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I present approximate results that include third-order soft-gluon corrections for the associated production
of a single top quark with a W boson. The calculation uses expressions from soft-gluon resummation at
next-to-next-to-leading-logarithm (NNLL) accuracy. From the NNLL resummed cross section, I derive
approximate next-to-next-to-next-to-leading-order (aN3LO) cross sections for the process bg → tW− at
LHC and Tevatron energies. The aN3LO top-quark transverse-momentum and rapidity distributions in tW
production are also presented.
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I. INTRODUCTION

In the current state of particle physics and its exploration
at collider energies, it is crucial to have a good theoretical
understanding of top-quark production cross sections and
differential distributions. An important top production
process at LHC energies is the associated production of a
top quark with aW boson, which proceeds via the partonic
process bg → tW− and is sensitive to the value of the Vtb
CKM matrix element as well as possible new physics.
Leading-order calculations and studies for tW production

and decayswere presented in [1–4] andwith some additional
corrections in [5,6]. The complete next-to-leading-order
(NLO) corrections to bg → tW− were calculated in Ref. [7].
The NLO corrections are large and need to be taken into
account in theoretical predictions. NLO corrections to tW
production, including the decays of both the top quark and
the W boson, were presented in Ref. [8]. Top-quark trans-
verse-momentum, pT , distributions in tW production at
NLO matched with parton showers appeared in Ref. [9].
Updated predictions for the total cross section at NLO have
appeared in [10]. For recent reviews, see Refs. [11–16].
Soft-gluon corrections for tW production were

resummed at next-to-leading logarithm (NLL) accuracy
in Ref. [17]. Fixed-order expansions of the NLL resummed
cross section were also derived in [17] at NLO, next-to-
NLO (NNLO), and next-to-NNLO (N3LO). The resumma-
tion of soft-gluon contributions was extended via two-loop
calculations to next-to-next-to-leading logarithm (NNLL)
accuracy in Ref. [18], where NLO and NNLO expansions
of the NNLL resummed cross section were also provided.
The soft-gluon corrections are an important component

of the cross section and they constitute numerically the
majority of the higher-order corrections, particularly near
partonic threshold. The expansion of the resummed cross
section provides approximate results at NLO and higher
orders. It was shown in Ref. [17] that the approximate NLO
cross section approximates very well the exact NLO result,
and the higher-order soft-gluon corrections are significant.
This is also in line with related results for single-top

production in the t and s channels [17,19,20], for top-
antitop pair production [20,21], and for W-boson produc-
tion at large transverse momentum [22].
Approximate NNLO (aNNLO) cross sections were

calculated for tW production at NNLL accuracy in
Refs. [18,20]. Good agreement has been found between
the theoretical predictions and recent experimental data
from the LHC [23–28]. The top-quark transverse momen-
tum distribution in this process was presented at aNNLO in
Ref. [29]. Some partial results for aNNLO top-quark
rapidity distributions were given in [30].
In this paper, we include third-order soft-gluon correc-

tions from NNLL resummation for tW production and
provide approximate N3LO (aN3LO) total cross sections
and top-quark transverse-momentum and rapidity distribu-
tions. In Sec. II, we discuss soft-gluon resummation and
present our analytical results for the soft-gluon corrections
and their implementation. In Sec. III, we present aN3LO
total cross sections for tW production at LHC and Tevatron
energies. In Sec. IV, we show aN3LO top-quark pT and
rapidity distributions in tW production at LHC energies.
We conclude in Sec. V.

II. SOFT-GLUON CORRECTIONS FOR bg → tW −

The leading-order diagrams for the process bg → tW−,
involving a bottom quark and a gluon in the initial state, are
shown in Fig. 1.
We assign the momenta,

bðp1Þ þ gðp2Þ → tðp3Þ þW−ðp4Þ; ð2:1Þ

FIG. 1. Leading-order diagrams for bg → tW−.
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and define s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ2, t1 ¼ t −m2
t ,

t2¼ t−m2
W , u¼ðp2−p3Þ2, u1¼u−m2

t , and u2 ¼ u −m2
W ,

where mt is the top-quark mass and mW is the W-boson
mass. We also define the variable s4 ¼ sþ t1 þ u2, which
measures distance from partonic threshold, where there is
no energy for additional radiation, but the top quark and
W-boson are not restricted to be produced at rest.
The soft-gluon corrections appear in the perturbative

expansion of the cross section as plus distributions of
logarithms of s4, specifically ½ðlnkðs4=m2

t ÞÞ=s4�þ, with k
taking values from 0 to 2n − 1 for the nth order corrections
in the strong coupling, αs.
The plus distributions are defined by their integrals with

functions f (which in our case involve the soft-gluon
coefficients that will be presented later in this section), as

Z
smax
4

0

ds4

�
lnkðs4=m2

t Þ
s4

�
þ
fðs4Þ

¼
Z

smax
4

0

ds4
lnkðs4=m2

t Þ
s4

½fðs4Þ − fð0Þ�

þ 1

kþ 1
lnkþ1

�
smax
4

m2
t

�
fð0Þ: ð2:2Þ

Resummation of soft-gluon contributions is a conse-
quence of the factorization of the cross section into various
functions that describe soft and collinear emission in the
partonic process. We take moments of the partonic scatter-
ing cross section, σ̂ðNÞ ¼ R ðds4=sÞe−Ns4=sσ̂ðs4Þ, with N
the moment variable, and write a factorized expression in
n ¼ 4 − ϵ dimensions,

σ̂tWðN; ϵÞ ¼ HtWðαsðμÞÞStW
�
mt

Nμ
; αsðμÞ

�Y
i¼b;g

JiðN; μ; ϵÞ;

ð2:3Þ
where μ is the scale, HtW is the hard-scattering function,
StW is the soft-gluon function for noncollinear soft-gluon
emission, and Ji are jet functions which describe soft and
collinear emission from the incoming partons.
The soft function StW requires renormalization and its N

dependence can be resummed via renormalization group
evolution [17,18]. We have

StWb ¼ Z�
SS

tWZS; ð2:4Þ
where StWb is the unrenormalized quantity and ZS is a
renormalization constant. Thus, StW satisfies the renorm-
alization group equation,

�
μ
∂
∂μþ βðgs; ϵÞ

∂
∂gs

�
StW ¼ −2StWΓtW

S ; ð2:5Þ

where g2s ¼ 4παs; βðgs; ϵÞ ¼ −gsϵ=2þ βðgsÞ with βðgsÞ
the QCD beta function, and

ΓtW
S ¼ dZS

d ln μ
Z−1
S ¼ βðgs; ϵÞ

∂ZS

∂gs Z
−1
S ð2:6Þ

is the soft anomalous dimension that controls the evolution
of the soft-gluon function StW . We determine ΓtW

S from the
coefficients of the ultraviolet poles of the relevant loop
diagrams calculated in dimensional regularization [17,18].
With the two-loop soft-anomalous dimension, we can

resum the soft-gluon corrections at NNLL accuracy in
moment space. For tW− production, the resummed partonic
cross section in moment space is given by [18]

σ̂resðNÞ ¼ exp

�X
i¼b;g

EiðNiÞ
�
HtWðαsð

ffiffiffi
s

p ÞÞStWðαsð
ffiffiffi
s

p
= ~N0ÞÞ

× exp

�
2

Z ffiffi
s

p
= ~N0

ffiffi
s

p
dμ
μ
ΓtW
S ðαsðμÞÞ

�
: ð2:7Þ

The first exponent [31,32] in Eq. (2.7) resums soft and
collinear corrections from the incoming b-quark and gluon
and is well known (see [18] for details).
We expand the soft anomalous dimension for bg → tW−

as ΓtW
S ¼ P∞

n¼1ðαs=πÞnΓðnÞ
S . The one-loop result is [17,18]

Γð1Þ
S ¼ CF

�
ln

�
−t1
mt

ffiffiffi
s

p
�
−
1

2

�
þ CA

2
ln

�
u1
t1

�
; ð2:8Þ

with color factors CF ¼ ðN2
c − 1Þ=ð2NcÞ and CA ¼ Nc,

where Nc ¼ 3 is the number of colors.
The two-loop result is [18]

Γð2Þ
S ¼ K

2
Γð1Þ
S þ CFCA

ð1 − ζ3Þ
4

; ð2:9Þ

where Γð1Þ
S is given in Eq. (2.8), K ¼ CAð67=18 − ζ2Þ −

5nf=9 [33] with nf ¼ 5 the number of light-quark flavors,
ζ2 ¼ π2=6, and ζ3 ¼ 1.2020569 � � �.
We expand the moment-space resummed cross section,

Eq. (2.7), in the strong coupling, αs, invert to momentum
space, and provide results through third order for the soft-
gluon corrections. In other words, we use the resummed
cross section in moment space as a generator of fixed-order
results instead of deriving a resummed cross section in
momentum space. The reason we do this is that fixed-order
expansions do not require prescriptions to avoid divergen-
ces in the resummed expression, and they have predicted
(see e.g. [17–19,21]) exact results very well for various top-
quark processes. This is in contrast to resummed results that
use prescriptions which have grossly underestimated the
exact results.
The analytical and numerical differences between our

approach and prescription-based resummations have been
described in detail in Ref. [34], where the theoretical
reasons for the differences were explained. The differences
arise due to unphysical subleading terms that are kept in
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minimal prescription approaches but not in the fixed-order
expansions of our approach (for detailed discussions, see
Secs. IIIC and IV in [34]). These unphysical subleading
terms do not appear in the exact results, and their numerical
impact is to underestimate the size of the exact corrections
by a very wide margin. This is best illustrated in the related
process of tt̄ production, where the exact NNLO correc-
tions are large. These NNLO results were predicted
extremely well by the aNNLO corrections in our formal-
ism, far better than by any other resummation procedure. In
fact, the minimal prescription prediction for the NNLO
corrections was smaller by an order of magnitude than our
results (for additional discussions and comparisons see
Refs. [13,20,21,30,35]). For a review of various resumma-
tions for top-quark production, see Ref. [36].
The differences between results from prescriptions

and fixed-order expansions are very large, in fact much
larger than higher-order terms at aN3LO and beyond. The

conclusion is that fixed-order approximations work best as
one has better control of matching and subleading terms,
and one does not need to worry about arbitrariness from
prescription methods. We will also give some numerical
discussion about these differences in the present context of
tW production in the next section; as we will see, the same
conclusions will be drawn here as well, as expected, given
the general nature of our considerations.
The NLO expansion of the resummed cross section for

tW production in momentum space is given in [17,18],
while the NNLO expansion is given at NLL in [17] and at
NNLL in [18]. The N3LO soft-gluon corrections from the
expansion of the resummed partonic cross section at NLL
can be found in [17]. In general, the N3LO soft-gluon
corrections to the double-differential cross section can be
calculated using the master formula in [37]. Explicitly,
we have

d2σ̂ð3Þ

dtdu
¼ FLO

α3sðμRÞ
π3

�
ðCF þ CAÞ3

�
ln5ðs4=m2

t Þ
s4

�
þ

þ 5

2
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�
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�
μ2F
s

�
þ 2CF ln

�
t1
u2

�
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�
m2

t

s

�
− CF

þ CA ln

�
u1
t1

�
− 2CA ln

�
−t2
m2

t

�
−
11

9
CA þ 2

9
nf

��
ln4ðs4=m2

t Þ
s4

�
þ
þ � � �

�
; ð2:10Þ

where μF is the factorization scale, μR is the renormalization scale, and for brevity we have provided only the highest two
powers of the logarithms. Here the leading-order factor is

FLO ¼ πV2
tbαsα

12m2
Wsin

2θWs2

�
−

1

2u21
ð2m2

W þm2
t Þ½u2ðsþ 3m2

t −m2
WÞ þ t1ðm2

t −m2
WÞ�

þ 1

u1s
½2t1ðm2

t −m2
WÞm2

W þ u2ðt1 þ u1Þm2
t þ sm2

t ð2m2
W þm2

t Þ� −
u1
2s

½2m2
W þm2

t �
�
; ð2:11Þ

where α ¼ e2=ð4πÞ and θW is the weak mixing angle. We
note that with NNLL accuracy all soft-gluon logarithm
terms can be fully determined at NNLO, but only the terms
with the four highest powers of the logarithms can be fully
determined at N3LO.
The result for the third-order soft-gluon corrections can

be written compactly as

d2σ̂ð3Þ

dtdu
¼ FLO

α3s
π3

X5
k¼0

Cð3Þ
k

�
lnkðs4=m2

t Þ
s4

�
þ
; ð2:12Þ

where the Cð3Þ
k denote the coefficients of the logarithms: for

example, Cð3Þ
5 ¼ ðCF þ CAÞ3.

III. aN3LO TOTAL CROSS SECTIONS
FOR tW PRODUCTION

We consider proton-proton (or proton-antiproton)
collisions with momenta pA þ pB → p3 þ p4. We define
the hadronic kinematical variables S ¼ ðpA þ pBÞ2, T ¼
ðpA − p3Þ2, T1 ¼ T −m2

t , T2 ¼ T −m2
W ,U ¼ ðpB − p3Þ2,

andU1 ¼ U −m2
t . They are related to the partonic variables

defined earlier via the relations p1 ¼ x1pA and p2 ¼ x2pB,
where x1 and x2 are the fractions of themomentum carried by
the partons in hadrons A and B, respectively.
The hadronic total cross section can be written as

σtW ¼
Z

Tmax

Tmin
dT

Z
Umax

Umin
dU

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

ð3:1Þ
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where the ϕ denote the parton distribution functions
(pdf), and x1¼ðs4−m2

t þm2
W−x2U1Þ=ðx2SþT1Þ, Tmax

min ¼
−ð1=2ÞðS−m2

t −m2
WÞ�ð1=2Þ½ðS−m2

t −m2
WÞ2−4m2

t m2
W �1=2,

Umax ¼ m2
t þ Sm2

t =T1 and Umin ¼ −S − T1 þm2
W , x

min
2 ¼

−T2=ðSþU1Þ, and smax
4 ¼ x2ðS þ U1Þ þ T2.

In particular, using Eq. (2.12) and the properties of plus
distributions, Eq. (2.2), the aN3LO corrections to the total
cross section, Eq. (3.1), can be written as

σð3ÞtW ¼ α3s
π3

Z
Tmax

Tmin
dT

Z
Umax

Umin
dU

Z
1

xmin
2

dx2ϕðx2Þ
x2

x2Sþ T1

×
X5
k¼0

�Z
smax
4

0

ds4
1

s4
lnk

�
s4
m2

t

�
½FLOC

ð3Þ
k x1ϕðx1Þ

− Fel
LOC

ð3Þ el
k xel1 ϕðxel1 Þ�

þ 1

kþ 1
lnkþ1

�
smax
4

m2
t

�
Fel
LOC

ð3Þ el
k xel1 ϕðxel1 Þ

�
; ð3:2Þ

where xel1 , F
el
LO, and Cð3Þ el

k denote the elastic variables,
calculated with s4 ¼ 0.

A. Cross sections at LHC energies

We now use these analytical expressions to calculate
aN3LO cross sections for tW production via the process
bg → tW− at the LHC and the Tevatron.
We begin with results for the total cross section using

MMHT2014 NNLO pdf [38]. In Table I, we provide
numerical values for the aN3LO tW− cross section at the
LHC for energies of 7, 8, 13, and 14 TeV, and two different
values of top-quark mass, mt ¼ 172.5 and 173.3 GeV. The
central value is calculated with μ ¼ mt. The first uncer-
tainty is from scale variation betweenmt=2 and 2mt and the
second is from the MMHT2014 NNLO pdf at 68% C.L. As
is already known from [18], the NNLO soft-gluon correc-
tions increase the NLO cross section by a sizable amount,
of the order of 10%. The aN3LO corrections further
increase the aNNLO cross section by ∼4%. We note that
the cross section for b̄g → t̄Wþ is identical.
At the Tevatron, with 1.96 TeV energy, the cross

section for bg → tW− is very small and we find the value
0.100� 0.004� 0.010 pb for mt ¼ 173.3 GeV. We note
that tW production has not been observed at the Tevatron
due to the small size of the cross section.
In Fig. 2, we plot the aN3LO cross section for bg → tW−

versus top-quark mass for LHC energies of 7, 8, 13, and
14 TeV. The dependence on the top-quark mass is relatively
mild given the small current uncertainties on the mass.
Even in the wide mass range from 165 to 180 GeV shown
in the figure, the variation of the cross section is of
order 20%.
In Fig. 3, we plot the aN3LO cross section sum total for

tW− and t̄Wþ production, i.e. the sum of the bg → tW− and

b̄g → t̄Wþ cross sections, as a function of
ffiffiffi
S

p
. The central

result is shown together with maximum and minimum
values arising from the total theoretical uncertainty. We
compare with LHC data at 7 TeV from ATLAS [23] and
CMS [24], at 8 TeV from an ATLAS/CMS combination
[27], and at 13 TeV from ATLAS [28]. We observe
excellent agreement of the theoretical curves with all
LHC data.
The inset plot in Fig. 3 displays the ratio of the aN3LO

cross section (central μ ¼ mt value, and maximum/
minimum values from the uncertainties) to the central
aNNLO cross section. The aN3LO/aNNLO ratio for the
central value is around 4% and, as expected, it is somewhat
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FIG. 2. The aN3LO cross section for tW− production at the
LHC with
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FIG. 3. The aN3LO sum total cross section for tW production
(sum of tW− and t̄Wþ) as a function of the LHC energy. The inset
plot displays the ratio of the aN3LO cross section, with theoretical
uncertainty, to the central aNNLO result at 13 TeV.
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higher at lower LHC energies where the threshold region is
more important.
We note that results using other pdf sets are similar.

In past work [18], the older MSTW2008 NNLO pdf [39]
were used. The MMHT2014 pdf slightly increase the cross
section relative to MSTW2008 as also noted in Ref. [29]. If
one uses the CT14 NNLO pdf [40], the central result is
essentially the same to that in the table, but the pdf
uncertainties are larger, e.g. 37.6� 0.9� 1.7 pb at
13 TeV energy for mt ¼ 173.3 GeV. The CT14 pdf
uncertainties are similar to the 90% C.L. MSTW2008
pdf uncertainties, while the MMHT2014 pdf uncertainties
at 68% C.L. are similar to the ones from the MSTW2008
pdf at 68% C.L.
We also note that ideally one should use N3LO pdf for

the aN3LO predictions. However, since N3LO pdf are not
available, the best choice at present is to use NNLO pdf.
The change is already very small between aN3LO results
using NLO pdf and NNLO pdf (0.1 pb difference at 13 TeV
energy), and thus we would expect a very small difference
from N3LO pdf if such pdf were available.

B. Effects of subleading terms

As noted before, at NNLO the coefficients of all the
powers of the soft logarithms can be fully determined; but
at N3LO only the coefficients of the four highest powers of
the logarithms can be fully determined. However, we can
still calculate the dominant terms in the coefficients of the
lowest two powers of the logarithms at N3LO; these terms
involve constants from the Riemann ζ function (ζ2, ζ3, ζ4
and ζ5 at aN3LO) that arise from the inversion from
moment space to momentum space (see Ref. [34] for
extended discussions on the structure of these ζ terms). In
fact, we determine such terms exactly, i.e. as they would
appear in a full calculation.
The fact that such ζ terms are dominant in the coef-

ficients of subleading logarithms can already be clearly
seen at NNLO. For specificity let us consider tW produc-
tion at 13 TeV LHC energy, and for convenience let us use
the notation Pk ≡ ½lnkðs4=m2

t Þ=s4�þ. We now study the
progression of the contributions to the cross section as
successive logarithmic terms are included. At aNNLO the
P3 terms (which are the leading logarithm terms) are 9.0 pb,
while the sum of the P3 and the P2 terms is 7.3 pb. The sum
of the P3, P2, and P1 terms is 4.2 pb. Finally, the sum of the
P3, P2, P1, and P0 terms (which is the complete aNNLO
correction) is 2.6 pb. Now, if instead we sum the P3 and P2

terms and we add to them only the ζ contributions in the P1

and P0 terms, then we find 2.5 pb. The difference between
2.6 and 2.5 pb is negligible. This shows that the lower
powers of the logarithms are dominated by ζ terms and it
would be a very good approximation to use them if the
complete P1 and P0 terms were not known. We find similar
results at 8 TeV LHC energy: 0.88 pb for the complete

aNNLO correction vs 0.84 pb for the one with incomplete
P1 and P0 terms. It is also worth noting that very similar
behavior is found in various other processes such as tt̄
[21,34] production and bb̄ → H [41], so this seems to be a
robust and widespread feature of soft-gluon corrections.
Similarly at N3LO, one can see that the subleading terms

are dominated numerically by ζ constants. At aN3LO the
P5 terms (which are the leading logarithm terms) are
14.5 pb at 13 LHC TeV energy. The sum of the P5 and
P4 terms is 13.4 pb, and the sum of the P5, P4, and P3 terms
is 6.1 pb. Also the sum of the P5, P4, P3, and P2 terms is
1.6 pb; adding to that sum the ζ constants in the P1 and P0

terms we find 1.4 pb, which is our final result for the
aN3LO soft-gluon corrections. Based on the previous
considerations at aNNLO, we expect that although at
aN3LO the P1 and P0 terms are incomplete, we have
included in them the dominant, i.e. the ζ, contributions.
This expectation is further strengthened by the numerical
dominance of the ζ terms in the coefficients where the full
result is known, and it is further corroborated by analogous
results for other processes including tt̄ production, as well
as the process bb̄ → H for which the full aN3LO correction
is known exactly [41]. In any case, there is a very small
difference between the results including or not including
the subleading P1 and P0 terms (1.4 vs 1.6 pb).
As discussed in the previous section, for our numerical

results we do not use a resummation because that would
require a prescription and involve unphysical subleading
terms (such as terms involving the Euler constant γE) in
addition to the exact and physical subleading terms dis-
cussed in the preceding paragraphs. The validity and
robustness of our fixed-order approach has been amply
confirmed by its success in predicting the exact results at
NNLO for tt̄ production as well as postdicting the NLO
results for tt̄ and single-top production as well as other
processes, as has already been discussed plenty of times
before (see e.g. Refs. [21,30,35]). Since tW production is
similar to the tt̄ process in mass scale and in the size of both
the aNNLO and aN3LO corrections, it is instructive to
again discuss the differences between fixed-order and
resummed approaches here and show once again that it
is best to use the fixed-order expansions. Since corrections
beyond aN3LO are negligible, the numerical differences
between the approaches are due to unphysical subleading
terms in the minimal prescription at NLO and NNLO, and
to a lesser extent at aN3LO.
We begin by noting that our predictions for soft-gluon

corrections at NLO approximate very well the exact NLO
results, as already discussed before in [17]. However, if one
includes unphysical subleading terms in the inversion from
moment space as used in the minimal prescription (but not
in our approach, see Sec. III C of Ref. [34]), then the NLO
corrections are reduced by a factor of two or more at all
LHC energies as well as at Tevatron energy. For example, at
13 TeV LHC energy the results with unphysical subleading

SOFT-GLUON CORRECTIONS FOR tW PRODUCTION AT … PHYSICAL REVIEW D 96, 034014 (2017)

034014-5



terms are 40% of the exact value. This already indicates that
the prescription approach is very problematic.
At NNLO, the soft-gluon corrections are again reduced

significantly at all energies if unphysical subleading terms
are included, the difference being of the order of 30%. At
aN3LO we again find similar differences between the two
approaches at all energies. The NLO and NNLO soft-gluon
terms dominate the corrections, with a smaller contribution
from aN3LO and negligible contributions beyond that;
therefore, the difference between the predictions for the
higher-order corrections is mostly due to that at NLO and
NNLO, which we find to be very big. Thus, the total higher-
order corrections (i.e. beyond leading order) are a factor of
two smaller in the minimal resummed result than in our
fixed-order expansion. We again note that our results for the
NLO and NNLO soft-gluon corrections are complete, and
thus include all soft-gluon terms. Since corrections beyond
N3LO are negligible in both approaches, the minimal
resummed results miss the numerical importance of the
soft gluons because of the vast underprediction of the true
size of the NLO, NNLO, and aN3LO corrections, in stark
contrast to our results.

C. tW and tt̄ interference

A topic that has been previously discussed at great length
in the literature is the intereference between tW production
and top-pair production [5–11,42–44]. Starting at NLO,
there are diagrams contributing to tW production that can
be thought of as top-pair production with decay of the
antitop. Various procedures have been suggested to deal
with this interference, including introduction of a cut on the
invariant mass of the Wb̄ system to avoid resonance of the
antitop propagator, diagram subtraction (implementing a
gauge-invariant subtraction term in the cross section),
diagram removal (excluding all NLO diagrams that are
doubly resonant), etc. Approaches have been proposed in
both the five-flavor and four-flavor schemes and imple-
mented in various Monte Carlo generators.
Experimentally, appropriate selection cuts are made and

discriminants are constructed to separate the tW signal
from the top-pair background [23–28]. Diagram removal
and diagram subtraction schemes have been used by both
ATLAS and CMS to generate events for simulation
samples, and consistency has been found between the
two approaches.
The interference problem does not directly concern our

calculations here. Our treatment of soft-gluon corrections
and their resummation is based on LO, i.e. 2 → 2,
kinematics. In other words, we consider soft-gluon emis-
sion from the partons in the diagram of Fig. 1. Therefore no
diagram overlap exists for the soft-gluon corrections
between the diagram for tW production, i.e. bg → tW−,
and the diagrams for tt̄ production, i.e qq̄ → tt̄ and gg → tt̄.
The higher-order soft-gluon corrections in our work are

important as they significantly enhance the tW cross
section.

IV. aN3LO TOP-QUARK pT AND RAPIDITY
DISTRIBUTIONS

We continue with top-quark differential distributions in
tW production. We use MMHT2014 NNLO pdf [38] in our
numerical results.
The top-quark transverse momentum, pT , distribution

can be written as

dσ
dpT

¼ 2pT

Z
Ymax

Ymin
dY

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2S

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

; ð4:1Þ

where T1 ¼ −
ffiffiffi
S

p ðm2
t þ p2

TÞ1=2e−Y , U1 ¼ −
ffiffiffi
S

p ðm2
t þ

p2
TÞ1=2eY , and Ymax

min ¼ �ð1=2Þ ln½ð1þ βTÞ=ð1 − βTÞ� with
βT ¼ ½1 − 4ðm2

t þ p2
TÞS=ðSþm2

t −m2
WÞ2�1=2. We note

that the total cross section can be obtained by integrating
the pT distribution, dσ=dpT , over pT from 0 to pmax

T ¼
½ðS−m2

t −m2
WÞ2−4m2

t m2
W �1=2=ð2

ffiffiffi
S

p Þ, and we have checked
for consistency that we get the same numerical results as in
the previous section.
In Fig. 4, we plot the aN3LO top pT distribution,

dσ=dpT , in bg → tW− production at LHC energies of 7,
8, 13, and 14 TeV. The results vary over 3 orders of
magnitude from the maximum values, at pT between 50
and 60 GeV, to the value at a pT of 500 GeV. In the inset
plot, we show the aN3LO top pT distribution at 13 TeV
energy (central value at μ ¼ mt, and maximum/minimum
values from the total theoretical uncertainty) in a linear plot.
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FIG. 4. The aN3LO top-quark pT distribution in tW− produc-
tion at the LHC with

ffiffiffi
S

p ¼ 7, 8, 13, and 14 TeV. The inset plot
shows the distribution at 13 TeV with theoretical uncertainty.
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The top-quark rapidity, Y, distribution can be written as

dσ
dY

¼
Z

pmax
T

0

2pTdpT

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2S

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

; ð4:2Þ

where pmax
T ¼ ððSþm2

t −m2
WÞ2=ð4Scosh2YÞ −m2

t Þ1=2.
We note that the total cross section can also be obtained
by integrating the rapidity distribution, dσ=dY, over rap-
idity with limits Ymax

min ¼�ð1=2Þlnðð1þβÞ=ð1−βÞÞ where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =S
p

, and again we have checked for con-
sistency that we get the same numerical results as in the
previous section.
In Fig. 5, we plot the aN3LO top rapidity distribution,

dσ=djYj, in bg → tW− production at energies of 7, 8, 13,
and 14 TeV. In the inset plot, we show the ratio of the
aN3LO result (central μ ¼ mt value, and maximum/mini-
mum values from total theoretical uncertainty) to the
central aNNLO result at 13 TeV energy. As expected,
the central ratio increases with jYj, reaching almost an 8%
increase at jYj ¼ 3. We also observe that the theoretical
uncertainty increases at large jYj.
In Fig. 6, we plot the normalized aN3LO top pT

distribution ð1=σÞdσ=dpT (left), and the normalized
aN3LO top rapidity distribution ð1=σÞdσ=djYj (right), in
bg → tW− production at LHC energies. Normalized dis-
tributions minimize the effects of choices of different pdf
sets and are thus often used in comparisons of data with
theoretical predictions. At larger LHC energies, the curves
get higher than those for smaller energies at higher pT and
jYj values, as expected.

V. CONCLUSION

The cross sections for the associated production of a
single top quark with a W boson, via bg → tW−, receive
large contributions from soft-gluon corrections. These soft-
gluon contributions have been resummed to NNLL accu-
racy via two-loop soft anomalous dimensions. From the
NNLL resummed formula, approximate N3LO double-
differential cross sections were derived. Numerical predic-
tions were provided for the total cross section for tW
production at LHC and Tevatron energies. The aN3LO
corrections enhance the aNNLO cross section for tW−

production at the LHC by ∼4%. The top-quark transverse-
momentum and rapidity distributions were also presented at
aN3LO for LHC energies.
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TABLE I. The aN3LO bg → tW− production cross section in pb in pp collisions at the LHCwith
ffiffiffi
S

p ¼ 7, 8, 13, and 14 TeV, using the
MMHT2014 NNLO pdf [38].

aN3LO tW− cross section (pb)

mt (GeV) LHC 7 TeV LHC 8 TeV LHC 13 TeV LHC 14 TeV
172.5 8.5� 0.2� 0.3 12.0� 0.3� 0.4 38.1� 0.9� 0.9 44.8� 1.0� 1.0
173.3 8.3� 0.2� 0.3 11.8� 0.3� 0.4 37.6� 0.9� 0.9 44.3� 1.0� 1.0
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