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In this paper, we systematically construct simply transitive homogeneous spacetime solutions of the
three-dimensional minimal massive gravity (MMG) model. In addition to those that have analogs in
topologically massive gravity, such as warped AdS and pp waves, there are several solutions genuine to
MMG. Among them, there is a stationary Lifshitz metric with the dynamical exponent z ¼ −1 and an
anisotropic Lifshitz solution where all coordinates scale differently. Moreover, we identify a homogeneous
Kundt-type solution at the chiral point of the theory. We also show that in a particular limit of the physical
parameters in which the Cotton tensor drops out from the MMG field equation, homogeneous solutions
exist only at the merger point in the parameter space if they are not conformally flat.
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I. INTRODUCTION

Minimal massive gravity (MMG) is a pure three-
dimensional gravity model proposed in Ref. [1], which
attracted much attention during the last three years. It is an
extension of another widely studied theory known as
“topologically massive gravity” (TMG) [2] with a particu-
lar curvature-squared term in the field equation. It is
“minimal” in the sense that there is only one propagating
spin-2 mode in the bulk like TMG. However, unlike TMG,
it avoids the bulk-boundary unitarity clash, since in a
certain range of its parameters it is possible to have the
central charge of the dual CFT and the energy of the bulk
graviton be positive simultaneously [1,3] (however, see
Ref. [4]), which makes it a potentially useful toy model for
understanding quantum gravity in four dimensions.
In this paper, we make a systematic investigation of

homogeneous spacetime solutions ofMMGwith Lorentzian
signature and obtain a large number of new ones. We will
focus on simply transitive Lie groups where any two points
can be related by an isometry, and the stability (isotropy)
group of any point is trivial. Since a homogeneous (pseudo)
Riemannian manifold M has the form of a quotient G=H,
whereG is its group of isometries, which is a Lie group, and
H is a closed subgroup ofG; this means that we takeH to be
just the identity. In this case,M andG can be identified, and
considering left action of such a Lie group on itself, one can
construct its left-invariantmetric up to automorphisms using
left-invariant one-forms. This results in a metric with
constant coefficients, and all curvature calculations become

algebraic. In three dimensions, the classification of Lie
algebras was done by Bianchi [5], and one can systemati-
cally checkwhether correspondingmetrics are solutions of a
particular three-dimensional model. This method was suc-
cessfully applied to TMG with a vanishing cosmological
constant in Refs. [6] and [7], and more recently for nonzero
cosmological constant in Ref. [8]. This was also carried
out in Refs. [9,10] (see also Refs. [11,12]) for another
extension of TMGcalled “new (or general) massive gravity”
(NMG) [13].
Since MMG is closely related to the (cosmological)

TMG, we will follow the analysis in Ref. [8] closely, which
will make identification of most of the solutions we obtain
straightforward. In Ref. [14], it was shown that solutions of
TMG which have Segre-Petrov types N and D are also
solutions of MMG after a redefinition of parameters. We
find that, as should be expected, MMG inherits such
homogeneous solutions from TMG which include warped
(A)dS and ðAÞdS2 × S1 solutions obtained in Ref. [15] and
pp-wave spacetimes [16]. Some of the remaining solutions
turn out to be solutions of TMG as well only if the
cosmological constant is zero, which implies that their
scalar curvatures vanish, which is not the case in MMG.
Finally, we show that there are several homogeneous
solutions that are genuine to MMG, one of which is a
stationary Lifshitz spacetime [Eq. (86)] with a dynamical
exponent z ¼ −1 and an anisotropic Lifshitz solution
[Eq. (93)] where all coordinates scale differently.
In Ref. [17], it was proven that three-dimensional

constant scalar-invariant (CSI) Lorentzian spacetimes are
locally either homogeneous or Kundt. For MMG, the latter
is studied in Ref. [18]. Thus, the current work fills an
important gap in the construction of all CSI solutions of
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MMG. We also show that two of the Kundt solutions found
in Ref. [18] are also homogeneous, and one of them appears
at the so-called chiral point of the theory that has no
TMG limit.
In Refs. [16] and [19], some solutions to the MMG field

equation were obtained where there is no contribution from
the Chern-Simons term. Remarkably, for this case we find
that homogeneous solutions exist only at a particular point
in the parameter space, called the merger point, if they are
not conformally flat.
The paper is organized as follows: In the next section, we

introduce the MMGmodel and explain our method in more
detail. Then in subsequent sections, we go through all
possible homogeneous metrics of three-dimensional Lie
algebras one by one. For each solution, we provide a
coordinate representation of its metric and in most of the
cases are able to identify the corresponding spacetime. In
Sec. IX, we summarize our results in Table I, which includes
Segre-Petrov types as was proposed in Ref. [20], and we
make a comparison with TMG and indicate some future
directions.

II. MINIMAL MASSIVE GRAVITY

In this section, we will give a brief introduction to MMG
[1] and describe our method for constructing its homo-
geneous solutions. The theory is defined by the field
equation

Gμν þ agμν þ bCμν þ cJμν ¼ 0; ð1Þ

where Gμν is the Einstein tensor, and the Cotton tensor Cμν,
which is symmetric, traceless and covariantly conserved, is
related to the Schouten tensor Sσν as

Cμ
ν ≡ 1ffiffiffiffiffiffi−gp εμρσ∇ρSσν; Sσν ≡ Rσν −

1

4
Rgσν; ð2Þ

with ε012 ¼ þ1. The J tensor is given as

Jμν ≡ RμρRν
ρ −

3

4
RμνR −

1

2
gμν

�
RρσRρσ −

5

8
R2

�
: ð3Þ

It is not covariantly conserved, but instead one finds [1]

ffiffiffiffiffiffi
−g

p ∇μJμν ¼ ενρσSρτCστ; ð4Þ

which is not automatically zero. It follows that the MMG
field equation (1) cannot be derived from an action that
contains only the metric field [1]. However, for any solution
of the field equation (1), one can show that the right-hand
side of Eq. (4) vanishes, which establishes the consistency of
the model in a novel way. Moreover, it is still possible to
couplematter [15] and calculate charges of its solutions [21].
Finally, the coefficients a, b and c in terms of physical

parameters are

a ¼ Λ̄0

σ̄
; b ¼ 1

μσ̄
; c ¼ γ

μ2σ̄
: ð5Þ

When γ ¼ 0 (i.e., c ¼ 0), the model reduces to the
(cosmological) TMG model [2], where such solutions were
studied before [6–10].

TABLE I. Comparison of nontrivial homogeneous solutions of MMG and TMG.

Homogeneous Solutions

Groups Metric MMG TMG Description Type

SLð2;RÞ

111-type
(13) ✓ (R ¼ 0) Triaxially deformed AdS IR
(17) ✓ Spacelike warped AdS D
(19) ✓ Timelike warped AdS D

12-type
(24) ✓ (R ¼ 0) Kundt II
(26) ✓ Null warped AdS N

3-type (29), chiral pt. ✗ Kundt III
1zz̄-type (31) ✓(R ¼ 0) Generic IR

SUð2Þ (39) ✓ (R ¼ 0) Triaxially deformed sphere IC
(41) ✓ Stretched/squashed sphere D

A∞ (46) ✓ Warped flat D

A0
B2-type (54), chiral pt. ✓ Logarithmic pp wave N
B4-type (59) ✗ Generic II

ISOð2; θÞ B1-type (70), (θ ¼ π=2) ✗ Generic IR
B2-type (76), (θ ≠ 0) ✗ Generic II

ISOð1; 1; θÞ
B1-type

(84), (θ ¼ π=4) ✓ Space/time-like warped AdS D
(86), (θ ¼ π=2) ✗ Stationary Lifshitz IR
(89) ✓ pp wave N
(91) ✓ pp wave N

B2-type
(93), (θ ≠ 0) ✗ Generalized Lifshitz II
(95), (θ ¼ π=4) ✓ Warped flat D
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There are two special points in the parameter space of the
MMG theory [1]. The first is called the “chiral point,” at
which one of the central charges vanishes, and is given by

σ̄ þ γ

2

�
σ̄2 −

γΛ̄0

μ2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2 −

γΛ̄0

μ2

s
¼ 0 or

1þ c
2b2

ð1 − acÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ac

p
¼ 0: ð6Þ

The second one is called the “merger point,” where two
possible values of the cosmological constant coincide:

Λ̄0 ¼
μ2σ̄2

γ
or ac ¼ 1: ð7Þ

In order to find homogeneous solutions of MMG, we
will follow the method of Ref. [8] that was successfully
used for the (cosmological) TMG [2] model, which can be
summarized as follows: First, a Lie algebra basis is fixed for
each three-dimensional Lie algebra g which induces left-
invariant Maurer-Cartan one-forms. A left-invariant metric
for the Lie group at the identity is identified by a non-
degenerate metric on the Lie algebra up to an automor-
phism group of this Lie algebra. Starting from an arbitrary
left-invariant metric on the algebra, it is put into a simple
form using automorphisms. The metric is expressed in
terms of left-invariant one-forms with constant coefficients,
which implies that all curvature calculations, and hence the
MMG field equation (1), become algebraic. This method is
different but equivalent to the one used in [6,7,9,10], where
instead of fixing the Lie algebra basis, an orthonormal
frame is chosen [22]. Then, SOð1; 2Þ Lorentz transforma-
tions are used to simplify the structure constants. We prefer
the strategy of Ref. [8], since it enables us to compare our
solutions with those of (cosmological) TMG [2] directly.
Moreover, geometric identification of common solutions
becomes trivial.
Instead of solving algebraic equations for the constants

in the metric fu; v; w;…g in terms of the parameters
fa; b; cg of the MMG theory (5), it is more convenient
and illuminating to display the parameters in the theory in
terms of the parameters of the metric. This reduces to
solving a system of linear equations

A ·

0
@a

b

c

1
A ¼ V ð8Þ

for fa; b; cg where A is a matrix is of the dimension k × 3
and V is a k × 1 vector with k ¼ 3, 4 or 6. The number k is
determined by the number of independent components of
the field equation (1). The rank of the matrix A can be at
most 3. When the rank of A is 3, the linear equation (8) has
a unique solution, provided that the solution exists. If the
solution exists, the cases when the rank of A is less than 3
should be considered separately, as in such situations new
solutions may arise. If A is of the dimension 3 × 3, then

computing the determinant of A is enough to determine
when the rank of A is less than 3. When A is not a square
matrix and for the caseswhenEq. (8) does not have a general
solution, a more careful analysis is required. For example, it
may happen that for a particular relation among the
parameters of the metric, the system becomes consistent.
To identify distinct Lie algebras, one must determine sets

of structure constants which cannot be related by linear
transformations. For three-dimensional Lie algebras, this
classification was done by Bianchi [5] but usually pre-
sented in a more modern approach described in Ref. [23]
(see also Ref. [24]). Besides the Abelian R3 and the two
familiar algebras sl2 and su2, we also have the Lie algebras
a∞ and a0, and two continuous families of Lie algebras:
isoð1; 1; θÞ and isoð2; θÞ where the parameter θ varies in
ð0; π

2
�. In the first, θ values f0; π

4
g are special and should be

considered separately, which in total leads to nine Bianchi
classes. Finally, isoð1; 1; 0Þ and isoð2; 0Þ are isomorphic to
each other.
We now begin constructing the homogeneous spacetime

solutions of MMG going through the above list of algebras.
We assume that metrics are Lorentzian with mostly plus
signatures and follow the conventions and terminology of
Ref. [8], to which we refer for details.

III. SOLUTIONS ON SLð2;RÞ
For the Lie algebra sl2 of SLð2;RÞ a basis fτ0; τ1; τ2g

can be fixed with

½τ0; τ1� ¼ τ2; ½τ2; τ1� ¼ τ0; ½τ2; τ0� ¼ τ1: ð9Þ
Let θa be a dual basis of τa. Elements of SLð2;RÞ can be
parametrized by a group representative as (see for example
Ref. [25])

VðxÞ ¼ etðτ0þτ2Þeστ1eζτ2 : ð10Þ
It follows that the Maurer-Cartan one-forms are

V−1dV ¼ ðeσ cosh ζdt − sinh ζdσÞτ0
þ ðcosh ζdσ − eσ sinh ζdtÞτ1 þ ðdζ þ eσdtÞτ2:

ð11Þ
There are four classes of left-invariant metrics on SLð2;RÞ
that are given below (see Ref. [8]).

A. 111-type metric

The 111-type metric is of the form

g ¼ uθ0θ0 þ vθ1θ1 þ wθ2θ2; ð12Þ
where uw < 0 and v > 0 for the Lorentzian, mostly plus
signature. The case −u ¼ v ¼ w corresponds to the round
AdS3 written as Hopf fibration over AdS2 spacetime in the
Poincaré coordinates. The general line element is
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ds2¼e2σðucosh2ζþvsinh2ζÞdt2þðusinh2ζþvcosh2ζÞdσ2
−2ðuþvÞeσ coshζsinhζdtdσþwðdζþeσdtÞ2:

ð13Þ

The coefficients a, b, c and the scalar curvature R in
terms of u, v, and w are

a ¼ 1

Q
·
½ðuþ vþ wÞ2 − 4vw�3

8uvw
;

b ¼ −
1

Q
· 8

ffiffiffiffiffiffiffiffiffiffiffiffi
−uvw

p ½u2 − ðv − wÞ2�ðuþ vþ wÞ;

c ¼ 1

Q
· 8uvw½ðuþ vþ wÞ2 − 4vw�;

R ¼ −
ðuþ vþ wÞ2 − 4vw

2uvw
¼ −

cQ
16ðuvwÞ2 ¼ −

ðaQÞ1=3
ðuvwÞ2=3 ;

ð14Þ

where

Q ¼ ½ðuþ vþ wÞ2 − 4vw�2
þ 8½u2 − ðvþ wÞ2�½u2 − ðv − wÞ2�: ð15Þ

This solution in general represents a triaxially deformed
AdS spacetime. Note that when c ¼ 0, i.e., for TMG,
R ¼ 0. In this case, the cosmological constant a vanishes
too. Also, it can be shown that when R ¼ 0, we have
Q ≠ 0. Therefore, for this solution Q is nonzero, since Q
and R cannot vanish at the same time.
The matrix A in Eq. (8) is a 3 × 3 matrix with the

determinant

detA ¼ −Q ·
ðuþ vÞðv − wÞðuþ wÞ

8ð−uvwÞ5=2 : ð16Þ

Thus, the cases Q ¼ 0, u ¼ −v (or equivalently u ¼ −w)
and v ¼ w should be considered separately. We have
checked that the case Q ¼ 0 does not give rise to any
solution to Eq. (1).
u ¼ −v—In this case, the spacetime metric (13)

becomes

ds2 ¼ v½−e2σdt2 þ dσ2� þ wðdζ þ eσdtÞ2
≡ gð2Þ þ wðdζ þ χÞ2; ð17Þ

wherew > 0. This solutionwas foundbefore inRef. [15] and
is called the spacelike warped1 AdS. Note that dχ ¼ volgð2Þ.
The coefficients a and b in terms of u, v, and w are

a ¼ 16v2ðw − 4vÞ þ cð4v − 7wÞð4v − 3wÞ
192v4

;

b ¼ 8v2 þ cð4v − 3wÞ
12

ffiffiffiffiffiffiffiffi
v2w

p : ð18Þ

The curvature scalar is as in Eq. (14).
v ¼ w—In this case, u < 0, and the spacetime metric

(13) becomes

ds2 ¼ uðeσ cosh ζdt − sinh ζdσÞ2
þ w½ðcosh ζdσ − eσ sinh ζdtÞ2 þ ðdζ þ eσdtÞ2�:

ð19Þ

This metric was identified as timelike warped AdS in
Ref. [8], and the coefficients a and b are

a ¼ −16w2ðuþ 4wÞ þ cð3uþ 4wÞð7uþ 4wÞ
192w4

;

b ¼ 8w2 þ cð3uþ 4wÞ
12w

ffiffiffiffiffiffi
−u

p : ð20Þ

Again, the curvature scalar is given in Eq. (14).

B. 12-type metric

The 12-type metric is of the form

g ¼ vð−θ0θ0 þ θ1θ1Þ þ wθ2θ2 þ zðθ0 þ θ1Þ2; ð21Þ

with z ≠ 0, v > 0 and w > 0. Here, z can be scaled to �1.
Notice that it is a z-deformation of the spacelike warped
AdS metric (17).
The coefficients a, b, c and the scalar curvature R in

terms of v and w are

a ¼ 1

Q
·
ðw − 4vÞ3

8v2
;

b ¼ 1

Q
· 8ð2v − wÞ

ffiffiffiffiffiffiffiffi
v2w

p
;

c ¼ 1

Q
· 8v2ðw − 4vÞ;

R ¼ w − 4v
2v2

; ð22Þ

where Q ¼ −ðw − 4vÞ2 þ 8ð4v2 − w2Þ. Note that in the
TMG limit, i.e., c ¼ 0, both the scalar curvature and
cosmological constant a vanish. Adapting the coordinate
transformations given in Ref. [8] to our case as

t ¼ 1

2x
þ y
2l2

; eσ ¼ 2x; ζ ¼ ρ

kl
þ ln x; ð23Þ

we obtain

1Constants v and w are related to the warping parameter ν in
Ref. [15] as v ¼ l2

ðν2þ3Þ ; w ¼ 4l2ν2

ðν2þ3Þ2. The limit ν → 1 in Eq. (17)
corresponds to the AdS metric, where −u ¼ v ¼ w.
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ds2 ¼ dρ2 þ 2dydxþ
�
R
2
þ 3k2

4l2

�
x2dy2 þ 2k

l
xdρdy

þ z
l4
e−

2
klρdy2; ð24Þ

where v ¼ l2 and w ¼ k2l2 with k > 0. This solution is
Kundt type and corresponds to a special case found in
Ref. [18], namely its equation (58) with some particular
choices.
A in Eq. (8) is a 4 × 3 matrix. Only Q ¼ 0 and v ¼ w

cases should be considered separately, and the first does not
provide any solution.
v ¼ w—Here the coefficients a and b are equal to

a ¼ −
16wþ c
64w2

; b ¼ 8wþ c
12

ffiffiffiffi
w

p : ð25Þ

In this case, the coefficient of the third term in the metric
(24) above vanishes, since k ¼ 1. By defining a new
coordinate θ ¼ xeρ=l, it becomes

ds2 ¼ dρ2 þ 2e−
ρ
ldydθ þ z

l4
e−

2ρ
l dy2; ð26Þ

which corresponds to the null warped AdS (Schrödinger)
spacetime that was obtained before in Ref. [15].

C. 3-type metric

The 3-type metric is of the form

g ¼ vð−θ0θ0 þ θ1θ1 þ θ2θ2Þ þ zðθ0θ2 þ θ1θ2Þ; ð27Þ

with z ≠ 0 and v > 0. Note that it is a z-deformation of the
metric (12) with −u ¼ v ¼ w (i.e., round AdS). The
constant z can be scaled to �1.
The coefficients a, b, c and the scalar curvature R in

terms of v are equal to

a¼−
9

40v
; b¼ 8

ffiffiffi
v

p
15

; c¼−
8v
5
; R¼−

3

2v
: ð28Þ

Note that the z-deformation has no effect on the scalar
curvature, which is the same as that of round AdS3.
Moreover, the solution is attained at the chiral point; i.e.,
the coefficients satisfy the equality (6) with the plus sign.
Using the coordinate transformations given above (23)

with k ¼ 1, we obtain

ds2¼ dρ2þ2dydxþ
�
2x
l
þ z
l3
e−ρ=l

�
dydρþ z

l4
e−ρ=lxdy2;

ð29Þ

where v ¼ l2. This is a particular case of a Kundt solution
given in equation (47) of Ref. [18].

D. 1zz̄—type metric

The 1zz̄-type metric is of the form

g ¼ vð−θ0θ0 þ θ1θ1Þ þ wθ2θ2 þ 2zθ0θ1; ð30Þ

with vz ≠ 0 and w > 0. Like Eq. (21), it is a deformation of
the spacelike warped AdS metric (17). When v ¼ w, then
this solution is a deformation of round AdS. The line
element is

ds2 ¼ ½vþ z sinh 2ζ�ð−e2σdt2 þ dσ2Þ þ wðdζ þ eσdtÞ2
þ 2zeσ cosh 2ζdσdt − 2z sinh 2ζdσ2; ð31Þ

which was identified with the type (b) solution of Ref. [7]
in Ref. [8].
The coefficients a, b, c and the scalar curvature R are

equal to

a ¼ 1

Q
·
ð4vw − w2 þ 4z2Þ3

8wðv2 þ z2Þ ;

b ¼ 1

Q
· 8ðw − 2vÞðw2 þ 4z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðv2 þ z2Þ

q
;

c ¼ 1

Q
· 8wð4vw − w2 þ 4z2Þðv2 þ z2Þ;

R ¼ −
4vw − w2 þ 4z2

2wðv2 þ z2Þ ; ð32Þ

where Q ¼ ð4vw − w2 þ 4z2Þ2 þ 8ðw2 − 4v2Þðw2 þ 4z2Þ.
Notice that unlike TMG, for which c ¼ a ¼ 0, in MMG the
scalar curvature can be nonvanishing.
Here the matrix A defined in Eq. (8) is a 4 × 3 matrix.

The only special case that should be considered separately
is when Q ¼ 0, which does not produce any solution
to Eq. (1).

IV. SOLUTIONS ON SUð2Þ
We fix a basis fτ1; τ2; τ3g and its dual basis θa for the Lie

algebra su2 with

½τ1; τ2� ¼ τ3; ½τ2; τ3� ¼ τ1; ½τ3; τ1� ¼ τ2: ð33Þ

An element of SUð2Þ can be parametrized by (see
Ref. [25])

V ¼ eϕτ3eξτ2eψτ3 : ð34Þ

The Maurer-Cartan one-forms are

V−1dV ¼ ðsinψdξ − cosψ sin ξdϕÞτ1
þ ðcosψdξþ sinψ sin ξdϕÞτ2
þ ðdψ þ cos ξdϕÞτ3: ð35Þ
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A left-invariant metric g on SUð2Þ can be written as

g ¼ uθ1θ1 þ vθ2θ2 þ wθ3θ3; ð36Þ

with uvw < 0, not all negative. The coefficients a, b, c and
the scalar curvature R are

a ¼ 1

Q
·
½ðu − v − wÞ2 − 4vw�3

8uvw
;

b ¼ 1

Q
· 8

ffiffiffiffiffiffiffiffiffiffiffiffi
−uvw

p ½u2 − ðv − wÞ2�ðu − v − wÞ;

c ¼ 1

Q
· 8uvw½ðu − v − wÞ2 − 4vw�;

R ¼ −
ðu − v − wÞ2 − 4vw

2uvw
; ð37Þ

where

Q ¼ ½ðu − v − wÞ2 − 4vw�2
þ 8½u2 − ðvþ wÞ2�½u2 − ðv − wÞ2�: ð38Þ

The line element is given by

ds2 ¼ ðu − vÞðsinψdξ − cosψ sin ξdϕÞ2
þ vðdξ2 þ sin2 ξdϕ2Þ þ wðdψ þ cos ξdϕÞ2; ð39Þ

which corresponds to a triaxially deformed sphere, and in
MMG the scalar curvature given in Eq. (37) is nonvanish-
ing, unlike TMG.
Moreover, A in equation (8) is a 3 × 3 matrix with the

determinant

detA ¼ Q
8ðuvwÞ3 ·

ffiffiffiffiffiffiffiffiffiffiffiffi
−uvw

p ðu − vÞðu − wÞðv − wÞ: ð40Þ

Thus, the cases Q ¼ 0 and u ¼ v (which is enough due to
the symmetry) should be considered separately. Again, the
case Q ¼ 0 does not give any solution.
u ¼ v—Note that in this case, w < 0. The coefficients a

and b are

a ¼ 16v2ð4v − wÞ þ cð4v − 3wÞð4v − 7wÞ
192v4

;

b ¼ −
8v2 þ cð3w − 4vÞ

12
ffiffiffiffiffiffiffiffiffiffiffi
−v2w

p : ð41Þ

In this case, the metric (39) simplifies to a Hopf fibration
over S2. Depending on whether jwj > 1 or jwj < 1, we have
stretched or squashed warpings, respectively.

V. SOLUTIONS ON A∞

The Lie algebra a∞ of A∞ is spanned by r, x, and y and
has only one nontrivial bracket

½r; x� ¼ −y: ð42Þ

We denote the dual basis as f~r; ~x; ~yg. The Baker-Campbell-
Hausdorff formula allows us to write a representative as
(see Ref. [25])

V ¼ esretxeρy: ð43Þ

The Maurer-Cartan one-forms are

V−1dV ¼ ðdsÞrþ ðdtÞxþ ðdρ − tdsÞy: ð44Þ

By the automorphism group, a left-invariant metric can be
fixed as [8]

g ¼ u~r ~rþv~x ~x�~y ~y; ð45Þ

where uv ≠ 0, and u or v can be scaled to �1. The line
element reads as

ds2 ¼ uds2 þ vdt2 � ðdρ − tdsÞ2; ð46Þ

which is a Hopf fibration over a flat space. We have

a¼ 16juvjþ21c
192ðuvÞ2 ; b¼�8juvj−3c

12
ffiffiffiffiffiffiffiffijuvjp ; R¼ 1

2juvj :

VI. SOLUTIONS ON A0

The Lie algebra a0 of A0, spanned by r, x, and y, has
nonvanishing brackets

½r; x� ¼ x; ½r; y� ¼ xþ y: ð47Þ

We denote the dual basis as f~r; ~x; ~yg. Again, by the
Baker-Campbell-Hausdorff formula we can choose the
representative

V ¼ eξxþρyeαr: ð48Þ

Then the Maurer-Cartan one-forms are

V−1dV ¼ ðe−αdξ − αe−αdρÞxþ ðe−αdρÞyþ ðdαÞr: ð49Þ

The following four types of metrics are available [8].

A. B1-type metric

The metric is given by

B1 ¼ z~r2 � ~x2 þ v~y2: ð50Þ

There is no solution for a, b, c.
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B. B2-type metric

The metric is given by

B2 ¼ z~r2 � 2~x ~y; ð51Þ

with z > 0. The MMG field equation (1) is satisfied if

a ¼ −
4zþ c
4z2

; b ¼∓ 2zþ c
2

ffiffiffi
z

p ; R ¼ −
6

z
: ð52Þ

Note that the solution is attained at the chiral point (6).
Under the coordinate transformations

α → logðwÞ; ρ → −lxþ; ξ → lx−; ð53Þ

where z ¼ l2, the metric (51) becomes

ds2 ¼∓ l2

w2
½2 logðwÞðdxþÞ2 þ 2dxþdx− ∓ dw2�; ð54Þ

which is the logarithmic pp-wave solution found
in Ref. [16].

C. B3-type metric

The metric is given by

B3 ¼ z~r2 þ ~r ~xþv~y2: ð55Þ

In this case, a ¼ 0 is the necessary and sufficient condition
to solve Eq. (1). The Ricci, Cotton, and J-tensors are
identically zero. The metric of this Ricci flat spacetime is

ds2 ¼ zdα2 þ e−αðdξdα − αdρdαÞ þ ve−2αdρ2: ð56Þ

As we discuss in Sec. IX, it must be maximally symmetric
based on a result of Ref. [26], and hence should locally be
Minkowski spacetime.

D. B4-type metric

The metric is given by

B4 ¼ z~r2 þ ~r ~yþu~x2; ð57Þ
where u > 0. The coefficients a, b, c, and the scalar
curvature R are found to be

a¼−
u
18

; b¼−
4

9
ffiffiffi
u

p ; c¼−
2

9u
; R¼ 2u: ð58Þ

The line element is

ds2 ¼ zdα2 þ e−αdρdαþ ue−2αðdξ − αdρÞ2: ð59Þ

Unfortunately, we could not determine to which spacetime
geometry this metric corresponds. Higher-order-curvature
scalars are as follows:

RμνRμν ¼ 12u2; RμρRρνRν
μ ¼ 8u3: ð60Þ

VII. SOLUTIONS ON ISOð2; θÞ
Let the Lie algebra basis and the dual basis of isoð2; θÞ

be fl; m1; m2g and f~l; ~m1; ~m2g, respectively. The non-
vanishing brackets are

½l; m1� ¼ 2 cos θm1 þ 2 sin θm2;

½l; m2� ¼ 2 cos θm2 − 2 sin θm1; ð61Þ

where θ ∈ ½0; π=2�. We choose the group representative

V ¼ exm1þym2eρl: ð62Þ

Then the Maurer-Cartan one-forms are

V−1dV¼ðdρÞl
þe−2ρcosθ½cosð2ρsinθÞdxþ sinð2ρsinθÞdy�m1

þe−2ρcosθ½−sinð2ρsinθÞdxþ cosð2ρsinθÞdy�m2:

ð63Þ

There are two types of metrics, as given below [8]. The case
θ ¼ 0 should be analyzed separately.

A. B1-type metric

The metric is given by

B1 ¼ u~l ~lþv ~m1 ~m1þw ~m2 ~m2; ð64Þ

where uvw < 0, not all negative. The coefficient v or w can
be rescaled freely.
There is no general solution for a, b, and c. The scalar

curvature is given by

R ¼ −
2½12vwcos2θ þ ðv − wÞ2sin2θ�

uvw
: ð65Þ

The matrix A in Eq. (8) is 4 × 3, and the cases θ ¼ 0, θ ¼ π
2
,

and v ¼ w should be considered separately.
θ ¼ 0—In this case, due to the enlargement of the

automorphism group, the metric (64) becomes

B1 ¼ jzjð�~l ~l� ~m1 ~m1� ~m2 ~m2Þ; ð66Þ

which in spacetime coordinates takes the form

ds2 ¼ jzjð�dρ2 þ e−4ρ½�dx2 þ�dy2�Þ; ð67Þ

which is either de Sitter for ð−;þ;þÞ or AdS for ðþ;þ;−Þ
signs with R ¼ �24=jzj. The Cotton tensor (2) vanishes
identically, and we have the relation
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a ¼ −
4ð�jzj − cÞ

z2
: ð68Þ

θ ¼ π
2
—The coefficients a, b, c in terms of u, v, and w

are equal to

a ¼ 1

Q
·
ðv − wÞ4
2uvw

; b ¼ 1

Q
· 4

ffiffiffiffiffiffiffiffiffiffiffiffi
−uvw

p ðvþ wÞ;

c ¼ 1

Q
· 2uvw; ð69Þ

whereQ ¼ ðv − wÞ2 þ 8ðvþ wÞ2 ≠ 0. In this case, the line
element is

ds2 ¼ udρ2 þ ðv − wÞ½cosð2ρÞdxþ sinð2ρÞdy�2
þ wðdx2 þ dy2Þ; ð70Þ

which is not familiar to us. Higher-order-curvature invar-
iants are as follows:

RμνRμν ¼ 4ðv − wÞ2ð3v2 þ 2vwþ 3w2Þ
ðuvwÞ2 ;

RμρRρνRμ
ν ¼ −

8ðv − wÞ6
ðuvwÞ3 : ð71Þ

A solution of this type also exists [11,12] in NMG [13].
v ¼ w—In this case, the Cotton tensor (2) vanishes

identically, and

a ¼ −
4cos2θðuþ c · cos2θÞ

u2
: ð72Þ

The line element is simply

ds2 ¼ udρ2 þ ve−4ρ cos θ½dx2 þ dy2�; ð73Þ

which is, for u < 0 and v > 0, either de Sitter if θ ≠ π=2 or
Minkowski if θ ¼ π=2.

B. B2-type metric

The metric is given by

B2 ¼ u~l ~lþ~l ~m1þw ~m2 ~m2; ð74Þ

with u > 0 and w ≠ 0.
When θ ¼ 0, the metric is Minkowski, and the field

equation (1) is solved only if a ¼ 0. For θ ≠ 0, the
coefficients a, b, c and the scalar curvature R are equal to

a ¼ −
2

9
wsin2θ; b ¼ 2

9
ffiffiffiffi
w

p
sin θ

;

c ¼ −
1

18wsin2θ
; R ¼ 8wsin2θ: ð75Þ

The line element is

ds2¼udρ2þe−2ρcosθ½cosð2ρsinθÞdxdρþsinð2ρsinθÞdydρ�
þwe−4ρcosθ½sinð2ρsinθÞdx−cosð2ρsinθÞdy�2: ð76Þ

We could not recognize the spacetime to which it corre-
sponds. Higher-order-curvature scalars are

RμνRμν ¼ 192w2sin4θ;

RμρRρνRν
μ ¼ 512w3sin6θ: ð77Þ

VIII. SOLUTIONS ON ISOð1;1; θÞ
The basis fl; m1; m2g of isoð1; 1; θÞ has the brackets

½l; m1� ¼ 2 cos θm1 þ 2 sin θm2;

½l; m2� ¼ 2 cos θm2 þ 2 sin θm1; ð78Þ

and the dual basis is f~l; ~m1; ~m2g. We choose the group
representative as

V ¼ exm1þym2eρl; ð79Þ

and the Maurer-Cartan one-forms are

V−1dV¼ðdρÞl
þe−2ρcosθ½coshð2ρsinθÞdx− sinhð2ρsinθÞdy�m1

þe−2ρcosθ½coshð2ρsinθÞdy− sinhð2ρsinθÞdx�m2;

ð80Þ

with θ ∈ ½0; π=2�. When θ ¼ 0, the Lie algebras of
ISOð1; 1; 0Þ and ISOð2; 0Þ coincide. Hence, the θ ¼ 0 case
is already covered in Secs. VII A and VII B. From the
automorphism group, two types of metrics can be fixed as
given below [8].

A. B1-type metric

The B1-type metric is given by

B1 ¼ δ~l ~lþuð ~m1 þ ~m2Þ2 þ vð ~m1 − ~m2Þ2
þ 2wð ~m1 ~m1 − ~m2 ~m2Þ; ð81Þ

with w2 > uv and δ > 0. Two of the parameters ðu; v; wÞ
can be set to �1 whenever they are nonzero.
The matrix A in Eq. (8) is 6 × 3, and there is no general

solution for a, b, c. The scalar curvature is

R ¼ −
8½3ðuv − w2Þcos2θ þ uvsin2θ�

δðuv − w2Þ : ð82Þ
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However, the cases θ ¼ π
4
, θ ¼ π

2
, and uv ¼ 0 should be

considered separately.
θ ¼ π

4
—For w ≠ 0, the coefficients a and b are found as

a ¼ 2δðw2 − uvÞð4uv − 3w2Þ þ cð4uv − w2Þð4uvþ 3w2Þ
3δ2ðw2 − uvÞ2 ;

b ¼ −δðw2 − uvÞ þ cð4uv − w2Þ
3w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δðw2 − uvÞ

p : ð83Þ

The metric (81) simplifies to

ds2 ¼ δdρ2 þ ue−4
ffiffi
2

p
ρðdxþ dyÞ2 þ vðdx − dyÞ2

þ 2we−2
ffiffi
2

p
ρðdx2 − dy2Þ; ð84Þ

which was identified as timelike or spacelike warped AdS
in Ref. [8] depending on signs.
When w ¼ 0, the Cotton tensor vanishes identically, and

we are at the merger point (7) with c ¼ −δ=4 ¼ 1=a ¼
4=R. The metric (84) becomes ðAÞdS2 × S1 that was found
in Ref. [15], which is clearly not a solution of TMG, since c
cannot be zero. Its absence is related to a no-go result on
solutions of TMG with a hypersurface orthogonal Killing
vector [27]. However, it exists in NMG [13], as was found
in Ref. [28].
θ ¼ π

2
—The coefficients a, b, c in terms of u, v, and w

are equal to

a ¼ 2u2v2

δðuvþ 8w2Þðuv − w2Þ ; b ¼ −
2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðw2 − uvÞ

p
uvþ 8w2

;

c ¼ δðuv − w2Þ
2ðuvþ 8w2Þ : ð85Þ

Its spacetime metric is

ds2 ¼ δ

4

dr2

r2
þ dα2

r2
− r2dt2 þ 2wdαdt; ð86Þ

where we set u ¼ 1, v ¼ −1 and define

r ¼ e2ρ; α ¼ xþ y; t ¼ x − y: ð87Þ

Notice that the following constant rescalings r → λr; α →
λα; t → λ−1t leave the metric (86) invariant. When w ¼ 0
[which sets b ¼ 0 and satisfies the merger point condition
(7)], this corresponds to the static Lifshitz spacetime with
the dynamical exponent z ¼ −1, and for w ≠ 0 it is a
stationary Lifshitz metric (see Ref. [29]). Note that the
rotation parameter w is nonzero only when there is a
contribution from the Cotton tensor.

u ¼ 0—The coefficients a and b are

a ¼ −
4cos2θðδþ c · cos2θÞ

δ2
;

b ¼ wðδþ 2c · cos2θÞ
2

ffiffiffiffiffiffiffiffi
w2δ

p
ðcos θ − 2 sin θÞ

: ð88Þ

The spacetime metric (81) takes the form

ds2 ¼ δdρ2 þ ve−4ρðcos θ−sin θÞðdx − dyÞ2
þ 2we−4ρ cos θðdx2 − dy2Þ; ð89Þ

which was identified in Ref. [8] as AdS pp-wave for θ ≠
π=4 and θ ≠ π=2. When θ ¼ π=4, it is AdS, and when
θ ¼ π=2, it is a flat-space pp-wave [8].
v ¼ 0—The coefficients a and b are equal to

a ¼ −
4cos2θðδþ c · cos2θÞ

δ2
;

b ¼ −
wðδþ 2c · cos2θÞ

2
ffiffiffiffiffiffiffiffi
w2δ

p
ðcos θ þ 2 sin θÞ

: ð90Þ

The spacetime metric (81) becomes

ds2 ¼ δdρ2 þ ue−4ρðcos θþsin θÞðdxþ dyÞ2
þ 2we−4ρ cos θðdx2 − dy2Þ; ð91Þ

which again corresponds to an AdS pp-wave in general [8].
But for θ ¼ π=4, it is the null warped AdS (Schrödinger)
spacetime, and when θ ¼ π=2, it is a flat-space pp-
wave [8].

B. B2-type metric

For θ ≠ 0, the metric is given by

B2 ¼ δ~l ~lþ~l ~m1þuð ~m1 þ ~m2Þ2 þ vð ~m1 − ~m2Þ2
þ 2wð ~m1 ~m1 − ~m2 ~m2Þ; ð92Þ

with w2 ¼ uv > 0 and uþ v ≠ 2w. For w ¼ 0, both Cotton
and J-tensors vanish and a ¼ 0 in Eq. (1), which locally
corresponds to Minkowski spacetime, as we discuss in
Sec. IX. Hence, we assume w ≠ 0, which means that v ¼ w
is not allowed.One of the coefficientsu or v can be set to�1.
Using the coordinate transformations given in Eq. (87),

the line element becomes

ds2 ¼ δ

4

dr2

r2
þ ur−2ndα2 þ vr−2mdt2

þ 2wr−ðnþmÞdαdtþ 1

4
r−ðnþ1Þdαdrþ 1

4
r−ðmþ1Þdtdr;

ð93Þ
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where n ¼ ðcos θ þ sin θÞ and m ¼ ðcos θ − sin θÞ. Note
that the metric is invariant under the scalings r → λr;
α → λnα; t → λmt. Hence, the solution possesses a gener-
alized (anisotropic) Lifshitz symmetry. For θ ¼ π=2, it
becomes a stationary Lifshitz solution with dynamical
exponent z ¼ −1 similar to the one we found above (86).
The coefficients a, b, c and the scalar curvature R are

a ¼ −
32vw2sin2θ
9ðv − wÞ2 ; b ¼ −

jv − wj
18w

ffiffiffi
v

p
sin θ

;

c ¼ −
ðv − wÞ2

288vw2sin2θ
; R ¼ 128vw2sin2θ

ðv − wÞ2 : ð94Þ

The only special case that should be considered sepa-
rately is θ ¼ π

4
.

θ ¼ π
4
—The coefficients a and b are given as

a ¼ 32vw2½ðv − wÞ2 þ 168c · vw2�
3ðv − wÞ4 ;

b ¼ −
ðv − wÞ2 − 48c · vw2

12wjv − wj ffiffiffiffiffi
2v

p : ð95Þ

Its metric is (93) with m ¼ 0 and n ¼ ffiffiffi
2

p
, which corre-

sponds to warped flat space [8].

IX. SUMMARY AND DISCUSSION

In this paper, we constructed homogeneous solutions of
MMG, several of which are new. We summarize our results
in Table I, where we include only those that are nontrivial in
the sense that none of the terms in the MMG field
equation (1) vanishes identically. In its last column, we
give a classification of our solutions with respect to the
Segre-Petrov type of their traceless Einstein tensor

Pa
b ≡ Ra

b −
1

3
Rδab; ð96Þ

as was proposed in Ref. [20], to which we refer for details.
From Table I, we see that homogeneous solutions of

MMG in comparison to TMG can be grouped into three
categories, as follows:
Group 1: Solutions which are type N or D in the

Segre-Petrov classification can be obtained from TMG
solutions with a redefinition of constants as was shown
in Ref. [14]. Corresponding solutions have the same
curvature.
For type-D solutions—namely Eqs. (17), (19), (41), (46),

(84), and (95)—we have

aMMG ¼ aTMG þ c ·
1

48

�
Rþ 4

9b2TMG

��
Rþ 4

3b2TMG

�
;

ð97Þ

bMMG ¼ bTMG − c ·
bTMG

4

�
Rþ 4

9b2TMG

�
: ð98Þ

For type-N solutions—that is, Eqs. (26), (54), (89), and
(91)—we have

aMMG ¼ aTMG − c ·
RaTMG

24
; ð99Þ

bMMG ¼ bTMG − c ·
RbTMG

12
: ð100Þ

Group 2: Solutions (13), (24), (31), and (39) exist in
TMG, but only if the cosmological constant vanishes.
Hence, they have R ¼ 0 in TMG. But for MMG, for these
solutions the cosmological constant is proportional to the
MMG parameter c, and therefore R ≠ 0 is possible.
Group 3: Solutions (29), (59), (70), (76), (86), and (93)

exist only in MMG.
It is interesting to note that for all solutions in groups 2

and 3, we have R2 ¼ 16a=c. Moreover, three of the
solutions in the third group—that is, Eqs. (59), (76), and
(93)—appear when ac ¼ 1=81 and 9b2 ¼ −8c. Whether
this particular point in the parameter space of MMG has
any physical significance like chiral (6) and merger (7)
points remains to be seen. Also, more work is required to
understand spacetimes that we found in Eqs. (59), (70),
and (76).
Within the third group, Lifshitz-type solutions—that is,

Eqs. (86) and (93)—are especially attractive due to their
possible holographic applications (for a review, see
Ref. [30]). Moreover, only few exact Lifshitz solutions
which are stationary are known [29]. In Eq. (86), the
dynamical exponent is z ¼ −1, and rotation is present only
when there is a contribution from the Cotton tensor. The
second one [Eq. (93)] enjoys a generalized Lifshitz
symmetry where each coordinate scales differently. Such
solutions are also very rare. In four dimensions, one
example was found for Einstein gravity coupled to massive
vectors in Ref. [31] and another one in conformal gravity in
Ref. [32]. It would be interesting to study our solutions
from the dual CFT perspective. Another related issue is to
search for Lifshitz black holes [33].
In many of the solutions above, it is possible to set b ¼ 0

by choosing other parameters appropriately, after which
remarkably one always ends up at the merger point (7).
Thus, these are solutions of the MMG theory without the
Cotton tensor. The fundamental equation of this specific
model can be obtained from MMG (1) by taking the limit
μ → ∞, γ → ∞ while keeping γ=μ2 constant, which was
considered before in Refs. [16] and [19]. For this to be
consistent, one should still make sure that the Bianchi
identity (4) is satisfied, i.e.,

Vμ ¼ ϵμρσSρτCστ ¼ 0: ð101Þ
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For our solutions, it turns out that Vμ is identically zero
except for the following three cases:

(i) A0 spacetime with a B1-type metric (50):

Vμ ¼
�
∓ 2

vz3
; 0; 0

�
: ð102Þ

(ii) ISOð2; θÞ spacetime with a B1-type metric (64):

Vμ ¼
�
−
64ðv − wÞ2 cos θsin2θ

u3vw
; 0; 0

�
: ð103Þ

(iii) ISOð1; 1; θÞ spacetime with a B1-type metric (81):

Vμ ¼
�
64uv sin 4θ sin θ
ðw2 − uvÞz3 ; 0; 0

�
: ð104Þ

Recall from Sec. VI A that there is no B1-type solution
for A0, which is in agreement with Vμ being nonzero in
Eq. (102). From our analysis in Secs. VII A and VIII A, one
can easily see that the last two vectors become zero
precisely at the solutions we found, independent of the
value of b. Moreover, for all our solutions, whenever b ¼ 0
is possible, the merger point condition (7) is satisfied.
Exceptions appear only when the Cotton tensor identically
vanishes. Hence, we reach the conclusion that when the
Cotton tensor is absent in the MMG equation (1), simply
transitive homogeneous solutions exist only at the merger
point (7), provided that they are not conformally flat. They
satisfy the Bianchi condition (101).
For our solutions for which the Cotton tensor vanishes, it

is useful to recall that conformally flat spacetime solutions
of MMG are locally maximally symmetric away from the
merger point (7), which was proven in Ref. [26]. Indeed,
Eqs. (67) and (73) are (A)dS spacetimes which are in
general away from the merger point, but for a specific
choice of the parameter c they also exist at the merger point.
For Eq. (56), the cosmological constant vanishes (a ¼ 0),
and hence we conclude that it must be locally Minkowski,
since the merger point condition, i.e., ac ¼ 1, is impossible
to satisfy. This applies also to Eq. (92) with w ¼ 0. On the
other hand, at the merger point, a conformally flat solution

is not necessarily maximally symmetric. For example,
the metric (84) with w ¼ 0 corresponds to ðAÞdS2 × S1,
which was found in Ref. [15], and it exists only at the
merger point.
We found that two of our solutions given in Eqs. (29)

and (52) exist at the chiral point (6) of the parameter space.
Only in the latter is it possible to set b ¼ 0, in which case
one ends up at the merger point (7), as we noted above.
In this paper, we focused on simply transitive homo-

geneous spacetimes. A natural generalization would be to
allow a nontrivial isotropy group as was studied in Ref. [34]
for TMG, and in Ref. [10] for NMG. The following metric
that was discussed in both [34] and [10] has a four-
dimensional isometry group with no three-dimensional
simply transitive subgroup:

ds2 ¼ −dt2 þ v2ðdθ2 þ sin2θdϕ2Þ: ð105Þ

This is a solution of the MMG field equation (1) at the
merger point (7) with

a ¼ 1

c
¼ R

4
¼ 1

2v2
: ð106Þ

The Cotton tensor vanishes identically, and its Segre-Petrov
type is D.
It would be interesting to repeat our investigation in

models closely related to MMG [35,36]. Finally, trying to
classify all stationary axisymmetric solutions of MMG as
was done for TMG [37] using a method developed in
Ref. [38] would be worth studying. We hope to explore
these issues in the near future.
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