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Within the QCD light-cone sum rule (LCSR) approach, we investigate the transition form factors of
D — a((980) up to the twist-3 light-cone distribution amplitudes (LCDAs) of the scalar meson a((980) in
the two-quark picture. Using these form factors, we calculate the differential decay widths and branching
ratios of the D — a,(980)e* v, semileptonic decays. We obtain B(D° —aj (980)e v, ) =(4.08"/3]) x 10~
and B(D* - a(980)e*v,) = (5.401]18) x 107*. The results are sensitive to the a,(980) inner structure.
These decays can be searched for at the BESIII experiment, and any experimental observations will be
useful to identify internal quark contents of the ay(980) meson, which will shed light on understanding

theoretical models.
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I. INTRODUCTION

The property of the light scalar meson ay(980) has
been controversial for over three decades, which is one
of the alluring issues in light hadron spectroscopy.
Currently, two scenarios are suggested [1,2]. In scenario
1, a¢(980) is treated as the lowest lying ¢g states, and
ay(1450) as the corresponding first excited state. In
scenario 2, ay(1450) is assumed to be the lowest lying
qq resonances and the corresponding first excited state
lies between (2.0-2.3) GeV, while a((980) is taken to
be the member of a four-quark nonet. Due to the absence
of convincing evidence both experimentally and theoreti-
cally [3-6], the nature of the isovector states
[ad (980), ad(980), ay (980)] is still in ambiguity.

The B decays involving ay(980) have been studied
extensively [1,2,6-8], but it is still difficult to draw a
conclusion as to whether a((980) is a two-quark or a four-
quark state. In order to understand the a,(980) structure,
more decays involving a,(980) in experiments, and more
investigations into theoretical methods, are needed. In this
paper, we study the a,(980) production in D — ay(980)
semileptonic decays. The main difficulty is to properly
evaluate the hadronic matrix elements for the D — a,(980)
transition. The form factors are generally governed by
nonperturbative QCD dynamics. There are several methods
to deal with the difficulty, such as the quark model [9],
the light-front approach [10-12], QCD sum rule (QCDSR)
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[13,14], light-cone QCD sum rule (LCSR) [15-17], and the
perturbative QCD factorization approach [18-20]. The
LCSR approach, which starts with the operator product
expansion (OPE) of a two-point correlation function near the
light cone x> =0 and with the help of the hadronic
dispersion relation and quark-hadron duality, is successfully
used to calculate heavy-to-light form factors in the region of
small momentum transfer squared, g = (pp — Py, (980))*-
In the LCSR approach, the sum rules for the form factors are
functions of the light-cone distribution amplitudes (LCDAs)
of the scalar meson, which can be expanded into a series of
Gegenbauer polynomials. At present, both the twist-2 and
twist-3 LCDAs of the scalar mesons have been investigated
[1,21,22] based on the QCD sum rules. Here we would like
to adopt LCSR approach to study the semileptonic decays
D° - a5 (980)e*v, and DT — a)(980)e*v,, which can
give a hint on the inner structure of a,(980). We will
calculate the branching ratio of these decays under the
assumption that a,(980) is the lowest lying ¢g states.

From experimental side, the CLEO-c experiment at the
Cornell Electron Storage Ring (CESR) eTe™ collider
collected a sample of 5.31 x 10° DD pairs [23,24], and
the BESIII experiment at BEPCII has also accumulated a
sample of 19.4 x 10° DD pairs near the DD threshold
[25-27]. These data samples provide an ideal place to study
the D — a((980) semileptonic decays and investigate the
nature of the isovector states aq(980).

The paper is organized as follows. In Sec. II, we briefly
introduce the flavor wave functions of a(980) and the
Gegenbauer moments of twist-2 and twist-3 distribution
amplitudes in the QCD sum rules. In Sec. III, we present
the effective Hamiltonian responsible for ¢ — d transition
in the Standard Model and the parametrizations of hadronic
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matrix elements, then the sum rules for the form factors on
the light-cone are presented with the standard correlation
function to the leading Fork state. In Sec. IV, the numerical
computations of form factors are performed with the input
parameters. Subsequently, we analyze the differential decay
rates and the branching ratios of D — a;(980)e*v, and
Dt — af(980)e*v, by applying the form factors. The last
section is reserved for the conclusion. The explicit expres-
sions of the Gegenbauer moments of twist-3 distribution
amplitudes are collected in the Appendix.

II. PHYSICAL PROPERTIES OF q,(980)

The scalar a,(980) is an isovector state, and its structure
is still not well established. There are two possible
scenarios for the quark content of a((980), which have
been stated in Sec. 1. In the four-quark scenario, the flavor
wave functions of a((980) read [1,28]

|ad(980)) = \/. |(uit — dd)ss), lay (980)) = |dass),
ludss).

|ag (980)) = (2.1)

In the ¢g picture, a,(980) is viewed as P-wave state and its
flavor wave functions are given by

1 ,
ﬁ(luw — |dd)),

lag (980)) = |ud).

|a5(980)) = |ag (980)) = |dit).
(2.2)

Up to the leading Fock states, the light-cone distributions
of ay(980) made up of ¢,g, can be defined as

(a(980)(p)q2(x)7,q1(¥)[0)
(a9(980)(p)|g2(x)q1(y)[0)
= Mgy (980) Al duei(up»xwpy)q)g(u,ﬂ)’
(a9(980)(p)|d2(x)0,,41(¥)|0)
=~y 980)(Pu2u — PuZy) /01 due PP DY (u, p),
(2.3)

where g,g, denotes the quark content for af(980),
ag (980), and aj(980), which should be dd, ud, and dii
respectively. Note that the factor % involved in the flavor
wave function of a{(980) in Eq. (2.2) have not been taken
into account here. It should be included in the calculation
of the final decay rates for D — a,(980) semileptonic
decays. m, (950) is the mass of a((980), z = x—y is the
displacement between the quark and antiquark, and u is the
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momentum fraction carried by the quark ¢, in a((980) with
i=1—u Dg(u,p)and (P (u, ), (u, 1)) are the twist-
2 and twist-3 distribution functions, which can be expanded
into a series of Gengenbauer polynomials in the Hilbert
space [29,30]

(i) = Fl)oun Bulu) + > B C 2= 1)

m=1
{1 —l—Zam C*(2u - 1)},

Cy*(2u - 1)},

D (u, p) =

() = Fs)oun |1+ b0
m=1

(2.4)

where fg is the scalar decay constant, which is deter-
mined by

(a9(980)(p)|3241|0) = Mgy (0805 (2.5)

> 2(2u— 1) are Gengenbauer polynomials. B,,, a,,
and b,, are the Gengenbauer moments for twist-2 and
twist-3 LCDAs respectively. With the orthogonality of
Gengenbauer polynomials

1 1
/duC,l/z(Zu—l)Cl/z(Zu D=5 70m:
0
! (n+2)(n+1)
duu(1-u)Cy* Qu-1)C* Qu—-1)=— 25
| un1-w € @u-1) G u-n =

the first four Gengenbauer moments read

) =3(8).  al) =2 (&) 1),
as(u) = 5 (5(8) = 3(&).
asli) = g (5() = 30(8) +3), 2:6)
hi(w) = §<50> balu) = 15 (5(E) = 1)
ba(k) = > (7(8) ~ 3(E1).
ba(u) = ;i<21<§4>—14<52> ) 2.7
= &) B =2,
Bau) = 5 (518) ~ (&),
By(u) = (106 = 3(&}).
Bi) = 11(21<§¢> WE) + &), 28

24
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where (&) = (my(u) — my(u))/may0s0) is the zeroth
moment of twist-2 LCDAs with m; and m, being the
masses of quarks ¢; and ¢,, respectively. Moreover,
various moments (£7), (&¢) and (£7) for both twist-2 and
twist-3 LCDAs have been computed in Refs. [1,21,22]
based on QCD sum rules approach. The explicit expres-
sions of (") and (&) are collected in the Appendix.

III. THE LIGHT-CONE SUM RULE FOR
D — a,(980) TRANSITION FACTORS

In the standard model (SM), the effective Hamiltonian
for the ¢ — de*v, transition is

Hegi(c = detv,)

_Gr

V2

where V., is the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element. In order to calculate the decay
amplitude for the semi-leptonic decay of D — a((980)
at hadronic level, the hadronic matrix element
(ag(980)(p)|dy,rsc|D(p + q)) need to be evaluated.

|

Vigdy, (1 =ys)ebr*(1 —ys)et + He.,  (3.1)

(me +mg,)
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Because of parity conservation in strong interaction,
the vector current does not contribute. The above matrix
element can be parametrized in terms of the form factors

f+(q?) and f_(q*) as

(ao(980)(p)|dy,rsc|D(p + q))

= —ilf (@)p, + F-(a7)a,), (3.2)

The light-cone sum rules for the form factors £, (g?) and
f-(g?) can be obtained by introducing a proper chiral
correlator. More explicitly, we adopt the following correlator

M(p.q) = — / x4y (980) (p)

X |T{q,(x)y,rsc(x),€(0)iysq,(0)}|0). (3.3)
With the standard procedure to deal with the correlators
which had been used in that of the B — scalar transition form
factors [8,31-35], we can arrive at the sum rules for the
D — a((980) transition form factor. The light-cone sum
rules for the form factors f, (¢*) read

f+(q2) =

—exp
u

szf D 0

1
X [—mcd)s(u) + Mg, 980) (ud>§(u) + —<D‘§(u)> +—

3

Mg (980)

<m%>{ I du {_ g+ ulmg, g = g’
U,

uM? ]

L mgy980)

uM? 6 qu(”)(m% - uzmio(ggo) + q2)

g (-

(m +my,)

szfD

f-(g*) =

s 1
X || Mgy (980) q’g(”)"‘@

and

2_ 2,2 2
S0 ) me = Upghty og) + 4 }
2., 2.2 ,

M+ UMy, og0) — 4

m?, du
exXp W Iexp -
i

CEM?6

5 (3.4)

m2 + uﬁm30<9go> —aq?
uM?

1 mgy980)

(Dg(u) (m% + u2m§0(980) - q2)

2

(3.6)

2 ’

M (980)

where cg, denotes the quark content for D° and D™, which are cit and cd, respectively. s, is the threshold parameter
corresponding to D channel. From the sum rules in Egs. (3.4) and (3.5), we can see that the form factor f, (¢?) receives
contributions from both twist-2 and twist-3 distribution amplitudes of a,(980), while only twist-3 LCDA contribute to the
form factor f_(g?). Considering Eqs. (3.1) and (3.2), we can obtain the differential decay rate for the D° — a;(980)e*v,,

which is expressed as
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dr - G%lvcdlz (q2 - mg
ag P 7 GO = Sy
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)2
\/ (mp + mio(%o) -q*) - 4’"%”120(980)

X {<f+( ))2[< +mao(980) _mD) (q +2mg) q m? (98())(46] +2m6)]

+6f()f-(a*) 7’

where m, is the mass of electron and the effective region of ¢*
is m; <q*<(mp—mygog0))*. As for the differential decay
rates for the D" —a)(980)e*v,, a factor 1/2 should be
included because of the quark content of a3 (980) in Eq. (2.2).
|

Gr = 1.1663787 x 107> GeV~2,

— (1.275 + 0.025) GeV,

my = (5.0 £ 0.8) MeV,
mp+ = (1.86961 + 0.00009) GeV,
Mayos0) = (0.980 =+ 0.020) GeV,
= (410.1 £ 1.5) x 10715 s
and
(a,G?) = (7.5 +2) x 1072 GeV*,

(iiu) = (dd) = —(0.254 + 0.015)3 GeV3,
(g,86TGu) = (g,d6TGd) = mi{au),

The condensate parameters are given at the scale
1 =2 GeV, which can be run to any required scales with
the evolution equations.

A. Decay constants for the scalar mesons a,(980)

Taking the mass of a,(980) as input and setting n = 0 in
the sum rules [Eqs. (A1) and (A2)] for the moment of ¢
and ¢¢, such as (£9), we can calculate the decay constant of
a((980). The threshold parameters S, and S, are taken to be
(5.0 £ 0.3) GeV? for ay(980) in the scenario that the scalar
mesons are made of two quarks. The Borel window of
a0 (980) is determined by the following criteria according
to the Shifman-Vainshtein-Zakharov (SVZ) sum rule,
where the contributions from the dimension-six condensate
(SIX) are less than 10% in the total sum rules and the
contribution of continuum state (CON) does not exceed
20% of the total dispersive integration. Following these
criteria, we can obtain the decay constants of a,(980) and
the corresponding Borel windows at the energy scale
1 GeV
fs = (0.26-0.33) GeV, M? =

(0.65-1.10) GeV2,  (4.3)

m%) - mio(ggo) - q2> ( ( )) e}v

(3.7)

IV. NUMERICAL CALCULATION
AND DISCUSSION

For the numerical analysis, the following input param-
eters are collected [36-38]

V.al = 0.219 £ 0.006,
= (2.540.8) MeV,

mp = (1.86484 £ 0.00005) GeV,

fp = (0.2037 +0.0049) GeV,

m, = 0.5109989461 x 1073 GeV,

tpe = (1040 £7) x 10715 g (4.1)
(2fG°) = (82£1) x (a,G?),
@ lau)? = @(dd)? = 2.693 x 1073 GeV®
= (0.80 +0.02) GeV?, (4.2)

The variation of the decay constant fg versus the Borel
parameter M? are presented in Fig. 1, where one can see
that the decay constant of ay(980) is in a good stability
against the variation of M? within the Borel window.

B. Moments for the scalar mesons a((980)

Taking the mass and decay constant for a,(980) as input,
we can further calculate the moment of the twist-2
distribution amplitude ®¢ and the twist-3 distribution
amplitudes ®§ and ®¢. In the two-quark picture, the
twist-2 distribution amplitude Dg(u,p) for ay(980) are
antisymmetric under the interchange u <> 1 —u in the
flavor SU(3) limit, so By(u), By(u) and B,(u) vanish in
that limit. In the following, we will only take into account
B;(u) and B;( ), which are given in terms of the moments
(& ¢> and (&) in Eq. (2.8). We use the numerical results for

and 5 iven in Ref [1], which is based on the
QCDSR method at u = 1 GeV. The values of (£;) and
<§35> together with the corresponding Borel windows, are

(£}) =-056+005, M>=(1.10-1.60) GeV>,  (4.4)
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0.9 b D’-ay(980)¢*v,
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D
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01f
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M?*(GeV?)

FIG. 1.

(&) =-021+0.03, M?=(1.40-1.90)GeV?,  (4.5)

As for the twist-3 distribution amplitude, we calculated the
moments of a,(980) from the sum rules given in Egs. (A1),
(A2), (A3), and (A4). Here, we note that the odd moments
for a((980) vanish when the conservation of charge parity
and isospin symmetry is considered, so we take only into

account the first two even moments <§%(4)> and <§(2;(4)> and
neglect the odd moments of a,(980). In order to find the
stable Borel window for the sum rules for the moments, we
require that the contributions of dimension-six condensate
(SIX) are less than 5% in the total sum rules and the

1.0
. D*-ay(980)¢*v,
0.8} L —SsIX — CON
0.6
&
N
04t
02}
0.0 L. : : :
0.0 0.5 1.0 1.5 20 25 3.0
M?*(GeV?)
0.6
D*-a(980)e*v,
— SIX — Co
04
@
02
0.0 L .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

M*(GeV?)
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7
0.9 D*—a((980)%*v, /
\ —— SIX CON /
Y
A

/

S 06
D
)
1 el
= 03}
0.1} f
| 1
0.1 0.5 0.9 13 17
M*(GeV?)

Decay constants of a(980) versus M?. The green line denote the fraction of the dimension-six condensate contribution (SIX),
and the red line the fraction of the continuum contribution (CON).

continuum contribution (CON) does not exceed 20% of
the total dispersive integration. The moments for ay(980),
the ratio of contribution from the dimension-six condensate
and the ratio of the continuum contribution versus M? are
shown in Fig. 2 and Fig. 3. From these figures, we can see
that the moments within the Borel windows are stable and

the values of (§f<4)> and (5,2,(4)> within their stable Borel
window at the energy scale 1 GeV are

(& ) =0252003, M?=(0.77-157) GeV2,  (4.6)
(&) =014, M2 =(156-1.62) GeV2,  (4.7)
0.6 —

D*-ay(980)%*v,
i1 —SIX —CON
04f  \|

@

02}
0.0 : f . i
00 05 1.0 15 20 25 3.0
M*(GeV?)
0.6
D*-ay(980)%*v,
—SIX  — CON
04f

5 |
02f
0.0 : " . . i
00 05 1.0 15 20 25 3.0

M*(GeV?)

FIG. 2. The moments (53(4)> and <§§(4)> for a3(980) versus M?. The green line denotes the fraction of the contribution of dimension-
six condensate (SIX), and the red line the fraction of the continuum contribution (CON).
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1.0
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o
N
04}
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0.6
D">ay(980)"¢*v,
SIX — CON
0.4}
o
N
0.2
0.0 - - : - :
0.0 0.5 1.0 1.5 2.0 2.5 3.0
M*(GeV?)
0.6
D">ay(980) ¢,
SIX — CON
04}
@
0.2F
0.0 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

M*(GeV?)

FIG. 3. The moments (ffw) and (53,(4)) for ag (980) versus M?. The green line denotes the fraction of the contribution of dimension-
six condensate (SIX), and the red line the fraction of the continuum contribution (CON).

(& ) =048,  M?=(156-1.57) GeV?, (4.8
(& ) =031£001, M>=(1.28-1.62)GeV2,  (4.9)
0
and
(£.,:)=026£0.04, M?=(0.77-1.57) GeV?, (4.10)
(6,-) =014, M>=(157-1.62) GeV?, (4.11)
(&,-)=049+001, M>=(1.56-1.57) GeV?, (4.12)
0
(61-)=031£001, M>=(1.29-1.62) GeV?, (4.13)
“o
2.2
D">ay(980)"¢*v,
1.8
14}
S
G 10}
0.6
0.2 /
0.0 L L .
1 3 5 7 9
MY (GeV?)

where gi(jg and cff(;o) denote the moments for ag(980),
a) 5.a

while 5(2,(2% and éffgg the moments for ag(980).

C. The form factors of the D — a,(980) transition

With the sum rules for the form factors f,(g?) in
Eq. (3.4) and Eq. (3.5), we can proceed the numerical
calculation for the form factors. The threshold parameter s,
which corresponds to the mass of the lowest pseudoscalar
D meson, can be estimated in several effective scenarios
[17,39-43]. We adopt sy = (5.37 +0.13) GeV? corre-
sponding to the D channel. In order to determine the range
of Borel parameter M?, we consider the LCSR for form

22
D*-ay(980)%*v,
1.8}

14 f

S+(0)

1.0

0.6

0.2 '/

0.0
1 3 5 7 9
M?*(GeV?)

FIG. 4. The LCSR for form factor £, (0) versus M. The red line denotes the value of £ (0), and the black line the ratio of the higher

excited resonances and continuum states contribution.
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TABLE 1. Numerical results for the parameters f;, a;
and b; involved in the double-pole fit of form factors for
D — a5 (980)e ..
1i(0) ai b;
fi 1751026 0.54 0.91% 7%
f- 0.31+0.13 1147310 1701399
TABLE II. Numerical results for the parameters f;, a;, and b;
involved in the double-pole fit of form factors for
D* > a$(980)e*v,.
1i(0) ai b;
fa 1.76 £ 0.26 0.55 £ 0.01 0.947 30
f- 0.31+0.13 1.23123% —1.55+630

factors f, (0), and require that the contributions of the
higher excited resonances and continuum states do not
exceed 20% and the value of f,(0) mildly varies with
respect to the Borel parameter. In view of these consid-
erations, the range of the Borel parameter M? is determined
as 2.51 GeV? < M? < 4.18 GeV? for the decay channel
D° - a5(980)etv,, and 2.55 GeV? < M? < 4.21 GeV?
for the decay channel D* — a{(980)e*v,. The Borel
parameter dependence of the LCSR for form factor
f+(0) is shown in Fig. 4.

Next, we investigate the ¢g> dependence of the form
factors f,(q?) and f_(g*) based on the sum rules in
Egs. (3.4) and (3.5). We adopt the double-pole form to

parametrize the form factors f;(g*)(i = +, —)
fi(0)
fild®) = . (419)
l 1 —a,q*/mj, + big*/mj,
in the kinematical region m? < ¢* < (mp — mgog0))*.

Here, a; and b; are the nonperturbative parameters, which
can be fixed by the values of form factors at the small and
intermediate ¢”> in the LCSR approach. The numerical

2.0 D">ay(980) ¢,
15}
1.0

05}

dr/dq®[10-Gev1]

0.0 + + +
0.0 0.2 0.4 0.6 0.8

7*(GeV?)

FIG. 5.
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results for the parameters f;, a;, and b; are shown in Table |
and Table II, where the theoretical uncertainties are caused
by varying the Borel parameter M, the threshold value
parameter sg, the ¢ quark mass, the decay constants and
masses of the involved mesons and the Gegenbauer
moments for the twist-2 and twist-3 LCDAs of a((980).

D. The decay rates for the D — a,(980)
semileptonic decays

Using Eq. (3.7) and the transition form factors obtained
in the LCSR, we are in a position to calculate the differ-
ential decay rates and the branching ratios for the D —
ay(980) semileptonic decays. In Eq. (3.7), the terms
involving f,(q*)f_(¢*) and (f_(q?))* are suppressed
by the small mass of electrons, so the differential decay
rates and the branching ratios are dominated by the term of
(f1(¢*))*. We present the distributions of the differential
decay rates for D° — ag (980)€+1/e and Dt — a3(980)e*v,
in the kinematic region m?2 < ¢* < (mp, — mao(ggo))z in
Fig. 5. Furthermore, we can obtain the branching ratios
of D° - a;(980)e*r, and Dt — a)(980)etv, by per-
forming the integration of the differential decay rates over
the momentum transfer squared g*. The results are

B(D° - ag5(980)e*v,) = (4.08713]) x 1074, (4.15)

B(D* — a3(980)etr,) = (54071 18) x 107*.  (4.16)
As for ay(980), the dominant decay modes are 77 and KK.
By applying the averaged value in the Particle Data Group
(PDG) I'(ay(980)— KK) /T (ag(980) —nz)=0.183+0.024
[38], one can obtain [1,6]

B(a(980) — nx) = 0.845 +0.017, (4.17)
so the branching ratios B(D — a((980)e*v,;aq(980)—nx)
will have values above 10~#, which can be observed using
the current data samples, such as the sample of DD pairs at
CLEO-c and the sample of DD pairs at BESIIL If these
decay channels have no signal to be observed or the

D*-ay(980)%*v,
1.0 |

0.8 F
0.6

04

dr/dg*[10-5GevV]

0.2

0.0

0 0.2 04 0.6 0.8
7*(GeV?)

The differential decay width for D° — a;(980)e*v, and D™ — a)(980)e v
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measurements of the branching ratios disagree with the
above predictions, the two-quark picture for ay(980) will
be disfavored.

V. CONCLUSION

In this work, we study the semileptonic decays of
D° > a5(980)e"v, and DT — a(980)eTy, in the
LCSR approach, where the scalar a,(980) is assumed as
qq state. We calculate the form factors responsible for these
decays up to twist-3 distribution amplitudes for the scalar
meson. The differential decay rates and branching ratios of
D° - a5 (980)e*v, and DT — a)(980)e* v, are obtained.
We find that these decay channels can be hopefully
observed in experiment, which might be beneficial to
identify the inner structures of a,(980).

2 _mio(%o) /M <§(2’n>

mﬁ0<9go>f s€
3
7
2m1m2

Lo (2x—=1)>
—(a.G? | 4 -
(,G%) A T an { M2x

-1 dn+ 1)md  mim?
+{<QIQI> 6 |:3m1 ( Mz) 1+ 1‘1442

+9§<511611>2 [—4"+5 2m3

81 M? +M

)le
__ "
e M2x(1-x) +
(1- x)}

] /M 4 {g,3,6TGq,) {

4}6_"1%/1”2 + g1 < g2.my < mz]}-

PHYSICAL REVIEW D 96, 033002 (2017)
ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China under Contracts No. 11647067,
No. 11335009, No. 11125525, No. 11675137, the Joint
Large-Scale Scientific Facility Funds of the NSFC and
CAS under Contract No. U1532257, CAS under
Contract No. QYZDJ-SSW-SLHO003, and the National
Key Basic Research Program of China under Contract
No. 2015CB856700.

APPENDIX: THE SUM RULES FOR THE
MOMENTS OF ®; AND @

The sum rule for the even moments of ¢¢ up to
dimension-six condensates can be expressed as [22]:

= / dx(2x — 1) M*x(x — l)e_Mznj‘Z*x) —i/l dx(2x = 1)< x(x = 1)( 1 +& +m_%2 M*e=S:/M*
_471' A2 0 M? M2
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B S P TR
2M4x(1 — x)
(16n 4 1)m; +6my  m;m3 Yy
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1
3 G3 mlmZ/ d
(/G 2, > |

(A1)

The sum rule for the scalar density even moments of ¢ up to dimension-six condensates is
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Here, the zeroth moments are normalized to one, so we can obtain (£2) = (£2) = 1. The sum rule for the odd moments of Py
up to dimension-six condensates is given by
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The sum rule for the odd moments of ¢$ up to dimension-six condensates is given by
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where M is the Borel parameter, m?, = m3x + m3(1 — x), and S, and S, are the threshold parameters that are taken to be
around the squared mass of the scalar’s first excited state.
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