-body
quark distribution, Eq. (28). In the present pointlike model,
Nð2Þ ¼ 1 after suitable regularization; however, in themodel
of the main text, Nð2Þ < 1 due to higher Fock states.
To show the requirement Nð2Þ ¼ 1, we compute the form

factor at vanishing momentum transfer in the pointlike
model. As a particular instance of Eq. (18), the normali-
zation is fixed by

Z
k
Tr½Ψðk; PÞS−1ðk − PÞΨ̄ðk; PÞγþ� ¼ 2Pþ; ðB9Þ

where the right-hand side is simply the plus component of
the vector-current matrix element, ðP0 þ PÞμFðtÞ, evalu-
ated at vanishing momentum transfer. Writing out the
elements in Eq. (B9), we have the condition

N 2

2Pþ

Z
k

iNþjΔ¼0

AC2
¼ 1; ðB10Þ

where Nμ is the trace appearing in the numerator, Eq. (A1),
and the scalar propagators, A and C, are given in Eq. (A2).
The plus component of the trace at vanishing momentum
transfer takes the form

NþjΔ¼0 ¼ 4½kþðM2 −AÞ − PþC�
¼eff4ðkþM2 − PþCÞ: ðB11Þ

The second equality results from observing that: (i) cancel-
ing the single A appearing in the denominator leads to
light-front k− poles always lying in the same half plane and
(ii) while these poles escape to infinity when kþ → 0
leading to δðkþÞ contributions, such contributions are
multiplied by kþ and accordingly vanish. Thus A-reduced
light-front k− integrals vanish, because there are no zero-
mode singularities in this model; see, e.g., Ref. [48]. With
the trace written as above, the k− integral in Eq. (B10) can
be performed straightforwardly by contour integration.
This results in

N 2

Z
dxdk⊥
2ð2πÞ3

2ðk2⊥ þm2Þ
x2ð1 − xÞ2 DWðx; k⊥;m;mÞ2 ¼ 1: ðB12Þ

Comparing this expression with the pointlike model’s two-
body wave function in Eq. (B7), we see that indeed the
normalization is fixed to Nð2Þ ¼ 1.
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