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We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and
large ’t Hooft coupling λ. In this limit the individual baryons are described by classical solitons whose size
is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the
linear approximation outside the instanton cores to compute the interaction potential. We find the classical
geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is
that holographic nuclear physics provides a natural description for lightly bound states when λ is large.
For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and,
quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations
with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss
1=Nc and 1=λ corrections and the challenges to overcome to reach the phenomenological values to fit with
real QCD.
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I. INTRODUCTION

The Sakai-Sugimoto (SS) model is a holographic dual
model of QCD [1,2]. It is a top down approach and
consequently has very fewparameters to fit. Flavor dynamics
are encoded in the low energy action for the gauge field on
the flavor branes, and the baryons ofQCD are the instantonic
configurations of that gauge theory [3–6]. Quantization of
the degrees of freedom for an instantonic field of charge 1
creates a quantum system of states, whose transformation
properties and quantum numbers are just right to interpret
them as nucleons. Nuclear physics at low energy is thus
turned into a multi-instanton problem in a curved five-
dimensional background; this is the problem we discuss in
the present paper. We will approach the problem of nuclei in
the SS model from a “solitonic perspective”, in a way
somehow different, or complementary to other approaches
which already exist in the literature [7–14]. We shall use
many techniques developed in the context of nuclei within
the Skyrme model, for example [15,16,18–24].
The limit which we consider is that of the large number

of colors Nc and large ’t Hooft coupling λ. The instanton
radius scales as λ−1=2 and, as we shall verify a posteriori,
the distances between individual nuclei in the bound state
configuration scale as λ0. This suggests a linear approach
for the computation of the dominant two-body potential
between the nuclei. Our first result is that nuclear physics at
large Nc and large λ does have bound states in the linear

regime. In this picture, we build a charge-2 field configu-
ration by “gluing” together two single charge instanton
solutions, where by gluing we mean taking the linear
superposition. In the large Nc and λ limit we compute
exactly the energy of this field configuration and interpret
the result as the potential of interaction between nuclei.
This is proposed as a classical potential for the baryon
interaction, where its structure as an infinite sum of Yukawa
monopole and dipole interactions is interpreted as the
classical analogue of the exchange interaction with a meson
mediator. We show how classical nuclei with multiple
baryons can be described in this limit. The solution has
some analogies with the one obtained recently in a lightly
bound Skyrme model [25,26]. We confront our potential
with the one obtained in [8] through a different approach
and explain the differences and the limits of validity for the
various approaches at hand.
Focusing then on the two-nuclei system, we quantize the

coordinates of the two instanton fields and impose physical
constraints in order to restrict the spectrum of the system.
We see that the internal degrees of freedom of the system can
be rearranged and interpreted as the total spin and the isospin
of the system, and that they assume only integer values.
Among the states that are compatiblewith our constraints,we
find one with the right angular quantum numbers (spin one
and isospin zero) to be interpreted as the deuteron.
In Sec. II, we review the low energy action of the SS

model, concentrating on the solitonic solutions of the
theory. In Sec. III, by gluing together two solutions at
large spatial separation, we find a classical interaction
potential between the nucleons. We then generalize to
topological sectors of arbitrarily high charge. In Sec. IV the
B ¼ 2 system is quantized and we show that the minimal
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energy state in the spectrum has the same quantum numbers
as the deuteron. In Sec. V we discuss various types of
corrections from the inclusion of the massive modes.
We conclude in Sec. VI.

II. HOLOGRAPHIC BARYONS IN THE
SAKAI-SUGIMOTO MODEL

We take, as a starting point, the low-energy action of the
SS model, which is a five-dimensional gauge theory in a
particularly curved background. We call the gauge field A,
and its associated field strength tensorF. In these terms, we
are studying a field theory of the form

A∶R → uðNfÞ; ð2:1Þ

where the space-timeR has the topology ofR4j1, the metric
is given by

g ¼ HðzÞημνdxμdxν þ
1

HðzÞ dz
2; ð2:2Þ

and the warp factor, HðzÞ, is

HðzÞ ¼ ð1þM2
KKz

2Þ23: ð2:3Þ

From now on, we adopt the units ofMKK ¼ 1. The action is
given by

S ¼ −
Ncλ

216π3

Z ffiffiffiffiffi
jgj

p 1

2
trðF ΓΔF ΓΔÞd4xdz

þ Nc

24π2

Z
ω5ðAÞd4xdz: ð2:4Þ

The term in the second integral is the Chern-Simons term.
Nc is the number of colors from the dual QCD and it is
an overall multiplicative constant of the above action.
The classical equations of motion are thus completely
independent of Nc and the quantum corrections are
negligible when we take the Nc → ∞ limit.
We divide the field into two components: an Abelian Â

and a non-Abelian part A. Similarly for the field strength

AΓ ¼ AΓ þ
1

Nf
ÂΓ; F ΓΞ ¼ FΓΞ þ

1

Nf
F̂ΓΞ: ð2:5Þ

We rescale the action as

S ¼ 216π3

Ncλ
S; ð2:6Þ

and define the new coupling

Λ ¼ 8λ

27π
: ð2:7Þ

Furthermore, we restrict to the case of two flavors Nf ¼ 2

for simplicity. The rescaled action reads

S ¼ −
1

2

Z
H

3
2ðzÞ

�
1

2
F̂ΓΣF̂

ΓΣ þ trðFΓΣFΓΣÞ
�
d4xdz

þ 1

Λ

Z�
ÂΓtrðFΔΣFΞΦÞ þ

1

6
ÂΓF̂ΔΣF̂ΞΦ

�
ϵΓΔΣΞΦd4xdz:

ð2:8Þ

A. Classical baryon solution

We want to find static solutions of this theory. To do so,
we perform the static ansatz as

AI ¼ AIðxJÞ; A0 ¼ 0; ÂI ¼ 0; Â0 ¼ Â0ðxIÞ;
ð2:9Þ

that is, we remove all dependence of time coordinates
from the fields ÂI and the field A0. In this ansatz, we also
suppose that Â0 is not a propagating field, but a constrained
field fixed by the equations of motion. With this ansatz,
the action reads

S ¼
Z �

1

2H
1
2

ð∂iÂ0Þ2 þ
H

3
2

2
ð∂zÂ0Þ2

−
1

2H
1
2

trðF2
ijÞ −H

3
2trðF2

izÞ
�
d4xdz

þ 1

Λ

Z
Â0trðFIJFKLÞϵIJKLd4xdz; ð2:10Þ

and the equations of motion are

1

H
1
2

DjFji þDzðH3
2FziÞ ¼

1

Λ
ϵiJKLFKL∂JÂ0; ð2:11Þ

H
3
2DjFjz ¼

1

Λ
ϵijkFjk∂iÂ0; ð2:12Þ

1

H
1
2

∂i∂iÂ0 þ ∂zðH3
2∂zÂ0Þ ¼

1

Λ
trðFIJFKLÞϵIJKL; ð2:13Þ

where D is the covariant derivative with respect to the field
A. The last equation defines Â0 as the inhomogeneous
solution of the equation, obtained through convoluting the
Green function of the lhs operator with the rhs.
To have a finite action solution, the non-Abelian gauge

field must approach a pure gauge configuration on the
sphere at infinity, S3∞:

AIðxIÞjS3∞ ¼ g†∂Ig; g ∶ S3∞ → SUð2Þ: ð2:14Þ
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As π3ðSUð2ÞÞ ¼ Z, we have a discrete (but infinite)
number of topological sectors, labeled by the topological
charge

B ¼
Z

B0ðx; zÞd3xdz ¼ −
1

32π2

Z
trðFIJFKLÞϵIJKLd3xdz;

ð2:15Þ

that assumes integer values. We have an additional con-
strained field, Â0, that can be interpreted as an electrostatic
potential for the electric field F̂0I ¼ −∂IÂ0, sourced by the
topological charge.
We review the solution for the B ¼ 1 sector [4,5].

We assume a central ansatz AI ¼ AIðρÞ, with ρ ¼
ffiffiffiffiffiffiffiffi
xIxI

p
,

even if the curvature along the z direction explicitly breaks
invariance with respect to translations along z. We make the
’t Hooft ansatz

AI ¼ −σIJ∂JbðρÞ; Â0 ¼ aðρÞ; ð2:16Þ

where

σij ¼ ϵijkσk; σzi ¼ σi; σIJ ¼ −σJI: ð2:17Þ

The appropriate boundary conditions to have finite energy
and B ¼ 1 are

lim
ρ→∞

ρ2bðρÞ ¼ 1; b0ð0Þ ¼ 0: ð2:18Þ

Inserting the ansatz in the action and developing in orders
of 1=Λ we see that, at order Λ0 in the scaled action and
neglecting warp factors, we have the same action of the
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton:

bðρÞ ¼ 1

Λðρ2 þ μ2Þ ; ð2:19Þ

where μ2 represents the instanton size, which is a modulus
for the standard BPS instanton. The rescaled energy E ¼ −S
is given by

E ¼ 2π2
�
4þ 2

3
μ2 þ 256

5Λ2μ2

�
þOðΛ−2Þ: ð2:20Þ

The energy of the instanton then grows with its size, and
with the gravitational effect alone the instanton becomes
pointlike and placed at z ¼ 0. The instanton would shrink
to zero size, would it not be for the Chern-Simons term:
the Abelian field Â0 acts as an effective electric potential,
and as the topological charge density is positive every-
where the net effect of the electric field is to expand the
instanton. Those two effects combine to give an instanton
of definite classical size:

μ ¼ 4ffiffiffiffi
Λ

p
�
3

10

�1
4

: ð2:21Þ

As the energy is size dependent, μ is not a modulus for the
SS instanton, and it is fixed to the value (2.21) unless
stated otherwise. a is given by

aðρÞ ¼ 8

Λ
ρ2 þ 2μ2

ðρ2 þ μ2Þ2 : ð2:22Þ

In normal units, the soliton has energy (that we interpret as
rest mass)

E ¼ M ¼ NcΛ
8

þ
ffiffiffiffiffi
2

15

r
Nc: ð2:23Þ

The presence of a gauge field used to stabilize a soliton
is not a peculiarity of this model, and it has been amply
studied as an alternative term used to stabilize the
Skyrmion; see for example [16,17].
We now turn our attention to the moduli space of zero

modes. We have explicit translational invariance along the
xi coordinates, so we have three moduli Xi, indicating the
position of the instanton in physical space. We also have
global gauge transformations, which do not fall off to zero
at infinity. We get as the moduli space

M ¼ R3 × ðSUð2Þ=Z2Þ: ð2:24Þ

The calculation of the metric on the moduli space is similar
to the standard calculation for the standard BPS instanton,
and the result is the same [4]. It reads

gjM ¼ dxidxi þ 2μ2dΩSUð2Þ; ð2:25Þ

where dΩSUð2Þ is the standard SUð2Þ metric. The instanton
size μ and the coordinate along the z direction are massive
moduli.

B. The linear regime

We now perform an expansion in 1=Λ. The objective is
to find an expression for the fields and the equations of
motion (2.11), (2.12), and (2.13) and identify the linear
region of the soliton, the region of space where we can
approximate the gauge potential with its first term in the
1=Λ expansion [5,6].
We define the 1=Λ approximation through

AI ¼ Að1Þ
I þ Að2Þ

I þ � � � ; ð2:26Þ

where each term AðnÞ
I is of order 1=Λn. We are interested in

the equations of motion for the field Að1Þ
I . In the linear zone

(which is given by ρ > 1=
ffiffiffiffi
Λ

p
), we can take only the Að1Þ

I
contributions to the action and the equations of motion,
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effectively linearizing the system.1 Before proceeding, we
divide the field

Ai ¼ Aþ
i þ A−

i ; ð2:27Þ
where the superscript indicates parity with respect to
z → −z: the Az part is an even function, in the gauge
where the core potential has been obtained, so Az ¼ Aþ

z .
Restricting to the order 1=Λ terms in the equations of
motion [and dropping the (1) superscript], we have

∂i∂i

H
1
2

Â0 þ ∂zðH3
2∂zÂ0Þ ¼ source 1; ð2:28Þ

∂j∂j

H
1
2

Aþ
i þ ∂zðH3

2∂zA
þ
i Þ ¼ source 2; ð2:29Þ

H
3
2ð∂i∂iAþ

z − ∂i∂zA−
i Þ ¼ source 3; ð2:30Þ

∂j∂jA−
i − ∂j∂iA−

j

H
1
2

− ∂zðH3
2ð∂iAþ

z − ∂zA−
i ÞÞ ¼ source 4;

ð2:31Þ

where the source terms are delta functions or derivatives,
centered at ðx; zÞ ¼ ð0; 0Þ. By developing the core solution
to first order in 1=Λ, we obtain explicit expressions for
Â0; AI and use them to calculate the source terms.
To proceed, we define the ψn functions to solve the

equation

H
1
2∂zðH3

2∂zψnðzÞÞ þ k2nψnðzÞ ¼ 0 ð2:32Þ

for some numbers kn. We define the scalar products

ðf; gÞ ¼
Z þ∞

−∞

fðzÞgðzÞ
H

1
2

dz;

hf; gi ¼
Z þ∞

−∞
H

3
2fðzÞgðzÞdz: ð2:33Þ

This way, by partial integration, we can see that

ðψn;ψmÞ ¼
hψ 0

n;ψ 0
mi

k2n
; ð2:34Þ

and we can just set ϕn ¼ ψ 0
n. The ϕn obey the differential

equation

∂zðH1
2∂zðH3

2ϕnðzÞÞÞ þ k2nϕnðzÞ ¼ 0: ð2:35Þ
We can numerically calculate the functions ψn in the

following way. Let fðkÞ be the asymptotic value for

z → þ∞ of an even solution to (2.32) with k in place
of kn, and let gðkÞ be the same for odd functions.
Searching for normalizable solutions of (2.32) then
amounts to finding the zeroes of fðkÞ and gðkÞ. We plot
those functions in Fig. 1. The zeroes of fðkÞ are the entries
of kn with odd n, while the zeroes of gðkÞ are the entries of
kn with even n.
There is a subtlety: if we set kn ¼ 0, we see that

ϕn ∝ H−3
2 is a solution. We also have that hϕ0;ϕ0i

converges, and it has the value π, so we can include ϕ0

in the expansion of Az. We note that the primitive of ϕ0,
that would be ψ0 ∝ 2

π arctan z, still solves (2.32), but does
not fall off at infinity and is not normalizable under the
scalar product ðψ0;ψ0Þ.
We impose ðψnð0Þ ¼ 1;ψ 0

nð0Þ ¼ 0Þ for n odd and
ðψnð0Þ ¼ 0;ψ 0

nð0Þ ¼ 1Þ for n even, where the prime is
the derivative with respect to z. This way, we have that
ψnð−zÞ ¼ ð−1Þnþ1ψnðzÞ. We define

ðψn;ψmÞ ¼ cnδnm; hϕn;ϕmi ¼ dnδnm; ð2:36Þ

where cn and dn have to be determined numerically.
As k2nðψn;ψmÞ ¼ hψ 0

n;ψ 0
mi we have k2ncn ¼ dn. The only

particular value is the norm of ϕ0ðzÞ ¼ H−3
2ðzÞ: we have

d0 ¼ π, while c0 is divergent. In the potential we will have
to use as coefficients the cn with n odd and the dn with n
even. We plot the values of the pulses kn and the alternating
succession of cn and dn in Fig. 2.
With the previous choice of normalization, the com-

pleteness relations are

X∞
n¼1

ψnðzÞψnðz0Þ
H

1
2ðzÞcn

¼ δðz − z0Þ;

X∞
n¼1

H
3
2ðzÞϕnðzÞϕnðz0Þ

dn
¼ δðz − z0Þ: ð2:37Þ

We thus define, following [6], the Green functions

FIG. 1. Asymptotic value of ψkðþ∞Þ, plotted against k for
even and odd normalization. Their zeroes indicate a meson mass.

1Actually, the linear approximation is valid up to ρ < lnΛ: in
the region ρ > lnΛ the contributions AðnÞ

I with n > 1 become
more important than Að1Þ

I , so the linear approximation breaks
down in that region [5]. We will consider the situation where
Λ ≫ 1 and neglect that zone.
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Gðx; z; x0; z0Þ ¼ −
1

4π

X∞
n¼1

ψnðzÞψnðz0Þ
cn

e−knjx−x0j

jx − x0j ;

Lðx; z; x0; z0Þ ¼ −
1

4π

X∞
n¼0

ϕnðzÞϕnðz0Þ
dn

e−knjx−x0j

jx − x0j ; ð2:38Þ

which obey

∂i∂iG

H
1
2ðzÞ þ ∂zðH3

2ðzÞ∂zGÞ ¼ δ3ðx − x0Þδðz − z0Þ;

∂i∂iL − ∂z∂z0G ¼ δ3ðx − x0Þδðz − z0Þ;
∂zðH3

2ðzÞLÞ þH−1
2ðzÞ∂z0G ¼ 0: ð2:39Þ

We now take the linear approximation to the core
solution from [5]. In terms of the functions G and L, they
can be written as

Â0ðx; zÞ ¼ −
32π2

Λ
Gðx; z; 0; 0Þ;

Aþ
i ðx; zÞ ¼ −2π2μ2ϵijkσk∂jGðx; z; 0; 0Þ;

A−
i ðx; zÞ ¼ −2π2μ2σi∂z0Gðx; z; 0; z0Þjz0¼0;

Aþ
z ðx; zÞ ¼ −2π2μ2σi∂iLðx; z; 0; 0Þ: ð2:40Þ

We now apply the operators of the linear equations of
motion, obtaining the form of the source terms:

∂i∂i

H
1
2

Â0 þ ∂zðH3
2∂zÂ0Þ ¼ −

32π2

Λ
δ3ðxÞδðzÞ;

∂j∂j

H
1
2

Aþ
i þ ∂zðH3

2∂zA
þ
i Þ ¼ −2π2μ2ϵijkσk∂jδ

3ðxÞδðzÞ;

H
3
2ð∂i∂iAþ

z − ∂i∂zA−
i Þ ¼ −2π2μ2σi∂iδ

3ðxÞδðzÞ;
∂j∂jA−

i − ∂j∂iA−
j

H
1
2

− ∂zðH3
2ð∂iAþ

z − ∂zA−
i ÞÞ ¼ 2π2μ2σiδ

3ðxÞ∂zδðzÞ: ð2:41Þ

We can generalize the linear form with an arbitrary
SUð2Þ phaseG and an arbitraryR3 position, X: this is done
by substituting Gðx; z; 0; 0Þ with Gðx; z; X; 0Þ (and analo-
gously for L), and every occurrence of the Pauli matrices σi
with GσiG†. We will use this linear form of the fields in
the following when calculating the interaction potential
between nuclei.

III. NUCLEON-NUCLEON POTENTIAL
AND CLASSICAL NUCLEI

We now perform the calculation of the holographic
potential between nucleons. To do so, we place the
instantons with their cores at a distance R from each other,

which we assume to be greater than ∼μ, and we set both
holographic coordinates for the two instantons to zero in
order to minimize the energy. The system is diagrammati-
cally shown in Fig. 3. We write the single instanton fields
by writing the first one as in (2.40) and writing the second
one by translating it to ðR; 0; 0Þ and assigning an arbitrary
phase matrix G to it. We call Ap the gauge field centered at
the origin, (0, 0, 0), and Aq, the gauge field centered at
ðR; 0; 0Þ. Due to the distance between the fields, we can
take the gauge field in the whole space to be Ap þAq: in
the “core 1” region, Aq is small and can be considered as a
small perturbation, while the opposite situation happens in
“core 2.” There is a linear zone where both fields are weak
and can both be approximated by their linear form.

FIG. 2. Left: Values of the pulses kn. Right: Values of cn when n is odd and dn when n is even.
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A. The interaction potential

The energy of the configuration can be found by using
the fact that the B ¼ 2 field can be approximated by the
sum of two B ¼ 1 fields and one of the coefficients of the
sum can always be taken as a linear perturbation. We start
by writing the scaled energy, through an integration by
parts:

E ¼
Z �

1

2H
1
2

trðF2
ijÞ þH

3
2trðF2

izÞ

−
1

2
Â0

�∂i∂i

H
1
2

þ ∂zðH3
2∂zÞ

�
Â0

�
d3xdz: ð3:1Þ

In the integration by parts, we have used the fact that the
functions Â0 are supposed to vanish at the boundaries fast
enough for the energy to be finite. We split this integral
into two: we will see that the first two terms (called E1) give
the dipole interaction contribution, while the last one
(called E2) gives a monopole interaction.
Let us start with the evaluation of the monopole term

E2 ¼ −
Z

1

2
Â0 △ Â0d3xdz; ð3:2Þ

where △ is the Laplace-Beltrami operator

△ ¼ ∂i∂i

H
1
2

þ ∂zðH3
2∂zÞ: ð3:3Þ

In our approximation, we can divide the topological charge
density as B0 ≃ B0;p þ B0;q, so that we also divide the
gauge field into Âpþ Âq, such as△Âp ¼ −ð32π2Λ−1ÞB0;p,
and similarly for Âq. The monopole term (3.2) becomes

E2 ¼ −
1

2

Z
ðÂp

0 △ Âp
0 þ Âq

0△ Âq
0 þ Âp

0 △ Âq
0 þ Âq

0△ Âp
0 Þ

× d3xdz: ð3:4Þ

The terms Âp
0 △ Âp

0 þ Âq
0 △ Âq

0 contribute to the self-
energies of the instanton and we neglect them as we are
really interested in the cross terms in order to obtain the
potential. Let us then take Âp

0 △ Âq
0 ¼ −32π2Λ−1ÂpB0;q.

B0;q is peaked in the q zone, where Âp must be taken as its
linear approximation. We can then suppose B0;q to be

strongly localized at ðR; 0; 0Þ through the delta function:
B0;q ≃ δ3ðx − RÞδðzÞ. In this approximation, the topological
charge of the solitonAq is still 1. Any contribution that tends
to enlarge the soliton comes from the electrostatic field and is
then multiplied by some negative power of Λ: as we are
keeping the linear order in Λ we can neglect those contri-
butions.With the δ functions, the integral is easily performed
and we can do the same with the other term too. Summing
everything and removing the self-energies, we obtain the
monopole part of the potential. Using the linear form of the
fields, we have

Vm ¼ 16π2

Λ
ðÂp

0 ðR; 0Þ þ Âq
0ð0; 0ÞÞ

¼ 256π3

Λ2

X∞
n¼1

1

c2n−1

e−k2n−1R

R
: ð3:5Þ

This is the monopole potential, where only the contribution
of kn with odd n matters. This monopole interaction can be
interpreted as a classical analogue of the exchange potential
between the instantons, which interact by exchanging
mesons ω2n−1 with masses k2n−1.
The contribution of the dipole part can be calculated

through a trick, similar to the one used in [21]. Dividing the
space into P (core 1), Q (core 2), and LZ (linear zone), we
split the integral as

Z
R
¼

Z
P
þ
Z
Q
þ
Z
LZ

: ð3:6Þ

In the P region, we can take, as a first approximation, the
whole gauge field to be coincident with Ap

I . Then, we relax
this approximation by admitting variations of the form
δAp

I ¼ Aq
I , always taking the first order in Aq

I . The integral
over the P region of the unperturbed field is a contribution
to its self-energy, while the variation of this energy
accounts for the interaction between the instantons and
consequently is the only piece that we need. The variations
that we need are

δFp
IJ ¼ Dp

I A
q
J −Dp

JA
q
I ;

δ

Z
trðFp

IJF
p
IJÞd3xdz ¼ 4

Z
trðFp

IJD
p
I A

q
JÞd3xdz; ð3:7Þ

where we denote the field strength and the covariant
derivative built from Ap

I as Fp and Dp, respectively. We
can do the same in the Q and LZ region, interchanging the
roles of the two fields. Noting

Pðp;qÞ
ij ¼ 2Fðp;qÞ

ij

H
1
2

; Pðp;qÞ
iz ¼ 2H

3
2Fðp;qÞ

iz ; ð3:8Þ

FIG. 3. Soliton configuration for the charge-2 sector.
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we can write

Vd ¼
Z
P
trðPp

IJD
p
I A

q
JÞd3xdzþ

Z
Q∪LZ

trðPq
IJD

q
I A

p
J Þd3xdz:

ð3:9Þ

Since the gauge field in the core region goes as 1=Λ for great
Λ and so does the linear approximation, we can approximate
the covariant derivative with the usual one. We can then use
Stokes’ theorem, using the fact that ∂P ¼ −∂ðQ ∪ LZÞ,
to get

Vd ¼
Z
∂P
ðPp

IJA
q
J − Pq

IJA
p
J ÞdΓI; ð3:10Þ

where dΓI is a vector field normal to ∂P, pointing outwards
(remember that P is a ball in four dimensions). In the region
∂P, both fields take their linear form, sowe can linearize the
field strength tensors (neglecting the commutator) and
approximate every Aðp;qÞ with their linear approximations.
We use Stokes’ theorem again to return inside the P region.
Derivatives act only on the field strength, aswhen they act on
the gauge field, the first term cancels the second one. Using
the linear equations ofmotion, we have ∂IP

q
IJ ¼ 0, as we are

integrating in theP region and the core of Aq is outside of it.
Performing the division in parity components, we get the
integral

Vd ¼ 2

Z
P
tr

�
Aþ;q
i

�∂j∂jA
þ;p
i

H
1
2

þ ∂zðH3
2∂zA

þ;p
i Þ

��
d3xdz

þ 2

Z
P
H

3
2trðAþ;q

z ð∂i∂iA
þ;p
z − ∂i∂zA

−;p
i ÞÞd3xdz

þ 2

Z
P
tr

�
A−;q
i

�∂j∂jA
−;p
i − ∂j∂iA

−;p
j

H
1
2

− ∂zðH3
2ð∂iA

þ;p
z − ∂zA

−;p
i ÞÞ

��
d3xdz: ð3:11Þ

Using the equations of motion (2.41), we see that the
operators in the parentheses, when applied to the Ap fields,
give terms proportional to a Dirac delta function, such that
the integrals are simply done by evaluating Aq at the origin
and then adding the necessary constants and derivatives.
The first line of the potential reads

Vd;1 ¼
256π3

Λ2

6

5

X∞
n¼1

1

c2n−1

�
Miik22n−1R

2
e−k2n−1R

R3

−Mij∂i∂j
e−k2n−1R

R

�
: ð3:12Þ

Here we have used the explicit form of μ2 (2.21) in order to
obtain the Λ−2 dependence, just as we did with the
monopole term. The matrix Mij ¼ MijðGÞ is equal to

MijðGÞ ¼
1

2
trðσiGσjG†Þ: ð3:13Þ

This term can be interpreted as the sum of Yukawa dipole
interactions between the two instantons, mediated by the
infinite tower of mesons, ρ2n−1, which have the same
masses as the ω2n−1 mesons. While the monopole inter-
action is always repulsive, the dipole interaction depends
on the phase matrix G, which is interpreted as the
isorotation that we must perform on the first object in
order to obtain the same iso-orientation from the second
object.
The last part of the potential comes from the last two

lines of (3.11). They are combined in the term

Vd;2 ¼ −
256π3

Λ2

6

5

X∞
n¼0

1

d2n

×

�
Miik22nR

2
e−k2nR

R3
−Mij∂i∂j

e−k2nR

R

�
: ð3:14Þ

There are some fundamental differences between Vd;1 and
Vd;2. The first one is the overall sign. The second is the fact
that we are also including a k0 contribution: as k0 ¼ 0, Vd;2

contains a massless, long range interaction. The particle
that we classically take as the mediator of this long range
interaction is the pion, which is massless in our model. The
other mesons, of mass k2n, are interpreted as a tower of a2n
mesons.
Now that we have a final result for the interaction

potential, we scale back to physical units and perform
some changes in order to have a more generalized result
which we will use in the following sections. We denote the
coordinates of the first instanton by ðX1; BÞ, and the
coordinates of the second instanton by ðX2; CÞ, where
Xn are 3-vectors and B and C are SUð2Þmatrices. The field
configuration described by this coordinate configuration is

BAIðx − X1ÞB† þ CAIðx − X2ÞC†: ð3:15Þ

We make the change of variables, X1;i − X2;i ¼ ri and
Ri ¼ ðX1;i þ X2;iÞ=2, as is usually done in two-body
problems: hence the potential will only depend on the
relative distance ri. It is also easy to find out that G has to
be substituted simply by B†C, indicating the relative
orientation of the two objects. We define the symmetric
tensor

Pijðr; kÞ ¼ δijððrkÞ2 þ rkþ 1Þ − rirj
r2

ððrkÞ2 þ 3rkþ 3Þ;
ð3:16Þ

with r on the rhs indicating the modulus of the position
vector, and express the potential as
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Vðr; B†CÞ ¼ 4πNc

Λ

�X∞
n¼1

�
1

c2n−1

e−k2n−1r

r
þ 6

5

1

c2n−1

×MijðB†CÞPijðr; k2n−1Þ
e−k2n−1r

r3

−
6

5

1

d2n

e−k2nr

r3
MijðB†CÞPijðr; k2nÞ

�

−
6

5π

1

r3

�
trM − 3

r ·M · r
r2

��
: ð3:17Þ

We have separated the pion contribution from the rest of the
a meson tower and used explicitly d0 ¼ π and Pijðr; 0Þ ¼
δij − 3ðrirjr2 Þ.

B. Looking for a bound state:
The classical deuteron

We can obtain a classical description of the deuteron
by looking for a minimum energy configuration,
where we choose the coordinates of our instantons to
minimize (3.17).
We have to choose the relative orientation of the

instantons. To do that, it is useful to switch to the axis-
angle notation in order to write the rotation matrix Mij.
As Mij is an SOð3Þ matrix, it can be specified by giving
two components of a versor, the axis of rotation n (where
the third component is decided from the normalization
of the vector, with a positive sign) and an angle α,
indicating the rotation around the versor (counterclock-
wise). We can then express any M as

Mij ¼ δij cos αþ ð1 − cos αÞninj þ ϵijknk sin α: ð3:18Þ

The orientation-dependent part is then given by

MijPijðr; kÞ ¼
�
1þ cos α − ð1 − cos αÞ ðn · rÞ2

r2

�
ðrkÞ2

− ð1 − cos αÞ
�
3
ðn · rÞ2
r2

− 1

�
ðrkþ 1Þ:

ð3:19Þ

We need a negative contribution from the dipole part to
contrast the monopole part. Our best bet is to choose r,
along with α and n, such that we get a positive contribution
from MijPij, as that would mean that the long range force
mediated by the pion is attracting the two objects, in contrast
to the potential. We then choose the configuration of phase
opposition, where r and n are orthogonal and α indicates a
half rotation: we can choose ri ¼ ðR; 0; 0Þ; ni ¼ ð0; 0; 1Þ;
and α ¼ π, which corresponds to MijPij ¼ 2rkþ 2. This
leads toB†C ¼ �iσ3. Wewill chooseB ¼ 1 andC ¼ iσ3 as
the phase opposition configuration (numerical analysis
confirms that the global minimum is attained in phase

opposition). The potential in this channel is plotted against
the distance between the two instantons R in Fig. 4. We also
calculate the asymptotic behaviors of the potential in the
r → 0 and r → ∞ limits, which are given by

Vðr; iσ3Þ →
4

r2
Nc

Λ
for r → 0; ð3:20Þ

Vðr; iσ3Þ → −
48

5r3
Nc

Λ
for r → ∞: ð3:21Þ

The behavior for r → ∞ is extracted by considering only
the pion exchange interaction (which is the leading one
when r → ∞, as it is long range), while the behavior for
r → 0 is considered by evaluating the monopole potential
(3.4) and neglecting the gravitational warp: this is a
standard problem of interaction for point charges in flat
four-dimensional space, with charges given by the first
line of (2.41) with HðzÞ ¼ 1, while the dipole part of the
interaction cancels.
We confront our potential with the potential obtained in

[9], through the consideration of an effective QFT of
fermions (representing baryons) exchanging bosons (the
mesons), which is obtained from the SS model.2 We see
that the two potentials look identical, apart from a numeri-
cal coefficient of 3 in front of the dipole part: our dipoles
are three times as strong as in [9]. The reason for this
difference will be clarified in Sec. V E.

C. Binding energies and classical nuclei

In the attractive channel, the potential (sketched in
Fig. 4) assumes a minimum at R0 ¼ 2.059, of value
Vmin ¼ −0.152Nc=Λ. The classical energy in the B ¼ 2
sector is then given by

E2;c ¼ 2M − 0.152
Nc

Λ
: ð3:22Þ

The classical energy is of order Nc, as expected. If Λ → ∞,
we get weakly bound baryons of small size [Oðλ−1=2Þ]
and large distance [Oðλ0Þ], large with respect to their size.
This is exactly the limit where our computation is reliable.
We confront the value of E2;c with the classical energy

of the B ¼ 1 sector, E1;c ¼ M, by calculating the classical
binding ratio that is independent of Nc. We have

BR2;c ¼
2E1;c − E2;c

2E1;c
¼ 0.608

2.921Λþ Λ2
: ð3:23Þ

2Note that there is a normalization difference for the functions
ψn, ϕn: in the cited article ðψn;ψmÞ ¼ δnm ¼ hϕn;ϕmi. The
correct identifications to make are then (lhs normalized as in this
chapter, rhs normalized as in the cited article) 1

cn
¼ ψnð0Þ2,

1
dn
¼ ψ 0

nð0Þ2.
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As this quantity is always positive, for every value of Λ and
for every value of Nc, the classical deuteron turns out to
be bound.
The experimental value of the binding ratio is

BR2;exp ¼
mp þmn −md

mp þmn
¼ 1.2 × 10−3; ð3:24Þ

where md ¼ 1875.6 MeV is the deuteron mass and mp and
mn are the proton and neutron masses. For a first, crude
comparison with the SS model, we choose Λ as in [1] to fit
the experimental value of the pion decay constant andρmass:
Λ ¼ 1.569 (this corresponds to λ ¼ 16.632). With this value
of Λ we get BR2;c ¼ −0.086, two orders of magnitude
greater than the experimental value. Overestimating the
binding energy is quite common also in the other Skyrme
models. For themomentwemake twopreliminary comments
on that. First, the extrapolation of our calculations to the
phenomenological parameters contains many errors, mostly
from 1=Nc and 1=Λ correctionswhich are not small. Second,
the holographicmodel can be tuned to reach the correct order
of magnitude for the binding energy by increasing Λ, at the
price of losing the fit with mesonic observables. TheΛ → ∞
limit, where the previous computation is valid, is in fact a
weakly bound model.
We now use the potential to give some predictions about

equilibrium configurations for nuclei with higher baryonic
charge, B. Provided that the instantons are far away from
each other, each of their cores is localized in the linear zone
of all the others. For B number of instantons, we define the
potential VB as the sum of single potentials (3.17) between
all instantons, after which we find the minimum energy

configuration. We report the results of our analysis in
Table I, where we list the binding energies in different
sectors and the different configurations numerically found
for a stable solution. In Fig. 5 we diagrammatically show
the multi-instanton configuration results for the stable and
metastable nuclei, up to B ¼ 8. For B ¼ 3 there is a unique
solution, the equilateral triangle. For B ≥ 4, we find
multiple local minima. In Fig. 6 we plot the classical
binding ratios as a function of B for the preferred
configurations:

BRB ¼ BE1;c − EB;c

BE1;c
: ð3:25Þ

FIG. 4. Attractive channel potential, as a multiple of N=Λ. We
can note the existence of a minimum at x ¼ 2.059 and
Vmin ¼ −0.152. Dashed lines represent the asymptotic behavior
of the potential for r → 0 and r → ∞.

TABLE I. Multi-instanton configurations for stable and metastable nuclei up to B ¼ 8, details of the configuration shape, along with
the potential and the binding ratios which are given in units excluding the lambda dependence.

B Shape Details Vmin BR

2 Line Distance ¼ 2.06 −0.15190 0.61
3 Equilateral triangle Side ¼ 2.06 −0.45570 1.23
4 Tetrahedron Side ¼ 2.06 −0.91141 1.82

Square Side ¼ 1.90 −0.86988 1.74
5 Pentagon (Tetrahedron þ satellite)

Cross
Side ðouterÞ ¼ 2.12 −1.00268 1.6
Tetrahedron (base ¼ 2.0, sides ¼ 2.3),
satellite ðincreasingÞ ¼ ð3.2; 3.7; 5.0Þ

−0.99127 1.58

Distance from the center ¼ 2.16 −0.94359 1.50
6 Squareþ two satellites Tetrahedron = [(base: 2.15), 2.02, 3.26],

distance from the two satellites =
[(to base: 3.52, 3.74, 3.34, 3.82), (to roof: 2.06, 3.3.15)]

−1.3746 1.83

Hexagon Side ðouterÞ ¼ 2.02 −1.3627 1.81
7 Tetrahedronþ triangle Pyramid base = (1.98, 2.35, 2.67, 3.26), distance to the

satellites = (2.34, 2.34, 3.55, 3.55) (3.25, 3.25, 3.55, 3.55)
(1.98, 1.98, 3.70, 3.70)

−1.7740 2.03

8 Two twisted squares Square sides ¼ ð2.34; 3.85Þ, twisted node connections
(increasing) = (2.63, 3.19, 3.72, 4.51)

−2.0326 2.03

Two rectangles Rectangles: Base ¼ ð2.03; 4.45Þ, roof ¼ ð2.38; 4.04Þ,
distance between closest nodes = (3.49, 3.57, 3.49, 3.57)

−1.9632 1.96
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IV. ZERO-MODE QUANTIZATION
AND THE DEUTERON

We begin by reviewing the effective zero-mode
Lagrangian and its quantization for the Sakai-Sugimoto
instanton in the B ¼ 1 sector. The moduli space is

M ¼ R3 × SUð2Þ with the metric (2.25). The zero-mode
Lagrangian is then given by (in unscaled units)

L ¼ 1

2
M _Xi _Xi þ 1

4
Mμ2ωL;iωL;i −M; ð4:1Þ

where ωL;i represent the left-invariant (body fixed) angular
velocities on SUð2Þ, ωLi ¼ −itr½G† _Gσi�. We could have
used the right-invariant (space fixed) angular velocities
ωRi, due to the fact that ωLiωLi ¼ ωRiωRi. We discuss, in
Appendix A, the role of the left and the right-invariant
velocities in detail. We have the same Lagrangian for a rigid
body. We define canonical momenta

Pi ¼ M _Xi; Ji ¼
1

2
Mμ2ωL;i; ð4:2Þ

and write the Hamiltonian as

H ¼ PiPi

2M
þ JiJi
Mμ2

þM: ð4:3Þ

As Ji is the body fixed angularmomentum,we can define the
space fixed angular momentum by

2 3 4 5 6 7 8

0.5

1.0

1.5

2.0

2.5

FIG. 6. Binding ratios (3.25) for the most stable nuclei up to
B ¼ 8 for large Λ.

FIG. 5. Geometric configurations for stable and metastable nuclei up to B ¼ 8. (a)–(l): Deuteron, triangle, tetrahedron, square,
pentagon, cross, tetrahedron with a satellite, two triangles, hexagon, tetrahedron with a triangle, two twisted squares, and two rectangles,
respectively. Colors represent the isosurface orientations, φ ¼ ðφ1;φ2;φ3Þ, as radially projected onto the sphere which stands for the
single charge instanton. The coloring scheme is as follows: red/green ¼ ð�1; 0; 0Þ, cyan/yellow ¼ ð0;�1; 0Þ, white/black ¼ ð0; 0;�1Þ.
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Ii ¼ −MðGÞijJj: ð4:4Þ

Among angular momenta, we have the commutation
rules

½Ii; Ij� ¼ iϵijkIk; ½Ji; Jj� ¼ iϵijkJk; ½Ii; Jj� ¼ 0:

ð4:5Þ

We impose the canonical commutation relations

½Xi; Pj� ¼ iδij; ½G; Ji� ¼ iG
iσi
2
;

½G; Ii� ¼ −i
iσi
2
G: ð4:6Þ

With all other commutators vanishing, we then write the
generic ket state as

jψi ¼ jpi; j; mL;mRi; ð4:7Þ

with pi the momentum, mL the eigenvalue of J3 (to be
interpreted as the spin), mR that of I3 (to be interpreted as
isospin), and j that of J2. In the rest frame,pi ¼ 0, the energy
eigenvalues are given by

E1 ¼
jðjþ 1Þ
Mμ2

þM ¼ NcΛ
8

þ
ffiffiffiffiffi
2

15

r
Nc

þ
ffiffiffi
5

6

r
jðjþ 1Þ

Nc

�
1

8
−

ffiffiffi
6

5

r
64

3Λ

�
þ o

�
1

Λ2

�
: ð4:8Þ

As M ∝ Nc, quantum corrections due to the spinning are
subleading, of order N−1

c , and become negligible when
Nc → ∞, keeping j fixed. The proton is identified as the
particle with isospin up, while the neutron has isospin down
with j ¼ 1=2. States with a higher value of j (always being
semi-integer) give heavier baryons: as an example, we
identify states with j ¼ 3=2 with the Δ states. States with
j integer are to be excluded by Finkelstein-Rubinstein (FR)
constraints, as we discuss in Appendix B.
We want to do the same for the B ¼ 2 sector. For this we

first need to study the zero-mode manifold, find its top-
ology and metric, and then quantize it.

A. The zero-mode manifold for B= 2

We want to identify the manifold of the zero modes
(which we call Z), defined as a subspace of the
12-dimensional space, M2 [parametrized by the coordi-
nates ðX1; B; X2; CÞ], on which the potential assumes a
constant value. We indicate an instanton field, centered in X
and with standard iso-orientation by AIðx − XÞ. In this
notation, an arbitrary field of topological charge 2 can be
expressed within the linear approximation as

BAIðx − X1ÞB† þ CAIðx − X2ÞC†: ð4:9Þ

The space M2 is defined as the set of field configurations
of this form.
The symmetry group of the action is

L ¼ R3 × SUð2ÞI × SUð2ÞJ × P; ð4:10Þ

where R3 is the group of spatial translations, SUð2ÞI is the
global part of the gauge group, SUð2ÞJ is the double
covering of the rotation group SOð3Þ, and P is the parity
operation that sends x → −x while keeping the holographic
z coordinate invariant. From now on, we will neglect the
center of mass position, by removing R3 from the sym-
metry group.
LetA be any static gauge field. The continuous part of L

acts on A according to

Aðx; zÞ → U½MðEÞ�AðMðEÞ−1x; zÞ�U†; ð4:11Þ

where U ∈ SUð2ÞI , E ∈ SUð2ÞJ, M is the usual trans-
formation from SUð2Þ to SOð3Þ, andM� is the pullback on
the vector field (rotating the fields Ai and leaving the field
Az invariant). The parity operation acts on the fields as

Aiðx; zÞ → Aið−x; zÞ; Azðx; zÞ → −Azð−x; zÞ: ð4:12Þ

We want to explicitly apply the transformation to the
configuration Ap þ Aq. As the transformation properties
of the core solution and the linear approximation are the
same, we can just use the linear approximation fields.
All calculations remain the same for the core regions.
We start from a certain minimum energy configuration

AIðxÞ ¼ AI

�
x −

R
2

�
þ σ3AI

�
xþ R

2

�
σ3; ð4:13Þ

where we define R ¼ ðR0; 0; 0Þ and R0 as the position of
the minimum of the potential in the attractive channel.
From the linear approximation, we study the action of L on
the field AIðx − XÞ. An SUð2ÞI transformation acts in the
usual way:

AIðx − XÞ → UAIðx − XÞU†; ð4:14Þ

while an SUð2ÞJ transformation acts as

Aiðx − XÞ → MðEÞijAjðMðEÞ−1x − XÞ;
Azðx − XÞ → AzðMðEÞ−1x − XÞ: ð4:15Þ

We can manipulate the SUð2ÞJ transformations by

Aiðx − X; zÞ → −2π2μ2Mijðϵjmlσl∂M
m þ σj∂z0 Þ

×GðM−1x; z;M−1MX; z0Þjz0¼0; ð4:16Þ
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whereM ¼ MðEÞ. After this transformation, the derivative
∂M
m is now with respect to M−1x. Note that we have

multiplied X by the identity. Using the fact that G only
depends on jx − x0j, we can remove M−1. We must then
transform the derivative according to

∂M
m ¼ ∂

∂ðM−1xÞm ¼ ∂MkaðM−1xÞa
∂ðM−1xÞm

∂
∂xk

¼ Mkm
∂
∂xk ¼ Mkm∂k: ð4:17Þ

Then we substitute in the expression for Ai, obtaining

Aiðx − R; zÞ → −2π2μ2ðMijMkmϵjmlσl∂k

þMijσj∂z0 ÞGðx; z;MX; z0Þjz0¼0: ð4:18Þ

We can use the fact that ϵ is an invariant tensor,
ϵijkMaiMbjMck ¼ ϵabc, by substituting ϵjmlMijMkmσl∂m ¼
ϵijkMklσl∂j. Then, we use Mijσj ¼ E†σiE to obtain

Aiðx − X; zÞ → E†Aiðx −MðEÞX; zÞE: ð4:19Þ

The action on Az is the same:

Azðx − X; zÞ → −2π2μ2σi∂M
i LðM−1x; z; 0; 0Þ: ð4:20Þ

Working as before, we get

Azðx − X; zÞ → E†Azðx −MðEÞX; zÞE: ð4:21Þ

Regarding parity, it is trivial to verify that (remembering
that ϵ takes a minus sign for the parity operation)

Aiðx− X; zÞ→Aiðxþ X; zÞ; Azðx− X; zÞ→AzðxþX; zÞ:
ð4:22Þ

The action of the continuous part of G on the fields is then

~AIðx; zÞ → UE†AI

�
x −MðEÞR

2
; z

�
ðUE†Þ†

þ Uσ3E†AI

�
xþMðEÞR

2
; z

�
ðUσ3E†Þ†: ð4:23Þ

Eventually, parity can be used to change the sign of R
2
.

We say that a field configuration AI belongs to the zero-
mode manifold, if it can be written as

AI ¼ UE†AI

�
x − ð−ÞPMðEÞR

2
; z

�
ðUE†Þ†

þ Uiσ3E†AI

�
xþ ð−ÞPMðEÞR

2
; z

�
ðUiσ3E†Þ†;

ð4:24Þ

for some matrices U and E, belonging to SUð2Þ, and with
P, the parity eigenvalue (defined modulo 2): this eigenvalue
assumes only values P ¼ 0 and P ¼ 1. The coordinates on
this manifold are then ðU;E; PÞ. We can act on those
coordinates by a left action and a right action on the matrices
or by using parity, sending P into Pþ 1 (modulo 2).
To complete the definition of the zero-mode manifold,

we have to discuss the isotropy group of the action on the
coordinates. To do that, we use the notation of [22], where a
similar analysis in the Skyrme model is given by the
following: Oai represents a right translation of π of the
matrices U and E around the ath isospatial axis and ith
spatial axis, whilePai represents the same action onU andE,
with a change of sign.Thevalues of the indices forO andP go
from0 to 3,where 0 represents no transformations performed.
As examples, O02 is the transformation ðU;E; PÞ →
ðU;Eiσ2; PÞ and P13 is ðU;E; PÞ → ðUiσ1; Eiσ3; Pþ 1Þ.
In addition to such transformations, we also have two Z2

transformations: ðU;E; PÞ → ð−U;E; PÞ and ðU;E; PÞ →
ðU;−E; PÞ that obviously leave (4.24) invariant. In the
following sections, we will take the symmetries Z2 as
intended everywhere, and neglect overall signs in the
ðU;EÞ matrices. In this notation, the transformations

H ¼ f1;O11;O12;O03;P30;P21;P22;P33g ð4:25Þ

form a group that leaves (4.24) invariant, as can be verified
easily. There are no left translations of the matrices U and E
that leave (4.24) invariant.
The zero-mode manifold is then defined by quotienting

the manifold

SUð2ÞI × SUð2ÞJ × P ð4:26Þ

by the stabilizer H. Actually, as in [22], this manifold is
isomorphic to

Z ¼ SUð2ÞI × SUð2ÞJ=f1;O11;O12;O03g: ð4:27Þ

We now prove this assumption. A class in SUð2ÞI ×
SUð2ÞJ × P=H can be expressed by choosing a set
ðU;E; PÞ and acting on it with all transformations of H.
We indicate such an equivalence class by fðU;E; PÞg. A
class in Z is obtained by taking a set ðU;EÞ and then acting
with the stabilizer. We denote such a class as fðU;EÞg.
We define the function on Z, given by fðfðU;EÞgÞ ¼
fðU;E; 0Þg, and state that this function is an isomorphism.
This function is surjective, since any class of the form
fðA; B; 0Þg can be obtained by applying f onto fðA;BÞg,
and similarly for fðA;B; 1Þg by applying f onto
fðAiσ3; BÞg, while noting that P30ðAiσ3;B;0Þ¼ ðA;B;1Þ.
To prove injectivity, we define two pairs of matrices
ðA;BÞ and ðC;DÞ, such as fðfðA; BÞgÞ ¼ fðfðC;DÞgÞ ¼
fðA; B; 0Þg. Then fðC;DÞg must be obtained from
fðA; BÞg by acting with a transformation Oai without
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parity, so that fðA;B; 0Þg ¼ fðC;D; 0Þg. With these two
properties, the function f is an isomorphism and therefore
we can adopt Z as the zero-mode manifold for the B ¼ 2
sector.
We now build a Lagrangian on this manifold. For each

instanton, we derive its kinetic energy through the metric
(2.25). In our usual coordinates ðX1; B; X2; CÞ, defining
left-invariant angular velocities as ωB;i ¼ −itrðB† _BσiÞ and
analogously for ωC;i, we take the result from the B ¼ 1

sector in order to write the metric as3

gjM ¼ dXi
1dX

i
1þ2μ2dΩSUð2Þ;B þ dXi

2dX
i
2 þ 2μ2dΩSUð2Þ;C:

ð4:28Þ

The kinetic energy on M2 is then

T ¼ 1

2
M

�
_Xi
1
_Xi
1 þ _Xi

2
_Xi
2 þ

1

2
μ2ωB;iωB;i þ

1

2
μ2ωC;iωC;i

�
:

ð4:29Þ

We modify the spatial coordinates as usual, defining a
center of mass coordinate, ri, and a global translation, Xi.
From now on, we will neglect global translations by
redefining M2 through the coordinates ðr; B; CÞ, which
specify a field configuration through

BAI

�
x −

r
2

�
B† þ CAI

�
xþ r

2

�
C†: ð4:30Þ

The kinetic energy becomes

T ¼ 1

4
Mð_ri _ri þ μ2ωB;iωB;i þ μ2ωC;iωC;iÞ: ð4:31Þ

We must embed Z intoM2, finding a law that allows us to
find the coordinates on M2 through the coordinates of Z.
The embedding law is obtained by confronting (4.23) with
(4.30):

8<
:

ri ¼ MðEÞijRj;

B ¼ UE†;

C ¼ Uiσ3E†:

ð4:32Þ

To transform the kinetic energy in the zero-mode manifold,
we need to transform the velocities. We define the (left-
invariant) angular velocities ωi relative to the matrix E and
Ωi relative to the matrixU. First, we compute the derivative
_MijðEÞ. Inverting the relation and defining ωi, we get

E† _E ¼ i
2
ωiσi: ð4:33Þ

This can be used to compute

_Mijσj ¼ _E†σiEþ E†σi _E ¼ E†σiEE† _E − E† _EE†σiE

¼ i
2
Mijωk½σj; σk� ¼ Mijϵkjlωkσl: ð4:34Þ

This implies

_Mij ¼ ϵkljMilωk: ð4:35Þ

In the following, we denote Oi as the rotation by π around
the ith axis, while M is the usual SOð3Þ matrix associated
to E:

8>>>>><
>>>>>:

B† _B ¼ EðU† _U − E† _EÞE† ⇒ ωB;i ¼ MijðΩj − ωjÞ;
C† _C ¼ Eðσ3U† _Uσ3 − E† _EÞE† ⇒ ωC;i

¼ MijðO3;jkΩk − ωjÞ;
_ri ¼ _MijRj ¼ ϵjlkMikωlRj:

ð4:36Þ

We obtain

ωB;iωB;iþ ωC;iωC;i ¼ 2ωiωiþ2ΩiΩi−2ðδkl þO3;klÞωkΩl;

_ri _ri ¼ ϵjlkMikωlRjϵabcMiaωcRb

¼ ω2R2 − ðω · RÞ2 ¼ ðω2
2 þ ω2

3ÞR2
0:

ð4:37Þ

The matrix δkl þO3;kl has only one nonzero element,
which has the indices k ¼ l ¼ 3 and equals 2. The kinetic
energy in the zero-mode manifold M then becomes

TjZ ¼ 1

2
M

�
μ2ω2

1 þ
�
μ2 þ R2

0

2

�
ω2
2 þ

R2
0

2
ω2
3

þ μ2ðΩ2
1 þ Ω2

2 þ ðΩ3 − ω3Þ2Þ
�
: ð4:38Þ

In the zero-mode manifold, the potential energy attains its
minimum value, that is, Vmin plus the self-energies 2M.
The Lagrangian is then given by

LjZ ¼ TjZ − Vmin − 2M: ð4:39Þ

B. The quantum deuteron: Quantizing
the zero-mode manifold

We quantize the zero-mode manifold Z by calculating
the conjugate momenta from LjZ : here we denote as Li the
momenta obtained by taking the derivative with respect to
ωi, while Ki are obtained by doing the same with respect to
Ωi. We have

3We are here neglecting eventual corrections in the metric that
come from the overlapping of the two single instanton fields, as
they bring contributions to the energy of order 1=NcΛ and are
negligible in both limits.
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L1 ¼ Mμ2ω1; L2 ¼ M

�
μ2 þ R2

0

2

�
ω2;

L3 ¼ M

�
R2
0

2
þ μ2

�
ω3 −Mμ2Ω3;

K1 ¼ Mμ2Ω1; K2 ¼ Mμ2Ω2;

K3 ¼ Mμ2ðΩ3 − ω3Þ: ð4:40Þ

The Hamiltonian is then

HjZ ¼ 1

2M
ðXijLiLj þ YijKiKj þ 2ZijLiKjÞþVmin þ 2M:

ð4:41Þ

On this manifold, the potential is constant. The X, Y, Z
matrices are given by

X ¼

0
BB@

1
μ2

0 0

0 2
2μ2þR2

0

0

0 0 2
R2
0

1
CCA; ð4:42Þ

Y ¼

0
BB@

1
μ2

0 0

0 1
μ2

0

0 0 2
R2
0

þ 1
μ2

1
CCA; ð4:43Þ

Z ¼

0
B@

0 0 0

0 0 0

0 0 2
R2
0

1
CA: ð4:44Þ

Quantization proceeds as usual. We define the left-
invariant momenta as Li and Ki, the right-invariant
momenta as Ji ¼ −MðEÞijLj, where Ii ¼ −MðUÞijKj

(with L2 ¼ J2 and K2 ¼ I2), and write the ket state as

jψi ¼ jk; k3; i3; l; l3; j3i: ð4:45Þ

The definition of the quantum numbers is straightforward.
Not all kets (4.45) are to be considered physical states,

due to the fact that the zero-mode manifold is defined
discretely, as in (4.27). We discuss the FR constraints and
the details of the quantization process in Appendix B. Here,
we cite the result: the only states that are compatible with
the FR constraints are

jDi ¼ j0; 0; 0; 1; 0; j3i; jI0i ¼ j1; 0; i3; 0; 0; 0i;

jI1i ¼
1ffiffiffi
2

p ðj1; 1; i3; 0; 0; 0i þ j1;−1; i3; 0; 0; 0iÞ: ð4:46Þ

We note that jDi has the right quantum numbers to be
identified as the deuteron state (isospin singlet and spin

triplet). By direct evaluation of HjZ on the states that we
have found (through the use of an explicit representation of
the Li andKi), we discover that they are eigenvectors of the
Hamiltonian, with eigenvalues

HjZ jDi ¼
�

1

2μ2M

�
1þ 1

1þ R2
0

2μ2

�
þ 2M þ Vmin

�
jDi

¼ EDjDi;

HjZ jI0i ¼
�

1

μ2M
þ 2M þ Vmin

�
jI0i ¼ EI0 jI0i;

HjZ jI1i ¼
�

1

μ2M

�
1þ μ2

R2
0

�
þ 2M þVmin

�
jI1i ¼ EI1 jI1i:

ð4:47Þ

The deuteron state turns out to be the lowest energy state,
with the lowest rotational energy contribution to the
Hamiltonian. Due to the presence of the factor 1=M, we
have that the rotational energies are of order N−1

c (as
expected, since they are subleading) and Λ0, such that they
are relevant in the Λ → ∞ limit.

V. MASSIVE MODES

What we have done so far is to obtain the leading order
solution at large Nc and large Λ, where all massive modes
are frozen to their minimum value and only the zero-mode
classical dynamics is relevant. All sorts of different 1=Nc
and 1=Λ corrections are triggered by considering the
massive modes and the quantum corrections. The most
important ones, at least for large Λ, are the ones that would
be the zero modes for the BPST instanton but are lifted
when the solution is embedded in the SS model. There are
various kinds of corrections that we need to study. We shall
see that in order to reach the phenomenological values
of the relevant parameters, Nc ¼ 3 and Λ ¼ 1.569, these
corrections are very important.

A. Baryon mass formula

We begin by reviewing the effects of themassivemodes in
the B ¼ 1 sector. The standard Yang-Mills instanton has
eight moduli: four spatial coordinates ðXi; ZÞ and four others
that identify the size and SUð2Þ orientation of the solution
ðμ; GÞ. Due to the symmetry of the configuration under
G → −G, themoduli space of the single instanton is given by

M ¼ R4 × ðR4=Z2Þ: ð5:1Þ
We choose ðXi; ZÞ as space and yI as the isospace coor-
dinates. The metric on M is

g ¼ dXidXi þ dZ2 þ 2dyIdyI: ð5:2Þ
In the Sakai-Sugimoto model, Z and μ cease to be exact

moduli but have a potential
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Uðμ; ZÞ ¼ M0 þM0

�
μ2

6
þ 64

5Λ2μ2
þ Z2

3

�
; ð5:3Þ

where μ ¼ ffiffiffiffiffiffiffiffi
yIyI

p
and we take the Z dependence from [4].

The total Lagrangian is then

L ¼ 1

2
M0ð _Xi _Xi þ _Z2Þ þM0 _yI _yI −M0 −

1

3
M0Z2

−
1

6
M0μ

2 −
64

5Λ2

M0

μ2
; ð5:4Þ

where we define

M0 ¼
NcΛ
8

: ð5:5Þ

It is convenient to cast the isospin part of the previous
Lagrangian into radial coordinates. To this end, we define
the aI coordinates through μaI ¼ yI . This way, aI repre-
sents a point on S3=Z2. In this scheme, the metric becomes

g ¼ dXidXi þ dZ2 þ 2ðdμ2 þ μ2daIdaIÞ
¼ dXidXi þ dZ2 þ 2ðdμ2 þ μ2gS3Þ; ð5:6Þ

where gS3 represents the standard metric on S3. By
restricting to the zero-mode manifold, Z ¼ 0 and
μ ¼ μ0, we recover the previously discussed metric (2.25).
The Hamiltonian operator can be written as

H ¼ HS þHI , where HS is the Hamiltonian relative to
the ðXi; ZÞ coordinates,

HS ¼ −
1

2M0

ð∂i∂i þ ∂2
ZÞ þ

1

3
M0Z2; ð5:7Þ

while HI is the relative Hamiltonian for the isospace part,

HI ¼ −
1

4M0

�
1

μ3
∂μðμ3∂μÞ þ

1

μ2

�
ΔS3 −

256

5Λ2
M2

0

��

þ 1

6
M0μ

2; ð5:8Þ

where ΔS3 is the Laplacian operator on the 3-sphere.
Neglecting the total momentum, we have that a baryon
state can be identified by the quantum numbers

jnz; nμ; j; mL;mRi: ð5:9Þ

The energy levels are (from [4])

Eðnz; nμ; jÞ ¼ M0 þ
2nz þ 1ffiffiffi

6
p þ 2nμ þ 1ffiffiffi

6
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ2

6
þ 2

15
N2

c

r

≃M0 þ
ffiffiffiffiffi
2

15

r
Nc þ

ffiffiffi
5

6

r
ð2jþ 1Þ2

4Nc

þ 2nz þ 1ffiffiffi
6

p þ 2nμ þ 1ffiffiffi
6

p : ð5:10Þ

The proton and the neutron are the lowest energy states of
the j ¼ 1=2 representation, with nμ ¼ nz ¼ 0. States with
higher nz or nμ can be classified as resonances of the proton
and the neutron. When evaluated with nμ ¼ nz ¼ 0, the
energy levels are the same as in (4.8) (apart from a different
zero of the energy), so we recover the previous results of the
analysis of the zero-mode manifold.

B. Sliding minimum

We can repeat the whole calculation for the classical
potential (3.17) by inserting the generic values of μ1, μ2, Z1,
and Z2. For this, we have to modify (2.40) in order to
account for the additional coordinates. The final result is

Vðr; B†C; μi; ZiÞ

¼ 4πNc

Λ

X∞
n¼1

ψnðZ1ÞψnðZ2Þ
cn

e−knr

r

− π

16
NcΛμ21μ22

ϕ0ðZ1Þϕ0ðZ2Þ
π

1

r3
Pijðr; 0ÞMijðB†CÞ

þ π

16
NcΛμ21μ22

�X∞
n¼1

�
ψnðZ1ÞψnðZ2Þ

cn
− ϕnðZ1ÞϕnðZ2Þ

dn

�

×
e−knr

r3
Pijðr; knÞ

�
MijðB†CÞ: ð5:11Þ

The total potential is then

V tot ¼Uðμ1;Z1ÞþUðμ2;Z2ÞþVðr;B†C;μi;ZiÞ; ð5:12Þ

where U is defined in (5.3) and V in (5.11). We write the
potential in the schematic form

V tot ¼ Nc

�
Λ
48

ðμ21 þ μ22Þ þ
8

5Λ

�
1

μ21
þ 1

μ22

�
þ Λ
24

ðZ2
1 þ Z2

2Þ

þ 1

Λ
mðrÞ þ Λμ21μ22dðr; B†CÞ

�
; ð5:13Þ

where mðrÞ and dðr; B†CÞ are the monopole and the dipole
parts of the potential.
To look for the minimum we make the following ansatz:

setting Z1 ¼ Z2 ¼ 0, we restrict to the attractive channel:
r ¼ ðx; 0; 0Þ and B†C ¼ iσ3. We also restrict to the line

SOLITONIC APPROACH TO HOLOGRAPHIC NUCLEAR PHYSICS PHYSICAL REVIEW D 96, 034008 (2017)

034008-15



μ ¼ μ1 ¼ μ2, while leaving x, μ as free variables to
minimize.
As m > 0 and d < 0 assume positive values when

evaluated on the x axis in phase opposition, we have that
as μ → ∞, V tot → −∞: this would imply that the nucleons
within the deuteron are stabilized when they have infinite
size. This is clearly an unphysical result that we can
exclude, since μ → ∞ is well outside the range of validity
for the linear approximation. Depending on the values of Λ,
a minimum can exist for finite μ. We will look for that local
minimum and neglect the clearly unphysical behavior of
the potential for large values of μ.
Taking the derivative of the potential V tot within the

ansatz, the minima for x0 and μ0 are given by

m0ðx0Þ þ Λ2μ40d
0ðx0Þ ¼ 0; ð5:14Þ

Λ
48

μ0 −
8

5Λ
1

μ30
þ Λμ30dðx0Þ ¼ 0: ð5:15Þ

Substituting the first relation into the second, we get

m0ðx0Þ
d0ðx0Þ

1

48
þ 8

5
¼ dðx0Þ

Λ

�
−
m0ðx0Þ
d0ðx0Þ

�3
2

: ð5:16Þ

The minimum x0 must then solve (5.16) in order to be a
stationary point. Such an equation has to be solved
numerically due to the nontrivial Λ dependence, and the
minimum point x0 is not guaranteed to exist for any value
of Λ. We report the graph showing the minimum as a
function of Λ in Fig. 8. For Λ ≥ 70, the minimum always
exists. In fact, setting Λ ¼ ΛS ¼ 1.569 in the above
equation, the numerical computation shows that the local
minimum does not exist. In the case Λ → ∞, the equation
reduces to

m0ðx0Þ ¼ −
384

5
d0ðx0Þ; ð5:17Þ

which can be trivially solved. We get x0 ≃ 2.06, as in the
previous case, and μ0 ¼ 0, as expected from the previous
case in the limit Λ → ∞.

C. Quantization in the harmonic approximation

We now extend our quantization of the B ¼ 2 sector to
the massive modes. We start with the massive modes in
M2 that correspond to having the instantons moving away
from the phase opposition configuration. To do that, it is
convenient to use coordinates ðr; B; CÞ.
To perform this approximation, we calculate the second

derivatives of the potential with respect to the coordinates.
The derivatives with respect to the spatial coordinates r are
the standard derivatives, but we need a coordinate repre-
sentation of the matrices ðB;CÞ in order to be able to
identify the numerical results for the derivatives. We choose
coordinates through the exponential map

B ¼ exp

�
iBi

σi
2

�
; C ¼ exp

�
iCi

σi
2

�
: ð5:18Þ

Bi andCi are real and unconstrained numerical coordinates.
They have a finite range, but as we are interested in the
small changes of Bi and Ci, we do not need to specify the
range. In those coordinates, the left-invariant velocities are
given by

ωB;i ¼ −itrðB† _BσiÞ ¼ _Bi; ωC;i ¼ −itrðC† _CσiÞ ¼ _Ci:

ð5:19Þ

After canonical quantization of the matrix coordinates B
and C, we recover the quantum commutation relations with
the left-invariant angular momenta

½Bi; JB;j� ¼ iδij ½Ci; JC;j� ¼ iδij; ð5:20Þ

with JB;i ¼ 1
4
M0μ

2ωB;i and analogously for JC;i. These
coordinates can be used as canonical coordinates and we
can perform the small oscillation approximation in the
standard way. Returning back to the Lagrangian, we
perform the derivatives and set the coordinates to their
equilibrium values, r ¼ ðR0; 0; 0Þ; Bi ¼ ð0; 0; 0Þ; and
Ci ¼ ð0; 0; πÞ. Calling ηa the displacement from the equi-
librium coordinates (with a ¼ 1;…; 9), the approximated
Lagrangian can be written as

LjM2
¼ 1

2
Mab _η

a _ηb −
1

2
Vabη

aηb − Vmin − 2M; ð5:21Þ

where the mass matrix Mab is the diagonal matrix of
eigenvalues,

1

2
½M;M;M;Mμ2;Mμ2;Mμ2;Mμ2;Mμ2;Mμ2�; ð5:22Þ

and Vab has been computed numerically and shown in
Table II. Solving the secular equation detðω2Mab−VabÞ¼ 0
we obtain three nonzero frequencies, as expected:

ω1 ¼
1.509
Λ

; ω2 ¼
1.407ffiffiffiffi

Λ
p þ o

�
1ffiffiffiffiffiffi
Λ3

p
�
;

ω3 ¼
1.600ffiffiffiffi

Λ
p þ o

�
1ffiffiffiffiffiffi
Λ3

p
�
: ð5:23Þ

We can identify ω1 with the radial oscillation, which allows
the constituents of the deuteron to vibrate along the axis
joining them. Such an interpretation is suggested by its Λ
dependence, as the translational mode of inertia is propor-
tional to Λ and all entries in the V matrix are multiplied by
Λ−1, giving an overall Λ−2 dependence to the squared
frequency. The other two frequencies are relatively small
and nonglobal isorotations of the two objects, which do cost
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energy. TheΛ−1
2 dependence of the leading order comes from

the fact that the moment of inertia has a leading order that is
proportional to Mμ2, which in turn is proportional to Λ0,
providing an overall Λ−1 dependence to the squared
frequencies.
The quantum Hamiltonian is readily written. We also

include the contribution from the zero modes:

HjM2
¼

X
i¼1;2;3

ωi

�
a†i ai þ

1

2

�
þHjZ þ Vmin þ 2M:

ð5:24Þ

The ground states of the oscillators then give a contribution
to the energy of the deuteron, which is given by

E0;approx ¼
ω1 þ ω2 þ ω3

2
þ Vmin þ 2M

þ 1

2μ2M

�
1þ 1

1þ R2
0

2μ2

�
: ð5:25Þ

All these terms have different Nc and Λ dependence. In
particular we see that the two limits Nc → ∞ and Λ → ∞
do not commute. In order for our approximation to be valid
we need to impose that the massive energies ω1;2 do not
exceed the classical binding energy Vmin and this is
Nc ≫

ffiffiffiffi
Λ

p
. In this way the two baryons are locked in

the attractive orientation channel and rotation occurs only
in the zero modes sub-manifold.

D. Holographic massive modes

In this section, we extend our harmonic approximation
to the remaining two degrees of freedom, which in our
approximation are also approximate moduli for the B ¼ 1
instanton: the size, μ, and the holographic coordinate, z.
In the B ¼ 2 sector, we have four additional massive modes
for the deuteron, among which, the pairs that correspond to
the same coordinate for different instantons are equivalent
due to symmetry. In this case, we are using the total
potential (5.12), which includes the instanton self-energies
due to oscillations in their size and their position along z.

The potential eigenvalues are estimated only approximately
at the equilibrium position, keeping the radial distance for
the minimum of the interaction potential and inserting the
generic expression for the instanton size with both the Λ
and the Nc dependences. For the remaining coordinates,
the equilibrium positions are the same as before, in the
attractive channel and at z ¼ 0.
We repeat the same set of calculations from the previous

section by solving the determinant equation for the mas-
sive-mode frequencies and expanding them in order to
observe the Λ dependence. The mass matrix now includes
four extra eigenvalues, two of which belong to the holo-
graphic coordinate and are two times the position eigen-
values, because they are independent but not relative as
opposed to radial coordinates, while the size eigenvalues
are four times larger due to the factor of 2, as can be read
from (5.6). A total of seven nonzero frequencies are found
as shown below:

ω1 ¼
1.509
Λ

ω2 ¼ ω3 ¼ 0.816þ o

�
1

Λ2

�
ω4 ¼

2.813ffiffiffiffi
Λ

p ;

ω5 ¼
3.200ffiffiffiffi

Λ
p þ o

�
1ffiffiffiffiffiffi
Λ3

p
�

ω6 ¼ ω7 ¼ 0.816þ o

�
1

Λ

�
:

ð5:26Þ
Following the analysis of the previous section, we obtain

the same frequency for oscillations in the radial distance
along with the two angular frequencies, given by the 1=

ffiffiffiffi
Λ

p
dependences, which have changed in magnitude due to the
factor of μ2 in front of the angular metric. The remaining
four frequencies, which differ from each other only in pairs
and through the sign of their second-order term, have a
leading Λ0 dependence due to the extra Λ scaling in the
total potential (5.13). This particular scaling is due to the
fact that these additional modes are coming solely from
the single instanton energies at this order of approximation.
Following the observation of the Λ0 dependence from

the additional massive mode frequencies, it can easily be
verified that the energy contribution from these modes does
not contribute to the deuteron binding energy, simply
because their contribution in the B ¼ 2 sector cancels their
counterpart from the corrections to single instanton masses.

TABLE II. Potential matrix at the equilibrium position.

Vab ¼

0
BBBBBBBBBBBB@

0.142 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0.662 0 −0.681 0 0 −0.681 0

0 0 0 0 0 0 0 0 0

0 0 −0.681 0 0.701 0 0 0.701 0

0 0 0 0 0 0.542 0 0 −0.542
0 0 0 0 0 0 0 0 0

0 0 −0.681 0 0.701 0 0 0.701 0

0 0 0 0 0 −0.542 0 0 0.542

1
CCCCCCCCCCCCA

Nc

Λ
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Consequently, the Λ dependence for the deuteron binding
energy is unaffected by the addition of the holographic
massive modes in our approximation.

E. The expectation value of the classical potential

We are now in a position to understand the origin of the
factor of 3, which differs between our potential (3.17) and
the one in [9]. First, we average the potential of interaction
over the quantum space that is generated by the coordinates
ðr; B; CÞ. This allows us to go beyond the zero-mode
manifold when taking the average.
We recall our usual definitions for the angular momenta,

as shown in Appendix A: If we write a generic SUð2Þ
matrix in quaternionic coordinates as A ¼ a41þ iaiσi, we
can represent the angular momentum operators as

Ji ¼
i
2
ðai∂4 − a4∂i − ϵijkaj∂kÞ;

Ii ¼
i
2
ða4∂i − ai∂4 − ϵijkaj∂kÞ: ð5:27Þ

Using the aI coordinates, we can write a state of spin j ¼ 1
2

as a polynomial in ai of degree one, the quantum numbers
of which we recall:

�
aI

���� 12 ;
1

2
;
1

2

�
¼ 1

π
ða1 þ ia2Þ;

�
aI

���� 12 ;
1

2
;−

1

2

�
¼ i

π
ða4 þ ia3Þ;

�
aI

���� 12 ;−
1

2
;
1

2

�
¼ i

π
ða4 − ia3Þ;

�
aI

���� 12 ;−
1

2
;−

1

2

�
¼ 1

π
ðia2 − a1Þ: ð5:28Þ

A ket in the ðr; B; CÞ space can be specified by a radial
coordinate and two angular momentum eigenvalues. We
choose to neglect the quantization of the coordinate r,
limiting our quantum space to only the angular variables
ðB;CÞ. Wave functions can be written as

hbI; cIjj; mL;mR; j0; m0
L;m

0
Ri

¼ hbIjj; mL;mRihcIjj0; m0
L;m

0
Ri ð5:29Þ

and must be antisymmetric under the exchange of the bI
and cI coordinates. As an example, the (unphysical) state
which describes the first baryon as a spin-up neutron and
the second as a spin-up proton is given by
�
bI; cI

���� 12 ;−
1

2
;
1

2

1

2

�
¼ i

π2
ðb4 þ ib3Þðc1 þ ic2Þ: ð5:30Þ

We can relate the coordinates bI, cI to those of the zero-
mode manifold eI , uI by using the immersion law

�
B ¼ UE†;

C ¼ Uiσ3E†:
ð5:31Þ

This way, we can quickly search for a state that has the right
quantum numbers to be interpreted as the deuteron state.
As an example, the wave function

hbI; cIjψi ¼ ψðbI; cIÞ ¼
1

π2
ðb4c3 − b3c4 þ b1c2 − b2c1Þ

ð5:32Þ
(which is odd under the exchange bI → cI) can be written
in the zero-mode manifold, using the immersion law, as

ψðuI; eIÞ ¼
1

π2
ð2ðe23 þ e24Þ − 1Þ: ð5:33Þ

This wave function in the zero-mode manifold has the
quantum numbers jk; k3; i3; l; l3; j3i ¼ j0; 0; 0; 1; 0; 0i, as
can be verified by explicit calculation, representing the
momenta in the form (5.27) and with opportune relabeling.
Thus, we take the deuteron state in the ðB;CÞ space to be

hbI; cIjDi ¼ ψDðbI; cIÞ ¼
1

π2
ðb4c3 − b3c4 þ b1c2 − b2c1Þ:

ð5:34Þ

To take the average of the potential over the deuteron state,
we recall the rules of integration on SUð2Þ. We can
parametrize SUð2Þ as S3 through the quaternionic repre-
sentation and then use spherical coordinates

a1 ¼ cos θ1; a2 ¼ cos θ2 sin θ1;

a3 ¼ cosϕ sin θ2 sin θ1; a4 ¼ sinϕ sin θ2 sin θ1; ð5:35Þ

with coordinate ranges θi ∈ ½0; πÞ and ϕ ∈ ½0; 2πÞ. In those
coordinates, the standard volume form is given by

Vðθ1; θ2;ϕÞ ¼ ðsin θ1Þ2 sin θ2; ð5:36Þ

with total volume 2π2, that is the surface of the 3-sphere of
the unit radius. The definition of the scalar product is
therefore the standard one,

hψ jξi ¼
Z
S3
ðψðaIÞÞ�ξðaIÞVðθi;ϕÞdΩ; ð5:37Þ

(dΩ ¼ dθ1dθ2dϕ) with each coordinate integrated over
its range. When we have two sets of angular coordinates,
we just have to follow the same procedure with both sets.
We are now prepared to compute the average of the

potential. To do that, we write it in the form (3.17). As we
fix the radial coordinate r to be r ¼ ðR0; 0; 0Þ, the average
does not affect the monopole part, while the following
integral must be calculated for the dipole part:
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hψDjMijðB†CÞjψDi

¼
Z
S3×S3

ψDðbI; cIÞ2MijðB†CÞVðbIÞVðcIÞdΩBdΩC:

ð5:38Þ

Computing this integral involves a very long sequence of
trivial integrations of trigonometric functions. The calcu-
lation has been performed using Mathematica, obtaining
the result

hψDjMijðB†CÞjψDi ¼
1

3

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA: ð5:39Þ

The factor 1=3 is exactly what is needed to match the
potential in [9]. As the approach taken in the article
for calculating the potential involves quantization, this
result is expected and we reproduce the article’s result
as the expectation value of the quantum operator which
corresponds to our potential, calculated through classical
field theory. We believe that the two approaches are both
correct, but in two different regimes. The factor 1=3
should emerge when Nc ≪

ffiffiffiffi
Λ

p
and the two baryons

cannot be considered locked in the attractive orientation
channel.

VI. CONCLUSION

We have extended the solitonic picture for baryons in
the SS model to higher charge nuclei. Working in the limit
Λ → ∞, we can place the instantons at large spatial distance
with respect to their sizes and compute the static energy of
the theory at the leading order in Λ−1. We interpret the
difference between this energy and the energy of two
separated instantons as a classical potential for the
nucleon-nucleon interaction. We have shown that this
potential depends on the relative distance between and
the relative orientations of the single instantons, much in
the same way as it happens in the Skyrme model. We have
identified a maximally attractive channel by fixing the
relative orientations and have shown the existence of a
classical bound state, computing the potential between the
two objects and their binding energy.We have solved for the
bound states of also the higher charge nuclei for up toB ¼ 8.
The resulting picture of the two-instanton system is

analogous to a rigid rotator, composed of two masses
attached at a fixed distance, with a rotational degree of
freedom that is interpreted as the classical spin and an
internal degree of freedom that is interpreted as additional
angular momentum, the isospin. Quantization forces this
rotor to rotate. The ground state has exactly the quantum
numbers to be interpreted as the deuteron state.
Our solution for holographic nuclear physics is valid at

large Nc and large λ. In the large Nc limit, the picture is

entirely classical: more and more states arise from the
quantization of the massive modes, until they form a
continuum. This picture is in agreement with large Nc
QCD. In the large Λ limit, the baryons shrink to zero size
and the binding energy goes to zero. Extrapolating to
physical values can be challenging. The linear approxima-
tion that we have used to calculate the potential is
equivalent to keeping only the dominant terms in the
1=Λ expansion. As the physical value of Λ, as is exten-
sively used in the literature (to fit the pion decay constant),
is ΛSS ¼ 1.569, we need, in principle, higher 1=Λ correc-
tions to the interaction potential in order to be able to
extrapolate numerical values, which can then be used to
confront the physical/experimental data.
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APPENDIX A: SPHERICAL HARMONICS
IN FOUR DIMENSIONS

In this section we recall the properties of the spherical
harmonics in four dimensions. To do that, we first discuss
the general problem of describing the motion of a particle in
Rd, equipped with the standard metric δij, with arbitrary d
and in the presence of a central potential VðxixiÞ ¼ VðrÞ.
We then specialize to our case of interest (d ¼ 4). In this
section, we make no distinction between lowered and
raised indices.
In standard Cartesian coordinates (and omitting all

physical constants), the Lagrangian for the motion of such
a particle is given by

L ¼ 1

2
ðδIJ _xI _xJÞ − VðrÞ: ðA1Þ

The corresponding quantum Hamiltonian is (Δ ¼ δIJ∂I∂J)

H ¼ −
1

2
Δþ VðrÞ; ðA2Þ

and the time-independent Schrödinger equation for the
wave function FðXIÞ is

−
1

2
ΔFðXIÞ þ ðVðRÞ − EÞFðXIÞ ¼ 0: ðA3Þ

We digress a little, by defining a harmonic function
HðLÞðXIÞ as the solution of ΔHðLÞðXIÞ ¼ 0 and with the
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form of a complex homogeneous polynomial XI of rank L
[such as HðLÞðtXIÞ ¼ tLHðXIÞ]. These functions can be
written as

HðLÞðXIÞ ¼ CI1I2…ILX
I1XI2 � � �XIL; ðA4Þ

where summation is implied over the indices Ij, assuming
values from 1 to d and C is symmetric in all its indices.
The condition ΔHðLÞ ¼ 0 puts constraints on the form of
the complex coefficients CI1…IL . This condition can be
expressed as

CKKI3…IL ¼ 0; ðA5Þ

that is, the trace of the first two indices of C (or any couple
of indices, due to symmetry) must vanish. To pave the way
for spherical coordinates, we define aI through XI ¼ raI:
aI will then be a unit vector in the d-dimensional space, an
element of Sd−1.
We now switch to spherical coordinates, denoting the

radius as r. Through the standard techniques of differential
geometry, we have

Δ ¼ 1

rd
∂rðrd∂rÞ þ

ΔSd−1

r2
; ðA6Þ

where ΔSd−1 is the Laplacian operator on the unit sphere
Sd−1. We define the spherical harmonics as

YðLÞ ¼ r−LHðLÞðXIÞ ¼ CI1I2…ILa
I1aI2…aIL: ðA7Þ

Those functions are the eigenstates of ΔSd−1 , as

ΔHðLÞ ¼ 0 ¼ LðLþ d − 2Þ
r2

rLYðLÞ þ 1

r2
rLΔSd−1Y

ðLÞ:

ðA8Þ

We then obtain

ΔSd−1Y
ðLÞ ¼ −LðLþ d − 2ÞYðLÞ: ðA9Þ

We now count how many spherical harmonics of a certain
rank can be built. This is done by counting the number
of independent components from the tensor CI1…IL, under
the constraints of symmetry and tracelessness. The dimen-
sion of the space of symmetric tensors of rank L over a
d-dimensional space is

gdðLÞ ¼
�
dþ L − 1

L

�
: ðA10Þ

We have to subtract a number of constraints, due to the
requirement (A5), which is a list of gdðL − 2Þ equations.
The final result is that, for any rank L, there are

degðLÞ ¼ gdðLÞ − gdðL − 2Þ ðA11Þ

number of independent spherical harmonics. In the case
of d ¼ 3, we get degðLÞ ¼ 1þ 2L, while for d ¼ 4, we
get degðLÞ ¼ ð1þ LÞ2.
Returning to our original problem, we write the

Laplacian in spherical coordinates and the wave function
as FðXÞ ¼ RðrÞYðLÞ. This way, the angular dependence is
completely solved and we obtain the equation for R:

−
1

2

1

rd
∂rðrd∂rRðrÞÞ þ

LðLþ d − 2Þ
r2

RðrÞ
þ ðVðRÞ − EÞRðrÞ ¼ 0: ðA12Þ

We now set d ¼ 4 and study the spherical harmonics in
four dimensions. In this case, we have

ΔSd−1Y
ðLÞ ¼ −LðLþ 2ÞYðLÞ; degðLÞ ¼ ðLþ 1Þ2:

ðA13Þ

Henceforth, we will use the index convention i ¼ 1, 2, 3
and I ¼ 1, 2, 3, 4. In order to study the representations, we
consider a corresponding quantum problem: the motion of
a test particle on S3, described by the Lagrangian

L ¼ 1

2
_aI _aI: ðA14Þ

We define the canonical momenta as ΠI ¼ _aI. In the usual
quantization scheme, we set ΠI ¼ −i∂I. The quantum
Hamiltonian is then

H ¼ −
1

2
ΔS3 ; ðA15Þ

which is diagonalized by states such as haIjL; hi ¼
YðLÞðaIÞ, where YðLÞðaIÞ is a spherical harmonic. h is an
index (or a set of indices) that takes ðLþ 1Þ2 different
values, specifying the particular spherical harmonic that we
intend to use.
In order to simplify our analysis and classify the irreduc-

ible representations,weuse the isomorphismbetweenS3 and
SUð2Þ, given by UðaIÞ ¼ a41þ iaiσi. On the aI coordi-
nates, we can act with SOð4Þ, which leaves S3 invariant. The
action of SOð4Þ on S3 can be expressed in terms of the left
and right action of SUð2Þ, acting on itself: taking jUi as a
state that is centered on the SUð2Þ matrix U, we can act
throughLðPÞjUi ¼ jPUi andRðPÞjUi ¼ jUP†i, using any
SUð2Þ matrix P. For the trajectory UðtÞ in SUð2Þ, we can
define the left- and the right-invariant velocities as

ωL;i ¼ −itrðU† _UσiÞ;
ωR;i ¼ itrð _UU†σiÞ ¼ −MijðUÞωL;j; ðA16Þ
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whereMðUÞ is defined in (3.13). Through those velocities,
we can connect the description in terms of S3 and the
description in terms ofSUð2Þ. IfU ¼ UðaIÞ, we have (using
aIaI ¼ 1; aI _aI ¼ 0)

ωL;i ¼ 2ð _aia4 − ai _a4 þ ϵijkaj _akÞ;
ωR;i ¼ 2ðai _a4 − _aia4 þ ϵijkaj _akÞ; ðA17Þ

and it is trivial to show that

ωL;iωL;i ¼ ωR;iωR;i ¼ 4_aI _aI: ðA18Þ

We now substitute (A18) into the Lagrangian (A14) and
quantize the resulting Hamiltonian. We can use either the
left-invariant or the right-invariant velocities in defining the
momenta, getting, respectively,

Ji ¼
1

4
ωL;i; Ii ¼

1

4
ωR;i; H ¼ 2JL;iJL;i ¼ 2JR;iJR;i:

ðA19Þ
As in the literature, we call Ji the body fixed angular
momentum and interpret it as the spin, while calling Ii
the space fixed angular momentum and interpreting it as
the isospin. The operators on the wave functions, which
correspond to the momenta Ii and Ji, must respect the
following commutation relations, since the left- and right-
invariant actions commute:

½Ji; Jj� ¼ iϵijkJk; ½Ii; Ij� ¼ iϵijkIk; ½Ii; Jj� ¼ 0;

ðA20Þ
and, as Ii ¼ −MijðUÞJj, we also have

IiIi ¼ JiJi ¼ J2: ðA21Þ

(This is consistent with the definition of the Hamiltonian.)
We impose the fundamental commutatorwith the coordinate
operator, U, by requiring that the left-invariant momentum
generates the right translations, while the right-invariant
momentum generates the left translations:

½U; Ji� ¼ iU

�
iσi
2

�
; ½U; Ii� ¼ −i

�
iσi
2

�
U: ðA22Þ

We classify the states through the eigenvalues of J2, J3,
I3, which are commuting operators. A ket state is then
of the form jj; mL;mRi, with −j ≤ mL;mR ≤ j and
J2jj;mL;mRi ¼ jðjþ 1Þjj;mL;mRi; the states can be
classified by the projections of two different angular
momenta, sharing the total momentum eigenvalue j.
We can classify spherical harmonics by returning to the

aI coordinates. In those coordinates, the quantization
prescription is ΠI ¼ _aI → −i∂I , such that the angular
momenta become

Ji ¼
i
2
ðai∂4 − a4∂i − ϵijkaj∂kÞ;

Ii ¼
i
2
ða4∂i − ai∂4 − ϵijkaj∂kÞ: ðA23Þ

Comparing (A15) and the Hamiltonian in (A19), we have
that −4J2 ¼ ΔS3 . Acting with J2 on a spherical harmonic,
we get

J2YðLÞðaIÞ ¼
L
2

�
L
2
þ 1

�
YðLÞðaIÞ: ðA24Þ

We see that the spherical harmonics of rank L can be used
as the wave functions of the S3 representation for spin
j ¼ L=2.
We conclude with an example. For L ¼ 1, we get the

representation j ¼ 1=2, where we have the four wave
functions

�
aI

���� 12 ;
1

2
;
1

2

�
¼ 1

π
ða1 þ ia2Þ;

�
aI

���� 12 ;
1

2
;−

1

2

�
¼ i

π
ða4 þ ia3Þ;

�
aI

���� 12 ;−
1

2
;
1

2

�
¼ i

π
ða4 − ia3Þ;

�
aI

���� 12 ;−
1

2
;−

1

2

�
¼ 1

π
ðia2 − a1Þ: ðA25Þ

The reader can test these results, using the explicit form of
the angular momenta in terms of the aI , for the eigenvalues
of the momentum operators.

APPENDIX B: FR CONSTRAINTS AND
TRANSFORMATION PROPERTIES

In this section we review the wave function representa-
tions and the transformation properties of the physical
states we obtained. We have already given a wave function
representation at the end of Appendix A, and here, we will
provide a more formal representation that makes the
transformation properties evident. We follow the conven-
tions adopted in [22].
A state in an SUð2Þ representation is specified by the

numbers

jψi ¼ jj; mL;mRi; ðB1Þ

as in Appendix A. SUð2Þ coordinates are expressed
through the SUð2Þ matrices, U; the coordinate wave
function representation of jψi is given by

hUjψi ¼ hUjj; mL;mRi ¼ Dj
mL;mRðUÞ; ðB2Þ

whereDj
mL;mRðUÞ is a Wigner matrix and plays a role which

is analogous to that of the spherical harmonics. The explicit
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form of the matrix D depends on the coordinates that are
used to describe the matrices U; we have seen at the end
of Appendix A that the wave functions for j ¼ 1=2 are
expressed in quaternionic coordinates. In this representa-
tion, the operators Ji and Ii act as expected:

hUjJ3jj; mL;mRi ¼ mLD
j
mL;mRðUÞ;

hUjI3jj; mL;mRi ¼ mRD
j
mL;mRðUÞ;

hUjJ2jj; mL;mRi ¼ jðjþ 1ÞDj
mL;mRðUÞ: ðB3Þ

To act with rotations, we define the left translation operator,
LðPÞ, asLðPÞjUi ¼ jPUi and the right translation operator,
RðPÞ, as RðPÞjUi ¼ jUP†i. On a jj; mL;mRi state, they act
according to

hUjLðPÞjj; mL;mRi ¼ Dj
mL;mRðP†UÞ

¼
Xj

m¼−j
LðPÞjmR;mD

j
mL;mðUÞ; ðB4Þ

hUjRðPÞjj; mL;mRi ¼ Dj
mL;mRðUPÞ

¼
Xj

m¼−j
RðPÞjm;mLD

j
m;mRðUÞ: ðB5Þ

The explicit matrices LðPÞjmL;mR and RðPÞjmL;mR can be
calculated in the following way: by letting pi be the
exponential coordinates of P,

P ¼ exp

�
ipi

σi
2

�
; ðB6Þ

the matrices are given by

Lj
mL;mRðPÞ ¼ expðipiI

ðjÞ
i ÞmL;mR

;

Rj
mL;mRðPÞ ¼ expðipiJ

ðjÞ
i ÞmL;mR

; ðB7Þ

where the angular momentummatrices IðjÞi and JðjÞi form the
spin j irreducible representation of dimension ð2jþ 1Þ2.
In the B ¼ 1 sector, we have a single matrix coordinate,

the phase G, and a field configuration is written as

GAIðxÞG†: ðB8Þ

A state is then simply given by

jj; mL;mRi: ðB9Þ

To quantize the instanton as a fermion we must have
jGi → −j −Gi. As we have the relations −G ¼
exp ði2π σ3

2
ÞG ¼ G exp ði2π σ3

2
Þ the constraint can be

rewritten as

exp ði2πJ3Þjj; mL;mRi ¼ exp ði2πmLÞjj; mL;mRi
¼ −jj; mL;mRi; ðB10Þ

exp ði2πI3Þjj; mL;mRi ¼ exp ði2πmRÞjj; mL;mRi
¼ −jj; mL;mRi: ðB11Þ

The constraint then is implemented by selecting states with
mL andmR half integer, such that only the states with j half
integer are physical. The states which correspond to j ¼ 1

2

represent the basic nucleons, while the states which
correspond to j ¼ 3

2
represent the Δ states and so on. We

can implement two types of transformations: isorotations,
obtained by multiplying G on the left (G → LG) and
transforming the wave function as in (B4), and rotations
that are obtained by multiplying G on the right (G → GR)
and transforming the wave function as shown in (B5).
In the B ¼ 2 sector, we define the zero-mode manifold as

the manifold of the field configurations

BAI

�
x −

r
2

�
B† þ CAI

�
xþ r

2

�
C†; ðB12Þ

which can be written as

UE†AI

�
x −MðEÞR

2
; z

�
ðUE†Þ†

þUiσ3E†AI

�
xþMðEÞR

2
; z

�
ðUiσ3E†Þ†; ðB13Þ

where the vector R ¼ ðR0; 0; 0Þ gives the bound state
separation distance. We call Ki and Li the left-invariant
momenta, relative, respectively, to U and E, and Ii ¼
−MijðUÞKj and Ji ¼ −MijðEÞLj the respective right-
invariant angular momenta (obeying K2 ¼ I2 and
L2 ¼ J2). We define those momenta to obey the rules

½Ki; U� ¼ i
2
UðiσiÞ; ½Li; E� ¼

i
2
EðiσiÞ; ðB14Þ

from which

½Ii; U� ¼ −
i
2
ðiσiÞU; ½Ji; E� ¼ −

i
2
ðiσiÞE; ðB15Þ

follow. Among the momenta, we have commutation rules

½Ki; Kj� ¼ iϵijkKk; ½Li; Lj� ¼ iϵijkLk;

½Ii; Ij� ¼ iϵijkIk; ½Ji; Jj� ¼ iϵijkJk; ðB16Þ

such that a state in momentum space can be written
as jψi ¼ jk; k3; i3; l; l3; j3i.
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The discrete symmetries we have are

O11∶ ðU;EÞ → ðUiσ1; Eiσ1Þ;
O12∶ ðU;EÞ → ðUiσ1; Eiσ2Þ;
O03∶ ðU;EÞ → ðU;Eiσ3Þ; ðB17Þ

in addition to the symmetries ðU;EÞ → ðU;−EÞ and
ðU;EÞ → ð−U;EÞ. To impose FR constraints, we must
assign to each closed path connecting those configurations
a phase of �1. For the last set of symmetries, this decision
is an easy one. In the B ¼ 2 sector, and in all sectors with B
even, the wave function must be even under rotations of
2π, either of the total spin or the isospin: j−U;Ei ¼ jU;Ei
and jU;−Ei ¼ jU;Ei. In opposition to the B ¼ 1 sector,
this implies that all momenta must have integer eigenval-
ues. We now take the symmetries (B17) into account.
We start by examining the symmetry O11. A path that

starts at an arbitrary point ðU;EÞ and ends at ðUiσ1; Eiσ1Þ
can be written as

UðθÞ ¼ U exp

�
iθ
σ1
2

�
; EðθÞ ¼ E exp

�
iθ
σ1
2

�
;

ðB18Þ
with θ ∈ ½0; π�. In terms of the coordinates ðB;CÞ, this
specific path corresponds to

BðθÞ ¼ B; CðθÞ ¼ U exp
�
iθ
σ1
2

�
iσ3 exp

�
−iθ

σ1
2

�
E†:

ðB19Þ
We can see that, for θ ¼ π, we have BðπÞ ¼ B and
CðπÞ ¼ −C. This path corresponds to the Z2 symmetry
which rotates a single instanton by 2π. As we require the
nucleon states to be fermionic states, the path O11 must be
implemented as a noncontractible path; in coordinate space,
we have jU;Ei ¼ −jUiσ1; Eiσ1i. We now examine the
symmetry O12, which can be studied through the path

UðθÞ ¼ U exp

�
iθ
σ1
2

�
; EðθÞ ¼ E exp

�
iθ
σ2
2

�
:

ðB20Þ
This path is homotopic to the path (B18), through the
deformation (s ∈ ½0; π=2�)

Uðθ; sÞ ¼ U exp

�
iθ
σ1
2

�
;

Eðθ; sÞ ¼ E exp
�
iθ
�
σ1
2
cos sþ σ2

2
sin s

��
: ðB21Þ

When s ¼ 0, we have path (B18), while when s ¼ π=2,
we have path (B20). This means that we must impose
jU;Ei ¼ −jUiσ1; Eiσ2i. Lastly,O03 is trivially obtained by
composing O11 and O12; in coordinate space, this means
that jU;Ei ¼ jU;Eiσ3i.

As the constraints are all expressed through the right
multiplications, they require determinate behavior of the
physical states under the transformations generated by Ki
and Li. The constraint jU;Ei ¼ −jUiσ1; Eiσ1i is imple-
mented by writing

jUð−iσ1Þ;Eð−iσ1Þi¼ exp ðiπðL1 þK1ÞÞjU;Ei¼ −jU;Ei:
ðB22Þ

We see that a physical state ψ must be an eigenstate of
expðiπðJ1 þ K1ÞÞ, with the eigenvalue −1. Working in a
similar way with the other constraints, we have

exp ðiπðL1 þ K1ÞÞjψi ¼ exp ðiπðL2 þ K1ÞÞjψi ¼ −jψi;
exp ðiπL3Þjψi ¼ jψi: ðB23Þ

We see that the first two constraints exclude the state
l ¼ k ¼ 0, which is transformed trivially by all rotations.
We search for physical states in the ðk ¼ 1; l ¼ 0Þ and the
ðk ¼ 0; l ¼ 1Þ representations (which have the lowest
angular momentum and hence are good candidates for
the ground state); we do this explicitly by constructing
the appropriate matrix representations and computing the
associated matrices for the transformations, (B23). We
obtain the compatible states

jDi ¼ j0; 0; 0; 1; 0; j3i; jI0i ¼ j1; 0; i3; 0; 0; 0i;

jI1i ¼
1ffiffiffi
2

p ðj1; 1; i3; 0; 0; 0i þ j1;−1; i3; 0; 0; 0iÞ; ðB24Þ

which can be written in wave function form as

hU;EjDi ¼ D1
0;j3

ðEÞ; hU;EjI0i ¼ D1
0;i3

ðUÞ;
hU;EjI1i ¼ D1

1;i3
ðUÞ þD1

−1;i3ðUÞ: ðB25Þ

We see that each ket among jDi; jI0i; jI1i represents a triplet
of states, degenerate in energy and differing only by the
projection of a right-invariant momentum. Those states trans-
form into each other under full rotations and isorotations. Due
to the definition of the U and E matrices in terms of single
phases B and C, we have that simultaneous left translations
ðB;CÞ → ðLB; LCÞ, which are interpreted as isorotations
in the B ¼ 1 sector, can be realized by the transformation
ðU;EÞ → ðLU;EÞ, while simultaneous right translations
ðB;CÞ → ðBR†; CR†Þ represent total rotations, as can be
realized by ðU;EÞ → ðU;REÞ. In either case, we transform
the matrices ðU;EÞ by acting on them from the left. We then
see that the states transform as in (B4) and the rules for
performing physical transformations on the zero-mode mani-
fold are coherent with the FR constraints.
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