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We present a compact form of the leptonic currents for the computation of the processes involving an
initial virtual boson (photon, W�, or Z0). For deeply inelastic scattering, once the azimuthal angle of the
plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass
frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities
(such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse
of the symmetry may lead to wrong results.
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I. INTRODUCTION

Deeply inelastic scattering (DIS) provides a useful probe
to the partonic structure of hadrons and photons. It uses
leptons to collide with the species of particles we study and
observes the kinematics of the scattered leptons, which can
provide information for the structure of the targets. Taking
electron-proton scattering as an example, the kinematics of
the scattered leptons can be described by any two of the
following four variables:

Q2 ¼ −q2 ≡ −ðk − k0Þ2; W2 ¼ ðPþ qÞ2;

x ¼ Q2

2P · q
; y ¼ P · q

P · k
; ð1Þ

where P, k, k0, and q are, as illustrated in Fig. 1, the
momenta of the initial proton, the initial and final lepton,
and the virtual boson, respectively. The differential cross
section can be written, in the limit P2=Q2 ≪ 1, as

dσ ¼ 1

4P · k
1

NcNs
Lμν

1

ðQ2Þ2H
μνdΦ0dΦH; ð2Þ

where 1=ðNcNsÞ is the color and spin average factor, Lμν

and Hμν are the leptonic and hadronic tensors, respectively,
and

dΦ0 ¼ d3k0

ð2πÞ32k00
;

dΦh ¼
d3p

ð2πÞ32p0

;

dΦX ¼ ð2πÞ4δ4
�
Pþ q − p −

X
i

pi

�Y
i

d3pi

ð2πÞ32pi0
;

dΦH ¼ dΦhdΦX: ð3Þ

Here, i runs over all the final states other than the scattered
lepton and the tagged hadron (p). The leptonic tensor can
be directly calculated and obtained as

Lμν ¼ 4παTrðkγμk0γμÞ

¼ 8παQ2

��
−gμν −

qμqν
Q2

�
þ ð2k − qÞμð2k − qÞν

Q2

�

≡ 8παQ2lμν; ð4Þ

where α is the electromagnetic coupling and the lepton
mass and the contributions from the Z0 propagator are
neglected for the moment and will be considered in the
sequel. Having dΦH integrated over, the structure of the
hadronic tensor,

WμνðP; qÞ≡
Z

HμνðP; q; h; p1;…; pnÞdΦH; ð5Þ

is restricted by the Lorentz covariance and, thus, can be
decomposed into the linear combination of the current
conserving dimensionless basic tensors as

Wμν ¼
�
−gμν −

qμqν

Q2

�
F1ðx;Q2Þ

þ 1

Q2

�
qþ Q2

P · q
P

�
μ
�
qþ Q2

P · q
P

�
ν 1

2x
F2ðx;Q2Þ

−
i

P · q
ϵμναβPαqβF3ðx;Q2Þ; ð6Þ

where F1, F2, and F3 are the structure functions of the
proton and ϵ0123 ¼ 1 in our convention. In the Bjorken
limit, Q2, P · q → ∞, the structure functions obey an
approximate scaling law; i.e., they depend only on the
dimensionless variable x [1–3]. This scaling law indicates
that, in the high-energy limit, the hadrons interact via
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pointlike partons inside them [4,5]. The structure functions
describe the parton distributions in high-energy hadrons
(see, e.g., [6,7]). The Q2 scaling of the structure functions
can be well described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equations [8–10].
Through a short calculation, one can obtain

lμνWμν ¼ 2F1ðx;Q2Þ þ 2 − 2y
xy2

F2ðx;Q2Þ: ð7Þ

It is easy to verify that, by setting

lμν ¼
2 − 2yþ y2

y2
ϵμν −

6 − 6yþ y2

y2
ϵLμν; ð8Þ

or equivalently

lμν ¼
2 − 2yþ y2

y2
ϵTμν −

4ð1 − yÞ
y2

ϵLμν; ð9Þ

where

ϵμν ¼ −gμν −
qμqν
Q2

;

ϵLμν ¼ −
1

Q2

�
qμ þ

Q2

P · q
Pμ

��
qν þ

Q2

P · q
Pν

�
;

ϵTμν ¼ ϵμν − ϵLμν; ð10Þ

one can reproduce the contraction LμνWμν for the real form
of the leptonic tensor presented in Eq. (4). Note that the
leptonic momenta k and k0 do not appear in the reduced
leptonic tensor presented in Eq. (8) or Eq. (9), the employ-
ment of which, thus, can greatly simplify the calculation of
the cross sections.
For semi-inclusive DIS (SIDIS), an additional final state

other than the scattered lepton is measured. The transverse-
spin and azimuthal asymmetry will emerge [11–24], which,

in different kinematic regions, can provide crucial informa-
tion for the transverse-momentum-dependent parton distri-
bution and the higher twist transverse-spin-dependent
multiparton correlation functions. On the experiment side,
the HERMES [25] and COMPASS [26] Collaborations
measured the azimuthal asymmetries in SIDIS off unpolar-
ized targets and observed nonvanishing cosine modulations
and their strong dependence on the kinematical variables.
All the discussions in the literature on the azimuthal angle and
transverse spin are carried out in such frames in which the
vector boson and the target travel along theopposite direction.
Without the loss of generality, we assume the spatial
momentum of the vector boson is along the z direction
and name such frames as z frames [see Fig. 2(a)]. In any frame
other than z frames, the azimuthal angle (ψ) dependence of
theplane expanded by the initial and final leptons around the z
axis is not a simple trigonometric function and, with ψ
integrated over, does not vanish. To our astonishment,
numerous works employed the form of the leptonic tensor
in Eq. (8) presenting results for the processes in which the
transverse momentum (pt) or the rapidity (Y) of the observed
particle in the laboratory frame is specified or a cut is applied
on these parameters. As a matter of fact, in the cases stated
above, this form of the leptonic tensor will lead to wrong
results. Among these works1 (see, e.g., [27]) are some highly
cited articles and calculations adopted by Monte Carlo
generators.
In this paper, we will provide a compact form of the

leptonic tensor, which, on the one hand, is valid in all kinds

FIG. 1. The illustrative diagram for the DIS processes.

(a)

(b)

FIG. 2. Illustrations of the process in z frames (a) and the
laboratory frame (b).

1There are many papers adopting reference frames not belong-
ing to the class of z frames and, at the same time, the reduced
leptonic tensor; however, we list only one of them here.
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of processes, on the other hand, involves only momenta in a
hadronic process, and, thus, helps with the simplification
of the computation. In Sec. II, we present the azimuthal-
dependent form of the leptonic tensor, including a short
note on the application of our approach in the eþe−
annihilation processes in Sec. II C. In Sec. III, we discuss
in detail the difference between the real form of the leptonic
tensor and the reduced ones, following which is the
concluding remark in Sec. IV.

II. THE FORM OF THE LEPTONIC TENSOR

Wewill provide a compact form of the leptonic tensor for
SIDIS and then a comprehensive form of the leptonic tensor
for the most generalized DIS. Having ψ integrated over in z
frames, Eq. (8) will be automatically reproduced. However,
when some physical quantities, e.g., pt or Y, in the
laboratory frame are specified, the integration over ψ (in
any frame) does not lead to the conventional leptonic tensor
in Eq. (8). In the next section, we will see that the difference
between the correct and the wrong results can be huge.

A. The leptonic tensor for SIDIS

Let us first investigate the processes in which only one
final-state hadron (p) is observed. Integrating over all the
other hadronic final states, one can define the hadronic
tensor

Wμν
h ðP; q; pÞ≡

Z
HμνðP; q; p; p1;…; pnÞdΦX: ð11Þ

Since Wh is a Lorentz covariant tensor and dependent only
on the momenta P, q, and p, it can thus be decomposed as
the linear combination of the tensors constituted of −gμν, P,
q, and p. Note that Wh satisfies the following equation:

qμW
μν
h ¼ 0: ð12Þ

Thus, with the above elements, only four independent
tensors can be constructed. One can define the normalized
longitudinal and transverse vectors, respectively, as

ϵL ¼ 1

Q

�
qþ Q2

P · q
P

�
;

ϵ1 ¼
1

p⋆
t
ðp − ρP − zqÞ; ð13Þ

where p⋆
t is the transverse momentum of p in z frames, M

is the mass of p, z ¼ P · p=P · q is the elasticity coefficient,
and

ρ ¼ p · qþ zQ2

P · q
¼ p⋆2

t þM2 þ z2Q2

2zP · q
: ð14Þ

Apparently, we have

ϵμνL ¼ −ϵμLϵνL: ð15Þ

We label all the physical quantities calculated in z frames
by the superscript ⋆ hereinafter. It is easy to check the
following relations:

q · ϵL ¼ q · ϵ1 ¼ P · ϵ1 ¼ 0;

ϵ2L ¼ 1; ϵ21 ¼ −1: ð16Þ

As a matter of fact, ϵ1 is a normalized vector perpendicular
to both P and q and parallel to the transverse component of
the momentum p in z frames, as illustrated in Fig. 2(a).
Accordingly, Wh can be decomposed as

Wμν
h ¼ Wgϵ

μν þWLϵ
μ
Lϵ

ν
L

þWLTðϵμLϵν1 þ ϵμ1ϵ
ν
LÞ þWTϵ

μ
1ϵ

ν
1; ð17Þ

where Wg, WL, WLT , and WT are the coefficients of the
four independent normalized tensors.
With a short calculation, one can obtain

lμνW
μν
h ¼ 2Wg þ

4ð1 − yÞ
y2

WL

−
4ð2 − yÞ

y2
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆WLT

þ
�
1þ 2 − 2y

y2
þ 2 − 2y

y2
cosð2ψ⋆Þ

�
WT; ð18Þ

where ψ⋆ is the azimuthal angle of the lepton plane around
the z axis relative to the hadron production plane in z
frames, as is illustrated in Fig. 2(a). It is easy to verify that,
with

lμν ¼ Agϵ
μν þ ALϵ

μ
Lϵ

ν
L

þ ALTðϵμLϵν1 þ ϵμ1ϵ
ν
LÞ þ ATϵ

μ
1ϵ

ν
1; ð19Þ

where

Ag ¼ 1þ 2ð1 − yÞ
y2

−
2ð1 − yÞ

y2
cosð2ψ⋆Þ;

AL ¼ 1þ 6ð1 − yÞ
y2

−
2ð1 − yÞ

y2
cosð2ψ⋆Þ;

ALT ¼ 2ð2 − yÞ
y2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆;

AT ¼ 4ð1 − yÞ
y2

cosð2ψ⋆Þ; ð20Þ

one can reproduce the results in Eq. (18). It seems as if the
expression of the reduced leptonic tensor in Eq. (19) is
more complicated than the real one in Eq. (4). However, the
reduced one involves only the momenta in the hadronic
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process; in other words, the leptonic momenta do not appear.
Correspondingly, the number of independent Lorentz invar-
iants in the calculation, while employing Eq. (19), is reduced
by 3, which can greatly simplify the computation, especially
when the calculation is carried out at the loop level.
Taking into account the current conservation, the lep-

tonic tensor in Eq. (19) can be rewritten as

lμν ¼ C1ð−gμνÞ þ C2PμPν

þ C3

Pμpν þ pμPν

2
þ C4pμpν; ð21Þ

where

C1 ¼ Ag;

C2 ¼
4x
yS

ðAL − 2βALT þ β2ATÞ;

C3 ¼
4x
Qp⋆

t
ðALT − βATÞ;

C4 ¼
1

p⋆2
t
AT; ð22Þ

with

β ¼ p⋆2
t þM2 þ z2Q2

2zQp⋆
t

: ð23Þ

The leptonic tensor expressed in Eq. (21) has replaced the
normalized vectors by the momenta of the interacting
particles, which is more suitable for using in calculations.
The leptonic tensor is more complicated for charged and

weak neutral current DIS, when antisymmetric tensors also
participate. This is true for the cases in which the beams and
targets are polarized as well. For most of the cases, the
antisymmetric part of the leptonic tensor is proportional to
the following normalized structure:

laμν ¼
2

Q2
ϵμναβqαkβ; ð24Þ

and that of the hadronic tensor Wμν
h can be decomposed as

Waμν
h ðP; q; pÞ ¼ Wa

L
1

Q
ϵμναβqαϵLβ þWa

T
1

Q
ϵμναβqαϵ1β:

ð25Þ

One can obtain

laμνW
aμν
h ¼ 2ð2 − yÞ

y
Wa

L −
4

y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆Wa

T: ð26Þ

To reproduce the results in the above equation, the leptonic
tensor can be written in terms of the hadron momenta as

laμν ¼
2 − y
y

1

Q
ϵμναβqαϵ

β
L

þ 2

y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆ 1

Q
ϵμναβqαϵ

β
1: ð27Þ

For inclusive DIS when the target is transversely
polarized, one can directly employ Eqs. (19) and (27),
with ϵ1 replaced by the polarization vector of the target.

B. The leptonic tensor for the most generalized DIS

When several final states are observed and/or the polari-
zation of the leptonic beam or the target is specified, the
hadron momenta and the polarization vectors are not con-
strained in a plane; accordingly, thehadronic tensor is not only
related toP,q, andp.Weneed to introduce another vector, ϵ2,
which, in association with ϵL and ϵ1, consists of a complete
set of normalized, mutually orthogonal vectors perpendicular
to q. Here and in the following, we say a 4-vector a is
perpendicular to q when a · q ¼ 0. We define ϵ2 as

ϵμ2 ¼
1

Q
ϵμναβqνϵLαϵ1β: ð28Þ

Apparently, we have

q · ϵ2 ¼ P · ϵ2 ¼ p · ϵ2 ¼ 0; ϵ22 ¼ −1: ð29Þ
Namely, ϵ1 and ϵ2 are the two normalized, mutually orthogo-
nal transverse vectors in z frames. Any vector perpendicular
to q can be decomposed into the linear combination of ϵL, ϵ1,
and ϵ2. Note that 2k − q is perpendicular to q. To express
2k − q in terms of these three vectors, we need to calculate
2k · ϵi (i ¼ L; 1; 2), which are obtained as

2k · ϵL ¼ Q

�
2

y
− 1

�
;

2k · ϵ1 ¼ −
2Q
y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆;

2k · ϵ2 ¼ −
2Q
y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
sinψ⋆: ð30Þ

Then, 2k − q can be expressed as

2k − q ¼ Q

�
2

y
− 1

�
ϵL þ 2Q

y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆ϵ1

þ 2Q
y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
sinψ⋆ϵ2; ð31Þ

employing which we can obtain the expression of lμν as

lμν ¼ A1ϵ
μ
Lϵ

ν
L þ A2ðϵμLϵν1 þ ϵμ1ϵ

ν
LÞ

þ A3ðϵμLϵν2 þ ϵμ2ϵ
ν
LÞ þ A4ϵ

μ
1ϵ

ν
1

þ A5ðϵμ1ϵν2 þ ϵμ2ϵ
ν
1Þ þ A6ϵ

μ
2ϵ

ν
2; ð32Þ
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where

A1 ¼
4ð1 − yÞ

y2
;

A2 ¼
2ð2 − yÞ

y2
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆;

A3 ¼
2ð2 − yÞ

y2
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
sinψ⋆;

A4 ¼ 1þ 2ð1 − yÞ
y2

þ 2ð1 − yÞ
y2

cosð2ψ⋆Þ;

A5 ¼
2ð1 − yÞ

y2
sinð2ψ⋆Þ;

A6 ¼ 1þ 2ð1 − yÞ
y2

−
2ð1 − yÞ

y2
cosð2ψ⋆Þ; ð33Þ

and the relation

ϵμν ¼ −ϵμLϵνL þ ϵμ1ϵ
ν
1 þ ϵμ2ϵ

ν
2 ð34Þ

has been employed. Then one can find out the relations among
ϵ1, ϵ2, and ϵμνT defined in Eq. (10) as

ϵμνT ¼ ϵμ1ϵ
ν
1 þ ϵμ2ϵ

ν
2: ð35Þ

Withψ⋆ integrated from0 to2π, the formof the leptonic tensor
presented in Eq. (8) or Eq. (9) can be reproduced. However,
note that the above statement is true only when the hadronic
part of the cross section is independent of ψ⋆.
With Eq. (31), the antisymmetric tensor laμν can be

obtained as

laμν ¼
2 − y
y

1

Q
ϵμναβqαϵ

β
L

þ 2

y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆ 1

Q
ϵμναβqαϵ

β
1

þ 2

y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
sinψ⋆ 1

Q
ϵμναβqαϵ

β
2: ð36Þ

The integration over ψ⋆ leaves only the first term in
Eq. (36), which is explicitly written

laμν ¼
2 − y
y

1

Q
ϵμναβqαϵ

β
L: ð37Þ

Equations (19), (27), (32), and (36) can reduce the
number of the Lorentz invariants involved and, conse-
quently, help to simplify the calculation. Furthermore, they
can provide important information for the structure of the
cross sections.
To complete our discussion, we note that, in collinear

factorization, one can simultaneously replace P by the
parton momentum in Eqs. (13) and (14). Another issue
to address is that Eq. (19) can be reproduced by setting

A3 ¼ A5 ¼ 0 in Eq. (32), while Eq. (27) can be reproduced
by dropping the last term on the right-hand side of Eq. (36).
Actually, with Eq. (34), one can obtain the following
relations:

A1 ¼ AL − Ag; A2 ¼ ALT;

A3 ¼ 0; A4 ¼ Ag þ AT;

A5 ¼ 0; A6 ¼ Ag: ð38Þ

C. Notes on the e+ e− annihilation

The approach discussed above can also be applied to
single inclusive particle production in eþe− annihilation,
the squared amplitude (without averaging the initial spin)
for which can be expressed as

jAj2 ¼ 1

s2
LμνHμν: ð39Þ

The hadronic tensor, after the integration of all the phase
space other than the observed particle and neglecting the
contributions from the Z-boson propagator, will be reduced
into the combination of the following two tensors:

−gμν þ qμqν

s
;

�
p −

p · q
s

q
�

μ
�
p −

p · q
s

q
�

ν

; ð40Þ

where q is the sum of the initial momenta and p is the
momentum of the observed particle. Taking the current
conservation into account, one can easily obtain

Lμν ¼ 4παs

�
−gμνð1þ cos2θÞ þ pμpν

p2
ð1 − 3cos2θÞ

�
;

ð41Þ

where θ is the angle between p and the spatial momentum
of e− (or eþ) in the eþe− center-of-mass frame. Integrating
over cos θ, the second term on the right-hand side of
Eq. (41) will vanish, and the first term will reduce to
8παs=3. We can rewrite Eq. (41) in the Lorentz invariant
form by substituting the following equations:

p2 ¼ ðp · qÞ2
s

−M2; cos2θ ¼ ðp · k − p · k0Þ2
p2s

; ð42Þ

where k and k0 are the momenta of e− and eþ, respectively,
and M is the mass of p.

III. COMPARISON OF THE REDUCED LEPTONIC
TENSOR TO THE REAL ONE

Equations (8), (9), and (37) are the generally used formulas
in many papers in the computation in DIS; thus, we name
them as the conventional leptonic tensors. However, these
formulas are not valid when some quantities, e.g., pt or Y, in
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the laboratory frame are specified. This is generally because,
as long as these quantities are specified, the hadronic part of
the cross section is not independent of ψ⋆, which is actually
manifest regarding the following relations:

p2
t ¼ p⋆2

t þ z2Q2ð1 − yÞ − 2zQp⋆
t

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosψ⋆;

Y ¼ 1

2
lnf½p⋆2

t þM2 þ z2ð1 − yÞQ2

− 2z
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Qp⋆

t cosψ⋆�=ð4y2z2E2
l Þg; ð43Þ

whereEl is the energy of the incident lepton in the laboratory
frame. The derivation of Eq. (43) can be found in the
Appendix. Once p2

t or Y is specified, the sine and cosine
terms in Eqs. (20) and (33) do not vanish after the integration
over ψ⋆.
To make our point clearer, we present here a more explicit

form of the cross section for the case in which the pt in
the laboratory frame is specified. Here we constrain our
discussions to only the symmetric leptonic tensor in SIDIS.
The differential cross section for one final-state hadron
production can be expressed as [according to Eq. (2)]

dσ ¼ 1

NcNs

4πα

SQ2
lμνW

μν
h dΦ0dΦh; ð44Þ

where

S ¼ 2P · k ð45Þ

is the squared colliding energy. The phase space can be
obtained as

dΦ0 ¼ 1

32π3
dQ2dydψ⋆;

dΦh ¼
1

32π3z
dp⋆2

t dz: ð46Þ

If we define

wg ¼ −gμνW
μν
h ;

wL ¼ ϵLμϵLνW
μν
h ;

wLT ¼ ðϵLμϵ1ν þ ϵ1μϵLνÞWμν
h ;

wT ¼ ϵ1μϵ1νW
μν
h ; ð47Þ

the differential cross section can then be expressed as

dσ ¼ α

256π5NsNcSQ2z

X
i

AiwidQ2dydp⋆2
t dzdψ⋆; ð48Þ

where i runs over g, L, LT, and T.
Apparently, Ai are functions of y and ψ⋆, while wi are

functions of Q2, y, p⋆
t , and z. If one measures only the

quantities in z frames, e.g., p⋆
t is fixed, wi do not depend on

ψ⋆; accordingly, the integration over ψ⋆ makes the cosine
terms in Ai vanish. However, if, e.g., pt in the laboratory
frame is fixed, the values of p⋆

t and ψ⋆ are constrained in a
curved surface. When ψ⋆ varies, wi changes accordingly.
In this case, the cosine terms in Ai will not vanish after the
integration over ψ⋆.
To be more explicit, we can replace dp⋆2

t by dp2
t with the

Jacobian multiplied. The Jacobian can be easily obtained
regarding Eq. (43) as

J≡
���� ∂p

⋆2
t

∂p2
t

���� ¼ p⋆
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t − ð1 − yÞz2Q2sin2ψ⋆p : ð49Þ

Apparently, we have the following inequalities:

Z
2π

0

dψ⋆ cosψ⋆J ≠ 0;
Z

2π

0

dψ⋆ cosð2ψ⋆ÞJ ≠ 0: ð50Þ

Correspondingly, the conventional leptonic tensors cannot
be reproduced with the integration over ψ⋆.
We can conclude that the structure functions F1 and F2

are not sufficient to describe the cross sections when pt or Y
are not taken to cover all their possible values. Even for the
processes in which pμPνW

μν
h ¼ pμpνW

μν
h ¼ 0, the conven-

tional leptonic tensor in Eq. (8) or Eq. (9) will also lead to
wrong results.
WeuseR to denote the ratio of the differential cross section

calculated with the employment of the leptonic tensor
presented in Eqs. (8), (9), and (37) to the correct one, say,
that obtained usingEq. (4). As an example,we investigate the
J=ψ inclusive production in photonic current DIS, which has
been studied in Ref. [28]. However, it adopted the conven-
tional leptonic tensor to present results for pt and rapidity
distributions in the laboratory frame. It is worth noting that,
with the same form of the leptonic tensor as given in
Ref. [28], we can reproduce their results. R as functions
ofp2

t and the rapidity of the J=ψ (yψ ) in the laboratory frame
are presented in Fig. 3. As Q2 increases, the difference
between the value of R and 1 becomes larger in the high-pt

region. ForQ2 ¼ 400 GeV2, the value ofR can be as large as
3.1 in the high-pt region and as small as 0.6 in the low-pt

region. For specified values of z and integrated Q2 in the
range 4 GeV2 < Q2 < 100 GeV2, the p2

t dependence of R
is also studied.R peaks at aroundp2

t ≈ 70 GeV2 and z ≈ 0.7,
where R ¼ 1.8 is obtained. The difference between the
wrong and correct results for specified values of yψ , however,
is not so large as that for specified values ofp2

t . Inmidrapidity
regions, especially−0.5 < yψ < 0.5, where most of the J=ψ
events are produced, R is almost equal to 1, which means in
this region, even with the wrong form of the leptonic tensor,
one can generally reproduce the correct results.However, this
might be true only for specific processes. For a different
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process, R can be different from 1 even in midrapidity
regions.

IV. SUMMARY

In summary, we investigated the structure of the leptonic
tensors in DIS and SIDIS. The most general forms of the
leptonic tensor are presented in Eqs. (32), (33), and (36),
which can greatly simplify the computation by reducing the
number of independent Lorentz invariants. Moreover, they
explicitly prove the azimuthal structure of the cross sections
consists, in addition to the ψ⋆-independent terms, of those
proportional to cosψ⋆, sinψ⋆, cosð2ψ⋆Þ, and sinð2ψ⋆Þ,
respectively, which after the integration over ψ⋆ will vanish.
For SIDIS, the symmetric leptonic tensor reduces to a more
compact form, which involves only four independent nor-
malized tensors,while the antisymmetric one consists of only
two independent normalized tensors. Taking the J=ψ inclu-
sive production in DIS as an example, we demonstrate that
the reduced formalism of the leptonic tensor presented in
Eq. (8) or Eq. (9) [as well as in Eq. (37)] cannot give correct
predictions when some physical observables, such as pt and
the rapidity, in the laboratory frame are measured. However,
many works are still using these reduced leptonic currents
in computations. Our work can provide a reference for the
future phenomenological studies in DIS, including the
physics at the future Electron-Ion Collider.
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APPENDIX: RELATION BETWEEN pt AND p⋆t
Since pt is invariant under the boost along the z axis, we

thus parameterize all the momenta in the virtual-photon-
proton (γ⋆p) center-of-mass frame and the laboratory frame.
The invariants k · p and P · p can be expressed in the

laboratory frame as

k · p ¼ El

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þM2

q
eY;

P · p ¼ Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þM2

q
e−Y; ðA1Þ

respectively, whereEl andEp are the energies of the incident
lepton and proton, respectively, and the forward z direction is
defined as that of the incident proton. Then we have

4ðk · pÞðP · pÞ ¼ 4ElEpðp2
t þM2Þ ¼ Sðp2

t þM2Þ: ðA2Þ
2P · p can also be obtained in terms of the hadronic
variables as

2P · p ¼ yzS; ðA3Þ

and, thus, we have

p2
t þM2 ¼ 2yzk · p: ðA4Þ

Now, we calculate 2k · p. Apparently, it depends on ψ⋆.
To obtain its explicit expression, we need to parameterize
the momenta in the γ⋆p center-of-mass frame. In the γ⋆p
center-of-mass frame, the forward z direction is defined as
that of the incident virtual photon, which is consistent with
the HERA experiment conventions. Since the invariant
energy of the γ⋆p system isW, we can obtain their energies
and longitudinal momenta as
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FIG. 3. The ratio R as a function of pt and yψ for different values of Q2 and z. The invariant mass of the virtual photon and the
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P⋆
0 ¼ W2 þQ2

2W
;

P⋆
l ¼ −

W2 þQ2

2W
;

q⋆0 ¼ W2 −Q2

2W
;

q⋆l ¼ W2 þQ2

2W
: ðA5Þ

If we define kμ as

kμ ¼ ðk⋆0 ; k⋆t ; k⋆l Þ; ðA6Þ

we can calculate 2k · P and 2k · q as

2k · P ¼ S ¼ W2 þQ2

W
ðk⋆0 þ k⋆l Þ;

2k · q ¼ −Q2 ¼ W2 −Q2

W
k⋆0 −

W2 þQ2

W
k⋆l : ðA7Þ

Then we can obtain k⋆0 and k⋆l as

k⋆0 ¼ S −Q2

2W
;

k⋆l ¼ 1

2W

�
Q2 þ W2 −Q2

W2 þQ2
S

�
: ðA8Þ

k⋆2t can be calculated via

k⋆2t ¼ k⋆20 − k⋆2l ¼ Q2
1 − y
y2

: ðA9Þ

p can be expressed in the γ⋆p center-of-mass frame as

pμ ¼ ðm⋆
t ðeY⋆ þ e−Y

⋆Þ; p⋆t ; m⋆
t ðeY⋆ − e−Y

⋆ÞÞ; ðA10Þ

where

m⋆
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⋆2
t þM2

q
: ðA11Þ

Then we can obtain 2k · p as

2k · p ¼ 1

yz
½p⋆2

t þM2 þ ð1 − yÞz2Q2

− 2z
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Qp⋆

t cosψ⋆�: ðA12Þ

With Eq. (A4), we obtain

p2
t ¼ p⋆2

t þ ð1 − yÞz2Q2 − 2z
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Qp⋆

t cosψ⋆: ðA13Þ
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