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We describe dynamical symmetry breaking in a system of massless Dirac fermions with both
electromagnetic and four-fermion interactions in (2þ 1) dimensions. The former is described by the
pseudo quantum electrodynamics, and the latter is given by the so-called Gross-Neveu action. We apply the
Hubbard-Stratonovich transformation and the large-Nf expansion in our model to obtain a Yukawa action.
Thereafter, the presence of a symmetry broken phase is inferred from the nonperturbative Schwinger-
Dyson equation for the electron propagator. This is the physical solution whenever the fine-structure
constant is larger than a critical value αcðDNfÞ. In particular, we obtain the critical coupling constant
αc ≈ 0.36 forDNf ¼ 8., whereD ¼ 2, 4 corresponds to the SU(2) and SU(4) cases, respectively, and Nf is
the flavor number. Our results show a decreasing of the critical coupling constant in comparison with the
case of pure electromagnetic interaction, thus yielding a more favorable scenario for the occurrence of
dynamical symmetry breaking. Nevertheless, the number of renormalized masses is not changed by the
four-fermion interaction within our approximation. For two-dimensional materials, in application in
condensed matter systems, it implies an energy gap at the Dirac points or valleys of the honeycomb lattice.

DOI: 10.1103/PhysRevD.96.034005

I. INTRODUCTION

Two-dimensional quantum field theories are relevant for
describing the electronic interactions in thin materials, for
instance, graphene and transition metal dichalcogenides [1].
They also have been applied as minimal models for describ-
ing some particular features of quantum chromodynamics, in
particular, the quark confinement [2]. For condensed matter
physics, we may comment on the discovery of topological
states of matter, which are described by topological order
instead of spontaneous symmetry breaking [3,4].
Having in mind two-dimensional materials, we may

separate the interactions into two classes: one due to the
electric charge and the other due to microscopic interactions
that emerge in these systems, for instance, phonons, impu-
rities, and disorder. The first case is described by pseudo
quantum electrodynamics (PQED), the derivation of which
has been made in Ref. [5]. The main procedure is to confine
the matter current into the plane but to keep photons free to
propagate out of this plane. One of the advantages is to
recover the usual Coulomb interaction in the plane instead of
the logarithmic potential, typical of quantum electrodynam-
ics in (2þ 1) dimensions (QED3). Several features of PQED
have been discussed in the literature [6–13]. In the static
limit, the Coulomb interaction renormalizes the Fermi
velocity [14] of electrons in graphene, accordingly to the

experimental measurements in Ref. [15]. At the neutrality
point in graphene, Lorentz symmetry is expected to be
recovered. The second kind of interactions is not described
by a unique model. In general grounds, it is expected to be
given by some electron-electron action.
For graphene, in the absence of external magnetic field

and considering the full electromagnetic interaction, the
emergence of a quantized valley Hall conductivity at low
temperatures has been shown. Essentially, this effect is
explained by the dynamical generation of mass in the
electronic spectrum, above a certain critical coupling
constant αc [6]. The role of PQED for describing topo-
logical states of matter has been discussed in Ref. [16]. In
particular, for massive Dirac systems, the existence of an
emerging quantum Hall effect has been shown [17]. It is
worth it to remember that the Hall conductivity is only
defined in the SU(2) representation, where the mass breaks
time-reversal symmetry. In the SU(4) representation,
dynamical mass generation has been calculated for
PQED in both zero [7] and finite [8] temperatures,
describing chiral symmetry breaking. Similar results have
been obtained for QED3 [18,19] and quantum electrody-
namics in (3+1) dimensions (QED4) earlier; see Refs. [2]
for a detailed review about these studies. On the other hand,
the description of dynamical symmetry breaking in gauge
theories with additional four-fermion interactions has been
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discussed less [20]. In particular, this case for PQED has
not been investigated until now.
In this paper, we calculate the pattern of dynamical mass

generation in PQED, including a Gross-Neveu interaction
[21] at zero temperature, and both SU(2) and SU(4)
representations are discussed. The main goal is to inves-
tigate the critical behavior of this more general theory.
The outline of this paper is the following. In Sec. II, we

introduce our model within the PQED approach and the
usual Gross-Neveu model. In Sec. III, we apply the
Hubbard-Stratonovich transformation in the Gross-Neveu
model, using the large Nf expansion. In Sec. IV, we
calculate the auxiliary and gauge-field propagators in the
large-Nf expansion. In Sec. V, we write the Schwinger-
Dyson equation for the matter field. In Sec. VI, we calculate
the mass function ΣðpÞ in the unquenched-rainbow
approach. In Sec. VII, we calculate the physical mass. In
Sec. VIII, we summarize and give an outlook for our main
results. We also include three Appendixes, where we derive
the integral equation to wave function renormalization (see
Appendix A), derive the differential equation for the mass
function (see Appendix B), and perform numerical tests
(see Appendix C).

II. MODEL

We assume that the Dirac electrons will interact
through the electromagnetic interaction, which in 2D is
described by PQED [5]. Furthermore, we assume a finite
four-fermion interaction. The corresponding Lagrangian
reads

L¼1

4
Fμν

�
2ffiffiffiffiffiffiffiffi
−□

p
�
Fμνþ iψ̄a∂ψaþjμAμ−

G
2
ðψ̄aψaÞ2; ð1Þ

where jμ ¼ eψ̄aγ
μψa is the matter current. ψa is a four-

component Dirac field; ψ̄a ¼ ψ†
aγ0 is its adjoint; Fμν is the

usual field intensity tensor of the U(1) gauge field Aμ,
which intermediates the electromagnetic interaction in 2D
(pseudo electromagnetic field); γμ are rank-2 Dirac matri-
ces; and a ¼ 1;…; Nf is a flavor index. The coupling
constant e2 ¼ 4πα is conveniently written in terms of α, the
fine-structure constant in natural units. G is the coupling
constant related to the four-fermion interaction, i.e., the
Gross-Neveu interaction. The dimension of G is the inverse
of energy, namely, ½G� ¼ ½M�−1. Without four-fermion
interactions (G ¼ 0), an SU(4) version of this model has
been recently used to study dynamical gap generation and
chiral symmetry breaking in graphene [7]. For α ¼ 0,
Eq. (1) is the Gross-Neveu model.
The bare gauge-field propagator, in the Landau gauge,

reads

G0;μνðpÞ ¼
Pμν

2
ffiffiffiffiffi
p2

p ; ð2Þ

where Pμν ¼ δμν − pμpν=p2 is the transversal operator. The
bare fermion propagator is

S0;FðpÞ ¼
1

γμpμ
: ð3Þ

Next, we introduce an auxiliary field in order to trans-
form the action from the four-fermion interaction to a
Yukawa action. This transformation is also known as the
Hubbard-Stratonovich transformation.

III. AUXILIARY FIELD

Let us first consider the fermionic terms in Eq. (1), i.e.,
the Gross-Neveu action LGN, given by

LGN ¼ iψ̄a∂ψa −
G
2
ðψ̄aψaÞ2: ð4Þ

In the large-Nf expansion, we define a new coupling
constant g ¼ GNf, such that g is meant to be fixed for Nf

large. Next, we introduce an auxiliary field φðxÞ in Eq. (4)
in order to obtain a three-linear vertex interaction.
Therefore, we perform the transformation

LGN → LGN þ 1

2g

�
φ −

gffiffiffiffiffiffi
Nf

p ψ̄aψa

�
2

; ð5Þ

which gives the transformed action

LGN ¼ iψ̄a∂ψa −
φffiffiffiffiffiffi
Nf

p ψ̄aψa þ
φ2

2g
: ð6Þ

It is straightforward, from the minimal principle for the
auxiliary field δL=δφ ¼ 0, to show that

φ ¼ gffiffiffiffiffiffi
Nf

p ψ̄aψa; ð7Þ

proving that the transformation in Eq. (5) does not change
the dynamics of the Gross-Neveu model in Eq. (4) [see
Eq. (5)]. Here, it is more convenient to consider Eq. (6).
The propagator of the auxiliary field is given by

Δ0;φ ¼ 1

1=g
; ð8Þ

which clearly has no dynamics at bare level. Within this
approach, Eq. (1) becomes

L ¼ 1

4
Fμν

�
2ffiffiffiffiffiffiffiffi
−□

p
�
Fμν þ iψ̄a∂ψa þ jμaAμ

−
φffiffiffiffiffiffi
Nf

p ψ̄aψa þ
φ2

2g
: ð9Þ

The main advantage of including the auxiliary field is
that we have to deal with a three-linear vertex instead of a
four-linear vertex. Next, we would like to calculate the
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possibility of dynamical mass generation due to inter-
actions. The natural method to investigate such phenomena
is the Schwinger-Dyson equation for the electron propa-
gator, which yields nontrivial results at large coupling
constants. This is a system of coupled integral equations,
connecting all of the full propagators in the theory. To
obtain an analytical solution for the electron, we must
approximate both the gauge and scalar propagators. The
easiest approach would be to consider only the bare
propagators. Here, nevertheless, we choose to apply the
large-Nf expansion, which allows us to include quantum
fluctuations in these propagators.

IV. LARGE-Nf EXPANSION FOR BOTH φ AND Aμ

In this section, we apply the large-Nf expansion in order
to obtain the full propagators of the auxiliary and the gauge
fields. For the auxiliary field φðxÞ, we have

Δ−1
φ ¼ Δ−1

0;φ − ΠðpÞ; ð10Þ

where Δ−1
φ is the full propagator. ΠðpÞ is the quantum

correction due to interaction with the matter field. This is
given by the fermionic loop, namely,

ΠðpÞ ¼ −Tr
Z

d3k
ð2πÞ3 SFðp − kÞSFðkÞ: ð11Þ

In Eq. (11), SFðpÞ is the full electron propagator.
Because we do not know this propagator, we use the bare
electron propagator in Eq. (3) in order to find an analytical
result for Δφ. Thereafter a standard calculation, we find

ΠðpÞ ¼
ffiffiffiffiffi
p2

p
x0, with x0 ¼ D=16 (D ¼ 2, 4 is the rank of

the Dirac matrices), and

ΔφðpÞ ¼
1

1=gþ
ffiffiffiffiffi
p2

p
x0

: ð12Þ

Remarkably, the self-energy of the auxiliary field yields a
nontrivial dynamics for the propagator of the auxiliary
field. This shall have an important effect on the criticality of
our model; see Sec. VI.
Next, we apply the very same set of approximations for

the gauge field. In this case, the Schwinger-Dyson equation
reads

G−1
μν ¼ G−1

0;μν − Πμν; ð13Þ

where Gμν is the full propagator of the gauge field and Πμν

is the vacuum polarization tensor, which has been calcu-
lated in Ref. [22]. From Eq. (13), we have

Gμν ¼ G0;μα½δαν − ΠαβG0;βν�−1: ð14Þ

The vacuum polarization tensor may be decomposed into

Πμν ¼ e2Π1Pμν þ e2Π2ϵμναpα; ð15Þ

where Π1 and Π2 are known functions [22]. Using Eqs. (2)
and (15) in Eq. (14), we find

Gμν ¼ Δ1Pμν þ Δ2ϵμναpα; ð16Þ

where

Δ1 ¼
2

ffiffiffiffiffi
p2

p
− e2Π1

ð2
ffiffiffiffiffi
p2

p
− e2Π1Þ2 þ e4p2Π2

2

ð17Þ

and

Δ2 ¼
e2Π2

ð2
ffiffiffiffiffi
p2

p
− e2Π1Þ2 þ e4p2Π2

2

: ð18Þ

From the trace properties of the Dirac matrices, it is
possible to show that the term Δ2 does not contribute for
dynamical symmetry breaking. Indeed, one may keep
this term in the gauge-field propagator, and the result
shall be the same at the end of the calculations. On the
other hand, assuming a small electric charge and using
Π1 ¼ −pNfD=32 [22], we have

GμνðpÞ ¼
Pμνffiffiffiffiffi

p2
p

ð2þ λD
32
Þ
; ð19Þ

where λ ¼ e2Nf is the coupling constant in the large-Nf

expansion [7]. In Eq. (19), D ¼ 2; 4 are the two possible
representations of the Dirac field, which has two or four
components, respectively.
Next, we use the propagators in Eqs. (19) and (12) to

calculate the full electron propagator SFðpÞ. Thereafter, we
shall use this function to obtain the dynamically generated
masses.

V. SCHWINGER-DYSON EQUATION
OF THE MATTER FIELD

The Schwinger-Dyson equation for the electron reads [2]

S−1F ðpÞ ¼ S−10FðpÞ − ΞðpÞ; ð20Þ

where S0F and SF are the free- and interacting-electron
propagators, respectively. ΞðpÞ is the electron self-energy,
which has two contributions ΞðpÞ ¼ ΞαðpÞ þ ΞgðpÞ,
where ΞαðpÞ and ΞgðpÞ are the electron self-energies
due to the electromagnetic and four-fermion interactions,
respectively. The diagrammatic representation is shown in
Fig. 1. The electron self-energies are given by

ΞαðpÞ ¼ λ

Nf

Z
d3k
ð2πÞ3 γ

μSFðkÞγνGμνðp − kÞ ð21Þ

DYNAMICAL MASS GENERATION IN PSEUDOQUANTUM … PHYSICAL REVIEW D 96, 034005 (2017)

034005-3



and

ΞgðpÞ ¼ 1

Nf

Z
d3k
ð2πÞ3 Δφðp − kÞSFðkÞþ

− Δφð0ÞTr
Z

d3k
ð2πÞ3 SFðkÞ: ð22Þ

To obtain analytical solutions of the Schwinger-Dyson
equation, it is convenient to rewrite the full fermion
propagator as [19]

S−1F ðpÞ ¼ pμγ
μAðpÞ − ΣðpÞ; ð23Þ

where AðpÞ is usually called the wave function renormal-
ization and ΣðpÞ is the mass function. Inserting Eq. (23)
into Eq. (20), we obtain the integral equation

ΣðpÞ ¼ 2λ

Nf

Z
d3k
ð2πÞ3

ΣðkÞ
A2ðkÞk2 þ Σ2ðkÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2

p
ð2þ λD

32
Þ

þ 1

Nf

Z
d3k
ð2πÞ3

Δφðp − kÞΣðkÞ
A2ðkÞk2 þ Σ2ðkÞ

− Δφð0Þ
Z

d3k
ð2πÞ3

TrΣðkÞ
A2ðkÞk2 þ Σ2ðkÞ : ð24Þ

From now on, we shall consider AðpÞ ≈ 1; see
Appendix A and Appendix C for more details.

VI. DYNAMICAL SOLUTION FOR ΣðpÞ
The third term on the rhs of Eq. (24) does not

change momentum. Hence, we focus on the dynamical
solutions of the mass function driven by a kernel with p

dependence. This regime is obtained when both gauge and
auxiliary propagators change momentum with the electron
propagator,

ΣðpÞ ¼ 2λ

Nf

Z
d3k
ð2πÞ3

ΣðkÞ
k2 þ Σ2ðkÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2

p
ð2þ λD

32
Þ

þ 1

Nf

Z
d3k
ð2πÞ3

ΣðkÞ
k2 þ Σ2ðkÞ

1

1=gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2

p
x0

:

ð25Þ

We use spherical coordinates d3k ¼ k2dk sin θdθdϕ, and
hence the polar integral gives a factor 2π. Next, we solve
the angular integral in both the first and second terms on the
rhs of Eq. (25).
Let us first consider only the integral which is propor-

tional do λ, i.e., the first term of the rhs of Eq. (25). By
defining u≡ p2 þ k2 − 2pk cos θ and changing the inte-
gral variable into u, we find

2λ

4π2Nf

1

ð2þ λD
32
Þ
Z

∞

0

k2dkΣðkÞ
k2þΣ2ðkÞ

�jpþkj− jp−kj
pk

�
: ð26Þ

For the second term on the rhs, the same procedure yields

1

4π2x0Nfp

Z
∞

0

kdkΣðkÞ
k2 þ Σ2ðkÞ

�
½jpþ kj − jp − kj

−
1

x0g
ln

�ðx0gÞ−1 þ jp − kj
ðx0gÞ−1 þ jpþ kj

��
: ð27Þ

Therefore, the integral equation becomes

ΣðpÞ ¼ C2

p

Z
∞

0

kdkΣðkÞ
k2 þ Σ2ðkÞ ln

�ðx0gÞ−1 þ jp − kj
ðx0gÞ−1 þ jpþ kj

�

þ C1

p

Z
∞

0

kdkΣðkÞ
k2 þ Σ2ðkÞ ðjpþ kj − jp − kjÞ; ð28Þ

where

C1 ¼
2λ

4π2Nfð2þ λD=32Þ þ
g

Nfðgx0Þ4π2
; ð29Þ

and

C2 ¼ −
g

Nfðgx0Þ24π2
: ð30Þ

Equation (28) is a nonlinear integral equation for ΣðpÞ.
We may obtain numerical solutions; see Appendix B for
more details. Nevertheless, it is useful to find some
analytical solution, in particular, to calculate critical

FIG. 1. Diagrammatic representation of Eq. (20). The bold lines
are the full electron propagator, and the thin line is the free
electron propagator. The dashed line is the auxiliary-field
propagator, and the wavelike line is the gauge-field propagator,
both of them in the large-Nf expansion. The cross-hatched circle
is the full vertex, related to the Yukawa interaction. The black
circle is the full vertex, related to the electromagnetic interaction.
Note that we have neglected all corrections to the vertex
functions, which is called the rainbow approach.
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parameters. To do so, we must to convert Eq. (28) into a
differential equation. First, it is convenient to obtain a scale-
invariant integral equation (without any dimensional
parameter). Indeed, by defining ΣðpÞ≡fðpgÞ=g, x≡ gp,
and y≡ gk, we find

fðxÞ ¼ gC2

x

Z
∞

0

ydyfðyÞ
y2 þ f2ðyÞ ln

�ðx0Þ−1 þ jx − yj
ðx0Þ−1 þ jxþ yj

�

þ C1

x

Z
∞

0

ydyfðyÞ
y2 þ f2ðyÞ ðjxþ yj − jx − yjÞ: ð31Þ

From Eq. (31), we have the functional dependence of the
mass function on the momentum and other parameters:
ΣðpÞ ¼ g−1fðgpÞ. This result shows that the critical values
of λ and Nf are related. The dimensional coupling constant
g only changes the scale of the external momentum p. This
result is exact. Indeed, with g ¼ 0, PQED with a massless
Dirac fermion is scale invariant and has a critical coupling
constant λc or a critical number of flavors Nc [7].
We may obtain analytical solutions by introducing an

ultraviolet cutoff Λ, thus converting Eq. (31) into a differ-
ential equation in the linearized regime, where x ≫ fðxÞ
(see Appendix B). In this case, we have

d
dx

�
x2

dfðxÞ
dx

�
þ Nc

4Nf
fðxÞ ¼ 0; ð32Þ

where

NcðλÞ ¼
2

π2

�
2λ

2þ λD=32
þ 16

D

�
ð33Þ

is the critical number of flavors. The mass function is
nontrivial only if Nf ≤ Nc (similar to QED3 with G ¼ 0

[18]). We shall prove this after we calculate the physical
masses.
The solutions of Euler’s differential equation are

fðxÞ ¼ Aþxaþ þ A−xa− ; ð34Þ

where a� ¼ −1=2� 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Nc=Nf

p
and Aþ and A− are

arbitrary constants. Hence, the real part of the solution is

ReffðxÞg ¼ Fffiffiffi
x

p cos½γ ln xþ θ0�; ð35Þ

where F and θ0 are arbitrary real constants, without
loss of generality, given by F ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
AþA−

p
and

θ0 ¼ tan−1½ðiðAþ − A−ÞÞ=ðAþA−Þ�. Indeed, it is straight-
forward to check that it satisfies Euler’s differential
equation. Using Eq. (35) in Eq. (32), we find that the real
constant γ is given by

γ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

Nf
− 1

s
: ð36Þ

This is the main parameter for describing dynamical mass
generation; i.e., whether γ is real, we have real generated
masses [see Eq. (46) in Sec. VII].
Next, we compare this criticality with some known

results for QED3 [18] and PQED [7] without four-fermion
interaction. From Eq. (33) and λ ¼ 4παNf, we have

NcðαÞ ¼
2

π2

�
8παNf

2þ παNfD=8
þ 16

D

�
: ð37Þ

Comparison with Eq. (44) in Ref. [6] shows that the
second term on the right-hand side of Eq. (37), namely,
32=ðπ2DÞ ¼ 2=ðπ2x0Þ, is the nontrivial contribution of the
Yukawa action; i.e., it is the consequence of g ≠ 0 in our
model. Although g does not explicit appear in γ, this term is
a consequence of the quantum corrections of the scalar-
field propagator, which is dependent on x0; see Eq. (12). It
is not possible that g changes γ, because of scale invariance,
and hence the critical point is only dependent on α within
our approach.
From Eq. (37), we find 0.81 ≤ NcðαÞ ≤ 4.05 for D ¼ 4

and 1.61 ≤ NcðαÞ ≤ 8.10 for D ¼ 2, where the lower and
upper limits have been calculated from the α→0 and α→∞
cases, respectively. For QED3, the critical number is
NQED3

c ¼ 32=π2 ≈ 3.24 [18]. For graphene, the critical
point Nc may be modified by a substrate or by renorm-
alization of the Fermi velocity, because α ¼ e2=ð4πϵvFÞ,
where ϵ and vF are the dielectric constant and Fermi
velocity, respectively.
It is interesting to obtain a critical fine-structure constant

αc. Using Eq. (33) in Eq. (36), we have

γ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π2Nf

�
2λ

2þ λD=32
þ 16

D

�
− 1

s
: ð38Þ

We define a λc such that for λ ≥ λc the factor γ is real, and
hence the mass function exists. From Eq. (38), we obtain

2

π2Nf

�
2λc

2þ λcD=32
þ 16

D

�
¼ 1: ð39Þ

Solving Eq. (39) for λc, we have

λc ¼
�
64

D

��
32 −DNfπ

2

DNfπ
2 − 160

�
: ð40Þ

Furthermore, using 4παcNf ¼ λc, we find
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αc ¼
16πð 32

π2DNf
− 1Þ

DNfπ
2 − 160

: ð41Þ

Note that γ is real for α ≥ αc because the quantity
between parentheses in Eq. (38) is monotonically increas-
ing. Equation (41) shows that the critical constant is a
function of DNf. It precisely shows that the dynamical
mass generation is independent on the parameter D. Let us
clarify this result. Assume we are in a representationD ¼ 2
with Nf ¼ 4, as is usually the case for graphene. Nf ¼ 4

describes the two spins ↑;↓ and the two valleys K and K’
(internal degrees of freedom). We perform the same
calculations in the other representation D ¼ 4, hence
decreasing the flavor number to Nf ¼ 2 (only spins or
valleys). It follows that DNf ¼ 8 for both cases; therefore,
αc ≈ 0.36 is obtained independently of the representation.
Furthermore, because this result is much less than αc ¼
1.02withG ¼ 0 [6], we conclude that the presence of some
other microscopic interaction is likely to favor the phase
with mass generation, even if the latter is weak.

VII. PHYSICAL MASS Mph

A key ingredient for describing topological states of
matter is the opening and closing of an energy gap at the
Dirac points, which breaks some discrete symmetry. In
other words, the transition from a massless to a massive
Dirac theory changes the topological invariant of the
model, which is given by the Chern number for two-
dimensional materials [23]. Here, because we have calcu-
lated the mass function ΣðpÞ, we may obtain the physical
masses of the theory. This is given by ΣðpÞ ¼ g−1fðgpÞ;
see Sec. VI. On the other hand, fðgpÞ is given by Eq. (35)
with the critical point in Eq. (33).
The renormalized spectrum reads E�ðpÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ph

q
, where 2jmphj is the energy gap at the

Dirac point p ¼ 0. By making a Taylor expansion around
mph, the mass function reads

X
ðpÞ¼

X
ðp¼mphÞþðγμpμ−mphÞ

∂PðpÞ
∂p

				
p¼mph

þ…;

ð42Þ

and imposing

Σðp ¼ mphÞ ¼ mph; ð43Þ

we may write the full fermion propagator as

SFðpÞ ¼
1

γμpμ − ΣðpÞ

¼ 1

ðγμpμ −mphÞð1 − ∂PðpÞ
∂p jp¼mph

þ � � �Þ

¼ γμpμ þmph

ðp2 −m2
phÞð1 − ∂PðpÞ

∂p jp¼mph
þ � � �Þ

: ð44Þ

We see thatmph is the pole of the full electron propagator
at zero momentum, hence, it is the physical mass. Note that
the condition for calculating this is given by Eq. (43), which
applies only the real part of the self-energy in Eq. (35).
Using gΣðpÞ ¼ fðgpÞ (for the real parts), we have

gΣðpÞ ¼ Fffiffiffiffiffiffi
gp

p cos ½γ ln ðgpÞ þ θ0�: ð45Þ

Next, we use Eq. (43) to calculate mph. We choose
θ0 ¼ 0 and F ¼ 1, without loss of generality. Therefore,
using Eq. (45) at p ¼ mph and defining −z≡ γ lnðgmphÞ,
we have

mph ¼ g−1 exp

�
−
z
γ

�
; ð46Þ

where z are solutions of the transcendental equation

exp

�
−
3z
2γ

�
¼ cos z: ð47Þ

Note that g−1 is the natural cutoff for the theory. For
α → αc and γ ≈ 0, Eq. (47) gives z → zn ¼ ð2nþ 1Þπ=2
with an n integer. Therefore, there exists a quantized set of
physical masses mn

ph. In Ref. [6], the authors have per-
formed the same calculation for g ¼ 0 with the cutoff given
by the inverse of the lattice parameter. In this case, it has
been shown that the quantized set of masses implies an
interaction-driven quantum valley Hall effect for graphene.
The unique condition for such a new effect is the generation
of the dynamical masses, which breaks time-reversal
symmetry in the SU(2) representation [6]. Here, we go
further by proving that microscopic interactions, given by a
Yukawa action, do not cancel the quantum valley Hall
effect. This is not surprising in the view of topological
insulator theory because it is well known that the quantum
Hall effect experimentally occurs in the presence of
impurities or electron-phonon interactions. Indeed, the
Yukawa action effectively describes electron-phonon inter-
action at low energies for graphene; see Ref. [24].

VIII. SUMMARY AND OUTLOOK

We have described the dynamical symmetry breaking in
a two-dimensional system, consisting of massless Dirac
fermions with two types of interactions. One is the
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electromagnetic interaction, described by the PQED
approach, and the other is, essentially, a Yukawa action,
which originates from some microscopic physical effect,
such as electron-phonon interaction. This seems to be case
for honeycomb systems at low energies; see Ref. [24] for
the case of graphene.
We consider the zero-temperature case at both SU(2) and

SU(4) representations, where parity and chiral symmetries
are broken in the massive phase, respectively. We show that
the critical coupling constant is dependent on the product
DNff. For graphene, we haveDNf ¼ 8 for both SU(2) and
SU(4) representations, because the flavor number in the
SU(4) case (Nf ¼ 2) is half of the flavor number in the SU(2)
representation (Nf ¼ 4). It is shown that for DNf ¼ 8 the
critical coupling constant is αc ≈ 0.36. Hence, the presence
of some microscopic interaction is likely to improve the
possibility of generating a mass in the electronic spectrum.
The mass function of the matter field has been calculated
from the Schwinger-Dyson equations, using the large-Nf

expansion for both the gauge and scalar fields. This is called
the unquenched-rainbow approximation in literature.
Numerical results show that our analytical approximations
are in good agreement with the full integral equation.
Furthermore, we have shown that Yukawa interaction does
not change the quantized feature of the energy levels, which
have been calculated in Ref. [6] for the case of pure PQED.
Note that we lost gauge invariance in the rainbow

approximation, which implies a bare vertex for both
electromagnetic and Yukawa interactions. Nevertheless,
gauge invariance may be recovered through the use of a
full vertex function. This has been discussed for both
QED4 [25] and QED3 [19]. For QED4, the authors in
Ref. [26] have verified that the mass function is gauge
invariant for a few different gauge parameters; see Fig. 06
in that reference. In particular, the results with the full
vertex function are very close to the corresponding result in
the Landau gauge within the rainbow approach, indicating
the relevance of the ladder approximation.
It is an experimental challenge to generate a finite mass

for massless Dirac particles in graphene. From the theo-
retical view, the task is to find a lesser critical coupling
constant αc, such that the electromagnetic interaction would
be enough to generate a finite mass. Having that in mind, in
two-dimensional materials, there exist several microscopic
interactions, beyond the Coulomb repulsion. Hence, we
believe our results are an encouraging step for deriving
symmetry broken phases. Nevertheless, we have provided
an analytical result for the mass function of a nonlocal
model interacting with a four-fermion action. Several
generalizations of this paper could be investigated, for
instance, the role of an external magnetic field, the Fermi
velocity, the chemical potential, and the finite temperature.
Furthermore, we may generalize our four-fermion inter-
action to a Thirring version [20] or other important micro-
scopic interaction. We shall study these cases elsewhere.
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APPENDIX A: WAVE FUNCTION
RENORMALIZATION

In this Appendix, we derive the integral equation
for the wave function renormalization AðpÞ, defined in
Eq. (23). To do so, we multiply Eq. (20) by γμpμ.
Thereafter, we calculate the traces over the Dirac matrices.
They yield

AðpÞ ¼ 1þ 1

NfDp2
Tr½ΞðpÞγαpα�: ðA1Þ

Using Eqs. (21), (22), and (23) in Eq. (A1), after calculating
the trace over Dirac matrices, we find

AðpÞ ¼ 1þ 2λ

Nfp2

Z
d3k
ð2πÞ3

AðkÞGðqÞ
AðkÞ2k2 þ Σ2ðpÞ

ðk · qÞðp · qÞ
q2

þ 1

Nf

Z
d3k
ð2πÞ3

p · k
p2

AðkÞΔφðp − kÞ
A2ðkÞk2 þ Σ2ðkÞ ; ðA2Þ

where GðqÞ and q are given by

q ¼ p − k; ðA3Þ

and

GðqÞ ¼ 1ffiffiffiffiffi
q2

p
ð2þ λD

32
Þ
: ðA4Þ

We can solve the angular integral in Eq. (A2) to obtain

AðpÞ ¼ 1 −
B1

p3

Z
∞

0

dk
kAðkÞ

A2ðkÞk2 þ Σ2ðpÞB1ðk; pÞþ

−
B2

p3

Z
∞

0

dk
kAðkÞ

A2ðkÞk2 þ Σ2ðpÞB2ðk; pÞ; ðA5Þ

where

B1 ¼
2λ

Nf

1

16π2
1

ð2þ λD
32
Þ ; ðA6Þ

B2 ¼
1

DNf

1

3π3
; ðA7Þ

B1ðk; pÞ ¼
1

3
ðpþ kÞ3 − 1

3
jp − kj3 þ ðp2 − k2Þ

× ½ðp − kÞSgnðpþ kÞ − ðpþ kÞSgnðp − kÞ�;
ðA8Þ
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and

B2ðk; pÞ ¼ ½4k2 þ 4p2 − 6ðx0gÞ−2�ðjp − kj − jpþ kjÞ
þ 4kp½jp − kj þ jpþ kj − 3ðx0gÞ−1�
− 6ðx0gÞ−1½k2 þ p2 − ðx0gÞ−2�

× ln

�ðx0gÞ−1 þ jp − kj
ðx0gÞ−1 þ jpþ kj

�
: ðA9Þ

In Fig. 2, we compare the numerical results of this integral
equation with the analytical solution AðpÞ ¼ 1. As
expected, a very good agreement is found at large momen-
tum, which the integral equation may be solved.

APPENDIX B: ANALYTICAL APPROACH

To convert Eq. (31) into a differential equation, it is
convenient to perform an approximation in the logarithmic
kernel. In the lowest order, we have

ln

�
x−10 þ jxþ yj
x−10 þ jx − yj

�
≈

2y
xþ x−10

Θðx − yÞ

þ 2x
yþ x−10

Θðy − xÞ: ðB1Þ

Introducing an ultraviolet cutoff Λ, we find

fðxÞ ¼ 2C1

x

�Z
x

0

y2fðyÞdy
y2 þ f2ðyÞ þ x

Z
gΛ

x

yfðyÞdy
y2 þ f2ðyÞ

�

þ gC2

�Z
x

0

y2fðyÞdy
y2 þ f2ðyÞ

2

xðxþ x−10 Þ

þ
Z

gΛ

x

yfðyÞdy
y2 þ f2ðyÞ

2

ðyþ x−10 Þ
�
: ðB2Þ

On general grounds, the derivative of an arbitrary function
FðpÞ, given by

FðpÞ ¼
Z

uðpÞ

vðpÞ
dkKðk; pÞ; ðB3Þ

is

dFðpÞ
dp

¼
Z

uðpÞ

vðpÞ
dk

∂Kðk; pÞ
∂p þ ∂u

∂pKðp; uðpÞÞ

−
∂v
∂pKðp; vðpÞÞ; ðB4Þ

where vðpÞ and uðpÞ are also arbitrary functions. Using
this in Eq. (B2), we find

df
dx

¼ −
2C1

x2

Z
x

0

y2fðyÞdy
y2 þ f2ðyÞ

þ gC2

d
dx

�
2

xðxþ x−10 Þ
� Z

x

0

y2fðyÞdy
y2 þ f2ðyÞ : ðB5Þ

For practical reasons, we define

h−1ðxÞ ¼ 1 −
gC2x2

2C1

d
dx

�
2

xðxþ x−10 Þ
�
: ðB6Þ

By deriving Eq. (B5), we find

d
dx

�
hðxÞx2 df

dx

�
þ Nc

4Nf

x2fðxÞ
x2 þ f2ðxÞ ¼ 0; ðB7Þ

where Nc is given by Eq. (33). Finally, we consider the
linearized version of Eq. (B5) with x ≫ fðxÞ. In this case,
the C1-proportional term yields Eq. (32) with

lim
x→gΛ

�
x
dfðxÞ
dx

þ fðxÞ
�

¼ 0; ðB8Þ

and

lim
x→0

x2
dfðxÞ
dx

¼ 0; ðB9Þ

representing the UV and IR asymptotic conditions,
respectively.

APPENDIX C: COMPARISON BETWEEN
NUMERICAL AND ANALYTICAL RESULTS

In this Appendix, we perform some numerical tests
to verify the validity of the analytical approaches adopted
in this paper. To obtain the numerical results for the
mass function, we consider the full integral equation

2 4 6 8 10
0

0.5

1.

1.5

p

A
p

FIG. 2. Comparison between the numerical results of Eq. (A5)
and the analytical solution AðpÞ ¼ 1.0. The dashed line is the
numerical solution with ΣðpÞ ¼ 0 (symmetric phase). We choose
α ¼ 2.2, D ¼ 4, Nf ¼ 10, g ¼ 0.1, and Λ ¼ 10 to perform the
numerical calculations. The analytical approximation describes
the numerical result well, in particular, for large momentum.
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for ΣðpÞ with AðpÞ ¼ 1, given by Eq. (28). The
numerical result in Fig. 3 is obtained after we convert
the momentum-dependent kernel in Eq. (28) into a system
of nonlinear algebraic equations, using the repeated trap-
ezoidal quadrature rule. Furthermore, it is mandatory to
include a cutoff Λ to perform numerical calculations.
Without loss of generality, we take Λ ¼ 10 (in units of
energy). For more details about these steps, see Ref. [7],
which has this procedure for PQED at zero temperature and
Ref. [8] at finite temperature.
The analytical solution ΣðpÞ is promptly obtained from

Eq. (35). Indeed, it has been shown that ΣðpÞ ¼ g−1fðgpÞ
in Sec. VI. After we assume Aþ þ A− ¼ 2.7=350 and
Aþ − A− ¼ i2.7=350, a very good agreement is observed
between numerical and analytical results; see Fig. 3. This
assumption is possible because Aþ and A− are arbitrary
constants as we discussed in Sec. VI. Equation (41) yields
the critical point. Using D ¼ 4 and Nf ¼ 2.0, we have
αc ≈ 0.36. By changing g from 0.1 to 10, we have verified
that the mass function slowly varies, which indicate that the
critical phase is only dependent on α, as expected. The
numerical results are also in agreement with the fact that
dynamical mass generation only occurs for α ≥ αc.
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