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Isospin splittings in baryons with two heavy quarks
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Isospin splittings in baryons with two heavy quarks and a u or d quark are calculated using simple
methods proposed previously by the authors. The results are M(E/") — M(EY,) = 1.41 £+ 0.12+976 MeV,
M(E),) — M(5,,) = —4.78 £ 0.067%9 MeV, and M(E},) — M(E).) = —1.69 £ 0.07°3° MeV, where
the statistical errors reflect uncertainties in input mass splittings, and the systematic errors are associated

with the choice of constituent-quark masses.
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I. INTRODUCTION

Baryons with more than one heavy quark have proved to
be elusive. The SELEX Collaboration has presented
evidence for several states [1-3], but other experiments
have not confirmed them [4-8]. Simple constituent-quark
models incorporating effective quark masses, hyperfine
interactions, and estimates of binding energies [9,10] have
proved remarkably successful in reproducing the masses of
known hadrons with accuracies of several MeV. In agree-
ment with most other estimates [11-35] including ones
using lattice gauge theory [36—44], this method [45] gives
masses of ccq (¢ = u, d) about 100 MeV above the SELEX
values, and close to the most recent lattice estimates [44].

The capability of the LHCb experiment to identify
hadrons containing heavy quarks makes it a prime instru-
ment for determining the masses of the lowest Z1," = ccu
and Zf, = ccd states. As a benchmark, Ref. [45] predicts
M(E,.) = 3627 + 12 MeV for their isospin average. Their
isospin splitting is then of interest, both as a theoretical
question and as a guide to further observation. In particular,
the SELEX Collaboration reports large splittings whose
values depend on which of several bumps are assigned to
the lowest E.. states [46]. In the present paper we apply
some simple methods, used with previous success (see also
[47]), to estimate isospin splittings in the ground-state =,
&5, and E,. baryons. We describe the methods in Sec. II,
present an alternative set of input parameters in Sec. III,
quote results in Sec. IV, and conclude in Sec. V.

II. METHODS

The impending improvement in the mass of the Z° baryon
by the NA48 experiment at CERN [48] and the KTeV
experiment at Fermilab led one of us [49] to consider
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improved tests of relations for baryon isomultiplet splittings.
A simple model was adopted which took into account the
intrinsic difference A = (1 — £)(m,, — m,) between u and d
quarks, Coulomb interactions AE;;., = aQ;Q;(1/r;;)
between quarks, strong hyperfine (HF) interactions
|lPij<0)|2<6i - 0;)

AEinFs = const X ———————, (1)
mimj

and electromagnetic HF interactions

2ﬂaQin|‘Pij(0)|2<0i - 0j)

3ml~mj

AEjjppe = — ) (2)

where symbols are defined in Ref. [49]. We use the observed
mass splittings among the octet baryons [50], labeled with
subscripts denoting their A/ values, summarized in Table I,
to define the relative strengths of each contribution. The
correction term 1 — % in the definition of A takes account of
quark mass effects on kinetic energy; small corrections to
singly and doubly strange baryons, discussed in [47], are
neglected.

Each of these splittings may be expressed as a function
of four unknowns: A (intrinsic u —d mass difference
including effect on kinetic energies), a (Coulomb inter-
action), b (strong HF interaction), and ¢ (electromagnetic
HF interaction), where we have simplified the notation of

TABLE I. Experimental mass splittings between octet baryons
[50].

Splitting Symbol Value (MeV)
M(p) — M(n) N, —1.2933
M(ZT) - M(Z) % —8.08 + 0.08
M(ZF) - 2M(Z°) + M(Z) >, 1.535 £ 0.090
M(E%) — M(E") E —6.85 +0.21
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Contributions to isospin splittings (MeV) using universal constituent-quark masses in mesons and baryons.

Ny % % E Eeel Epp.1 Epel
m, —my -2.68 -5.36 0.00 -2.68 -2.68 —-2.68 -2.68
Coulomb 0.94 —-0.94 2.83 —1.89 3.77 —1.89 0.94
StrHF 0.88 -0.24 0.00 -1.12 -0.33 —0.11 -0.22
EMHF -0.43 —1.54 —1.30 -1.11 0.64 -0.11 0.27
Total —1.293 —8.086 1.535 —6.793 1.409 —4.783 —1.687
+0.116 +0.058 +0.067
} . . _ _ _ a 1
Ref. [49] and neglected effects of two-body kinetic energy By = M(:ﬂﬁ) _ M(:'(}Z(,) —A+2 108 < + )
operators: 3 m. m,

a 1 1 c/ 4 1
N=Aa+24p[—-—)+5(2-—), 3
1=Ata <ma m5>+9<m5 m) ®)

Xy =N +&, (4)

S =a+—, ()
m

2a 4 4
-—+b - +
3 Mmgmg M, my

where 7 is the average of m,, and m,, and we have neglected
a term of second order in A in X,. We have written a
shorthand for X, since under the present assumptions it
satisfies the Coleman-Glashow relation X, = N| + & [51]
and is not independent. Given quark masses and an estimate
of strong hyperfine structure from the splitting between the
A resonance and the nucleon (fixing ), one can determine
the three free parameters A, a, and y = c¢/m?.

Similar methods lead to estimates for isospin splittings in
baryons with two heavy quarks. The results, after neglect-
ing terms of second order in A, and defining # = b/im?, are

EIZA

4a 4pA 8ym
2l =MEN-MEL) =A+— _ 7
cc,1 ( cc ) ( cc) + 3 + m, 3mc’ ( )
= - o 2a 4PN  4dym
Epp.1 EM(‘:‘gb)_M(:‘bb):A_?+m—b+%7 (8)

In order to specify A, a, and y we must choose a set of
constituent-quark masses. This was done in Ref. [52], in
two models, depending on whether or not a universal set of
masses was chosen for mesons and baryons. In this section
we consider quark masses which fit both baryons and
mesons simultaneously, with an added “string-junction”
contribution § = 161.5 MeV for baryons. Such an additive
constant does not affect mass differences, with which we
are concerned here. (The alternative set is considered in
the next section.) Thus we take m = 308.5 MeV,
m, =4822 MeV, p =504 MeV, m,=1655.6 MeV,
and m;, = 4988.6 MeV. A fit to octet baryon masses
then gives A = -2.681 MeV, a =2.830 MeV, y=
—1.295 MeV, and contributions summarized in Table II.
Here we have fixed N; at its measured value of
—1.2933 MeV, as its experimental error is negligible.
The uncertainties are those generated by varying each
octet-baryon splitting by lo and adding the errors in
quadrature.

Note that the Al =2 mass difference is fitted exactly.
The y? for this fit is 0.083, of which 0.010 comes from X,
and 0.073 comes from Z;. This is just the extent to which
the Coleman-Glashow relation is obeyed.

III. ALTERNATIVE PARAMETERS

In a model in which mesons and baryons are described
by separate constituent-quark masses [52], the parameters
are m = 363.7 MeV, m; = 536.3 MeV, f =49.3 MeV,
m, = 1710.5 MeV, and m; =5043.3 MeV. The fit

TABLE III. Contributions to isospin splittings (MeV) using separate constituent-quark masses in mesons and baryons.
Ny Z Zy g Beel Epp 1 Bpe.1

m, — my —2.48 —4.95 0.00 —2.48 —2.48 —2.48 —2.48

Coulomb 1.02 -1.02 3.05 -2.04 4.07 —2.04 1.02

StrHF 0.67 -0.24 0.00 -0.91 -0.29 —-0.10 -0.19

EMHF -0.51 —1.88 -1.52 -1.37 0.86 —-0.15 0.36

Total -1.293 —8.086 1.535 -6.793 2.167 —4.754 -1.293
+0.109 +0.058 +0.062
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TABLE IV. Comparison of predictions for isospin splittings
(MeV) in doubly heavy baryons.

Reference Zeel Epp.1 Epe
This work 1.41+0.12%07¢ —4.7840.067% —1.69+0.07 0
[23] 4.7
[46] 1.5£27 -63+17 -09+£18
[53]* 23+1.7 —53=£1.1 -1.5+09
[54] 2.16+0.11£0.17
[55] 4.7
[56] 1.11
[57] -9
"Ignores EM hyperfine interactions.
gives A =-2476 MeV, a=3.053 MeV, and y=

—1.518 MeV. The results are shown in Table III. The
uncertainties are those generated by varying each octet-
baryon splitting by 1o and adding the errors in quadrature.

The fit again reproduces the value of X, exactly, obtains
the same values for X, and Z;, and thus has the same
individual and overall y* values.

IV. RESULTS

A slight preference for the string-based constituent-quark
masses was expressed in Ref. [52]. Hence we quote predictions
for isospin splittings based on that model, with a systematic
error associated with the possible choice of independent
constituent-quark masses for mesons and baryons. The
results are  M(E,)-M(ES)=1.41£0.127070MeV,
M(E),) —M(E,,) =—4.78 £0.067%% MeV, and M (E/,)—
M(E),) = —-1.69 £ 0.071%3° MeV. The first error is the
greater of two very similar statistical errors in Tables II and II1.

Some approaches give values consistent with ours.
Reference [53] finds E..; =2.3+1.7MeV, E,,; =-5.3+
1.1MeV, and &, ; =—1.5+£0.9MeV. Reference [46] finds
1.5+2.7 MeV, —63+£1.7MeV, and —0.9 £ 1.8 MeV
for these quantities, while a lattice-QCD-based approach
[54] finds 2., = (2.16)(11)(17) MeV, slightly favoring
our set of independent quark masses for mesons and
baryons. These results, along with some others, are
compared in Table IV.
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V. DISCUSSION AND CONCLUSIONS

We have estimated isospin mass splittings in baryons
B Zpp, and B containing two heavy quarks. A major
source of systematic error, particularly in E.. =
M(E} ) — M(E(,), is uncertainty in the choice of con-
stituent-quark mass, giving Z..; = 1.41 MeV for our
favored model of universal quark masses in mesons and
baryons, while separate quark masses for mesons and
baryons yield E..; = 2.17 MeV.

One assumption we have made concerns the universality
of the expectation value (r;;) in evaluating the Coulomb
self-energy. It is possible that two heavy quarks are more
tightly bound to one another than a light quark and a heavy
one or two light quarks. To lowest order, this should not
affect isospin splittings. However, the difference between
binding of two light quarks from binding of a heavy quark
with a light one remains to be tested. A start on this
program was made in Sec. VI of Ref. [49]. A relation 2, =
M(E) = 2M(Zf) + M(Z?) = =, was found there to be
poorly obeyed, but now reads (1.92+0.82) MeV =
(1.535 £ 0.090) MeV, in satisfactory agreement with the
predicted equality.

It is worth recalling predicted lifetimes of baryons with
two heavy quarks, as the states with longer lifetimes are
likely to be easier to distinguish from background in a
hadron collider. Predictions by the authors are given in
Table XVI of Ref. [45], including z(Ef") = 185 fs and
7(E,) = 53 fs. Most other predictions quoted there are
about three times as large, while preserving the ratio
7(Ef)/7(EY.) = 3. The reason for the shorter lifetime
of Ef. = ccd is that the internal W exchange process
cd — su is permitted, while it cannot occur for EJ;" = ccu.
For a similar reason, one expects 7(Z;,) > 7(E),) whereas

(Epy) = 7(Ejpp)-

We hope that these estimates prove of use in the

discovery of such states.
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