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We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu–
Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson
fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically
allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation
function for pressure in the Oð1=NcÞ power counting scheme. The bulk viscosity of matter is expressed in
terms of the Lorentz components of the quark spectral function and includes multiloop contributions which
arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop
contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the
one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to
the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the
dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk
viscosity.
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I. INTRODUCTION

The transport coefficients of quark-gluon plasma con-
tinue to attract significant attention as they are key inputs in
the hydrodynamical description of heavy-ion collisions at
the energies of the Relativistic Heavy Ion Collider (RHIC)
and Large Hadron Collider (LHC). The data on elliptic flow
in the heavy-ion collisions can be well described by a low
value of the shear viscosity η of the fluid, with the ratio of
the shear viscosity to the entropy density s being close to
the lower bound placed by the uncertainty principle and
conjectured from AdS/CFT duality arguments.
The role of the bulk viscosity, which describes the

dissipation in the case where pressure falls out of equilib-
rium on uniform expansion or contraction of a statistical
ensemble, is more subtle. As is well known, bulk viscosity
vanishes in a number of cases, e.g., for ultrarelativistic and
nonrelativistic gases interacting weakly with local forces
via binary collisions [1,2].
The bulk viscosity ζ of quark gluon plasma is small in

the perturbative regime [3–6], but was found to be large
close to the critical temperature of the chiral phase
transition. For example, lattice simulations of the pure
gluodynamcis close the critical temperature predict ζ=s ∼ 1
[7], where s is the entropy density, and it is expected that ζ
becomes singular at the critical point of second order phase
transition [8]. Values of ζ=s ∼ 1 affect the description of
data in heavy-ion collisions [9] and can lead to a breakdown
of the fluid description via onset of cavitation [10].

Controlled computations of the bulk viscosity exist in
perturbative QCD on the basis of kinetic theory of
relativistic quarks [4–6]. In the strongly coupled regime,
various approximate methods were applied, including QCD
sum rules in combination with the lattice data on the QCD
equation state [5,11,12] and quasiparticle Boltzmann trans-
port [13–17]. Some strongly coupled systems can exhibit
zero bulk viscosity if the scale or, more generally, the
conformal symmetry is intact. This is the case, for example,
in atomic Fermi gases in the unitary limit [18–21], but not
in the QCD and QCD-inspired theories when the conformal
symmetry is broken by the quark mass terms and/or by
dimensionful regularization of the ultraviolet divergences.
This is indeed the case in the Nambu–Jona-Lasinio (NJL)
model of low-energy QCD that we will utilize below.
A nonperturbative method to compute the transport

coefficients of quark-gluon plasma close to the chiral phase
transition is based on the Kubo-Zubarev formalism [22,23]
with the correlators computed from the quark spectral
function derived from the NJL model in conjunction with
the 1=Nc diagrammatic expansion [24]. This approach has
been applied extensively to compute the shear viscosity of
quark plasma [25–30], but there exist only a few compu-
tations of the bulk viscosity [30,31] in this regime.
In this work, we extend the previous study of the

transport coefficients of two-flavor quark mater within
the Kubo-Zubarev formalism and NJL model [32] to
compute the bulk viscosity of quark plasma close to the
critical line of the chiral phase transition. We specifically
argue that the one-loop result for the correlation function of
quarks, which arises in the leading order of 1=Nc expan-
sion, cannot be applied in the case of bulk viscosity,
and a resummation of the infinite series is required. As
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a consequence, our results are substantially different from
those obtained from the one-loop computations previously.
For completeness, we point out that the bulk viscosity of

dense and cold QCD was extensively discussed in the
context of compact stars and strange stars because it is the
dominant dissipation mechanism to damp the unstable
Rossby waves (r-modes) [33–40]. In this regime of
QCD, the bulk viscosity is dominated by the weak
interaction process like β decays of quarks d→uþeþ ν̄
or nonleptonic weak process in three-flavor quark matter
uþ d → uþ s. The time scales associated with the weak
processes are much larger than the collisional time scale.
The situation is an analogue of the case of bulk viscosity of
fluids undergoing chemical reactions on time scales much
larger than the collisional time scale, which may lead to
large bulk viscosity, as shown long ago by Mandelstam and
Leontovich [41]. This contribution to the bulk viscosity is
called “soft-mode” contribution, because it is described by
the response of the system to small frequency perturbations
[42]. As we are interested here in the hydrodynamical
description of heavy-ion collisions, which have character-
istic time scales much shorter than the weak time scale, we
will not discuss weak processes. Slow “chemical equili-
bration” processes may play a role in the bulk viscosity in
the multicomponent environment in heavy-ion collisions,
but are beyond the scope of this work.
The paper is organized as follows. Section II starts from

the Kubo-Zubarev formula for the bulk viscosity and
expresses it in terms of the Lorentz components of the quark
spectral function. In Sec. III, we summarize the results of
Ref. [32] for the quark spectral function, in the case where
the dispersive effects arise from the quark-meson fluctua-
tions. Our numerical results for the bulk viscosity are
collected in Sec. IV. Section V provides a short summary of
our results. Appendix A describes the details of the
computation of the bulk viscosity beyond one-loop
approximation. In Appendix B, we discuss the thermody-
namics of the model and derive a number of relations that
are required for the computation of the bulk viscosity. We
use the natural (Gaussian) units with ℏ ¼ c ¼ kB ¼ 1, and
the metric signature ð1;−1;−1;−1Þ.

II. KUBO FORMULA FOR BULK VISCOSITY

We consider two-flavor quark matter described by the
NJL-Lagrangian of the form

L ¼ ψ̄ði∂ −m0Þψ þG
2
½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where ψ ¼ ðu; dÞT is the iso-doublet quark field, m0 ¼
5.5 MeV is the current-quark mass,G ¼ 10.1 GeV−2 is the
effective four-fermion coupling constant and τ is the vector
of Pauli isospin matrices. This Lagrangian describes four-
fermion contact scalar-isoscalar and pseudoscalar-isovector
interactions between quarks with the corresponding bare

vertices Γ0
s ¼ 1 and Γ0

ps ¼ iτγ5. The symmetrized energy
momentum tensor is given in the standard fashion by

Tμν ¼
i
2
ðψ̄γμ∂νψ þ ψ̄γν∂μψÞ − gμνL: ð2Þ

The net particle current is given by

Nμ ¼ ψ̄γμψ ; ð3Þ

which is the only conserved current in the case of isospin-
symmetric quark matter, i.e., quark matter described by a
single chemical potential for both flavors.
The Kubo and Zubarev formalisms relate the transport

properties of material to different types of equilibrium
correlation functions of an ensemble [22,23], which in turn
can be computed from equilibrium many-body techniques.
The bulk (second) viscosity within the Kubo-Zubarev

formalism is given by [43,44]

ζ ¼ −
d
dω

ImΠR
ζ ðωÞjω¼0; ð4Þ

where the relevant two-point correlation function is
given by

ΠR
ζ ðωÞ¼−i

Z
∞

0

dteiωt
Z

drh½p̂�ðr;tÞ;p̂�ð0Þ�i0; ð5Þ

with

p̂�ðr; tÞ ¼ p̂ðr; tÞ − γϵ̂ðr; tÞ − δn̂ðr; tÞ

¼ 1

3
Tiiðr; tÞ − γT00ðr; tÞ − δN0ðr; tÞ: ð6Þ

Here p̂, ϵ̂ and n̂ are operators of the pressure, the energy
density and the particle number density, respectively; the
second line uses the relation between these quantities and
energy-momentum tensor and particle number current in
the fluid rest frame; γ and δ are thermodynamic quantities
and are given by

γ ¼
�∂p
∂ϵ

�
n
; δ ¼

�∂p
∂n

�
ϵ

: ð7Þ

The last term in Eq. (6) is present only at finite chemical
potentials; see Appendix B for details.
Inserting Eq. (6) into Eq. (5), we obtain a set of two-point

correlation functions of the generic form

Π½â; b̂�ðωnÞ ¼
Z

β

0

dτeiωnτ

Z
drhT τðψ̄ âψ jðr;τÞ; ψ̄ b̂ψ j0Þi0;

ð8Þ
where we switched to the imaginary-time Matsubara
formalism by means of the substitutions t → −iτ,
∂t → i∂τ. In Eq. (8), ωn ¼ 2πnT, n ¼ 0;�1;… is a
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bosonic Matsubara frequency with T being the temperature
of the system, T τ is the imaginary time-ordering operator
and â and b̂ stand for either a differential operator
(contracted with Dirac γ matrices) or an interaction vertex
Γ0
s=ps appearing in Eqs. (2) and (3). The required retarded

correlation functions can be obtained from Eq. (8) by an
analytic continuation iωn → ωþ iδ. The procedure of
computation of the bulk viscosity is slightly more involved
than that of the conductivities and shear viscosity [25–30]
because the single-loop approximation to Eq. (8) does not
cover all the relevant diagrams in the 1=Nc expansion.
Figure 1 shows the G0 and G1 order terms of diagrammatic
expansion for the two-point correlation function given by
Eq. (8). To select the leading-order diagrams in the 1=Nc
power-counting scheme, the following rules are applied:
(i) each loop contributes a factor of Nc from the trace over
color space; (ii) each coupling G associated with a pair of
Γ0
s=ps matrices contributes a factor of 1=Nc [24–30].

Applying these rules, we conclude that the diagrams in
the first and the second lines in Fig. 1 are of order Nc. The
third diagram, which is a first-order vertex correction, is of
order of N0

c, and, therefore, is suppressed compared to the
previous ones. Thus, the correlation function (8) in the
leading [OðN1

cÞ] order is given by an infinite sum of bubble
diagrams, each of which consists of several single-loop
diagrams. The latter in the momentum space is given by
(see the first line in Fig. 1)

Π0½â; b̂�ðωnÞ≡ −T
X
l

Z
dp

ð2πÞ3

× Tr½âGðp; iωl þ iωnÞb̂Gðp; iωlÞ�: ð9Þ

Here Gðp; iωlÞ is the dressed Matsubara quark-antiquark
propagator, the summation goes over fermionic Matsubara
frequencies ωl ¼ πð2lþ 1ÞT − iμ, l ¼ 0;�1;…, with μ
being the chemical potential, and â and b̂ are the momen-
tum-space counterparts of the same operators appearing in

Eq. (8). The traces should be taken in Dirac, color, and
flavor space. The details of these computations and the loop
resummation are relegated to Appendix A.
To express the correlation functions given by Eq. (9) in

terms of the Lorentz components of the spectral function
we write the full quark retarded/advanced Green’s func-
tion as

GR=Aðp0; pÞ ¼
1

p −m − ΣR=Aðp0; pÞ
; ð10Þ

where m is the constituent quark mass, ΣR=A in (10) is the
quark retarded/advanced self-energy which is written in
terms of its Lorentz components as

ΣRðAÞ ¼ mΣð�Þ
s − p0γ0Σ

ð�Þ
0 þ pγΣð�Þ

v : ð11Þ

By definition, the spectral function is given by

Aðp0; pÞ ¼ −
1

2πi
½GRðp0; pÞ −GAðp0; pÞ�

¼ −
1

π
ðmAs þ p0γ0A0 − pγAvÞ; ð12Þ

where the scalar As, timelike A0 and vector Av components
are expressed through combinations of the components
(real and imaginary) of the self-energy according to the
relations [28,32]

Aiðp0; pÞ ¼
1

d
½n1ϱi − 2n2ð1þ riÞ�;

d ¼ n21 þ 4n22; ð13Þ

with

n1 ¼ p2
0½ð1þ r0Þ2 − ϱ20� − p2½ð1þ rvÞ2 − ϱ2v�

−m2½ð1þ rsÞ2 − ϱ2s �; ð14Þ

n2 ¼ p2
0ϱ0ð1þ r0Þ − p2ϱvð1þ rvÞ −m2ϱsð1þ rsÞ; ð15Þ

where we used the shorthand notations ϱi ¼ ImΣi and
ri ¼ ReΣi, i ¼ s, 0, v. From now on, we will neglect the
irrelevant real parts of the self-energy, which lead to
momentum-dependent corrections to the constituent quark
mass in next-to-leading order OðN−1

c Þ.
The bulk viscosity in terms of the components of the

spectral function is then written as

ζ ¼ ζ0 þ ζ1 þ ζ2; ð16Þ

with the one-loop contribution given by

FIG. 1. Contributions to the two-point correlation functions
from OðN1

cÞ (first and second lines) and OðN0
cÞ (the third line)

diagrams which are either of zeroth or first order in the coupling
constant G.
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ζ0 ¼ −
2NcNf

9π3

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp2½2ðaxþ byþ czÞ2

− ðx2 − y2 þ z2Þða2 − b2 þ c2Þ�; ð17Þ

where Nc ¼ 3 and Nf ¼ 2 are the color and flavor
numbers, respectively, and

x¼3ð1þγÞm0; y¼3ðδ−εÞ; z¼ð2þ3γÞp; ð18Þ

a ¼ mAs; b ¼ εA0; c ¼ pAv: ð19Þ

In Eq. (17), we introduced a regularizing 3-momentum
ultraviolet cutoff Λ; below, we adopt the value
Λ ¼ 0.65 GeV. The quark distribution function is given by

nðεÞ ¼ 1

eβðε−μÞ þ 1
; ð20Þ

with β ¼ T−1 being the inverse temperature. The following
two contributions in Eq. (16) are given by

ζ1 ¼ 2ðḠ R̄ÞI1; ζ2 ¼ ðḠ R̄Þ2I2; ð21Þ

where the renormalized coupling Ḡ arises through resum-
mation of geometrical series as

Ḡ ¼ G
1 − R0G

; ð22Þ

with the polarization loop

R0 ¼ −
2NcNf

π4

Z
∞

−∞
dε

Z
∞

−∞
dε0

nðεÞ − nðε0Þ
ε − ε0

×
Z

Λ

0

dpp2ðaa0 þ bb0 − cc0Þ: ð23Þ

Finally, the three functions appearing in Eq. (21) are
given by

I1 ¼ −
2NcNf

3π3

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp2

× ½xða2 þ b2 − c2Þ þ 2aðbyþ czÞ�; ð24Þ

I2 ¼ −
2NcNf

π3

Z
∞

−∞
dε

∂n
∂ε

Z
Λ

0

dpp2ða2 þ b2 − c2Þ; ð25Þ

R̄ ¼ −
2NcNf

3π4

Z
∞

−∞
dε

Z
∞

−∞
dε0

Z
Λ

0

dpp2
1

ε − ε0

×
n
½nðεÞ − nðε0Þ�½xðaa0 þ bb0 − cc0Þ þ zða0cþ ac0Þ�

þ
h
ynðεÞ − y0nðε0Þ þ 3

2
ðε − ε0Þ

i
ða0bþ ab0Þ

o
: ð26Þ

Here the functions a0, b0, c0, y0 are obtained from a, b, c, y
defined in Eqs. (18) and (19) by substitution ε → ε0.

Equations (16)–(26) express the bulk viscosity of the quark
plasma in terms of the components of its spectral.
It is remarkable that the multiloop contributions do not

vanish if the chiral symmetry is explicitly broken. However,
in the chiral limitm0 ¼ 0, they vanish trivially, since quarks
become massless above the critical temperature Tc (see the
next section). Indeed, from Eqs. (18) and (19), we find
x ¼ 0 and a, a0 ∝ m ¼ 0 in this case. Consequently, it
follows from Eqs. (26) and (21) that ζ1;2 ¼ 0. Therefore, in
this case the bulk viscosity is given by the single loop
contribution ζ0 which remains finite also in the chiral limit;
see also the discussion in Sec. IV.

III. PHASE DIAGRAM
AND SPECTRAL FUNCTIONS

Here we specify the structure of the phase diagram of
strongly interacting matter and review the processes that
lead to the dispersive effects (imaginary parts of the self-
energy of quarks and antiquarks) within the region of μ-T
plain. Our discussion is based on the two-flavor NJL model
described by the Lagrangian (1).
Within the NJL model the nonzero temperature and

density constituent quark mass is determined to leading in
the 1=Nc expansion from a Dyson-Schwinger equation,
where the self-energy is taken in the Hartree approximation
in terms of a tadpole diagram (so called quark condensate),
see Fig. 2. From Fig. 2, we obtain the following equation
for the constituent quark mass,

m ¼ m0 −Ghψ̄ψi; ð27Þ

where the quark condensate is given by

hψ̄ψi¼−
mNcNf

π2

Z
Λ

0

dp
p2

Ep
½1−nþðEpÞ−n−ðEpÞ�; ð28Þ

with quark/antiquark thermal distributions n�ðEÞ ¼
½eβðE∓μÞ þ 1�−1.
The propagators of π and σ mesons are found from the

Bethe-Salpeter equation, which is illustrated in Fig. 3,
which resums contributions from quark-antiquark polari-
zation insertions.
Once the in-medium propagator of mesons is found, their

masses are then determined from the propagator poles in

FIG. 2. The Dyson-Schwinger equation for the constituent
quark mass. The dashed and solid lines stand for the bare and
dressed propagators, respectively, and the vertex Γ ¼ 1. The
wavy line represents the interaction.
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real spacetime for p ¼ 0; for details, see [32] and references
therein.
The region of the μ-T plain where our model is

applicable is shown in Fig. 4 by the shaded area. Its outer
boundary is given by the maximal temperature Tmax above
which no solutions for mesons masses can be found. More
precisely, mesonic modes do not exist for T ≥ Tmax within
our zero-momentum pole approximation. In the case
T ¼ 0, the transition line ends at the maximal value of
the chemical potential μmax ¼ Λ where the mesons’ mass
mM ¼ 2Λ. The inner boundary of the μ-T region corre-
sponds to the so-called Mott temperature TM at which the
condition mπ ¼ 2m is fulfilled. The Mott temperatures for
the cases where chiral symmetry is intact (m0 ¼ 0) and
chiral symmetry is explicitly broken (m0 ≠ 0) differ only
slightly; see Fig. 4. The dispersive effects of interest which
correspond to pion decays π → qþ q̄ and the inverse
process are allowed kinematically above TM for a given
μ. Note that, in the chiral limit m0 ¼ 0, the Mott temper-
ature coincides with the critical temperature Tc of the chiral

phase transition, above which we have hψ̄ψi ¼ 0 and
m ¼ 0.
The quark self-energy corresponding to the meson

decays into two quarks and the inverse process within
the regime of interest is given in Matsubara space
by [28,32]

ð29Þ

where Sðq;ωmÞ is the quark propagator with constituent
mass, the indexM ¼ π, σ stands for the π and σ mesons and
the vertices are given by Γσ ¼ 1 and Γπ ¼ iγ5τ. The
Lorentz decomposition of the Matsubara self-energy, which
is analogous to (11), is given by

ΣMðp;ωnÞ ¼ PMmΣM
s þ iωnγ0ΣM

0 − p · γΣM
v ; ð30Þ

with Pσ ¼ 1, Pπ ¼ −1. The computation of the compo-
nents of this decomposition gives [28,32]

ΣM
s;v ¼ g2M

Z
dq

ð2πÞ3
Qs;v

4EqEM

×

�
iωnC3 − 2EþC1

E2þ þ ω2
n

−
iωnC3 þ 2E−C2

E2
− þ ω2

n

�
; ð31Þ

ΣM
0 ¼ g2M

Z
dq

ð2πÞ3
Q0

4EqEM

×

�
2iωnC1 − EþC3

E2þ þ ω2
n

þ 2iωnC2 þ E−C3
E2
− þ ω2

n

�
; ð32Þ

where gM is the coupling constant and we defined short-
hand notations,

C1 ¼ 1þ nBðEMÞ −
1

2
½nþðEqÞ þ n−ðEqÞ�;

C2 ¼ nBðEMÞ þ
1

2
½nþðEqÞ þ n−ðEqÞ�;

C3 ¼ nþðEqÞ − n−ðEqÞ; ð33Þ

and

Qs ¼ 1; Qv ¼
q · p
p2

; Q0 ¼ −
Eq

iωn
; ð34Þ

with E�¼Eq�Eqþp, EM¼EþEp, and Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

The distribution functions of quarks and antiquarks are
defined as n�ðEÞ¼½eβðE∓μÞþ1�−1, and nBðEÞ¼ðeβE−1Þ−1

FIG. 3. The Bethe-Salpeter equation for mesons: the double
lines stand for the dressed meson propagators. The remaining
diagrammatic elements are as in Fig. 2, except the vertex assumes
the values Γ0

s for σ meson and Γ0
ps for pions.

0 0.2 0.4 0.6

μ [GeV]

0.1

0.2

0.3

0.4

T
 [

G
eV

]

T
M0

T
M

T
max

Nambu-Goldstone

phase, <ψψ> = 0

Wigner-Weyl phase,

<ψψ> ≅ 0

/

FIG. 4. The shaded area shows the region of the phase diagram
of strongly interacting quark matter where our computations are
applicable. The area is bound by the Mott temperature TM in the
case of broken chiral symmetry or TM 0 ≡ Tc in the case where
chiral symmetry is intact and by the maximal temperature Tmax
above which no meson modes are found.
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is the Bose distribution function for zero chemical poten-
tial, where β is the inverse temperature. The retarded self-
energy is now obtained by analytical continuation iωn →
p0 þ iε and has the same Lorentz structure as its Matsubara
counterpart. For the imaginary part of the on-shell quark
and antiquark self-energies (ϱ≡ ImΣ), one finds [28,32]

ϱMj ðpÞjp0¼Ep
¼ g2M

16πp

Z
Emax

Emin

dET j½nBðEMÞ þ n−ðEÞ�;

ð35Þ

ϱMj ðpÞjp0¼−Ep
¼ −

g2M
16πp

Z
Emax

Emin

dET j½nBðEMÞ þ nþðEÞ�;

ð36Þ

where j ¼ s, 0, v, EM ¼ Eþ Ep, and

T s¼1; T v¼
m2

M−2m2−2EEp

2p2
; T 0¼−

E
Ep

: ð37Þ

The integration limits are defined as

Emin;max¼
1

2m2

h
ðm2

M−2m2Þp0�pmM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M−4m2

q i
; ð38Þ

and, in the chiral limit m ¼ 0,

Emin ¼
m2

M

4p
; Emax → ∞: ð39Þ

We stress here that Eqs. (35)–(39) are applicable only
above the Mott (critical) temperature, where the condition
mM ≥ 2m is fulfilled. Finally, the full quark-antiquark self-
energy in on-shell approximation is written as

ϱjðp0; pÞ ¼ θðp0Þϱþj ðpÞ þ θð−p0Þϱ−j ðpÞ; ð40Þ

with ϱ�j ðpÞ ¼ ϱjðp0 ¼ �Ep; pÞ. From Eqs. (35) and (36),
it follows that ϱþ and ϱ− obey the relation ϱ−j ðμ; pÞ ¼
−ϱþj ð−μ; pÞ and, consequently,

ϱjðμ;−p0; pÞ ¼ −ϱjð−μ; p0; pÞ: ð41Þ

The contribution of the mesons to the net quark/antiquark
self-energy is summed as follows:

Σs ¼ Σσ
s − 3Σπ

s ; Σ0=v ¼ −Σσ
0=v − 3Σπ

0=v: ð42Þ

In the final step, the spectral functions of quarks and
antiquarks are constructed according to the relations (13),
(14) and (15), where we neglect the real parts which are
higher order in the power counting scheme. The numerical
results for the components of the spectral function are
shown in Fig. 5 and will be used below in the computations
of the bulk viscosity.
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FIG. 5. The Lorentz components of the quark and antiquark spectral functions −mAs (solid line), −εA0 (dash-dotted line) and −pAv
(dashed line) as functions of momentum for fixed values of energy. The panels (a)–(c) correspond to μ ¼ 0, (d)–(f) to antiquarks with
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The key features of spectral functions which are shown
for three values of the quark (off-shell) energy, ε1 ¼ 0.1,
ε2 ¼ 0.3, and ε3 ¼ 0.5 GeV are as follows: (a) The spectral
functions display a peak at the values of momenta p≃ ε,
which can be anticipated from Eqs. (14) and is a conse-
quence of the fact that the denominator d attains its
minimum roughly at p≃ p0 (p0 ≡ ε); (b) the heights of
the peaks universally increase with the (off-shell) energies
of the quarks; (c) with increasing temperature, the dis-
persive effects are more pronounced, and consequently the
quasiparticle peaks become broader and the Lorentzian
shape of the spectral functions develops in a more complex
structure; (d) the main contribution to the spectral function
comes from the temporal and vector components, which
contribute comparable amounts, whereas the scalar com-
ponent is small; and (e) the quasiparticle peaks are sharper
for quarks rather than for antiquarks for the same values of
temperature and chemical potential. Note also that while
the Lorentz components of the spectral function may
change the sign, the width of the quasiparticles, which is
a combination of these, remains positive, which guarantees
the overall stability of the system [29].

IV. NUMERICAL RESULTS
FOR BULK VISCOSITY

We start our analysis with an examination of the influence
of various factors entering the expressions for bulk viscos-
ities ζ0, ζ1 and ζ2. Readers interested only in the results on
the bulk viscosity can skip to the following subsection.

A. Preliminaries

The behavior of the two-dimentional integrals determin-
ing ζ0, I1 and I2 through Eqs. (17), (24) and (25) is as
follows. For a given value of ε the inner integrands are
peaked at p≃ jεj, as implied by the shape of the spectral
functions. The heights of the peaks rapidly increase with
the value of jεj. As a consequence, the (inner) momentum
integrals are increasing functions of jεj for jεj ≤ Λ. For
energies larger than Λ, the peaks are outside of the
momentum-integration range (because of the momentum
cutoff p ≤ Λ), and the momentum integral rapidly
decreases with jεj. It vanishes asymptotically in the
limit ε → �∞ for I1 and I2, but tends to a constant value
for ζ0. This asymptotic behavior is easily seen from
Eq. (17). Its inner integrand can be roughly estimated
as ∝ p2½2ðε2A0 − p2AvÞ2 − ðε2 − p2Þðε2A2

0 − p2A2
vÞ� ¼

p2½ðε2A0 − p2AvÞ2 þ ε2p2ðA0 − AvÞ2�, where we approxi-
mated roughly γ ≃ 1=3 and δ≃ 0 (see Appendix B) and
neglected the scalar component of the spectral function,
which is small compared to the vector and temporal
components. If jεj ≫ p, we can approximate Eqs. (14)
and (15) as n1 ¼ ε2ð1 − ϱ20Þ, n2 ¼ ε2ϱ0. The dominant term
in the integrand in this case is ∝ p2ε4A2

0 ¼
p2ε4ðϱ0n1 − 2n2Þ2=ðn21 þ 4n22Þ2 ¼ p2ϱ20=ð1þ ϱ20Þ2, which

does not depend on ε in the on-shell approximation to the
self-energy. As a result, the momentum integral tends to a
constant value for jεj ≥ Λ. The outer integrals of Eqs. (17),
(24) and (25) contain the Fermi factor ∂nðεÞ=∂ε, which at
low temperatures is strongly peaked at the energy ε ¼ μ. At
high temperatures it transforms into a bell-shaped broad
structure which samples energies away from μ. We have
verified numerically that it is sufficient to integrate up to the
energy jεj ≤ 2 GeV. Next we note that the outer integral
samples the contributions of antiquarks from the range
ð−∞; 0Þ and quarks from the range ð0;þ∞Þ, and we are in
a position to examine the contributions from quarks and
antiquarks separately. We find that when μ ¼ 0 the inte-
grands of Eqs. (17), (24), and (25) are even functions of ε;
i.e., the quark and antiquark contributions are the same. At
nonzero chemical potentials the quark-antiquark symmetry
is broken and the contributions from quarks and antiquarks
differ. While the contributions of quarks and antiquarks to
the (inner) momentum integrands are comparable at non-
zero μ, the factor ∂n=∂ε in the outer energy integration
makes the quark contribution dominant.
The dependence of the integrals I1 and I2 on temperature

and chemical potential is shown in Figs. 6 and 7. Both are
rapidly decreasing functions of temperature (at fixed
chemical potential) or chemical potential (at fixed temper-
ature) in the regime close to the Mott line. The observed
decrease is the result of broadening of the spectral functions
with the temperature, which physically corresponds to
stronger dispersive effects and, therefore, smaller values
of transport coefficients. Note that in the vicinity of the
Mott temperature these quantities become very large
because the widths of the spectral functions originating
from the imaginary parts of the self-energies vanish for
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FIG. 6. Dependence of the integrals I1 and I2 on the temper-
ature for several values of the chemical potential. The vertical
lines show the Mott temperature at the given value of μ.
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pions and are very small for σ mesons. This is partly due to
the on-shell approximation to the self-energies. Including
off-shell contribution to the self-energies improves the
asymptotics close to TM, however it is unimportant at
temperatures already slightly above the Mott temperature,
where the transport coefficients are described by on-shell
kinematics quite well [28,32]. In the whole temperature-
density range considered, I1 is always negative, while I2 is
always positive. −I1 is always a decreasing function of the
temperature, whereas I2 tends to a constant value at high
temperatures for small chemical potentials, but shows a
slight minimum at higher chemical potentials.
Next, we turn to the discussion of three-dimensional

integrals R0 and R̄, given by Eqs. (23) and (26). A new
feature that appears in these expression is the convolution
of two spectral functions. As a result, the integrands of R0

and X have sharp peaks at p≃ jεj if jεj≃ jε0j, and they
transform into broad structures with two smaller maxima
located at p≃ jεj and p≃ jε0j when jεj ≠ jεj. Therefore,
the main contribution to the integrals arises from the
domain where p≃ jεj≃ jε0j. Because the integration range
covers both positive and negative values of ε there are two
posibilities ε0 ¼ �ε for maximum to arise. In the case
of the R0 integral, only the minus sign is realized. Indeed,
because the temporal and vector components of the
spectral function have the same order of magnitude, the
inner integrand of R0 can be roughly estimated as
aa0 þ bb0 − cc0 ≃ εε0A0A0

0 − p2AvA0
v ≃ ðεε0 − p2ÞA0A0

0,
see Eqs. (23). Therefore, the peaks around p≃ ε≃ ε0
originating from temporal and vector components almost
cancel each other, and the momentum integral is mainly
concentrated around ε0 ≃ −ε. The integral R̄ contains

additional terms which support also a peak at ε0 ≃ ε
and, consequently, the momentum integrand obtains con-
tributions at two locations. In both cases of R0 and R̄, the
height of the peaks rapidly increases with the increase
of jεj as long as jεj ≤ Λ and becomes negligible for higher
values of jεj. The integration over ε0 contains also the
factor ½nðεÞ − nðε0Þ�=ðε − ε0Þ which at low temperatures is
strongly peaked at the energies ε ¼ ε0 ¼ μ. At high temper-
atures, it transforms into a bell-shaped broad structure
(without change of the location of the maximum) and
samples energies far away from μ. It decreases faster at high
energies in the case when ε − μ and ε0 − μ have the same
sign. The integrand of R̄ contains an additional combina-
tion of Fermi functions ½εnðεÞ − ε0nðε0Þ�=ðε − ε0Þ − 1=2,
which tends to the finite limits −1=2 and 1=2, when ε,
ε0 → þ∞ and ε; ε0 → −∞, respectively.
The outer integrands of R0 and R̄ are rapidly increasing

functions of jεj for jεj ≤ Λ and they sharply drop at higher
values of jεj, as it was the case for the two-dimensional
integrals I1 and I2. Our analysis shows that the momentum
integrals in Eqs. (23) and (26) are invariant under the
simultaneous transformations ε → −ε, ε0 → −ε0, μ → −μ,
as expected. Due to this property, all integrals are even
functions of the chemical potential.
Figures 8 and 9 illustrate the temperature and chemical

potential dependence of the integral R0 and the renormal-
ized coupling Ḡ ¼ G=ð1 − GR0Þ. The same dependence
for the integral R̄ and the product Ḡ R̄ is shown in Figs. 10
and 11. The latter combination enters the formulas of ζ1;2
components of the bulk viscosity, see Eq. (21). It is
remarkable that R0 and R̄ remain finite at the Mott
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temperature in contrast to the integrals I1 and I2. The
reason for this behavior can be understood if we recall that
at the Mott temperature the imaginary parts of the self-
energies essentially vanish, therefore the spectral functions
transform into δ functions: Ajðp; εÞ ∝ δðp2 þm2 − ε2Þ,
where j index labels the Lorentz component. Therefore,
the integrands of the expressions (23) and (26) will contain
a product of two δ functions at different arguments. When
integrated over the variables ε and ε0 the integral will
consequently have a finite value. (This was not the case for

two-dimensional integrals, where a single energy-
integration led to two δ functions at the same argument
and, therefore, to a divergent integral.) Apart the different
asymptotics for T → TM, the generic temperature-density
dependence of the three-dimensional integrals R0 and R̄
does not differ significantly from that of two-dimensional
integrals discussed above. Close to the Mott line, we find
R0 ≃ 0.1 GeV2 and, therefore, Ḡ ≫ G≃ 10 GeV−2. At
high temperatures and chemical potentials, R0 decreases,
and Ḡ tends to its “bare” value. Thus, we conclude that the
renormalization of the coupling constant by multiloop
contributions and its effect on the bulk viscosity should
be important in the low-temperature regime close to the
Mott transition line. We also note that R̄ is always negative,
which in combination with I1 < 0 and I2 > 0 guarantees
the positivity of both components ζ1 and ζ2 in the entire
temperature-density range.

B. Bulk viscosities

With the analysis above we are in a position to study the
behavior of the components of the bulk viscosity ζ0, ζ1, ζ2
and their sum ζ. Figures 12 and 13 show these quantities as
functions of temperature and chemical potential, respec-
tively. Because, as we have seen, the functions jI1j, I2, as
well as R0, Ḡ and jR̄j display a maximum at (or close to) the
Mott line and decay with increasing temperature or
chemical potential, the multiloop contributions to the bulk
viscosity ζ1 and ζ2 are expected to show analogous
behavior. The one-loop result ζ0 is maximal at the Mott
line as well, decreases with increasing T or μ, passes a
minimum and increases according to a power law. At high
temperatures, the temperature scaling is ζ0 ∝ T3. This
functional behavior arises from the fact that ζ0 depends
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essentially on the difference of the temporal and vector
components of the spectral function, see Eqs. (17)–(19),
and its asymptotic increase for large μ or T has been
verified to be the result of the increase of difference
between those components with increasing T or μ, see
Fig. 5. This is also the reason why the bulk viscosity
evaluated in the one-loop approximation is negligible

compared to the shear viscosity, since the latter depends
on the average amplitude of the spectral functions [28,32].
The contribution from the multiloop processes domi-

nates the one-loop result close to the corresponding Mott
line, i.e., at sufficiently low temperatures or chemical
potentials; see Figs. 12 and 13. In this regime, all three
components ζ0, ζ1, ζ2 and, therefore, also the net bulk
viscosity ζ drop rapidly with increasing temperature or
chemical potential. The functional behavior of three com-
ponents of the bulk viscosity around the Mott line is
described by the universal formula

ζi ∼ exp

�
ai

T=TM − bi

�
; i ¼ 0; 1; 2; ð43Þ

where ai and bi ≲ 1 depend only on the chemical potential.
In this regime, the following inequalities hold ζ≃
ζ2 ≫ ζ1 ≫ ζ0, and we see from Figs. 12 and 13 that the
one-loop result ζ0 underestimates the net bulk viscosity by
3 orders of magnitude.
The situation reverses for high T and μ, where the

multiloop contributions ζ1 and ζ2 decrease rapidly and one
finds ζ ≃ ζ0 ≫ ζ2 ≫ ζ1. As a consequence, the net bulk
viscosity has a mild minimum as a function of temperature.
In the high-temperature regime, it increases as ζ ∝ T3, but
is almost independent on the chemical potential.
Thus, we conclude that in the high-T or high-μ limits the

single-loop approximation correctly represents the bulk
viscosity, i.e., the single loop provides indeed the leading
order contribution. This is clearly not the case in the low-T
or low-μ limits, close to the Mott line, where ζ0 fails to
describe correctly the bulk viscosity, which is dominated by
the multiloop contributions from ζ2.

C. Chiral limit

It is interesting to explore the case when the chiral
symmetry is intact (m0 ¼ 0). In this case, quarks become
massless above the critical (Mott) temperature Tc, which
implies vanishing multiloop contributions, as already
mentioned in Sec. II. Consequently, the bulk viscosity is
determined by the single-loop result (17) with m¼m0¼0.
As seen from Figs. 12 and 13, ζ0 in the chiral limit behaves
quite differently from the case of m0 ≠ 0 close to the Mott
temperature. It is smooth at the critical temperature and
increases with the temperature as power law in the entire
parameter range. This behavior can be understood as
follows. At T → Tc we have m ¼ 0, mM → 0; therefore,
from Eqs. (35)–(39), we find ϱ0 ≃ ϱv → 0 for high
momenta which contribute mostly to ζ0. Therefore, from
Eqs. (13)–(15), we estimate n1 ≃ p2

0 − p2, n2≃ðp2
0−

p2Þϱ0→0 and A0;vðp0;pÞ≃−n2=ðn21þ4n22Þ∼δðp2
0−p2Þ.

Now substituting γ ¼ 1=3, δ ¼ 0 in Eqs. (17)–(19) (see
Appendix B), we find that the integrand of ζ0 is propor-
tional to 2ðε2A0 − p2AvÞ2 − ðε2 − p2Þðε2A2

0 − p2A2
vÞ∼

ðε2 − p2Þ2δðε2 − p2Þ2 → 0, which implies that the integral
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remains regular in the limit T → Tc. In the high-T regime,
the results for ζ0 coincide with those of the case of explicit
chiral symmetry breaking.
We note that according to the discussion above, the ζ0

component will vanish in any theory with weakly-interacting
massless particles, where the temporal and vector compo-
nents of self-energy coincide. The weakness of the inter-
action implies small spectral widths and, therefore, nearly
on-mass-shell particles with p ¼ ε. As a consequence, the
integrand in Eq. (17) vanishes, as expected.

D. Comparison to shear viscosity

In Figs. 14 and 15, we show the dependence of the ratio
ζ=s on temperature and chemical potential, where s is the
entropy density, see Appendix B. For comparison, we
show also the ratio η=s as computed in Ref. [32] and the
AdS/CFT lower bound 1=4π on that ratio [45]. As a general
trend, the ratio ζ=s increases rapidly close to the Mott
transition line with decreasing temperature or chemical
potential and attains its maximum on this line. It becomes
weakly dependent on these quantities as one moves away
from this regime to high-μ and high-T limit. The η=s
displays similar behavior, but the increase in the vicinity of
the Mott line is not as steep as for ζ=s. Numerically we find
in this regime ζ ≥ η with ζ=η≃ 5–20 on the Mott line.
Thus, we conclude that close to the Mott transition line the
bulk viscosity dominates the shear viscosity by large
factors and this dominance arises from the multiloop
processes. We stress that had we kept only the one-loop
contribution to the bulk viscosity, it would have been
negligible compared to the shear viscosity. As the

temperature or the chemical potential increases away from
the Mott line, ζ decreases faster than η, and eventually one
reaches the point where ζ ¼ η, beyond which shear
viscosity dominates. This crossover point appears earlier
than the point where ζ0 ≃ ζ2 beyond which ζ0 dominates
the bulk viscosity, see the next subsection. Consequently,
we conclude that if only ζ0 contribution is kept, then shear
viscosity is the dominant source of dissipation in the entire
temperature-density regime.
In closing, we note that in the T-μ region where η drops

below the AdS/CFT value 1=4π, the quark-meson fluctua-
tions considered in this work may not be the dominant
processes controlling the viscous dissipation. Pure gauge
fluctuations as well as quark-quark scattering processes
may contribute substantially in this range of parameters
thereby raising the value of η=s above the conjectured
bound.

E. Fits to the bulk viscosity

The observed nearly universal low-T behavior (43) of ζ2
component with the scaled temperature T=TM for fixed
values of the chemical potential and the high-T asymptotics
of ζ0 suggest fitting the net bulk viscosity in the whole
temperature range by the formula

ζfitðT; μÞ ¼ aðyÞ exp
�

cðyÞ
T=TMðyÞ − bðyÞ

�
þ dðyÞT3; ð44Þ

with y ¼ μ=μ0, where μ0 ¼ 0.345 GeV corresponds to the
point where TM ¼ 0 and the chemical potential attains its
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FIG. 14. The ratio ζ=s as function of the temperature for several
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shown for comparison by crosses. The solid horizontal line shows
the KSS bound.
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maximum on the Mott line. The coefficients a, b, c, d are
given by

aðyÞ ¼ ð2.57 − 5.65y2Þ × 10−6 ½GeV3�; ð45Þ

bðyÞ ¼ 0.806 − 0.055y2 − 0.617y4; ð46Þ

cðyÞ ¼ 2.89þ 0.96y2 þ 12.73y4; ð47Þ

dðyÞ ¼ 0.082þ 0.02y2: ð48Þ

The fit formula (44) is valid for chemical potentials
μ ≤ 0.2 GeV, where its relative error is ≤ 10%. A com-
parison of the fit with the numerical result is given
in Fig. 12.
In the chiral limit, the first term in Eq. (44) vanishes, and

we are left with pure power-low increase in the whole
temperature-density range

ζchðT; μÞ ¼ T3ð0.082þ 0.168μ2Þ; ð49Þ

where T and μ are in GeV units.
We fit also the Mott temperature displayed in Fig. 4 with

the formula

Tfit
MðμÞ ¼ T0

�
1− ffiffiffiffiffi

γy
p

e−π=ðγyÞ 0 ≤ y ≤ 0.5;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.55ð1− yÞ þ 0.04ð1− yÞ2

p
0.5 < y ≤ 1;

ð50Þ

with T0 ¼ TMðμ ¼ 0Þ ¼ 0.213 GeV, and γ ¼ 2.7. The
formula (50) has relative accuracy ≤ 3% for chemical
potentials μ ≤ 0.32 GeV.
Now we define several characteristic temperatures: T0

min,
Tmin—corresponding to minimums of ζ0 and ζ, respec-
tively; T02—the temperature of intersection of ζ0 and ζ2
components; and Tζ¼η—the temperature of intersection of
ζ and η. These temperatures vary with the chemical
potential, or, equivalently, with the corresponding value
of the Mott temperature. Interestingly, all these character-
istic temperatures turn out to be linear functions of the Mott
temperature with 1% accuracy and can be fitted as

T�ðμÞ ¼ αTMðμÞ þ Δ; ð51Þ

where T� ¼ fT0
min; Tmin; T02; Tζ¼ηg, where the coefficients

α and Δ do not depend on the chemical potential. Their
numerical values are listed in Table I.

V. CONCLUSIONS

On the formal side, this work provides a derivation of the
bulk viscosity for relativistic quantum fields in terms of
the Lorentz components of their spectral function within the
Kubo-Zubarev formalism [22,23]. It complements similar
expressions for the shear viscosity [28,32] and the electrical
and thermal conductivities [32] derived earlier.
Practical computations of the bulk viscosity via two-

point correlation function have been carried out within the
two-flavor NJL model. The relevant diagrams were selected
by using the 1=Nc expansion, where Nc is the number of
colors.
One of our key results is the observation that the single-

loop contributions, which are dominant for shear viscosity
and conductivities, are insufficient for the evaluation of the
bulk viscosity. We demonstrated that close to the Mott
temperature multiloop contributions, which require resum-
mations of infinite geometrical series of loops, dominate
the one-loop contribution. We concentrated on the regime
where the dispersive effects arise from quark-meson
scattering above the Mott temperature for decay of mesons
(pions and sigmas) into quarks. In this regime, the bulk
viscosity is a decreasing function of temperature at fixed
chemical potential, but after passing a minimum it increases
again. The decreasing behavior is dominated by multiloop
contribution, whereas the high-T increasing segment is
dominated by the one-loop contribution.
Another key result of this study is the observation that

the bulk viscosity dominates the shear viscosity of quark
matter in the vicinity of the Mott temperature by factors of
5–20 depending on the chemical potential. With increasing
temperature, the bulk viscosity decreases faster than the
shear viscosity and above a certain temperature we find
η ≥ ζ. The range of validity of our comparison is limited by
the temperature at which the ratio η=s undershoots the KSS
bound 1=4π and obviously the dispersive effect due to
mesonic decays into quarks is insufficient to account for the
shear viscosity of quark matter. Nevertheless, the obser-
vation of large bulk viscosity in the parameter domain of
this study may have interesting and important implications
for the hydrodynamical description of heavy-ion collisions
at the RHIC and LHC.
Looking ahead, we anticipate that the formalism

described here can be straightforwardly extended to include
heavier flavor quarks, most important being the strange
quark. The NJL-model Lagrangian can be extended to
include vector interactions and/or Polyakov loop contribu-
tions. As the gluonic degrees of freedom are integrated out
in the NJL-type models from the outset, the pure gauge
contributions can be accounted only if one starts with an
effective model that captures the gauge sector of QCD.

TABLE I. The values of the fit parameters in Eq. (51).

T� α Δ [GeV]

T0
min 0.65 0.09

Tmin 0.86 0.106
T02 0.84 0.087
Tη¼ζ 1.13 −6 × 10−3
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APPENDIX A: CALCULATION OF THE
BULK VISCOSITY

Substituting Eq. (6) into Eq. (5) and taking into account
the isotropy of the medium (½T11; T33� ¼ ½T11; T22� etc.)
and the symmetry property of correlation function in its
arguments [44], we obtain

ΠR
ζ ðωÞ ¼ −i

Z
∞

0

dteiωt
Z

dr

�
1

3
½T11; T11� þ

2

3
½T11; T22�

− 2γ½T11; T00� − 2δ½T11; N0� þ 2γδ½T00; N0�

þ γ2½T00; T00� þ δ2½N0; N0�
	

0

: ðA1Þ

Further progress requires substituting the explicit
expressions for the components of the energy-momentum
tensor (2) and the particle current (3) in this expression.
We first switch to the imaginary time formalism
by replacement t → −iτ and introduce shorthand
notation,

ΠðklÞ½â; b̂�ðωnÞ ¼
�
G
2

�
kþl−2 Z β

0

dτeiωnτ

×
Z

drhTτððψ̄ âψÞkjðr;τÞ; ðψ̄ b̂ψÞlj0Þi0;

ðA2Þ

where â and b̂ are either differential operators (contracted
with Dirac γ matrices) or interaction vertices Γ0

s=ps appear-
ing in Eqs. (2) and (3). Then the result of the substitution
can be written as a sum of three terms,

ΠM
ζ ðωnÞ ¼ ΠM;11

ζ ðωnÞ þ ΠM;12
ζ ðωnÞ þ ΠM;22

ζ ðωnÞ; ðA3Þ

where

−ΠM;11
ζ ðωnÞ ¼

1

3
Πð11Þ½iγ1∂1; iγ1∂1� þ

2

3
Πð11Þ½iγ1∂1; iγ2∂2� − 2γΠð11Þ½iγ1∂1;−γ0∂τ� − 2δΠð11Þ½iγ1∂1; γ0�

þ 2γδΠð11Þ½−γ0∂τ; γ0� þ γ2Πð11Þ½−γ0∂τ;−γ0∂τ� þ δ2Πð11Þ½γ0; γ0� þ 2ð1þ γÞΠð11Þ½iγ1∂1; i∂τ −m0�
− 2γð1þ γÞΠð11Þ½−γ0∂τ; i∂τ −m0� − 2δð1þ γÞΠð11Þ½γ0; i∂τ −m0�
þ ð1þ γÞ2Πð11Þ½i∂τ −m0; i∂τ −m0�; ðA4Þ

and

−ΠM;12
ζ ðωnÞ ¼ 2ð1þ γÞ

X
Γ¼f1;iτγ5g

Πð12Þ½iγ1∂1;Γ� − 2γð1þ γÞ
X

Γ¼f1;iτγ5g
Πð12Þ½−γ0∂τ;Γ� − 2δð1þ γÞ

X
Γ¼f1;iτγ5g

Πð12Þ½γ0;Γ�

þ 2ð1þ γÞ2
X

Γ¼f1;iτγ5g
Πð12Þ½i∂τ −m0;Γ�; ðA5Þ

−ΠM;22
ζ ðωnÞ ¼ð1þ γÞ2

X
Γ;Γ0¼f1;iτγ5g

Πð22Þ½Γ;Γ0�: ðA6Þ

The three types of correlation functions entering
Eq. (A3) are shown in Figs. 16–18. Next we note that
Πð12Þ½â;Γ�ðωnÞ ¼ Πð22Þ½Γ;Γ0�ðωnÞ ¼ 0, because both con-
tain bubble diagrams with one vertex Γ, which permits only
ωn ¼ 0. Thus, the second and the third terms in Eq. (A3)
vanish. We also note that the pseudoscalar vertex with γ5
does not appear in this expression; therefore, we are left in
all diagrams with the Γ ¼ 1 vertex.
The remaining terms in the two-point correlation func-

tion can be expressed through the single-loop diagrams
given by Eq. (9) of the main text. With this definition and
from Fig. 16, we find that

Πð11Þ½â; b̂� ¼ Π0½â; b̂� þ ~GΠ0½â; 1�Π0½1; b̂�; ðA7Þ

where we introduced a frequency-dependent coupling
constant,

~GðωnÞ ¼
G

1 − GΠ0½1; 1�ðωnÞ
: ðA8Þ

To perform the Matsubara sums, we need to take into
account that the operators â and b̂ may depend on iωl. (For
example, if â ¼ −γ0∂τ, in the momentum space, we have
â¼iγ0ω̄l, ω̄l¼ωlþωn=2.) We separate the iω̄l-dependent
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parts of these operators by formally factorizing â…b̂… ¼
fðiω̄lÞâ0…b̂0…, where â0 and b̂0 are iω̄l-independent
parts of operators â and b̂. Applying this definition, we find

S½â; b̂�ðp; iωnÞ≡ T
X
l

Tr½âGðp; iωl þ iωnÞb̂Gðp; iωlÞ�

¼ T
X
l

fðiω̄lÞTr½â0Gðp; iωl þ iωnÞ

× b̂0Gðp; iωlÞ�: ðA9Þ

After summation over the Matsubara frequencies and
subsequent analytical continuation iωn¼ωnþiδ, we obtain

S½â; b̂�ðp;ωÞ ¼
Z

∞

−∞
dε

Z
∞

−∞
dε0Tr½â0Aðp; ε0Þb̂0Aðp; εÞ�

×
~nðεÞfðεþ ω=2Þ − ~nðε0Þfðε0 − ω=2Þ

ε − ε0 þ ωþ iδ
;

ðA10Þ

where we used the spectral representation

Gðp; zÞ ¼
Z

∞

−∞
dε

Aðp; εÞ
z − ε

: ðA11Þ

This implies that the single-loop polarization tensor is
given by

Π0½â; b̂�ðωÞ¼
Z

dp
ð2πÞ3

Z
∞

−∞
dε

Z
∞

−∞
dε0Tr½â0Aðp;ε0Þb̂0

×Aðp;εÞ� ~nðε
0Þfðε0−ω=2Þ− ~nðεÞfðεþω=2Þ

ε− ε0 þωþ iδ
:

ðA12Þ

The real and imaginary parts of the polarization tensor
can now be computed by applying the Dirac identity. In
particular, we find

ImΠ0½â; b̂�ðωÞjω¼0 ¼
d
dω

ReΠ0½â; b̂�ðωÞjω¼0 ¼ 0: ðA13Þ

Next we compute, from the polarization tensor, the relevant
structure needed for the bulk viscosity by defining

d
dω

ImΠð11Þ½â; b̂�ðωÞjω¼0

¼ L0½â; b̂� þ ḠL1½â; b̂� þ Ḡ2L2½â; b̂�; ðA14Þ

where

L0½â; b̂� ¼
d
dω

ImΠ0½â; b̂�ðωÞjω¼0; ðA15Þ

L1½â; b̂� ¼ R0½â; 1�L0½1; b̂� þ R0½1; b̂�L0½â; 1�; ðA16Þ

L2½â; b̂� ¼ L0½1; 1�R0½â; 1�R0½1; b̂�; ðA17Þ

R0½â; b̂� ¼ ReΠ0½â; b̂�jω¼0; ðA18Þ

and the effective zero-frequency coupling is given by

Ḡ≡ ReḠjω¼0 ¼
G

1 −GR0½1; 1�
: ðA19Þ

Now we calculate the relevant pieces of the polarization
for specific â and b̂ operator combinations. The relevant
real parts can be written in the generic form

R0½â; b̂� ¼ −
2NcNf

π4

Z
Λ

0

dp
Z

∞

−∞
dε

Z
∞

−∞
dε0

×
εk ~nðεÞ − ε0k ~nðε0Þ

ε − ε0
ORðp; ε; ε0Þ; ðA20Þ

where the factors Nc ¼ 3 and Nf ¼ 2 arise from the
trace in the color and flavor spaces, respectively; Λ is
the 3-momentum cutoff parameter. For each specific value
of the â and b̂ operators, we have the following functions
OR,

FIG. 16. Loop resummation for the correlation function
Πð11Þ½â; b̂� defined in Eq. (A2) at leading order in 1=Nc
expansion.

FIG. 17. Same as Fig. 16, but for the function Πð12Þ½â;Γ].

FIG. 18. Same as Fig. 16, but for the function Πð22Þ½Γ;Γ].
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R0½1; 1� OR ¼ p2ðm2AsA0
s þ εε0A0A0

0 − p2AvA0
vÞ;

ðA21aÞ

R0½1; iγ1∂1� OR ¼ 1

3
mp4ðA0

sAv þ AsA0
vÞ; ðA21bÞ

R0½1; γ0�OR ¼ mp2ðεA0
sA0 þ ε0AsA0

0Þ; ðA21cÞ

R0½1;−γ0∂τ� OR ¼ mp2ðεA0
sA0 þ ε0AsA0

0Þ; ðA21dÞ

and k ¼ 0 for the first three cases and k ¼ 1 for the
last case.
The generic form of the imaginary parts is given by

L0½â; b̂� ¼ −
2NcNf

π3

Z
Λ

0

dp
Z

∞

−∞
dεn0ðεÞOIðp; εÞ; ðA22Þ

where, for each specific value of the â and b̂ operators, the
following OI functions should be substituted,

L0½1; 1� OI ¼ p2ðm2A2
s þ ε2A2

0 − p2A2
vÞ; ðA23aÞ

L0½1; γ0� OI ¼ 2mp2εAsA0; ðA23bÞ

L0½1;−γ0∂τ� OI ¼ 2mp2ε2AsA0; ðA23cÞ

L0½1; iγ1∂1� OI ¼
2

3
mp4AsAv; ðA23dÞ

L0½γ0; γ0� OI ¼ p2ðm2A2
s þ ε2A2

0 þ p2A2
vÞ; ðA23eÞ

L0½−γ0∂τ;−γ0∂τ� OI ¼ p2ε2ðm2A2
s þ ε2A2

0 þ p2A2
vÞ;
ðA23fÞ

L0½γ0;−γ0∂τ� OI ¼ p2εðm2A2
s þ ε2A2

0 þ p2A2
vÞ;
ðA23gÞ

L0½iγ1∂1; γ0� OI ¼
2

3
p4εA0Av; ðA23hÞ

L0½iγ1∂1;−γ0∂τ� OI ¼
2

3
p4ε2A0Av; ðA23iÞ

L0½iγ1∂1; iγ1∂1� OI ¼
p4

15
ð−5m2A2

s þ 5ε2A2
0 þ p2A2

vÞ;
ðA23jÞ

L0½iγ1∂1; iγ2∂2� OI ¼
2

15
p6A2

v: ðA23kÞ

With these ingredients, the bulk viscosity can be com-
puted by writing ζ ¼ ζ0 þ ζ1 þ ζ2, where the indices on
these quantities match those of the L functions in

Eq. (A14). The final expressions for these contributions
are given by Eqs. (17)–(26) of the main text.

APPENDIX B: THERMODYNAMIC QUANTITIES

In order to find the derivatives in Eq. (7), we use the
relation dϵ ¼ Tdsþ μdn, from where we find

�∂ϵ
∂p

�
n
¼ T

�∂s
∂p

�
n
¼ cV

�∂T
∂p

�
n
; ðB1Þ

�∂n
∂p

�
ϵ

¼ −
T
μ

�∂s
∂p

�
ϵ

¼ −
T
μ

�∂s
∂β

�
ϵ

�∂β
∂p

�
ϵ

: ðB2Þ

Therefore,

γ ¼
�∂p
∂ϵ

�
n
¼ 1

cV

�∂p
∂T

�
n
¼ −

β2

cV

�∂p
∂β

�
n
; ðB3Þ

δ ¼
�∂p
∂n

�
ϵ

¼ −βμ
�∂p
∂β

�
ϵ

��∂s
∂β

�
ϵ

�
−1
; ðB4Þ

where we introduced the heat capacity of a unit volume
according to

cV ¼ T

�∂s
∂T

�
n
¼ −β

�∂s
∂β

�
μ

− β

�∂s
∂μ

�
β

�∂μ
∂β

�
n
: ðB5Þ

Next we will use the relations

�∂s
∂β

�
ϵ

¼
�∂s
∂β

�
μ

þ
�∂s
∂μ

�
β

�∂μ
∂β

�
ϵ

; ðB6Þ

�∂p
∂β

�
n
¼

�∂p
∂β

�
μ

þ
�∂p
∂μ

�
β

�∂μ
∂β

�
n
; ðB7Þ

�∂p
∂β

�
ϵ

¼
�∂p
∂β

�
μ

þ
�∂p
∂μ

�
β

�∂μ
∂β

�
ϵ

: ðB8Þ

The particle number and entropy densities of quark matter
at the leading order in the 1=Nc approximation are given by
the formulas,

n ¼ NcNf

π2

Z
∞

0

p2dp½nþðEpÞ − n−ðEpÞ�; ðB9Þ

s¼NcNf

π2

Z
∞

0

p2dp½βðEp−μÞnþðEpÞþ βðEpþμÞn−ðEpÞ

− logð1−nþðEpÞÞ− logð1−n−ðEpÞÞ�; ðB10Þ

with n�ðEÞ ¼ ½eβðE∓μÞ þ 1�−1. The integrals in Eqs. (B9)
and (B10) are computed according to the following
prescription: no cutoff is imposed as the integral is
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convergent, but for momenta p > Λ the quark energy is
taken with the bare mass, i.e., Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
.

The internal energy density and the pressure at the
leading order are given by the formulas [46,47]

ϵ ¼ NcNf

π2

Z
∞;Λ

0

p2dpEp½nþðEpÞ þ n−ðEpÞ − 1�

þ ðm −m0Þ2
2G

− C; ðB11Þ

p ¼ NcNf

π2

Z
∞;Λ

0

p2dp
�
Ep þ ½nþðEpÞ þ n−ðEpÞ�

p2

3Ep




−
ðm −m0Þ2

2G
þ C; ðB12Þ

where the cutoff is applied only for divergent parts of the
integrals; C ¼ const and should be fixed by the condition
that p and ϵ vanish in vacuum, i.e., at T ¼ μ ¼ 0.
Employing the relations

�∂n�
∂β

�
μ

¼ −ðEp ∓ μÞn�ð1 − n�Þ; ðB13Þ

�∂n�
∂μ

�
β

¼ �βn�ð1 − n�Þ; ðB14Þ

and taking the derivatives of Eqs. (B10), (B12), we obtain

�∂s
∂β

�
μ

¼ −
NcNf

π2T

Z
∞

0

p2dp½ðEp − μÞ2nþð1 − nþÞ

þ ðEp þ μÞ2n−ð1 − n−Þ�; ðB15Þ
�∂s
∂μ

�
β

¼ NcNf

π2T2

Z
∞

0

p2dp½ðEp − μÞnþð1 − nþÞ

− ðEp þ μÞn−ð1 − n−Þ�; ðB16Þ
�∂p
∂β

�
μ

¼ −
NcNf

π2

Z
∞

0

p2dp
p2

3Ep
½ðEp − μÞnþð1 − nþÞ

þ ðEp þ μÞn−ð1 − n−Þ�; ðB17Þ
�∂p
∂μ

�
β

¼NcNf

π2T

Z
∞

0

p2dp
p2

3Ep
½nþð1−nþÞ−n−ð1−n−Þ�:

ðB18Þ

We neglected the temperature-density dependence of the
constituent quark mass since this dependence is small
above the Mott temperature. Introducing

μ�ðβ; μÞ ¼ μþ β

�∂μ
∂β

�
n
; ðB19Þ

μ⋆ðβ; μÞ ¼ μþ β

�∂μ
∂β

�
ϵ

; ðB20Þ

from Eqs. (B6)–(B8) and (B15)–(B20), we obtain

�∂s
∂β

�
ϵ

¼ μ
NcNf

π2T

Z
∞

0

p2dp½ðEp − μ⋆Þnþð1 − nþÞ

− ðEp þ μ⋆Þn−ð1 − n−Þ�; ðB21Þ
�∂p
∂β

�
n
¼ −

NcNf

π2

Z
∞

0

p2dp
p2

3Ep
½ðEp − μ�Þnþð1 − nþÞ

þ ðEp þ μ�Þn−ð1 − n−Þ�; ðB22Þ
�∂p
∂β

�
ϵ

¼ −
NcNf

π2

Z
∞

0

p2dp
p2

3Ep
½ðEp − μ⋆Þnþð1 − nþÞ

þ ðEp þ μ⋆Þn−ð1 − n−Þ�: ðB23Þ

In order to compute the derivatives ð∂μ=∂βÞn, ð∂μ=∂βÞϵ,
we take the β derivatives of Eqs. (B9) and (B11) for n ¼
const and ϵ ¼ const, respectively. Since the lefthand sides
vanish trivially, we obtain using Eqs. (B13)–(B14)

Z
∞

0

p2dp½ðEp −μÞnþð1−nþÞ− ðEpþμÞn−ð1−n−Þ�

−β
�∂μ
∂β

�
n

Z
∞

0

p2dp½nþð1−nþÞþn−ð1−n−Þ� ¼ 0;

Z
∞

0

p2dpEp½ðEp−μÞnþð1−nþÞþ ðEpþμÞn−ð1−n−Þ�

−β
�∂μ
∂β

�
ϵ

Z
∞

0

p2dpEp½nþð1−nþÞ−n−ð1−n−Þ� ¼ 0;

0

0.2

0.4

0.6

γ

μ = 0
μ = 0.1 GeV
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μ = 0.3 GeV
μ = 0.4 GeV

0 0.1 0.2
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]
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FIG. 19. The coefficients γ (a) and δ (b) as functions of the
temperature for various values of the chemical potential.
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which give in combination with Eqs. (B19), (B20),

Z
∞

0

p2dp½ðEp − μ�Þnþð1 − nþÞ

− ðEp þ μ�Þn−ð1 − n−Þ� ¼ 0; ðB24Þ
Z

∞

0

p2dpEp½ðEp − μ⋆Þnþð1 − nþÞ

þ ðEp þ μ⋆Þn−ð1 − n−Þ� ¼ 0: ðB25Þ

The identity (25) was already used in deriving Eq. (B21).
From Eqs. (B24) and (B25), we find for μ� and μ⋆,

μ� ¼
R∞
0 p2dpEp½nþð1 − nþÞ − n−ð1 − n−Þ�R
∞
0 p2dp½nþð1 − nþÞ þ n−ð1 − n−Þ� ; ðB26Þ

μ⋆ ¼
R∞
0 p2dpE2

p½nþð1 − nþÞ þ n−ð1 − n−Þ�R
∞
0 p2dpEp½nþð1 − nþÞ − n−ð1 − n−Þ� : ðB27Þ

Using Eqs. (B5), (B15), (B16), (B19) and (B24), we find
for the heat capacity,

cV ¼ NcNf

π2T2

Z
∞

0

p2dpEp½ðEp − μ�Þnþð1 − nþÞ

þ ðEp þ μ�Þn−ð1 − n−Þ�: ðB28Þ

Finally, substituting Eqs. (B21)–(B23) and (B28) into
Eqs. (B3) and (B4), we obtain

γ ¼
R∞
0 p4dpð3EpÞ−1½ðEp − μ�Þnþð1 − nþÞ þ ðEp þ μ�Þn−ð1 − n−Þ�R

∞
0 p2dpEp½ðEp − μ�Þnþð1 − nþÞ þ ðEp þ μ�Þn−ð1 − n−Þ� ; ðB29Þ

δ ¼
R
∞
0 p4dpð3EpÞ−1½ðEp − μ⋆Þnþð1 − nþÞ þ ðEp þ μ⋆Þn−ð1 − n−Þ�R∞

0 p2dp½ðEp − μ⋆Þnþð1 − nþÞ − ðEp þ μ⋆Þn−ð1 − n−Þ� : ðB30Þ

Equations (B26), (B27), (B29) and (B30) imply that μ�,
μ⋆ and δ are odd functions and γ is an even function of the
chemical potential. The thermodynamic quantities γ and δ
given by Eqs. (B29) and (B30) are shown in Fig. 19. We
find that γ tends to a constant value γ ¼ 1=3 at high
temperatures and chemical potentials. In the T → 0 limit
γ → 0 for μ ¼ 0 and γ → 2=3 for intermediate values of the
chemical potential T ≪ μ < mðT ¼ 0Þ. Note that in the
limit of vanishing chemical potential, γ ¼ s=cV coincides
with the sound speed, which makes clear the high-

temperature asymptotics of γ. We find also that δ is
numerically negligible compared to the typical energy
scales for the whole temperature-density range of interest.
It vanishes asymptotically at high temperatures and den-
sities, but tends to a constant limit δ → −2mðT ¼ 0Þ=
3≃ 0.22 GeV at T → 0 if mðT ¼ 0Þ > μ ≫ T. In the
chiral limit, m ¼ 0 above the critical temperature Tc,
and we find from Eqs. (B25), (B29) and (B30) constant
values γ ¼ 1=3 and δ ¼ 0.
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