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We propose to constrain the gluon Wigner distribution in the nucleon by studying the exclusive
diffractive dijet production process in ultraperipheral proton-nucleus collisions (UPCs) at the RHIC
and the LHC. Compared to the previous proposal in Ref. [Y. Hatta, B. W. Xiao, and F. Yuan, Phys.
Rev. Lett. 116, 202301 (2016).] to study the same observable in lepton-nucleon scattering, the use of
UPCs has a few advantages: not only is the cross section larger, but the extraction of the Wigner
distribution from the data also becomes simpler, including its elliptic angular dependence. We
compute the corresponding cross section and evaluate the coefficients using models which include the
gluon saturation effects. A potential for the measurements of the Wigner distribution at current and
future experimental facilities is also discussed.
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I. INTRODUCTION

The so-called Wigner distribution is known to pro-
vide maximally detailed information on quantum sys-
tems describing the distribution of particles in
phase space. In the case of hadron structure, the
QCD Wigner distribution [1–3], or its Fourier trans-
form, the generalized transverse momentum dependent
distribution (GTMD) [4–7], provides multidimensional
partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8,9]). It gives
the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in
perturbative QCD, the question of its measurement
naturally arises.
The measurement of various nonperturbative ingre-

dients of QCD factorization (“partonometry”) is, in
general, a challenging problem. While spin-averaged
and spin-dependent parton distributions can be studied
in (inclusive) deep inelastic scattering (DIS), the studies
of the transverse momentum dependent distributions
(TMDs) rely mostly on semi-inclusive DIS (SIDIS),
and the generalized parton distributions (GPDs) are
extracted from the data on exclusive processes, mostly
deeply virtual compton scattering (DVCS). However,
these processes are sensitive to either the transverse
momentum q⃗⊥ or impact parameter b⃗⊥ of partons,
whereas the Wigner distribution Wðx; q⃗⊥; b⃗⊥Þ depends

on both.1 Is there a way to phenomenologically access
such detailed information on parton tomography in the
nucleon?
Recently, new observables to measure gluon GTMDs in

the small-x region in exclusive diffractive dijet production at
an electron-ion collider (EIC) have been proposed in
Ref. [10] (see also a related work [11]).2 In particular, it
was understood that the gluonGTMDdistribution at small-x
can be considered as a Fourier transform of an impact
parameter dependent forward dipole amplitude (or dipole
S-matrix), which provides access to the gluon saturation
effects at small-x (see e.g. Ref. [13]).Moreover, the process
is also sensitive to the characteristic azimuthal angular
correlation between q⃗⊥ and b⃗⊥ governed by the “elliptic”
gluon Wigner distribution [10,14,15]. The actual meas-
urement of the proposed observables in lepton-nucleon
scattering is challenging, as it requires reconstruction of
full dijet kinematics vetoing any other hadronic activity in
order to reduce the backgrounds associated with the
Pomeron and photon breakup. In addition, it is mandatory
to detect the forward proton to ensure exclusivity of the
diffractive process. While these experimental challenges
are likely to be overcome at the planned EIC, the extraction
of the GTMD is further complicated by the fact that the
cross section is not directly proportional to the GTMD, but
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1Here, x denotes the longitudinal momentum fraction.
Throughout this paper, we suppress the dependence on the
skewness parameter ξ. In the small-x region which we are
interested in, effectively ξ ≈ x.

2More recently, a method to access the quark GTMDs for
generic values of x in the exclusive double Drell-Yan process has
been proposed [12].
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is given by its convolution integral which is difficult to
invert. It is thus worthwhile to look for other processes in
which the latter problem becomes simpler. The vast
experimental data on hadronic and nuclear collisions are
now emerging from the LHC, and it would be very
desirable to exploit them for GTMD studies. We will show
below that diffractive dijet production in ultraperipheral
pA collisions (UPCs) at the LHC and at the RHIC is a
particularly important example that provides an essential
means for such studies.
In UPCs the relativistic colliding systems (such as

nucleons and nuclei) pass each other at large transverse
distances without interacting hadronically, only electromag-
netically through the emission of quasi-real Weiszäcker-
Williams (WW) photons [16,17]. The effective WW photon
flux of a charged particle is scaled as the square of its charge
and thus is noticeably enhanced for heavy ions making
UPCs in pA more advantageous compared to those in pp.
Besides, the WW spectrum is rather broad with the maximal
photon energy in the target rest frame scaling linearly with
the nuclear Lorentz factor. In addition, UPCs in pA provide
good experimental opportunities for studies of exclusive
diffractive observables by detecting the intact protons
and possibly also ions using the LHC forward proton
spectrometers (such as Roman pots in TOTEM [18],
CT-PPS [19] on the Compact Muon Solenoid (CMS) side
or Absolute Luminosity for ATLAS (ALFA) [20] and
ATLAS Forward Proton (AFP) [21,22] on the ATLAS
side). Together with measurements of the diffractive dijet
system, the latter would enable full kinematic reconstruction
by identifying the momentum transfers from the proton
and the ion separately.3 Due to a large relative distance
between the scattering particles, the measurements of
UPCs in pA can be performed with no significant
event pileup and with an efficient subtraction of nonexclu-
sive diffractive backgrounds (for more details, see e.g.
Refs. [23,24]).
The exclusive diffractive dijet photoproduction in UPCs

to the next-to-leading order at the LHCwas studied recently
in Ref. [25]. Compared to typical DIS kinematics at HERA,
it was understood that this process exhibits an enhanced
sensitivity to small momentum fractions of the Pomeron
exchange and a significant extension in the invariant mass
(or c.m. system energy) of the photon-proton system. In the
dipole picture, this process to the leading order can be
viewed as a fluctuation of the projectile photon into its
lowest Fock state, a qq̄ dipole with intrinsic separation r⃗⊥
that scatters off the gluon field in the nucleon target at impact
parameter b⃗⊥ bymeans of a color-singlet di-gluon exchange
at small-x. Such a process is illustrated by a representative
leading-order diagram in Fig. 1.

Due to color screening, at vanishing dipole sizes jr⃗⊥j ≪
Rhad compared to the typical hadronic scale Rhad, the partial
(elastic) dipole amplitude vanishes quadratically as ∝ jr⃗⊥j2
as the essence of the color transparency. In the opposite
limit of large jr⃗⊥j ∼ Rhad, the dipole amplitude levels off at
a certain momentum scale Q2

s , known as the saturation
scale, that is generally dependent on the momentum
fraction of the diffractive exchange, or on γp center of
mass energy. While the elliptic component of the Wigner
distribution characterizes the dependence of the corre-
sponding partial dipole amplitude on the azimuthal angle
ϕ, the ϕ-independent part of the Wigner distribution
determines the unintegrated gluon density in the target
nucleon, and at the same time both components are strongly
sensitive to the saturation dynamics [14,26].
In this paper, we explore the differential observables of

exclusive diffractive dijet production in pA UPCs, pA →
pþ jjþ A (and possibly also in AA → Aþ jjþ A [27]),
and show that both components of the gluon Wigner
distribution (and thus the corresponding GTMD) may be
efficiently extracted from such data. Due to the many
advantages of pA UPCs described above, the considered
process offers plausible opportunities for a measurement of
the elliptic component that is only a few percent effect. In
making the predictions for such a measurement, we have
employed the McLerran-Venugopalan (MV) model [28]
for the gluon distribution in the target accounting for an
inhomogeneity in the transverse plane following Ref. [26],
as well as the dipole S-matrix at small-x obtained by a
solution of the Balitsky-Kovchegov (BK) equation [29,30]
in the impact parameter space following Ref. [14].
The paper is organized as follows: In Sec. II we discuss

the formulation of exclusive diffractive dijet production
in pA UPCs in terms of the dipole S-matrix. Section III
is devoted to a discussion of numerical results for the
diffractive dijet observables, based upon the predictions for
the dipole S-matrix that employ the Balitsky-Kovchegov
equation (for the proton target) and the McLerran-
Venugopalan model (for a large nuclear target). Further
prospects for experimental measurements of the Wigner
distribution are given in Sec. IV. Finally, some concluding
remarks are summarized in Sec. V.

FIG. 1. A typical leading-order contribution to the exclusive
diffractive dijet production in pA UPCs.

3It should, however, be noted that detailed feasibility
studies for the double-tagging in pþ Pb runs are still to be
performed.
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II. EXCLUSIVE DIFFRACTIVE DIJET PRODUCTION IN pA UPCS

The dipole gluon Wigner distribution is defined as

xWðx; q⃗⊥; b⃗⊥Þ¼
2

Pþð2πÞ3
Z

dzþd2z⃗⊥
Z

d2Δ⃗⊥
ð2πÞ2 e

iq⃗⊥·z⃗⊥−ixP−zþ
�
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2

����Tr
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UþFþi
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�
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2

�
U−Fþi

a

�
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2

�
;

ð1Þ

where jPi is the proton state and U� is the staple-shaped
Wilson line which goes to light-cone infinity zþ ¼ �∞ and
comes back. The GTMD distribution xWðx; q⃗⊥; Δ⃗⊥Þ is
then given by the Fourier transform b⃗⊥ → Δ⃗⊥. The key
observation of Ref. [10] is that the gluon GTMD distribu-
tion at small-x is proportional to the Fourier transform of
the dipole S-matrix,

xWðx; q⃗⊥; Δ⃗⊥Þ ≈
2Nc

αs

�
q2⊥ −

Δ2⊥
4

�
SYðq⃗⊥; Δ⃗⊥Þ; ð2Þ

where Y ≡ ln 1=x is the rapidity and

SYðq⃗⊥; Δ⃗⊥Þ ¼
Z

d2r⃗⊥d2b⃗⊥
ð2πÞ4 eiΔ⃗⊥·b⃗⊥þiq⃗⊥·r⃗⊥
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TrU
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r⃗⊥
2

��
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;

ð3Þ

in terms of the lightlike Wilson line U in the fundamental
representation and the number of QCD colors Nc ¼ 3.
Equation (2) shows that the measurement of the GTMD
distribution boils down to that of the dipole S-matrix. In
order to be sensitive to both q⃗⊥ and Δ⃗⊥, it has been
suggested in Ref. [10] to measure exclusive diffractive dijet
production in lepton-nucleon scattering in which the proton
scatters elastically with momentum transfer Δ⃗⊥ and the
virtual photon splits into a qq̄ pair (dipole) and then
hadronizes into a dijet in the forward region with transverse
momenta k⃗1⊥ and k⃗2⊥ such that k⃗1⊥ þ k⃗2⊥ ¼ −Δ⃗⊥. By
measuring the differential cross section as a function of the
relative transverse momentum of the dijet P⃗⊥¼1

2
ðk⃗2⊥−k⃗1⊥Þ

at fixed Δ⃗⊥, one can get information about the q⃗⊥-
dependence of the GTMD. The problem, however, is that
the scattering amplitude M⃗ is given by a complicated
convolution integral of the dipole S-matrix. For the
transversely polarized virtual photon, the relation is

dσ

dP⃗⊥dΔ⃗⊥
∝ jM⃗j2;

M⃗ðP⃗⊥; Δ⃗⊥Þ ¼
Z

d2q⃗⊥
2π

P⃗⊥ − q⃗⊥
ðP⃗⊥ − q⃗⊥Þ2 þ ϵ2f

SYðq⃗⊥; Δ⃗⊥Þ; ð4Þ

where ϵ2f ¼ zð1 − zÞQ2 þm2
f. [Here, z (or 1 − z) is the

momentum fraction of the quark (or antiquark) and Q2 is
the photon virtuality. We neglect the quark mass mf.] In
order to make the extraction of S fromM easier, the authors
of Ref. [10] suggested looking at the small-Q2 region
where the q⃗⊥-integral in Eq. (4) is dominated by q⃗⊥ ∼ P⃗⊥.
In this paper, we push this idea to the extreme and consider
the photoproduction limit of small Q2 → 0.
In the lepton-nucleon scattering, approaching the kin-

ematical boundary Q2 → 0 is experimentally feasible as
HERA indeed has measured parton density functions
(PDFs) in the proton down to Q2 ¼ 0.05 GeV2. There
is, however, a more efficient way to prepare a flux of almost
real photons. This is by using pA UPCs in which the
nucleus is treated only as a source of WW photons. By
using a large nucleus, the smallness of the electromagnetic
coupling αem is compensated by the atomic number
squared Z2. Moreover, since the photons are almost on
shell, they only have transverse polarizations. [When
Q2 ≠ 0, the contribution from the longitudinally polarized
virtual photon should be added to Eq. (4); see also
Refs. [31,32].] Note in our case one should ensure
exclusivity of the process such that the proton and nucleus
remain intact. This is especially important for the proton as
one should detect the final proton in order to recover the full
kinematics necessary for GTMD. On the untagged nucleus
side we do not consider resolved photon processes, but we
rather concentrate on the so-called direct photon process.
Below we consider exclusive diffractive dijet production in
UPCs and demonstrate that, in the ideal case Q2 ¼ 0, the
convolution (4) can be analytically inverted.
Let us consider the kinematics of this process first. We

choose a frame in which the nucleus moves in the þz
direction and the proton moves in the −z direction. We are
interested in measuring the GTMD distribution of the
proton. For this purpose, we require a large rapidity gap
in the final state between the recoiling proton and the dijet at
forward rapidities y1;2 ≫ 1. The invariant mass of the dijet
providing the hard scale for the process is then given by

m2 ¼ 2ðkþ1 þ kþ2 Þðk−1 þ k−2 Þ − ðk⃗1⊥ þ k⃗2⊥Þ2
¼ 2k1⊥k2⊥ðcoshðy1 − y2Þ − cosϕ12Þ; ð5Þ

where the conventional definition for the light-cone
momenta l� ¼ ðl0 � l3Þ= ffiffiffi

2
p

, l⃗⊥ ¼ ðl1; l2Þ is adopted.
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The relevant value of the proton momentum fraction x is
determined from the condition ðxpþ qÞ2 ¼ m2 to be

x ¼ m2

4Epω
¼ k1⊥k2⊥ðcoshðy1 − y2Þ − cosϕ12Þ

2Epω
; ð6Þ

whereqμ ¼ ωð1; 0; 0; 1Þ is theWWphotonmomentum.The
rapidity gap is then

Δy ¼ minfy1; y2g þ ln

ffiffiffi
2

p
p−

Δ⊥

¼ min



ln

ffiffiffi
2

p
kþ1

k1⊥
; ln

ffiffiffi
2

p
kþ2

k2⊥

�
þ ln

2Ep

Δ⊥

∼ ln
Epω

k2⊥
∼ ln

1

x
¼ Y: ð7Þ

In order to relate pA UPCs to pγ collisions, we use the
standard formula

dσpA

dy1dy2d2k⃗1⊥d2k⃗2⊥
¼

Z
dω

dN
dω

dσpγ

dy1dy2d2k⃗1⊥d2k⃗2⊥
; ð8Þ

where the photon flux is given by

dN
dω

¼ 2Z2αem
πω

�
ξK0ðξÞK1ðξÞ −

ξ2

2
ðK2

1ðξÞ − K2
0ðξÞÞ

�
; ð9Þ

with ξ ¼ ω
RpþRA

γ and γ ¼
ffiffiffiffiffiffi
sNN

p
2mp

. Here, Rp and RA are the

radii of the proton and the nucleus, respectively. The flux
dN=dω decays exponentially when ξ ≫ 1. In the pþAu
collisions at the RHIC at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, we have
Z ¼ 79, γ ¼ 100, and RA ≈ 8 fm. The characteristic photon
energy corresponding to ξ ∼ 1 is ω ∼ 2 GeV. In the pþ Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV at the LHC, we have
instead Z ¼ 82, γ ≈ 2500, and ω ∼ 50 GeV. In the UPCs
the virtualities of the emitted photons are small compared to
the typical scales of a hard process so they can be
considered real to a good approximation. The pγ cross
section in Eq. (8) is calculated as follows [11]:

dσpγ

dy1dy2d2k⃗1⊥d2k⃗2⊥
¼ Ncαemð2πÞ2qþδðkþ1 þ kþ2 − qþÞ

×
X
f

e2f2zð1− zÞðz2 þ ð1− zÞ2ÞjM⃗j2;

ð10Þ

where qþ ¼ ffiffiffi
2

p
ω and

z ¼ k1⊥ey1
k1⊥ey1 þ k2⊥ey2

: ð11Þ

The amplitude M⃗ is given by Eq. (4) with Q2 ≈ 0,

M⃗ðP⃗⊥; Δ⃗⊥Þ ¼
Z

d2q⃗⊥
2π

P⃗⊥ − q⃗⊥
ðP⃗⊥ − q⃗⊥Þ2

Sðq⃗⊥; Δ⃗⊥Þ: ð12Þ

(In the following we suppress the subscript Y.)
As discussed in Refs. [10,14], the dominant angular

dependence of S is elliptic, namely, we can approximately
parametrize it as

Sðq⃗⊥; Δ⃗⊥Þ ¼ S0ðq⊥;Δ⊥Þ þ 2 cos 2ðϕq − ϕΔÞ ~Sðq⊥;Δ⊥Þ:
ð13Þ

The angular integral in Eq. (12) can then be calculated
analytically,

Z
∞

0

q⊥dq⊥
Z

2π

0

dϕq
P⃗⊥ − q⃗⊥

ðP⃗⊥ − q⃗⊥Þ2
S0ðq⊥;Δ⊥Þ

¼ 2πP⃗⊥
P2⊥

Z
P⊥

0

dq⊥q⊥S0ðq⊥;Δ⊥Þ; ð14Þ

Z
2π

0

dϕq
P⃗⊥− q⃗⊥

ðP⃗2⊥− q⃗⊥Þ2
cos2ðϕq−ϕΔÞ

¼πP⃗⊥
P2⊥

cos2ðϕP−ϕΔÞ
�
q2⊥
P2⊥

θðP⊥−q⊥Þ−
P2⊥
q2⊥

θðq⊥−P⊥Þ
�
:

ð15Þ
[Since the integrand in Eq. (15) is invariant under
Δ⃗⊥ → −Δ⃗⊥, or ϕΔ → ϕΔ þ π, there is no term proportional
to Δ⃗⊥ on the right-hand side.] We then trivially perform the
ω-integral in Eq. (8) using the δ-function and arrive at

dσpA

dy1dy2d2k⃗1⊥d2k⃗2⊥

≈ ω
dN
dω

2ð2πÞ4Ncαem
P2⊥

X
f

e2fzð1 − zÞðz2 þ ð1 − zÞ2Þ

× ðA2 þ 2 cos 2ðϕP − ϕΔÞABÞ; ð16Þ

where we defined

AðP⊥;Δ⊥Þ≡ −
Z

P⊥

0

dq⊥q⊥S0ðq⊥;Δ⊥Þ; ð17Þ

BðP⊥;Δ⊥Þ≡ −
Z

P⊥

0

dq⊥
q3⊥
P2⊥

~Sðq⊥;Δ⊥Þ

þ
Z

∞

P⊥
dq⊥

P2⊥
q⊥

~Sðq⊥;Δ⊥Þ: ð18Þ

In (16), it is understood that
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ω ¼ 1ffiffiffi
2

p ðkþ1 þ kþ2 Þ ¼
1

2
ðk⊥1ey1 þ k⊥2ey2Þ; ð19Þ

and we have neglected the quadratic terms ~S2 because the
magnitude of ~S is at most a few percent of that of S0 [14].
By a Fourier analysis, experimentalists can extract

A and B from the dijet data as functions of P⊥ and Δ⊥.
(Note that the overall sign of A and B cannot be determined.
But this can be fixed by comparing with model predictions;
see below.) From this, one can easily reconstruct
S0ðP⊥;Δ⊥Þ via

S0ðP⊥;Δ⊥Þ ¼ −
1

P⊥
∂

∂P⊥
AðP⊥;Δ⊥Þ: ð20Þ

This is a very direct determination of the dipole S-matrix.
Reconstructing the elliptic part ~S by inverting the relation
(18) is more involved. Let us write P2⊥ ¼ ev and q2⊥ ¼ eu.
Then Eq. (18) takes the following form (suppressingΔ⊥ for
the moment):

BðvÞ ¼
Z

∞

−∞
duð−eu−vθðv − uÞ þ ev−uθðu − vÞÞCðuÞ;

ð21Þ

where we defined CðuÞ ¼ q2⊥
2
~Sðq⊥Þ. The expression in

Eq. (21) can be deconvoluted by Fourier-transforming in
v, but there is a more direct method. By a further change of
variables, one can write Eq. (21) as

BðvÞ ¼
Z

∞

0

dte−tðCðvþ tÞ − Cðv − tÞÞ: ð22Þ

Expanding the difference in brackets into Taylor series
around the symmetric point, one gets

BðvÞ ¼ 2
X∞
k¼0

d2kþ1

dv2kþ1
CðvÞ: ð23Þ

From this one can easily obtain

dCðvÞ
dv

¼ 1

2

�
BðvÞ − d2BðvÞ

dv2

�
; ð24Þ

or in the original variables,

~SðP⊥;Δ⊥Þ ¼ −
∂BðP⊥;Δ⊥Þ

∂P2⊥
þ 2

P2⊥

Z
P2⊥

0

dP02⊥
P02⊥

BðP0⊥;Δ⊥Þ:

ð25Þ

We thus find that both S0 and ~S can be fully reconstructed
from the experimental data. Via Eq. (2), this can be used to
determine the gluon GTMD distribution. Its x-dependence
can also be studied by measuring the cross section as a

function of the rapidity gap Δy ≈ Y; see Eq. (7). Later we
discuss the experimental feasibility of such a measurement.

III. MODEL CALCULATIONS

In this section, we provide theoretical inputs and model
calculations for A and B which hopefully can serve as a
guidance for the experimental measurement of these
functions. On general grounds, we expect the following
asymptotics:

S0ðq⊥;Δ⊥Þ ∼
8<
:

const q⊥ → 0�
1

q⊥

�
4

q⊥ → ∞;

~Sðq⊥;Δ⊥Þ ∼
8<
:

q2⊥ q⊥ → 0�
1

q⊥

�
6

q⊥ → ∞:
ð26Þ

The behavior of S0 at large q⊥ follows from dimensional
analysis while that of ~S requires some explanations. At
small-q⊥, the factor q2⊥ comes from the J2 Bessel function
associated with the cos 2ϕ distribution. In coordinate space,
the elliptic part ~Sðr⊥; b⊥Þ has an extra factor r2⊥ compared
to S0ðr⊥; b⊥Þ; see the discussion around Eq. (22) of
Ref. [14]. In momentum space, this gives an extra factor
of 1=q2⊥ at large-q⊥. We thus deduce that

BðP⊥Þ ¼ −
1

P2⊥

Z
P⊥

0

dq⊥q3⊥ ~Sðq⊥Þ

þ P2⊥
Z

∞

P⊥
dq⊥

~Sðq⊥Þ
q⊥

∼

8<
:

P2⊥ P⊥ → 0�
1

P⊥

�
2

P⊥ → ∞:

ð27Þ

We now compute A and B for both proton and nuclear
targets using the BK model and the MV model, respec-
tively. In the first case, we use a numerical solution of the
BK equation with impact parameter obtained in [14]. For
technical reasons, in what follows we switch from the S-
matrix to the T-matrix as S ¼ 1 − T → −T. (The “1” term
does not contribute when Δ⃗⊥ ≠ 0, but in numerical
integrations with a finite momentum cutoff, this can cause
unphysical oscillations.) In Figs. 2 and 3, we show the
numerical results as 3D plots of AðP⊥;Δ⊥Þ and BðP⊥;Δ⊥Þ
functions, respectively, at Y ¼ ln 1

x ¼ 4 (left) and Y ¼ 8

(right). The model contains a single parameter (denoted R
in Ref. [14]) which sets the typical length scale. For a
realistic initial condition we choose R ¼ 0.4 fm, which
means that P⊥ ¼ 1 in these plots should be interpreted as
P⊥ ¼ 0.5 GeV. In Fig. 4, we show the Y-dependence of
AðP⊥Þ and BðP⊥Þ at fixedΔ⊥ ¼ 1. As one can expect from
the findings in Ref. [14], the location of the peak inA, which
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is identified with the saturation momentum QsðYÞ, moves
toward the larger P⊥ region at a constant “speed” represent-
ing the geometric scaling, whereas that of the elliptic part
moves very slowly with Y. The rapidity dependence of the
maximum peakmomentum ofA at fixedΔ⊥ seems the same
as the peak momentum of the Wigner distribution at a fixed
impact parameter depicted in Ref. [14].
Next we compute A and B for a nuclear target. (Though

our primary interest is UPCs in pA collisions, one can also

consider measuring the gluon Wigner distribution of a
nucleus from UPCs in AA collisions.) In the MVmodel, the
analytical expressions of S0ðr⊥; b⊥Þ and ~Sðr⊥; b⊥Þ for the
nuclear target in the impact parameter space have recently
become available in terms of the nuclear thickness function
TAðbÞ and its derivatives [26] (for earlier calculations, see
Ref. [15]). We have not implemented x-dependence in this
model. The nuclear saturation scale used in our calculations
scales as Q2

s;A ¼ A1=3Q2
0s, in terms of the proton saturation

FIG. 2. AðP⊥;Δ⊥Þ at Y ¼ 4 (left) and Y ¼ 8 (right). Here, both P⊥ and Δ⊥ are given in units of 1=R, R ¼ 0.4 fm.

FIG. 3. BðP⊥;Δ⊥Þ at Y ¼ 4 (left) and Y ¼ 8 (right). Here, both P⊥ and Δ⊥ are given in units of 1=R, R ¼ 0.4 fm.

FIG. 4. The rapidity evolution of A (left) and B (right) at Δ⊥ ¼ 1.0. Here, both P⊥ and Δ⊥ are given in units of 1=R, R ¼ 0.4 fm.
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momentum at zeroth impact parameter taken to be
Q2

0s ¼ R−2, R ¼ 0.4 fm, and the nuclear radius is RA ¼
ð1.12 fmÞA1=3. For a large nucleus with A ¼ 208, we have
performed the Fourier transforms fr⃗⊥; b⃗⊥g → fq⃗⊥; Δ⃗⊥g
and numerically evaluated the integrals in Eqs. (17) and
(18). The Gaussian weights expð−ϵrr2Þ and expð−ϵbb2Þ
[with ϵr ¼ ð0.5 fmÞ−2 and ϵb ¼ R−2

A ], effectively cutting off
effects at large fr⃗⊥; b⃗⊥g in the corresponding Fourier
integrals, have been used to ensure that no unphysical
contributions and oscillations arise for large enough limits
of integration.
The results for AðP⊥;Δ⊥Þ and BðP⊥;Δ⊥Þ are shown in

Figs. 5 and 6 (left and right panels, respectively). While at
small Δ⊥ < 0.3 the function AðP⊥;Δ⊥Þ is large and
positive definite, it quickly vanishes at large Δ⊥ and P⊥
where the function changes its sign and a single node
appears. The elliptic contribution BðP⊥;Δ⊥Þ also exhibits a
single node and a slower dependence on Δ⊥. For any Δ⊥, it
has a node in the P⊥ dimension whose position is almost
independent of Δ⊥. Similarly to A, the function B vanishes
at large P⊥. In the case of large nuclear targets, typical peak
values of both A and B at low Δ⊥ < 0.3 are 1–2 orders of
magnitude larger than those for the proton target found in
the BK model. At larger Δ⊥, the function A disappears very
quickly and becomes smaller than that of the proton.
Interestingly enough, at Δ⊥ > 0.7 the MV model in the

nuclear case predicts an order of magnitude larger B than
that in the proton case. This means that the elliptic Wigner
distribution can be better constrained by measuring the
exclusive dijet production cross section in AA UPCs.
Clearly, both the BK and MV model predictions exhibit
nontrivial dynamics in the low-P⊥ < 4 GeV region, while
they are smoothly and monotonously vanishing at larger
P⊥, making it difficult to probe the corresponding features
at the LHC.

IV. PROSPECTS FOR WIGNER DISTRIBUTION
MEASUREMENTS

In what follows, we study the key ingredients of the
Wigner function by measuring the functions A and B. The
process of interest is exclusive diffractive dijet production
in pA UPCs where the dijet system goes in the direction of
the nucleus, while on the opposite side, the intact proton is
measured.
The event selection is based on requiring a dijet system,

which should ideally be accompanied by large gaps at both
the photon and proton sides (see e.g. the ATLAS analysis of
multijet events in PbPb data [33]). The photon can, in
principle, develop its structure, but we are interested in the
exclusive initial state, i.e. the direct photon process; thus,
we have to require an isolated photon and hereby suppress
events with photon remnants. One has to require a precise

FIG. 5. The P⊥ dependence of A (left) and B (right) in the MV model for a nuclear target (A ¼ 208) following Ref. [26] at Δ⊥ ¼ 0.2
(solid lines), Δ⊥ ¼ 0.25 (dashed lines), Δ⊥ ¼ 0.3 (dotted-dashed lines), Δ⊥ ¼ 0.4 (long dashed lines), and Δ⊥ ¼ 0.5 (dotted lines).
Here, both P⊥ and Δ⊥ are given in units of 1=R, R ¼ 0.4 fm.

FIG. 6. The P⊥ dependence of A (left) and B (right) in the MV model for a nuclear target (A ¼ 208) following Ref. [26] at Δ⊥ ¼ 0.7
(solid lines), Δ⊥ ¼ 0.8 (dashed lines), Δ⊥ ¼ 0.9 (dotted-dashed lines), Δ⊥ ¼ 1.0 (long dashed lines), and Δ⊥ ¼ 1.1 (dotted lines).
Here, both P⊥ and Δ⊥ are given in units of 1=R, R ¼ 0.4 fm.
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measurement of the intact proton and possibly of the intact
nucleus; see the discussion below. As is seen from Eq. (16),
if we integrate over all ϕP and ϕΔ angles, the second
term proportional to AB disappears, and then we only probe
A as a function of P⊥ and Δ⊥, and hence S0, according
to Eq. (17).
Therefore it would be of primary importance to measure

the ϕ-integrated cross section separately as a function of
P⊥, while keeping Δ⊥ integrated out within its typical
detector acceptance window, and vice versa, as a function
of Δ⊥ integrating it over P⊥.
First, as we know from diffraction measurements at

HERA and Tevatron, the cross section falls roughly
exponentially with jtj ¼ Δ2⊥ as expð−bjtjÞ with a slope
b ≈ 7 GeV−2. This is one of the key observables used in the
context of constraining the dipole cross section or unin-
tegrated gluon PDFs from the data. At LHC, the t variable
is measured using special forward proton detectors
TOTEM (at the CMS side) or ALFA (at the ATLAS side)
with relatively small systematic uncertainties. It can also be
measured using e.g. the sum of the jet transverse momenta
found in the central detector but with a worse resolution and
a larger systematic uncertainty compared to forward proton
detectors. The t-dependence was indeed measured for the
elastic cross section in pp collisions rather thoroughly
using TOTEM (see for example Refs. [34,35]) and ATLAS
(see Refs. [36,37]). The t-distribution at the proton vertex
for pþ Pb collisions has not yet been measured, but the
data samples collected in pþ Pb runs where intact protons
are tagged by Totem or ALFA detectors exist and are ready
to be analyzed. Very recently, other sets of forward proton
detectors such as AFP [21,22] (ATLAS forward proton)
and CT-PPS [19] (CMS-TOTEM precision proton spec-
trometer) have been installed as well. Their sensors are
radiation hard enough to be inserted in the LHC beam at all
times, and they also dispose of fast time-of-flight detectors
to suppress pileup background. Consequently, the broad
physics program including measuring diffractive and
exclusive processes in pp and heavy-ion collisions can
be pursued. We are aware that while the physics case for the
use of forward proton spectrometers in the pp collisions
has been thoroughly studied during recent years, feasibility
studies (such as acceptance, event yield and background
rejection) for using these detectors in the heavy-ion
collisions still need to be done. The central system in
p+Pb collisions is expected to be shifted byΔy ≈ 0.46with
respect to that in pp collisions, which seems to still be
manageable. If the detection of the intact nucleus turns out
to be too difficult, one can require the zero-degree calo-
rimeter to be empty in the direction of the photon. With
results presented in this text, we hope to encourage and
motivate experimentalists to perform such studies.
Second, the P⊥ variable carries the information about the

hard scale of the event since it is identified with the
transverse momentum of the dijet system. At the LHC,

jets are usually measured above P⊥ of 15–20 GeV because
below these values, the resolution exceeds 10% and
measurements suffer from large systematic uncertainties.
The results shown in Fig. 4, however, indicate that the most
visible saturation effects in the Wigner function are
observed for P⊥ ≲ 10 GeV. In this respect, pA data from
the RHIC could be useful since jets with P⊥ > 5 GeV can
be measured rather reliably there. The Roman pots in the
PP2PP detector [38] measured intact protons only in pþAl
and pþAu runs, while ions could not be measured because
of large backgrounds.
If we are able to measure AðP⊥;Δ⊥Þ in the way

described above, the BðP⊥;Δ⊥Þ and hence ~S should be
reachable by measuring ðϕP − ϕΔÞ-dependence of the cross
section in bins of P⊥ and Δ⊥ since its amplitude is directly
related to the product AB.
To access the x-dependence of the Wigner function (or

that of S0 and ~S functions) one has to measure both the
ϕ-integrated and ϕ-dependent cross sections as functions
of jet rapidity difference ðy1 − y2Þ in fixed bins of P⊥ and
Δ⊥. Such a mapping could give us almost complete
information about the Wigner distribution within the
accessible kinematic windows.

V. CONCLUSIONS

To summarize, our work suggests and explores a new
potentially important way to constrain the gluon Wigner
distribution by measuring the exclusive diffractive dijet
production cross section in pA (and also in AA) UPCs at
high energies. We demonstrate that both components of the
gluon Wigner distribution may be extracted from these
data. The special role here is played by the elliptic
component of the Wigner (or the corresponding GTMD)
function providing the cos 2ϕ dependence on the angle ϕ
between the jets total and relative transverse momenta.
The angular dependence of the Wigner function was

recently shown [26,39] to be a complementary way to
describe an elliptic flow in pA collisions, the gluon trans-
versityGPDand angular correlation inDVCS [40] aswell as
the angular correlation in quasi-elastic scattering γ�TA →
A0X on a nucleusA [15]. It is of interest how this mechanism
should be combined with the “standard” collective mecha-
nism of elliptic flow generation in quark-gluon plasma. In
the pioneering studies of elliptic flow of direct photons
[41,42] and pions [43] in the dipole approach, this mecha-
nism was considered as an additive to the standard one. At
the same time, as explained in a recent paper [44], azimuthal
long-range rapidity correlations in proton-proton collisions
stem from the CGC/saturation physics, and not from quark-
gluon plasma production, implying rather a sort of com-
plementarity between dipole and plasmamechanisms. There
are also other attempts to describe the flowlike effects as
providing a complementary picture to the hydrodynamical
description, for example using the rope hadronization [45].
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Notably, such a relation to the elliptic flow may also be
the manifestation of complementarity (or “duality”)
between statistical and dynamical descriptions of heavy-
ion collisions [46].
Our study also aims to encourage experimentalists to

look in more detail to see if the Wigner function could be
measured at the RHIC, LHC and EIC. We tried to provide
first experimental ideas but more work would be needed
before making conclusions. It is encouraging that data
which could be used for such studies exist. There are
samples of pA data at both the LHC and RHIC, where
forward protons were tagged by Roman pots. The RHIC
environment seems to be more suitable to look at saturation
effects that are expected to be visible at pT < 10 GeV,
while the LHC data promise to provide more accurate
measurements of protons and jets.
Finally, we remind the reader that the Wigner distribu-

tion can also be studied in lepton-nucleon scattering at the
EIC, as originally suggested in Ref. [10]. By taking the
photoproduction limit Q2 → 0, the same functions A and B

should come into play. While the process does not enjoy the
Z2-enhancement, this may be compensated for by the high
luminosity achieved at the EIC.
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