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We study the correlation length between test quarks with the same electric and color charges in the
Nambu-Jona-Lasinio model, considering thermal and magnetic effects. We extract the correlation length
from the quark correlation function. The latter is constructed from the probability amplitude to bring a
given quark into the plasma once a previous one with the same quantum numbers is placed at a given
distance apart. For temperatures below the transition temperature, the correlation length starts growing as
the field strength increases to then decrease for large magnetic fields. For temperatures above the
pseudocritical temperature, the correlation length continues increasing as the field strength increases. We
found that such behavior can be understood as a competition between the tightening induced by the
classical magnetic force versus the random thermal motion. For large enough temperatures, the increase of
the occupation number contributes to the screening of the interaction between the test particles. The growth
of the correlation distance with the magnetic field can be understood as due to the closer proximity between
one of the test quarks and the ones popped up from the vacuum, which in turn appear due to the increase of
the occupation number with the temperature.

DOI: 10.1103/PhysRevD.96.034007

I. INTRODUCTION

The response of strongly interacting matter to the effects
of magnetic fields at finite temperature has received a great
deal of attention in recent years. Physical scenarios where
the presence of these fields may be relevant include
semicentral collisions of heavy nuclei at high energy and
the interior of compact stellar objects. Research in this area
has been stimulated by the lattice QCD (LQCD) result,
dubbed “inverse magnetic catalysis” (IMC), whereby the
pseudocritical temperature for the chiral or deconfinement
phase transition and the quark-antiquark condensate for
temperatures above the pseudocritical temperature decrease
with increasing field strength [1–3].
In order to grasp the microscopic origin of IMC, it is

possible to resort to effective QCDmodels. It turns out that,
within a mean field approach, these models do not explain
IMC [4–8]; extra ingredients seem to be called for. Recall
that a working explanation for IMC, borne out of an
analysis of the full QCD partition function, is given in
terms of the competition between the so-called valence and
sea quark contributions to the condensate [1,2,9]: In a

magnetized medium, the sea contribution becomes impor-
tant around the transition temperature and is opposite to
that of the valence contribution. Since the former can be
viewed as a backreaction of fermions on the gauge fields
and these last are absent in effective models, the common
lore is that these models require additional effects in order
to capture such competition.
Another QCD based approach to IMC is discussed in

Refs. [10],where theone-loop effective quark-gluon coupling
at zero and finite temperature is computed in the presence of a
magnetic field. It is shown that at zero (high) temperature the
coupling grows (decreases) with increasing magnetic field
strength. The effect is due to a subtle competition between the
color charges of gluons and quarks. At zero temperature, the
former is larger than the latter whereas at high temperature,
the coupling receives contributions only from the color charge
associated to quarks. It seems, therefore, that a competition
between opposite effects whose strength varies as the temper-
ature increases is essential to describe IMC.
It has also been found that when effective models include

temperature and magnetic field-dependent couplings, IMC
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can be explained [11]. Most notably, it has been realized
that these modified couplings can be computed self-
consistently in calculations beyond the mean field approxi-
mation [12]. The picture that emerges is that effective
models are able to capture some of the dynamical aspects of
the full theory by allowing the running of couplings with
both the temperature and the magnetic field strength.
A step forward in the search for the thermomagnetic

properties of effective model parameters has been given in
Refs. [13,14]. Using a reverse engineering approach,
whereby LQCD data for the quark condensate in the
presence of a magnetic field at finite temperature are
described using the Nambu–Jona-Lasinio model, it has
been shown that it is possible to extract a nontrivial
behavior of the coupling G and dynamical generated mass
M as functions of the magnetic field strength and temper-
ature. Such behavior provides a better description of several
thermodynamical quantities than the calculation without a
thermomagnetic dependence of the parameters, in particu-
lar of the LQCD longitudinal and transverse components of
the pressure [14].
It has been suggested that the properties of the coupling

are reminiscent of asymptotic freedom, namely, that the
interaction strength decreases as the energy scale increases.
In this picture, when the system is above the chiral or
deconfinement phase transition temperature, an increase of
the field strength speeds up the running of the coupling
towards weaker values. Asymptotic freedom can also be
viewed in terms of the spatial properties of the strongly
interacting system. Therefore, it is desirable to round up the
picture and see how the running of the parameters with
temperature and field strength translates into the change of
the correlation distance between test color and electric
charges. In this work we set up to answer this question. We
use the results obtained in Ref. [14] to compute the
correlation function between quarks with the same quan-
tum numbers and from this we extract how their distance,
both in the transverse and longitudinal directions with
respect to the magnetic field, change as a function of the
temperature and field strength.
The work is organized as follows: In Sec. II, we briefly

recall the results of Ref. [14] for the thermomagnetic
behavior of the coupling G and dynamically generated
mass M. We show that this behavior does reproduce the
magnetic field dependence of the pseudocritical temper-
ature. In Sec. III, we compute the correlation function for
quarks with the same quantum numbers. In Sec. IV, we
extract the correlation lengths and study their thermomag-
netic properties. Finally, in Sec. V, we summarize and
conclude.

II. PSEUDOCRITICAL TEMPERATURE

Effective theories are one possible approach to study
strongly interacting matter under the influence of a mag-
netic field. One of such theories is the Nambu-Jona-Lasinio

model (NJL), whose Lagrangian density in the mean field
approximation is written as

LMF ¼ −
σ2

4G
þ ψ̄ði∂ −MÞψ ; ð1Þ

where σ ¼ 4Ghψ̄ψi andM ¼ mþ σ. In Ref. [14], some of
us used this model to study the thermomagnetic properties
of the dynamically generated mass M and the coupling G.
For that purpose, we resorted to relate the LQCD results for
the light-quark condensate [2], hψ̄ψi, as a function of T and
B to M and G by means of the “gap equation,”

M −m ¼ 4G
Z

d4p
ð2πÞ4 Tr½iSðpÞ�; ð2Þ

where the light-quark condensate is given by

hψ̄ψi ¼ −
Z

d4p
ð2πÞ4 Tr½iSðpÞ�: ð3Þ

The effect of the magnetic field in Eq. (3) is reflected in the
dressing of the quark propagator. For this, we use
Schwinger’s proper time representation of the two-point
function

iSðpÞ ¼
Z

∞

0

ds
cosðqfBsÞ

e
is

�
p2
∥−p

2⊥
tanðqfBsÞ
qfBs

−M2þiϵ

�

×

�
ðcosðqfBsÞ þ γ1γ2 sinðqfBsÞÞðM þ p∥Þ

−
p⊥

cosðqfBsÞ
�
; ð4Þ

where qf is the absolute value of the quark charge (i.e.,
qu ¼ 2jej=3 and qd ¼ jej=3), and we have chosen the
homogeneous magnetic field to point in the ẑ direction,
namely B ¼ Bẑ. This configuration can be obtained from
an external vector potential which we choose in the so-
called “symmetric gauge,”

Aμ ¼ B
2
ð0;−y; x; 0Þ: ð5Þ

We have also defined

pμ
⊥ ≡ ð0; p1; p2; 0Þ;
pμ
∥ ≡ ðp0; 0; 0; p3Þ;

p2⊥ ≡ p2
1 þ p2

2;

p2
∥ ≡ p2

0 − p2
3: ð6Þ

Notice that since the magnetic field breaks Lorentz invari-
ance, the propagator involves a nonlocal, albeit path
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independent phase. However, by taking the trace over a
closed one-loop diagram, as is required for the calculation
of the condensate, this phase does not contribute and thus
we ignore it in the sequel.
Also, in order to introduce a finite temperature within the

Matsubara formalism, we transform the integrals to
Euclidean space by means of

Z
d4p
ð2πÞ4 fðpÞ → iT

Xþ∞

n¼−∞

Z
d3p
ð2πÞ3 fði ~ωn;pÞ; ð7Þ

where the integral over the zeroth component of the
fermion momentum has been discretized and we introduced
the fermion Matsubara frequencies ~ωn ¼ ð2nþ 1ÞπT.
Since the NJL model is nonrenormalizable, the integral

in Eq. (3) needs to be regularized. The procedure involves
isolating the vacuum piece, which is the only divergent
term. The thermomagnetic contribution turns out to be
finite and the result is

hψ̄ψiB;T ¼ −
NcM
4π2

1

2

X
f

�Z
∞

0

dτ
τ2

e−τM
2

×

�
qfBτ

tanhðqfBτÞ
− 1

�

þ 2qfB
X∞
n¼1

ð−1Þn
Z

∞

0

dτ
e−τM

2

e−
n2

4τT2

τ tanhðqfBτÞ
�
; ð8Þ

whereas the vacuum contribution is given by

hψ̄ψi0 ¼ −
NcM0

4π2

Z
∞

τ0

dτ
τ2

e−τM
2
0 : ð9Þ

The quantity M≡MðB; TÞ in Eq. (8) is such that when
B; T → 0,M → M0. It turns out that the integrals in Eq. (8)
are finite as the lower limit of integration goes to zero. This
means that the thermomagnetic effects are independent of
the regulator τ0 and we have consequently set it to zero
in Eq. (8).
To fix the vacuum values of the light-quark condensate

and the dynamical generated mass M0, we choose the
ultraviolet cutoff τ0 such that the model reproduces the
physical values of the pion mass and of the pion decay

constant. Table I shows two possible sets of parame-
ters [15].
To explore some of the consequences of the extracted

behavior of M and G as functions of the temperature and
field strength, in Ref. [14] we computed the thermomag-
netic contribution to the longitudinal and transverse
pressures. We found that below Tc, the transverse pressure
as a function of the magnetic field decreases towards
negative values, starting off from zero. However, for
temperatures above the transition temperature, although
the transverse pressure still decreases as a function of the
field strength, it starts off from positive values. This
turnover behavior of the transverse pressure means that
above Tc particles are pulled closer together, at least for
small values of the magnetic field. The fact that at the
same time the coupling decreases can be viewed as
signaling that the strength of the bound of the condensate
is smaller and this behavior can be responsible for the
decrease of the condensate as the magnetic field strength
is turned on.
Another important quantity that can be studied from our

results is the behavior of the pseudocritical temperature as a
function of the field strength. The pseudocritical temper-
ature can be obtained as the value of T that maximizes the
chiral susceptibility, χB;T , namely, the (minus) derivative of
the quark condensate with respect to the temperature, i.e.,
the value of T that satisfies

χB;T ≡ −
∂
∂T hψ̄ψiB;T ¼ 0: ð10Þ

The solution of Eq. (10) is found by means of Eq. (3)
together with the extracted values forMðT; BÞ. The result is
shown in Fig. 1 where we also plot the corresponding
values obtained by the LQCD calculation of Ref. [2].
Notice that the result of the calculation for the pseudoc-
ritical temperature accounts for the fact thatM is a function
of T and B.
It is important to notice that the pseudocritical temper-

ature given by the model depends on the value of M0 and
does not coincide with the corresponding value reported by
LQCD. It is, therefore, necessary to scale the temperatures
obtained in the model to make them correspond to the
physical values. Following our earlier work [14], the
simplest choice is a linear scaling such that

TABLE I. Two sets of values for the vacuum regulator τ0, condensate hψ̄ψi0 and dynamically generated massM0

stemming from requiring that the pion mass and the pion decay constant computed in the NJL model attain their
physical values. Shown also are the corresponding vacuum values for the coupling constant G0, current quark mass
m and the pseudocritical temperature for eB ¼ 0.

τ0 ðGeVÞ−2 −hψ̄ψi1=30 (GeV) M0 (GeV) G0 ðGeVÞ−2 m (GeV) TNJL
c (GeV)

1.27 0.220 0.224 5.08 0.00758 0.267
0.74 0.260 0.192 2.66 0.00465 0.228
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TNJL ¼
�

TNJL
c

TLQCD
c

	
T; ð11Þ

where TLQCD
c ¼ 158 MeV corresponds to the LQCD

pseudocritical temperature. For all of the calculations we
takeM0 ¼ 224 MeV. There is very little dependence of the
results when one takes the second choice forM0 in Table I.
In order to round up the picture and to have a better

qualitative grasp of the origin of IMC, we now proceed to
study the correlation function between two test quarks with
the same quantum numbers in coordinate space.

III. CORRELATION FUNCTION

In order to explore how the correlation distance between
test (color and electric) charges is modified when consid-
ering thermomagnetic effects, we look at the correlation
function. This object is constructed from the probability
amplitude to place a test quark with quantum numbers b
(spin projection), q (electric charge) and α (color charge) in
position x⃗0 in a state that already contains a particle with the
same quantum numbers but placed in position x⃗. In order to
keep track of the indices, let us focus on the spin projection
indices and take the other quantum numbers already to be
the same. Furthermore, we first consider that the original
particle is labeled with the spin projection a. Such
amplitude is given by

Aðx⃗; x⃗0Þ ¼ hψaðx⃗Þψbðx⃗0Þψ̄bðx⃗0Þψ̄aðx⃗Þi; ð12Þ

where a sum over a and b is implicit. We use that

ψ̄bðx⃗0Þ ¼ ψ†
cðx⃗0Þγ0cb

ψ̄aðx⃗Þ ¼ ψ†
dðx⃗Þγ0da; ð13Þ

to write

Aðx⃗; x⃗0Þ ¼ hψaðx⃗Þψbðx⃗0Þψ†
cðx⃗0Þψ†

dðx⃗Þiγ0cbγ0da: ð14Þ

Recall that the equal-time commutation relations for the
fermion fields are

fψaðx⃗Þ;ψ†
bðx⃗0Þg ¼ δabδ

3ðx⃗ − x⃗0Þ
fψaðx⃗Þ;ψbðx⃗0Þg ¼ fψ†

aðx⃗Þ;ψ†
bðx⃗0Þg ¼ 0: ð15Þ

Using these commutation relations we have, on the one
hand, when commuting ψ†

dðx⃗Þ to place it to the right of
ψaðx⃗Þ,

Aðx⃗; x⃗0Þ ¼ ½hψaðx⃗Þψ†
dðx⃗Þψbðx⃗0Þψ†

cðx⃗0Þi
− δbdδ

3ðx⃗ − x⃗0Þhψaðx⃗Þψ†
cðx⃗0Þi�γ0cbγ0da: ð16Þ

On the other hand, when commuting ψ†
cðx⃗0Þ to place it to

the right of ψaðx⃗Þ, we get

Aðx⃗; x⃗0Þ ¼ −½hψaðx⃗Þψ†
cðx⃗0Þψbðx⃗0Þψ†

dðx⃗Þi
þ δbcδ

3ðx⃗ − x⃗0Þhψaðx⃗Þψ†
dðx⃗Þi�γ0cbγ0da: ð17Þ

The second term on the right-hand side of Eq. (16) vanishes
identically except when x⃗ ¼ x⃗0, where it diverges. Since we
are looking for the correlation when varying the distance
between the test particles, we discard such contribution.
Also, the second term on the right-hand side of Eq. (17) is
proportional to the trace of γ0, which vanishes. Therefore,
adding up Eqs. (16) and (17), we get

Aðx⃗; x⃗0Þ ¼ 1

2
½hψaðx⃗Þψ̄aðx⃗Þψbðx⃗0Þψ̄bðx⃗0Þi

− hψaðx⃗Þψ̄bðx⃗0Þψbðx⃗0Þψ̄aðx⃗Þi�: ð18Þ

We now assume that the correlations in both terms of the
right-hand side of Eq. (18) factorize to write

Aðx⃗; x⃗0Þ ¼ 1

2
½hψaðx⃗Þψ̄aðx⃗Þihψbðx⃗0Þψ̄bðx⃗0Þi

− hψaðx⃗Þψ̄bðx⃗0Þihψbðx⃗0Þψ̄aðx⃗Þi�: ð19Þ

The factorization assumption is a reasonable approximation
for statistical systems in thermal equilibrium. Taking the
spin projection indices a and b to be equal, we get

Aðx⃗; x⃗0Þ ¼ 1

2
½ðTr½Sð0Þ�Þ2 − ðTr½Sðx⃗0 − x⃗Þ�Þ2�; ð20Þ

where

Sðx⃗0 − x⃗Þ ¼ hψ̄ðx⃗0Þψðx⃗Þi ð21Þ

is the quark propagator in coordinate space at equal times.
Notice that, since the order of the coordinates in the two
factors of the second term on the right-hand side of Eq. (19)
is reversed, the phase factor cancels. Since the trace of the
Fourier transform of the translationally invariant part of the

FIG. 1. Pseudoritical temperature as a function of the magnetic
field strength. The band corresponds to the LQCD values of
Ref. [2] and the dots denote the NJL results. M0 ¼ 224 MeV
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propagator turns out to be real, hereafter, Sðx⃗0 − x⃗Þ is just
meant to represent the Fourier transform of Eq. (4) at
equal times.
Dividing by the first term on the right-hand side of

Eq. (21), we finally get the correlation function,

Cðx⃗ − x⃗0Þ ¼ 1 −
ðTr½Sðx⃗0 − x⃗Þ�Þ2
ðTr½Sð0Þ�Þ2 : ð22Þ

The denominator of the second term on the right-hand side
of Eq. (22) is the square of the quark condensate. We
consider only the thermomagnetic contribution to this
condensate which is given by Eq. (8). The numerator is
the square of the trace of the quark propagator in coordinate
space as a function of the distance between the test
particles. We, thus, proceed to analyze this latter object
and to extract from it the change of the correlation distance
when varying the temperature and field strength.

IV. CORRELATION LENGTHS

In order to obtain the behavior of the correlation function
when the temperature and magnetic field strength vary, we
compute the trace of the quark propagator in coordinate
space. For this purpose, we write the Fourier transform of
Eq. (4) at equal times, namely,

iSðx⃗ − x⃗0Þ ¼
Z

d4p
ð2πÞ4 e

−iðx−x0Þ·p

×
Z

∞

0

ds
cosðqfBsÞ

e
is½p2

∥−p
2⊥
tanðqfBsÞ
qfBs

−M2þiϵ�

×

�
ðcosðqfBτÞ þ γ1γ2 sinðqfBsÞÞðM þ p∥Þ

−
p⊥

cosðqfBsÞ
�
jx0¼x0 0 : ð23Þ

We introduce finite temperature effects in Eq. (23) in the
manner described in Sec. II. Therefore, after performing the
sum over Matsubara modes, the trace becomes

Tr½Sðx⃗ − x⃗0Þ� ¼ NcM
4π2

1

2

X
f

qfB
Z

∞

τ0

dτ
τ tanhðqfBτÞ

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ × ϑ3

�
1

2
;

i
4τπT2

	
;

ð24Þ
where x3 and x⊥ represent the parallel and transverse (to the
magnetic field) space directions, respectively, and M≡
MðB; TÞ is the dynamically generated mass. ϑðz; xÞ is
Jacobi’s theta-three function that can be written as

ϑ3

�
1

2
;

i
4πτT2

	
¼ 1þ 2

X∞
n¼1

ð−1Þne− n2

4τT2 : ð25Þ

Substituting Eq. (25) into Eq. (24), we obtain

Tr½Sðx⃗ − x⃗0Þ� ¼ NcM
4π2

1

2

X
f

qfB
Z

∞

τ0

dτ
τ tanhðqfBτÞ

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ

×

�
1þ 2

X∞
n¼1

ð−1Þne− n2

4τT2

�
: ð26Þ

Notice that in Eq. (26) the T-independent term contains
both the vacuum and the pure magnetic contribution. As
has been shown in Ref. [14], to isolate the vacuum
contribution, we can add and subtract the T-independent
term in the limit when qfB → 0. When doing so, we obtain

Tr½Sðx⃗− x⃗0Þ� ¼NcM
4π2

1

2

X
f

�Z
∞

τ0

dτ
τ2

�
qfBτ

tanhðqfBτÞ
− 1

	

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ

þ
Z

∞

τ0

dτ
τ2

e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ

þ 2qfB
Z

∞

τ0

dτ
τ tanhðqfBτÞ

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ ×

X∞
n¼1

ð−1Þne− n2

4τT2

�
:

ð27Þ

Equation (27) diverges when x3 − x03 ¼ x⊥ − x0⊥ ¼ 0. This
divergence corresponds to the term we subtracted from the
analysis in Eq. (17). Thus, in order to isolate this term, we
follow a similar procedure as described above, adding and
subtracting to the integrand of Eq. (27) the space coor-
dinate-dependent, T-independent term in the limit when
qfB → 0,

Tr½Sðx⃗ − x⃗0Þ�B;T ¼ NcM
4π2

1

2

X
f

�Z
∞

0

dτ
τ2

�
qfBτ

tanhðqfBτÞ
− 1

	

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ þ

Z
∞

0

dτ
τ2

e−τM
2

×

�
e
−
ðx3−x03Þ

2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ − e−

ðx3−x03Þ
2

4τ −
ðx⊥−x0⊥Þ2

4τ

	

þ 2qfB
Z

∞

0

dτ
τ tanhðqfBτÞ

× e
−τM2−

ðx3−x03Þ
2

4τ −
qfBðx⊥−x0⊥Þ2
4 tanhðqfBτÞ

×
X∞
n¼1

ð−1Þne− n2

4τT2

�
; ð28Þ
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where we subtracted the space-dependent vacuum contri-
bution, namely,

Tr½Sðx⃗ − x⃗0Þ�0 ¼
Z

∞

τ0

e−M
2τ−

ðx3−x03Þ
2

4τ −
ðx⊥−x0⊥Þ2

4τ ; ð29Þ

and have correspondingly indicated that Eq. (28) contains
only the thermomagnetic contribution.
With Eq. (28) at hand, we explore the thermomagnetic

behavior of the correlation function Cðx⃗ − x⃗0Þ, Eq. (22).
Figures 2 and 3 show examples of the correlation function.
Figure 2 (3) shows C as a function of the longitudinal
(transverse) distance between the test charges. Notice that
these functions increase monotonically between 0 and 1
and that their widths depend on the values of T and B.
In order to analyze the changes of the characteristic

length contained in the correlation function, when varying
T and B, we take a fixed value of the height and study the
evolution of the width of Cðx⃗ − x⃗0Þ for this fixed height
value. We take this as Cðx⃗ − x⃗0Þ ¼ 0.5 and define the width
for this height as the correlation length.

Figures 4 and 5 show the correlation lengths in the
parallel and transverse directions using the values we found
for MðB; TÞ in Ref. [14], as functions of the field strength,
for T ¼ 142, 148, 153, 163 and 176 MeV. For a temper-
ature well above the pseudocritical temperature, namely, for
T ¼ 176 MeV, both correlation distances increase mono-
tonically with the magnetic field. As the temperature
decreases from this value, there is a turn-over behavior
as function of the field strength, whereby the correlation
lengths start off decreasing slightly to then increase up to
some value of B and then decrease for larger values of B.
The initial decrease is not as pronounced as the subsequent
increase for intermediate values of B.
In order to study the dependence of these correlation

lengths on the properties of the dynamically generated mass
MðT; BÞ, we test how these lengths are affected when
considering a constant M. Figures 6 and 7 show this
behavior as a function of B for the same set of temperatures

FIG. 2. Correlation function in the parallel direction for
T ¼ 142 (solid lines) and at T ¼ 178 MeV (dashed lines) for
the indicated values of the field strength eB. M0 ¼ 224 MeV.

FIG. 3. Correlation function in the transverse direction for T ¼
142 (solid lines) and at T ¼ 178 MeV (dashed lines) for the
indicated values of the field strength eB. M0 ¼ 224 MeV.

FIG. 4. Correlation distance in the parallel direction as function
of the field strength eB, normalized to the vacuum distance, with
M ≡MðB; TÞ and for T ¼ 142, 148, 153, 163 and 176 MeV.
M0 ¼ 224 MeV.

FIG. 5. Correlation distance in the perpendicular direction as
function of the field strength eB, normalized to the vacuum
distance, with M ≡MðB; TÞ and for T ¼ 142, 148, 153, 163 and
176 MeV. M0 ¼ 224 MeV.
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as above in the case whenM is constant. Notice that for all
temperatures, the correlation distances decrease monoton-
ically with the field strength.
The correlation distance exhibits very different pro-

perties when M does and does not depend on T and B.
To pick the case that corresponds to the system of strongly
interacting particles, recall that the behavior of the LQCD
pseudocritical temperature is well reproduced by a mass
function that depends on T and B, as shown in Fig. 1. This
is an indication that in the NJL model, the properties of the
strongly interacting magnetized plasma are also encoded in
MðT; BÞ and not only in GðT; BÞ. A constant M resembles
more the case of a classical system. In contrast, a full
thermomagnetic dependence ofMðT; BÞ corresponds to the
strongly interacting case.
Recall that the correlation distance, as we have defined it,

can be viewed as the minimum distance to place two quarks

with the same quantum numbers, so that the probability for
this configuration is not negligible ðC ≥ 0.5Þ. When this
distance shrinks, for a given T as a function of B, the
system tightens. Since this happens for large B, when the
system is below the pseudocritical temperature, we see that
the magnetic interaction wins over the thermal random
motion, making it to behave like the case of a classical
system of charges subject to the influence of a magnetic
field. On the contrary, when the temperature is above the
pseudocritical temperature, the random motion dominates
such that for the explored values of B, the field strength is
not enough to tighten up the system and, on the contrary,
makes the test particles to be further apart with a large
probability. It could very well be that for these temperatures
a strong enough magnetic field could make the correlation
distance shrink again, though this case is not considered in
this work, as the field strengths are limited to values below
1 GeV2 and temperatures not larger than 176 MeV.
When the correlation distance increases, the test

charges are further apart and correspondingly their inter-
action is weaker. To understand how the strong interaction
becomes weaker as the distance between test particles
increases, recall that the increase in temperature is also
associated to an increase of the phase space occupation
number. This means that for large temperatures more
particles pop up from vacuum and these contribute to
screen the interaction between test particles. When the
correlation distance keeps increasing with the field
strength it is as if the magnetic field brings on average
one of the test particles closer to those being popped up
from vacuum. Thus, on average, the increase in the
occupation number together with the largest proximity
between one of the test particles and those popped up from
vacuum contributes to loosen up the system. This behav-
ior is reminiscent of asymptotic freedom.

V. SUMMARY AND CONCLUSIONS

In conclusion we have studied the correlation length
between test quarks with the same electric and color
charges in the NJL model, considering thermal and
magnetic effects, encoded in the properties of the dynami-
cally generated mass function MðT; BÞ. We have defined
the correlation length from the quark correlation function
which in turn is built from the probability amplitude to
bring one quark into the plasma, once a previous one with
the same quantum numbers is placed at a given distance
apart. We found that for temperatures below the transition
temperature the correlation length has a turn over behavior;
it starts off growing as the field strength increases to then
decrease for large magnetic fields. On the contrary, the
correlation length continues increasing as the field strength
increases for temperatures above the pseudocritical temper-
ature. We have interpreted such behavior in terms of a
competition between the tightening induced by the
classical magnetic force and the random thermal motion.

FIG. 6. Correlation distance in the parallel direction as function
of the field strength eB, normalized to the vacuum distance, with
M ≡Mð0; 0Þ ¼ 224 MeV and for T ¼ 142, 148, 153, 163 and
176 MeV.

FIG. 7. Correlation distance in the perpendicular direction as
function of the field strength eB, normalized to the vacuum
distance, with M ≡Mð0; 0Þ ¼ 224 MeV and for T ¼ 142, 148,
153, 163 and 176 MeV.
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However, we have also emphasized that for large enough
temperatures the increase of the occupation number
contributes to the screening of the interaction between
the test particles. As the correlation distance keeps
growing with the magnetic field, we picture this behavior
as due to the closer proximity between one of the test
particles and the ones popped up from vacuum. This last
behavior resembles the asymptotically free interaction
between the test particle and the particles produced by the
increase in temperature.
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