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We construct a model where the smallness of the masses of first quark generations implies the near block
diagonal nature of the Cabibbo-Kobayashi-Maskawa matrix and vice versa. For this setup, we rely on a two
Higgs-doublet model structure with an S3 symmetry. We show that an SM-like Higgs emerges naturally
from such a construction. Moreover, the ratio of two VEVs, tan β, can be precisely determined from the
requirement of the near masslessness of the up- and down-quarks. The flavor changing neutral current
structure that arises from our model is also very predictive.
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The standardmodel (SM)does not provide any connection
between quark masses and mixings: they are independent
parameters to be fixed by the experimental observations.
There have been many attempts where, by imposing inter-
generational symmetries, relations between the masses and
mixings have been obtained (see [1,2] for review).
In this article, we present an attempt to relate two features

of quarkmasses andmixings. The first of these two is the fact
that the first generation quarks are very light compared to
the other ones whereas the second concerns the near
block-diagonal structure of the quark mixing matrix, or
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This sec-
ond feature comes out very clearly in the Wolfenstein
parametrization [3] of the CKMmatrix, where each element
is written in a power series of a small parameter λ. If we keep
only terms up to the linear order in λ, the CKM matrix is
indeed block-diagonal. We propose a connection between
these two features by invoking an S3 symmetry.
Many works on flavor model building using S3 symmetry

have been done in the past [4–26]. In these constructions one
usually employs, for the scalar sector, a three Higgs doublet
structure which goes well with the aesthetic idea of having
three replicas of Higgs doublets in conformity with three
generations of fermions [27–41]. Even more complicated
scalar structures are not uncommon [42–48]. In this paper, we
rely on a two Higgs-doublet model (2HDM) scalar structure
[49,50] which is much more economical in terms of inde-
pendent parameters. Although the idea of a 2HDM with S3
symmetry has been conceived lately [24], some distinct
implications have not been emphasised earlier. For example,
wewill show that an S3 symmetric 2HDMpotential naturally
delivers an SM-like Higgs boson which can be identified
with the scalar resonance observed at the LHC with signal
strengths in close agreement with the SM predictions [51].

We will also demonstrate how, in our scenario, the require-
ment of near-masslessness for the first generation of quarks
dictates a particular value of tan β, which will simultaneously
render the CKM matrix block-diagonal. For intuitive under-
standing of the model Lagrangian and the conclusions that
follow from it, a brief overviewof theS3 symmetry is in order.
The discrete symmetry group S3 has three irreducible

representations: 1, 10 and 2. We pick a basis such that the
generators in the 2 representation are given by

a ¼
"
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Note that a is of order 3, whereas b is of order 2. The rest of
the elements can be obtained by taking products of powers of
these two elements. In this basis the quark fields transform
under S3 in the following way:

2∶
�
Q1

Q2

�
;

�
u1R
u2R

�
;

�
d1R
d2R

�
; ð2aÞ

1∶ Q3; u3R; d3R; ð2bÞ

where theQA’s (A ¼ 1, 2, 3) are the usual left-handed SU(2)
quark doublets, whereas the uAR’s and dAR’s are the right-
handed up-type and down-type quark fields respectively,
which are singlets of the SU(2) part of the gauge symmetry.
Note that the square brackets, in Eqs. (1) and (2) as well as in
the subsequent text, denote the doublet representation of S3,
and has nothing to do with the representation of the enclosed
fields under SU(2). Similarly, in the Higgs sector, there are
two SU(2) doublets ϕiði ¼ 1; 2Þ, and their transformation
under the S3 symmetry is as follows:

2∶
�
ϕ1

ϕ2

�
≡Φ: ð3Þ
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We write the potential of the theory as follows:

VðΦÞ ¼ μ21ðϕ†
1ϕ1Þ þ μ22ðϕ†

2ϕ2Þ − ðμ212ϕ†
1ϕ2 þ H:c:Þ

þ λ1ðϕ†
1ϕ1 þ ϕ†

2ϕ2Þ2 þ λ2ðϕ†
1ϕ2 − ϕ†

2ϕ1Þ2
þ λ3fðϕ†

1ϕ2 þ ϕ†
2ϕ1Þ2 þ ðϕ†

1ϕ1 − ϕ†
2ϕ2Þ2g: ð4Þ

Note that the most general form of the quadratic part,
written in the first line of Eq. (4), is not S3-symmetric
unless the coefficients satisfy some special conditions.
If these conditions are not met, the quadratic terms can
softly break the S3 symmetry, and we allow for such terms.
We will consider various scenarios with the quadratic terms
in a short while. The quartic part is, however, the most
general S3-symmetric.
The parameters in the quartic part of the potential must

be real because of hermiticity of the Lagrangian. In the
quadratic part, the parameters μ21 and μ22 are also real. The
parameter μ212 can be complex, but its phase can be
absorbed by redefining either ϕ1 or ϕ2. Thus, all parameters
in VðΦÞ can be taken to be real without any loss of
generality. It has been argued [32] that in this case the
vacuum expectation values (VEVs) can also be taken to be
real. Denoting the VEV of ϕi by vi we write the doublets
after symmetry breaking in the form

ϕi ¼
�

ϕþ
i

1p
2
ðvi þ hi þ iζiÞ

�
; ð5Þ

and use the standard notation

v1 ¼ v cos β; v2 ¼ v sin β; ð6Þ
where the W- and Z-boson masses are proportional to
v ≈ 246 GeV. Assuming both v1 and v2 to be nonzero,
minimization of the potential VðΦÞ gives

μ21 ¼ μ212 tan β − ðλ1 þ λ3Þv2; ð7aÞ

μ22 ¼ μ212 cot β − ðλ1 þ λ3Þv2: ð7bÞ

Let us discuss the physical scalar spectrum of the model.
In the charged boson sector, one combination of ϕ�

1 and
ϕ�
2 , to be denoted by w�, is an unphysical field that does

not appear in the physical spectrum. The orthogonal
combination, H�, is a physical charged scalar. The combi-
nations are given by�

w�

H�

�
¼
�

cos β sin β

− sin β cos β

��
ϕ�
1

ϕ�
2

�
: ð8Þ

The mass of the physical charged scalar is

M2
H� ¼ 2μ212

sin 2β
− 2λ3v2: ð9Þ

In the pseudoscalar sector, one combination z becomes
unphysical after symmetry breaking, and there is one
physical pseudoscalar field A. They are related to the fields

ζ1 and ζ2 by exactly the same matrix that appears in Eq. (8).
The mass of A is given by

M2
A ¼ 2μ212

sin 2β
− 2ðλ2 þ λ3Þv2: ð10Þ

The mass matrix for the scalar part can be written as

VS
mass ¼ ð h1 h2 Þ

1

2
M2

S

�
h1
h2

�
ð11Þ

with

M2
S ¼ μ212

 v2
v1

−1

−1 v1
v2

!
þ 2ðλ1 þ λ3Þ

�
v21 v1v2
v1v2 v22

�
:

ð12Þ
The diagonalization of M2

S will lead to two neutral physical
scalars h andH, related to h1 and h2 by the same orthogonal
matrix that appears in Eq. (8), andwhosemasses are given by

m2
H ¼ 2μ212

sin 2β
; m2

h ¼ 2ðλ1 þ λ3Þv2: ð13Þ

At this point, one should note that in the case of 2HDMs, the
combinationH0 ¼ ðv1h1 þ v2h2Þ=v has SM-like couplings
at the tree level. But, in general, H0 is not a physical
eigenstate. The limit where H0 is aligned with one of the
physical CP-even scalars, is known as the “alignment limit”
for 2HDMs.This is indeed the case in the presentmodel, viz.,
that the eigenstate h is the same as H0. Thus the alignment
limit emerges naturally [52] in our scenario. Hence, by
identifying h with the 125 GeV scalar observed at the LHC,
our model becomes consistent, by design, with the LHC
Higgs data [51].
Looking at the spectrum, we can identify the following

different scenarios.
(1) If μ21 ¼ μ22 and μ212 ¼ 0, the potential is completely

S3-symmetric, and is in fact invariant under a much
bigger symmetry: an SO(2) symmetry under which

ϕ1 → ϕ1 cos α − ϕ2 sin α;

ϕ2 → ϕ1 sin αþ ϕ2 cos α: ð14Þ
Thus, after gauge symmetry breaking when the ϕi’s
develop vacuum expectation values (VEVs), we will
have a massless scalar, a Goldstone boson as seen
clearly from Eq. (13). This is not the scenario that we
advocate.

(2) If μ21 ≠ μ22 and μ212 ¼ 0, the potential is not S3
symmetric, but Eq. (13) shows that we will still
have a massless boson. Thus, this is not our desired
scenario either.

(3) If μ21 ¼ μ22 and μ212 ≠ 0, there exists no massless
scalar, but Eq. (13) shows that we will now have
tan β ¼ 1 or v1 ¼ v2 because the potential has an
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exchange symmetry ϕ1 ↔ ϕ2. As we discuss later,
this scenario will be detrimental to our aim.

(4) If μ21 ≠ μ22 and μ212 ≠ 0, there is no massless scalar
and also tan β can be arbitrary. This is the scenario
that will be useful for us, implying that the soft-
breaking terms are absolutely necessary.

We now present the most general Yukawa couplings
involving the uR quarks that is consistent with the gauge
and S3 symmetries. The S3 symmetry cuts down on the
number of Yukawa couplings drastically, andwe obtain only
the following couplings involving right-chiral u-type quarks:

LðuÞ
Y ¼ −AuðQ̄1

~ϕ1 þ Q̄2
~ϕ2Þu3R − BufðQ̄1

~ϕ2 þ Q̄2
~ϕ1Þu1R

þ ðQ̄1
~ϕ1 − Q̄2

~ϕ2Þu2Rg − CuQ̄3ð ~ϕ1u1R þ ~ϕ2u2RÞ
þ H:c: ð15Þ

We have used the standard abbreviation ~ϕi ¼ iσ2ϕ�
i .

The Yukawa couplings of the dR quarks can be obtained by
replacing uAR by dAR, fA;B; Cgu by fA;B;Cgd, and ~ϕi by
ϕi in Eq. (15). Although the Yukawa couplings, in general,
may be complex, we will discuss later that all but one phase
can be absorbed in the field redefinitions.
After symmetry breaking, the mass matrices that arise in

the quark sector have the following form:

Mq ¼
vp
2

0
B@

Bq sin β Bq cos β Aq cos β

Bq cos β −Bq sin β Aq sin β

Cq cos β Cq sin β 0

1
CA; ð16Þ

where the subscripted index q can take the value u for the
up-type quarks, and d for the down-type quarks. It is
well-known that these matrices can be diagonalized
through bi-unitary transformations, e.g., one can find
two unitary matrices Uu and Vu, for the up-sector, such
that UuMuV

†
u is diagonal. The CKM matrix is then given

by UuU
†
d.

The matrices Uu and Ud are the unitary matrices which
diagonalize, through similarity transformations, the hermi-
tian matrices MuM

†
u and MdM

†
d respectively. From

Eq. (16), we obtain

MqM
†
q

¼ 1

2
v2

0
B@

a2q cos2 β þ b2q 1
2
a2q sin 2β BqC�

q sin 2β
1
2
a2q sin 2β a2q sin2 β þ b2q BqC�

q cos 2β

B�
qCq sin 2β B�

qCq cos 2β c2q

1
CA;

ð17Þ
where aq ¼ jAqj etc. Clearly, the three eigenvalues of

MuM
†
u would be the mass squared of the three up sector

quarks, namelym2
u; m2

c andm2
t , and the three eigenvalues of

MdM
†
d would be m2

d, m
2
s and m2

b. Introducing the short-
hand notation

x ¼ 2m2

v2
ð18Þ

for any fermion with mass m, we can find the eigenvalues
by solving the characteristic equation,

x3 − ða2 þ 2b2 þ c2Þx2 þ ða2 þ b2Þðb2 þ c2Þx
− a2b2c2 sin2 3β ¼ 0; ð19Þ

with subscripts u or d attached to the Yukawa couplings, as
the case may be. Note that this equation is free from the
phase of BC�, which is the only phase that is present in
Eq. (17).
Looking at the Lagrangian of Eq. (15) and the corre-

sponding Lagrangian involving diR, we see why only one
phase is present in Eq. (17). Any phase of Au and Ad can be
absorbed by redefining the fields u3R and d3R. After this,
both Bu and Bd can be made real by redefining the fields
u1R; u2R and d1R; d2R. Finally, either Cu or Cd can be made
real by choosing the phase of Q3, but one of them remains
complex. Alternatively, one can make both Cu or Cd real
first, by redefining the right-chiral quark fields, and then
either Bu or Bd can be made real by choosing the phases of
Q1 and Q2. Either way, one of the Cq’s or one of the Bq’s
can be complex in the most general case. In what follows,
we will assume that all Yukawa couplings are real, and use
the lower-case symbols for them.
Before entering into a discussion of the eigenvalues

obtained as solutions of Eq. (19), let us have some idea of
the form of the diagonalizing matrix. As a first step, we can
diagonalize only the terms in Eq. (17) that are proportional
to a2q. This is done, e.g., by a matrix

U ¼

0
B@

0 0 1

sin β − cos β 0

cos β sin β 0

1
CA: ð20Þ

Note that this matrix does not depend on the Yukawa
couplings, and is therefore the same for the up-type and
down-type mass matrices. Applying a similarity trans-
formation with this matrix on MM†, we obtain

M2 ¼ UMM†U†

¼ 1

2
v2

0
B@

c2 −bc cos 3β bc sin 3β

−bc cos 3β b2 0

bc sin 3β 0 a2 þ b2

1
CA; ð21Þ

with subscripts u and d attached for quarks of positive and
negative charges respectively.
In the preamble of the article, we said that we want to

relate the almost-masslessness of first generation quarks
with the almost-block-diagonal form of the CKM matrix.
We now narrow down the scenario in which we can have
one zero eigenvalue in both up-type and down-type quark
sector, as well as a block-diagonal CKM matrix.
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First we note that if one solution of Eq. (19) is zero,
then the x-independent term should vanish in that equation.
In this case, the eigenvalues of MM† are

0;
1

2
v2ðb2 þ c2Þ; 1

2
v2ða2 þ b2Þ: ð22Þ

For the diagonalizing matrix, we now consider two differ-
ent cases.
Case 1: Some Yukawa couplings vanish. Surely, the

x-independent term in Eq. (19) can vanish if at least one of
the Yukawa couplings is zero. Looking at Eq. (21), we see
that a ¼ 0 does not make M2 block-diagonal, so we reject
this possibility. If either b or c vanishes, the matrix M2

becomes completely diagonal. This means that for b or
c ¼ 0, the same matrix U will diagonalize both MuM

†
u

and MdM
†
d making the CKM matrix a unit matrix.

Therefore making some Yukawa coupling vanish to obtain
one zero mass does not produce the desirable block-
diagonal structure of the CKM matrix.
One should recall that making μ21 ¼ μ22 leads to

tan β ¼ 1, which in view of Eq. (19) demands that one
of the Yukawa couplings must be zero in order to obtain
zero mass eigenvalue. For this reason we discard this option
about the parameters of VðΦÞ.
Case 2: A specific ratio of the two VEVs. This is a more

attractive possibility. From the characteristic equation,
Eq. (19), one can see that zero eigenvalue can also be
ensured if

sin 3β ¼ 0: ð23Þ
Discarding the trivial solution β ¼ 0, we obtain the solution
β ¼ 1

3
π which implies that tan β ¼ p

3, i.e., v2 ¼
p
3v1 ¼p

3v=2.1 Looking at Eq. (21) now, we see that this value of
β also makes the matrix M2 block-diagonal, and one
obtains

M2 ¼ UMM†U† ¼ 1

2
v2

0
B@

c2 bc 0

bc b2 0

0 0 a2 þ b2

1
CA: ð24Þ

Notice that the third generation has been singled out,
and therefore v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ=2

p
can be readily identified

with the mass of the third generation quark. In order that it

be much heavier than the quarks in the first two gener-
ations, we need

a2 ≫ b2; c2 ð25Þ
in both up and down sectors.
Complete diagonalization would require a further sim-

ilarity transformation affecting the upper 2 × 2 block.
This will involve the values of the Yukawa couplings.
Thus, we obtain

Uu ¼ OuU; Ud ¼ OdU; ð26Þ
where

Oq ¼

0
B@

cos θq − sin θq 0

sin θq cos θq 0

0 0 1

1
CA; ð27Þ

with

tan θq ¼
cq
bq

: ð28Þ

From Eq. (26) the CKM matrix can now be written as,

VCKM ¼ UuU
†
d ¼ OuO

†
d

¼

0
B@

cosðθu − θdÞ − sinðθu − θdÞ 0

sinðθu − θdÞ cosðθu − θdÞ 0

0 0 1

1
CA: ð29Þ

Thus the difference θu − θd, which can be identified with
the Cabibbo angle, θC.
In passing, we make a point about the VEV alignment,

i.e., the value of β, dictated by Eq. (23). It reflects our
choice of the representation for S3. Had we chosen a
different representation, the value of β would in general be
different. But the physical implications should be indepen-
dent of the representation, and so the block-diagonal form
of the CKM matrix would still result.
Having reproduced the leading order effects of the

mixing matrix in the Wolfenstein parametrization as a
consequence of the masslessness of the first generation
quarks, we now explore whether one can do better. So far,
the conclusions that we derived came from Eq. (23), which
is a statement about the relative magnitude of the VEVs
of the two Higgs doublets. Note that this relation is not
protected by any symmetry. Suppose we deviate from
Eq. (23) by a small amount such that

sin 3β ¼ δ: ð30Þ
Since δ is expected to be small, we do not expect the
heavier quark masses to be altered very much by this
change. The sums of eigenvalues etc. will also not change
appreciably. The only thing that will change dramatically
is the product of all eigenvalues, which should be the

1In case of a three Higgs doublet model with S3 symmetry, the
minimization of potential leads to a vev alignment v1 ¼

p
3v2

which in turn implies a residual Z2 symmetry [38]. In the present
case, no such implication is possible. Moreover, note that if we
decide to choose a different representation of the generator b,
using cosð1

3
π þ 2γÞ in place of 1

2
and sinð1

3
π þ 2γÞ in place of

p
3

2
in Eq. (1), the components of the S3 doublets will be linear
combinations of the original ones, but Eq. (23) adjusts itself to
sin 3ðβ0 − γÞ ¼ 0 or tanðβ0 − γÞ ¼ p

3, which is the same since β0,
the ratio of VEVs of the two Higgs doublets in this new
representation, is given by β0 ¼ β − γ.
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x-independent term in Eq. (19). Therefore the first gen-
eration quark masses will be given, in the notation of
Eq. (18), by

xu ¼
2m2

u

v2
≈

a2ub2uc2uδ2

ða2u þ b2uÞðb2u þ c2uÞ
≈

b2uc2uδ2

b2u þ c2u
ð31aÞ

xd ¼
2m2

d

v2
≈

a2db
2
dc

2
dδ

2

ða2d þ b2dÞðb2d þ c2dÞ
≈

b2dc
2
dδ

2

b2d þ c2d
; ð31bÞ

where in the last step we have used the hierarchy mentioned
in Eq. (25). These equations, along with Eq. (28), to a
good approximation, implies m2

u ≈ 1
4
m2

cδ
2 sin2 2θu and

m2
d ≈

1
4
m2

sδ
2 sin2 2θd. Thus using the fact θu − θd ¼ θC

and taking all the experimental uncertainties into account
we have found δ > 0.2 which is inconsistent with our
assumption of small δ in Eq. (30). Therefore, this minimal
framework is not sufficient to reproduce the observed
masses of the first generation quarks.
Now, for the sake of completeness, we comment on the

flavor changing neutral currents (FCNC) in our model. To
set up the notations we first lay out the Yukawa Lagrangian
for 2HDM in the following form [49]:

LY ¼ −
X2
k¼1

½Q̄LΓkϕkdR þ Q̄LΔk
~ϕkuR� þ H:c:; ð32Þ

where we have kept the notation for the field the same as in
Eq. (15) but put them in boldface font to remind ourselves
that the generation indices have been suppressed. Unlike
Eq. (15), here we also take into account the Yukawa
Lagrangian for the down sector too. Here Δ1;2 and Γ1;2
represent the Yukawa matrices in the up and down sectors
respectively. By comparing Eqs. (32) and (15) we can
write,

Δ1 ¼

0
B@

0 bu au
bu 0 0

cu 0 0

1
CA; Δ2 ¼

0
B@

bu 0 0

0 −bu au
0 cu 0

1
CA;

ð33Þ
and the Γk’s can be obtained by replacing the subscript u
by the subscript d in the matrices. Now, the Yukawa
Lagrangian in terms of physical fields can be written as

LYuk ¼ −
h
v
ðd̄Dddþ ūDuuÞ þ

H
v
½d̄ðNdPR þ N†

dPLÞd

þ ūðNuPR þ N†
uPLÞu� −

iA
v
½ūðNuPR − N†

uPLÞu

− d̄ðNdPR − N†
dPLÞd� þ

p
2Hþ

v
ū½VCKMNdPR

− N†
uVCKMPL�dþ H:c:; ð34Þ

where Du and Dd are the diagonal mass matrices in the up
and down sectors respectively. Note that the SM-like scalar,

h, does not have any FCNC couplings. This is a direct
consequence of the natural alignment that we have talked
about earlier. The matricesNu andNd, in Eq. (34), carry the
information of FCNC in the up and down sectors respec-
tively and are given by,

Nu ¼
1p
2
UuðΔ1v2 − Δ2v1ÞV†

u; ð35aÞ

Nd ¼
1p
2
UdðΓ1v2 − Γ2v1ÞV†

d: ð35bÞ

Note that the expressions for Vu and Vd can be obtained
from diagonalizing M†M for both up and down sectors.
The matrices M†M can be obtained from MM† by
making the interchange a ↔ c in the Yukawa couplings.
Because of this interchange, the matrixV is different fromU
in two respects. First, the matrix corresponding to U should
have the last two rows interchanged so that the eigenvalues
can occur in the same order. Second, the angle θq should be
replaced by θ0q, which will be given by tan θ0q ¼ aq=bq. In
view of the hierarchy mentioned in Eq. (25), we can use
these to write sin θ0q ≈ 1, cos θ0q ≈ bq=aq, neglecting higher
order terms in bq=aq. Replacing the Yukawa couplings by
the mass eigenvalues and the angles θq, we obtain

Nd ≈

0
B@

− 3
2
ms sin 2θd 0 −mb sin θd

1
2
msð3 cos2 θd − 1Þ 0 mb cos θd

0 ms cos θd 0

1
CA;

ð36Þ
neglecting corrections of orderms=mb. A similar expression
forNu can be obtained fromEq. (36) by replacing θd,ms,mb
with θu, mc, mt respectively. Thus the FCNCs are uniquely
determined by θu or θd. One should keep in mind that this
represents the FCNC couplings at the leading order, i.e.,
when theCKMmatrix is block-diagonal. In amore complete
framework where the CKM matrix can be reproduced
exactly these FCNC matrices are expected to get small
corrections. The important thing to notice is that, already at
the leading order, the FCNC couplings are suppressed at
least by mb=v, so they are naturally small in this model.
Because of this, the lower bound on FCNC-mediating
bosons are low, about 3 TeV as opposed to about
100 TeV that is obtained for Oð1Þ couplings. Moreover,
the bounds from the electroweak T-parameter can also be
evaded if the nonstandard scalars, H, A and H� are nearly
degenerate [53,54].
In summary, we connect two apparently disjoint exper-

imental observations namely, the tiny masses of first
generation of quarks and the near block-diagonal structure
of the CKM matrix in a simple setup of 2HDM with an S3
symmetry. We attribute these two features of the quark
sector to a particular value of tan β. An added bonus of our
model is the existence of a light scalar, which can be
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identified with the 125 GeV Higgs observed at the LHC, in
view of a naturally emerging alignment limit. Admittedly,
the exact CKM matrix and correct nonzero masses for the
first generation of quarks could not be reproduced in this
minimalistic scenario. Perhaps our setup can be taken as a
constituent in a more elaborate framework which can
address the full quark structure.
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