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We consider the AdS/dS CFT correspondence and use holography to study the thermal nature of field
theory in de Sitter space. Unlike the temperature of a thermal field theory in flat spacetime, the temperature of
a superconformal field theory on de Sitter space is an integral part of the theory and leaves intact the
conformal symmetry and supersymmetry. In the dual AdS side with the de Sitter factor written in planar
coordinates, there is neither a black hole nor a cosmological horizon like that in static coordinates. Insteadwe
have cosmological expansion of the de Sitter space. We consider a number of different observables, such as
the entanglement entropy and Wilson loops corresponding to static and spinning mesons in the field theory,
and study their thermal properties using holography. We show clearly how the field theory observables get
their thermal properties from the bulk despite the absence of a black hole or cosmological horizon, with the
role of the horizon played by the cosmological expansion of the de Sitter factor of the AdS metric.
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I. INTRODUCTION

De Sitter spacetime is an important background in
cosmology because it not only describes the late time
cosmology, but it is also crucial to the description of the
inflationary early Universe. In a certain approximation, one
may decouple quantum gravity and consider the quantum
dynamics of other fields on a backgrounddeSitter spacetime.
Using perturbative quantum field theory on de Sitter space
[1], one could connect the cosmological perturbation of the
Cosmic microwave background (CMB) in terms of the
quantum fluctuation of the field theory in a slow roll
potential. Among other things, the prediction of a scale
invariant spectrum is in excellent agreement with the
observational results of CMB and marked a remarkable
success for the inflationary scenario.Nevertheless the picture
suffers from the η problem for the inflatonmass.Aminimally
coupled massless scalar field also suffers from large secular
infrared effects and it would be nice to have better non-
perturbative techniques to deal with them, beyond the often
practiced approximation methods such as the dynamical
renormalization group (dRG) [2] or stochastic analysis [3].
Recently, by employing a specific dS-slicing coordination

of the AdS space

ds2 ¼ dz2 þ sinh2ðHzÞ−dx
2
0 þ dx2i
H2x20

; z ≥ 0; ð1Þ

a duality between type IIB string theory on AdS5 × S5 with
dS4 boundary and the N ¼ 4 maximal superconformal
Yang-Mills (SCYM) theory has been proposed [4]. It should

bementioned thatwhile it is not possible to construct a global
supersymmetric field theory on four-dimensional de Sitter
spacetime [5,6], the employment of global superconformal
symmetry makes it possible. The Lagrangian of the SCYM
theory has been constructed in [7]. See also [8–15] for related
works. The SCYM theory is a cousin of the N ¼ 4 super-
symmetric Yang-Mills theory on flat space and, based on the
holographic duality, it has been argued that SCYM theory
would also share certain remarkable properties like its
cousin, such as exact conformality; SLð2; ZÞ strong-weak
duality; and integrability in some of its sectors. This makes
the studies of the quantumN ¼ 4 SCYMfield theory awell-
motivated problem (e.g., [16]) and it will be the subject of
a different paper.
De Sitter field theory has a finite temperature

T ¼ H=ð2πÞ. The temperature of de Sitter space can be
most easily seen in the static coordinates of de Sitter space
where there is a timelike Killing vector and a (cosmologi-
cal) horizon exists [17]. However the temperature of de
Sitter space Bunch-Davies vacuum is in fact coordinate
independent and can be established using the Unruh effect;
see, for example, [18]. The temperature of de Sitter space
has properties quite different from that of a thermal field
theory in flat spacetime: 1. While ordinary temperatures
break Poincaré supersymmetry, the de Sitter temperature
does not break de Sitter superconformal symmetry. This is
partially because the de Sitter temperature is not an
independent parameter but is fixed directly in terms of
the de Sitter space. 2. In terms of holography, the thermal
vacuum of a quantum field theory in flat spacetime is dual
to a black hole deep in the bulk. The presence of a black
hole, in particular its horizon, changes the behavior of
bulk supergravity solutions compared to the case without,
and this is how thebulk gravitational dynamics could account
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for the properties of the thermal field theory. In [19], a slicing
of the AdS bulk space using a de Sitter metric in static
coordinates was employed and the authors were able to
establish the thermality of the deSitter field theory by relating
it to the cosmological horizon of the deSitter space, similar to
the way the horizon of an AdS black hole does in a typical
thermal field theory in flat space.
We are interested in the AdS/dS duality with the de Sitter

factor of the AdS metric written in planar coordinates [see
(1)] since in order to properly formulate the deSitter quantum
field theory, it is necessary to employ planar coordinates (or
the Friedmann-Robertson-Walker (FRW) coordinates,
which are related by a redefinition of the time coordinate)
where the space is homogeneous. But then there is no longer
any horizon in the dual metric and it may seem puzzling how
the de Sitter temperature may arise from holography. The
main motivation of our work is to see which effects in the
bulk of (1) are responsible for the temperature of the de Sitter
field theory.
With the de Sitter space written in planar coordinates, it is

natural to suspect that the role of the black hole horizon
would be played by the cosmological expansion of the AdS
bulk.Wewill demonstrate that this is correct but the involved
mechanism is different. For example, in contrast with the
effect of the AdS black hole where the presence of the
gravitational attraction of the black hole pulls the string along
the radial holographic direction, the cosmological expansion
pulls the string in the directions orthogonal to the radial
direction. We will show how this effect of the cosmological
expansionwould lead to an interesting causality constraint on
the contribution of the string minimal surface to the quark-
antiquark potential, which would then lead to an infrared
thermal contribution to the potential similar to the one due to
the black hole horizon in the more familiar AdS black hole
case. This is how the temperature of the de Sitter field theory
arises from the bulk (1).
As stated, the presence of de Sitter temperature is

compatible with the superconformal symmetry of de Sitter
space. As the two- and three-point correlation functions of
the theory are completely fixed by the conformal symmetry,
this means they depend on the temperature in a trivial way,
through the geodesic distance of the space. This is indeed
what we found in [4] using the bulk-to-boundary formalism.
However this is not the case for other more nontrivial
observables. For example, if we consider a Wilson loop
operator WC on the de Sitter field theory, the expectation
value of the Wilson loop could depend nontrivially on
dimensionless combinations such as LT or AT2, where
LðAÞ is the length (area) of the loop C. This is a highly
nontrivial problem, especially in the strongly coupled
regime. The same holds for several other heavy quark
observables like the energy of spinningmesons. The analysis
of such nontrivial temperature dependence in strongly
coupled field theory in de Sitter space is another motivation
of this paper.Notice that gauge/gravity duals in deSitterwere
also studied in [20–36]

The plan of the paper is as follows. In Sec. II, as a warm-
up exercise, we consider the computation of entanglement
entropy in the de Sitter theory and reproduce the expected
result directly using the dS-sliced coordinate system. It also
serves to demonstrate how to handle some of the difficulties
associated with the numerical analysis of a minimal surface
in dS-sliced coordinates, which are useful for the sub-
sequent analysis for the meson system. In Sec. III, we set up
a heavy quark bound state system with constant interquark
distance, which is important for the computation of the
static potential between the quarks. Since we work in planar
coordinates for dS, there is no cosmological horizon like
that in static coordinates. Nevertheless, by computing the
energy of the bound system we find a similar thermal
behavior as in theories in flat spacetime. We find that the
string observables realize a temperature in planar coordi-
nates due to the nonzero expansion rate H of the space. We
also discuss in what ways the cosmological expansion and
the black hole horizon differ in their effects on the bulk
dynamics of strings. In Sec. IV, we consider a spinning
heavy quark bound state with constant interquark distance.
We regularize the energy and the angular momenta using
both the Legendre transformed action and the infinite string
solutions corresponding to themass of heavy quarks.We find
that there exists a maximum angular momentum beyond
which the bound state ceases to exist. This is similar to the
behavior of the bound states in finite temperature field
theories in flat spacetime. SectionVcontains our conclusions
and discussions.

II. ENTANGLEMENT ENTROPY

In this section, as a warm-up exercise, we compute the
entanglement entropy for a rectangular stripe on dS space
using holography [37,38]. The main point of this exercise is
to reproduce the expected results directly using the dS-sliced
coordinate system. It also serves to demonstrate how to
handle some of the difficulties associated with the numerical
analysis of aminimal surface in dS-sliced coordinates, which
will be useful for the subsequent analysis for the meson
system in the next section.
Let us consider a general class of bulk metric of the form

ds2 ¼ gηηðη; zÞdη2 þ
Xd−1
i¼1

giiðη; zÞdx2i þ gρρðη; zÞdz2; ð2Þ

where i ¼ 1;…; d − 1. In this coordinate patch, the boun-
dary of the space is located at z ¼ zbdy ¼ ∞ and is given by
a d-dimensional boundary manifold. We consider a rec-
tangular strip Σ on the boundary described by

−
L
2
≤ x1 ≤

L
2
; 0 ≤ xj ≤ L1; ðj ¼ 2;…; d − 1Þ;

ð3Þ
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where L is the width of the strip and L1 ≫ L so as to ensure
translational invariance along the xj space directions. To
obtain the entanglement entropy, we need to compute the
area of the codimension-2 minimal surface γΣ whose
boundary is given by Σ. For a static parametrization of the
surface

x1 ¼ σ; xj ¼ σj; z ¼ zðσÞ; η ¼ ηðσÞ; ð4Þ

the boundary condition at σ ¼ �L=2 is

z

�
−
L
2

�
¼ z

�
L
2

�
¼ zbdy; ð5Þ

where giiðη; zbdyÞ ¼ ∞. The entanglement entropy of the
chosen region (4) is given by

4Gðdþ1Þ
N S ¼ AreaðγΣÞ ¼ Ld−2

1

Z
dσAðσÞ

ffiffiffiffi
D

p
; ð6Þ

where

A ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22g33…gdd

p
; D ≔ g11 þ gzzz02 þ gηηη02: ð7Þ

The Hamiltonian is a constant of motion, since there is no
explicit σ dependence. Setting it equal to −c we obtain the
constraint

Ag11ffiffiffiffi
D

p ¼ c; ð8Þ

which gives a first order ordinary differential equation of z
and η:

gzzz02 þ gηηη02 þ g11
c2 − A2g11

c2
¼ 0: ð9Þ

The other two equations of motion are obtained by the
variation of the action (6) and give

ffiffiffiffi
D

p ∂αAþ A

2
ffiffiffiffi
D

p ð∂αg11 þ ∂αgzzz02 þ ∂αgηηη02Þ

−

8<
:

∂σð Affiffiffi
D

p gzzz0Þ ¼ 0;

∂σð Affiffiffi
D

p gηηη0Þ ¼ 0;
ð10Þ

where ∂α ¼ ∂η or ∂z. Eliminating the square root using the
constraint (8), we obtain

g11
2c

∂αðA2Þ þ c
2g11

ð∂αg11 þ ∂αgzzz02 þ ∂αgηηη02Þ

þ
8<
:

−c∂σðgzzg11
Þz0 − c gzz

g11
z00 ¼ 0;

−c∂σðgηηg11
Þη0 − c gηη

g11
η00 ¼ 0:

ð11Þ

The desired minimal surface γΣ is obtained from solving the
differential Eqs. (8) and (11), subjected to the boundary
conditions (5).
For the AdSdþ1 metric

ds2AdSdþ1
¼ dz2 þ sinh2Hzds2dSd ;

ds2dSd ¼
1

H2η2
ð−dη2 þ dx2i Þ; ð12Þ

where R ¼ 1=H is the de Sitter radius and has to be equal
to the anti–de Sitter radius [4]. The function (7) and the
expressions that appear in the equations of motion are

AðσÞ ¼
�
sinhHz
Hη

�
d−2

;
gzz
g11

¼ H2η2

sinh2Hz
;

gηη
g11

¼ −1:

ð13Þ

Then the Hamiltonian constraint (8) and the equations of
motion (11) take the relatively compact form

z02−
sinh2Hz
H2η2

η02þ sinh2Hz
H2η2

�
1−

1

c2

�
sinh2Hz
H2η2

�
d−1�

¼ 0;

ð14Þ

z00 − 2H cothðHzÞz02 þ 2

η
z0η0 þ sinhð2HzÞ

2Hη2
η02

−
sinhð2HzÞ
2Hη2

�
1þ d − 2

c2

�
sinh2Hz
H2η2

�
d−1�

¼ 0; ð15Þ

η00 þ 1

η
η02 −

1

η

�
1þ d − 2

c2

�
sinh2Hz
H2η2

�
d−1�

¼ 0: ð16Þ

In an arbitrary number of dimensions the equations can
be solved numerically. However, for the case of two-
dimensional conformal field theory, the factor AðσÞ in
(13) is equal to the unit and the equations of motion can be
solved analytically.
Let us first consider the case of a two-dimensional

conformal field theory. The equation of motion (16) for
η reads

η00 þ η02

η
−
1

η
¼ 0: ð17Þ

This has the solution

η ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ c1σ þ c2

q
; ð18Þ

with c1;2 being constants of integration. Notice that the
solution of η does not depend on the Hubble constant H.
Similarly Eq. (15) gives
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z00 − 2H cothðHzÞz02 þ 2

η
z0η0 − sinhð2HzÞ 1 −H2η02

2Hη2
¼ 0;

ð19Þ

and by substituting the solution (18), we get a second order
differential equation for zðσÞ:

z00 − 2H cothðHzÞz02 þ z0
2σ þ c1

σ2 þ c1σ þ c2

þ sinhð2HzÞ c21 − 4c2
8Hðσ2 þ c1σ þ c2Þ2

¼ 0: ð20Þ

The solution for z then can be written in the compact
form as

cothHz ¼ � c3
4
·
4þ c4ðc21 − 4c2Þσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ c1σ þ σ2
p ; ð21Þ

where c3 and c4 are arbitrary integration constants.
To specify the integration constants, we note that due to
the symmetry of the problem, the geodesic should be left-
right symmetric with respect to x1. The geodesic has a
turning point in the bulk ðz0; η0Þ, which by the symmetry of
the space must therefore be located at σ ¼ 0, and the
desired functions z and η must be even functions of σ. We
obtain immediately that η0 ¼ � ffiffiffiffiffi

c2
p

, c1 ¼ 0, c4 ¼ 0, and

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ η20

q
: ð22Þ

In addition, c3 can be expressed in terms of the turning point
coordinates as coth2Hz0 ¼ c23=η

2
0. Now the boundary con-

dition (5) at σ ¼ �L=2 gives c23 ¼ L2=4þ η20. Therefore,
eliminating c3, we get the relation sinh2ðHz0Þ=η20 ¼ 4=L2

between the turning point ðz0; η0Þ and L. Note that the
Hamiltonian constraint (8) is satisfied by the solutions and by
applying it at the turning point for the geodesic it fixes the
constant c as c2 ¼ 4=ðH2L2Þ. The minimized action is

4Gð3Þ
N S ¼ 2

H
arctanh

2σ

L

����L=2−ε
0

¼ R log

�
L
ε

�
; ð23Þ

where R ≔ 1=H is the radius of the AdS space and ε ≈ 0 is
a UV cutoff imposed in the σ direction of the world sheet.
To compare with the field theory, we need to express (23) in
terms of the UV cutoff of the field theory. This can be
achievedbynoting that ifwe introduce the radial coordinateρ
of the bulk defined by

dz ¼ R
dρ
ρ
; ð24Þ

then the desired UV cutoff is given by

R log
1

ϵ
≔ z

�
L
2
− ε

�
≃ 1

2H
log

4η2b
Lε

;

where ηb ≔ η

�
L
2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4
þ η20

r
: ð25Þ

ηb is the time coordinate for the boundary point of the string.
As a result,

4Gð3Þ
N S ¼ 2R log

L
ϵηb

; ð26Þ

where ηb should be treated as an independent parameter apart
from L, and we obtain [39,40]

S ¼ c
3
log

L
ϵ
; c ¼ 3R

2Gð3Þ
N

: ð27Þ

The entropy (27) has a trivial L dependence as fixed by
conformal symmetry. We also note that (27) is the same as
the result in the flat space. This should be obvious since the
dS-sliced metric (12) can be related to the Poincaré-sliced
metric

ds2 ¼ H−2
�
dr2

r2
þ r2ð−dt2 þ dx2i Þ

�
ð28Þ

with the coordinate transformation

r ¼ sinhHz
η

; t ¼ η cothHz: ð29Þ

Under this coordinate transformation, our minimal surface is
mapped to the minimal surface in the Poincaré coordinates
with boundary at r ¼ ∞. This is precisely the same minimal
surface used in the computation of the holographic entan-
glement entropy for the strip in the Poincaré coordinates.
In the above computation of the holographic entanglement

entropy,wehave computed the lengthLg of thebulk geodesic
joining the two points x1 ¼ �L=2 on the boundary. As an
application, this can be used to reconstruct the boundary
correlation function for conformal operators. In general, for a
scalar field of mass m in the bulk of AdS3, it has the lowest
energy eigenvalueHΔ and the bulk propagator from x to x0 is
given by

Gðx; x0Þ ¼
Z

DPe−HΔLðPÞ; ð30Þ

where P is a path joining the two points and LðPÞ is the
proper length of the path P. In the semiclassical limit, the
path integral is localized to its saddle points and is given by a
sum over the geodesics. In the present case,

Gðx; x0Þ ¼ e−HΔLg : ð31Þ
According to [41,42], (30) is also equal to the CFT correlator
for the dual operator O in the large N limit. Therefore we
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obtain in the large N limit and semiclassical approximation
the following expression for the two-point function,

hOðxÞOðx0Þi≃
�
1

ϵ

�
2Δ
e−HΔLg ; ð32Þ

where we have regulated the two-point function by adopting
a normalization involving an appropriate expression of the
cutoff ϵ. Using (26), we obtain�

O
�
−
L
2
; t

�
O
�
L
2
; t

��
¼

�
ηb
L

�
2Δ

∼
1

σ2Δ
; ð33Þ

whereσ is thedeSitter invariant distance. (33) agreeswith the
result obtained in [4] using the bulk-to-boundary formalism.
This is entirely expected since the result is completely
determined by conformal invariance.
For higher dimensions, the entanglement entropy for

the strip is available in [43]. Here we will consider the
numerical solution for the minimal surface in the de Sitter–
sliced coordinates. The turning point of the extremal
surface in the bulk ðz0; η0Þ is located at σ ¼ σ0. The first
order Hamiltonian constraint (14) is satisfied at the turning
point trivially, leaving the two initial values independent.
Therefore we solve Eqs. (15) and (16) numerically, by
specifying the turning point of the surface and extracting
from the solutions the proper length

Lprop ≔
L
ηb

; ð34Þ

where ηb is the value of η at the boundary. Then we
integrate (6) to obtain the entanglement entropy, which we
express in terms of the proper length. The computation can
be done in arbitrary dimensions. For d ¼ 2, it reproduces
the analytic result (26), while for higher dimensions d ¼ 3,
4 our results for the entanglement entropy are presented in
Figs. 1 and 2. The curves are produced by assigning small
initial values for η0 and z0 and by increasing the value of z0
to compute the entanglement entropy for different proper
lengths. For small proper distance our numerical results
hint at the presence of the term

S ∝ −
�

1

Lprop

�
d−c1 þ � � � ; ð35Þ

where c1 ¼ 2 offers a reasonable fitting for both plots.
This reproduces the expected result of [43].

III. STATIC MESONS IN dS THEORY

To see a nontrivial dependence on the cosmological
expansion rate and study its role as temperature, let us
introduce heavy massive external quarks and consider
expectation values of the Wilson loop operators for space-
like loop C in the dS conformal field theory. According to
holography [44,45], they are determined in the large N
limit, by the minimal surface formed by the string world
sheet ending on the loop C on the dS boundary. For
convenience let us go to planar coordinates for the dS space
by setting η ¼ e−2Ht, so that we have

ds2AdSdþ1
¼ dz2 þ sinh2Hzds2dSd ;

ds2dSd ¼ −dt2 þ e2Htdx2i : ð36Þ
One of our motivations in this section is to provide a
methodology to study Wilson loops in time dependent
strongly coupled theories. This will be done by setting up
appropriate boundary conditions on quarks at the boundary
of the theory and by using both the Legendre transform
formalism and the disconnected string solutions corre-
sponding to the mass of the heavy quarks, in order to
regularize the energy and subtract the UV divergences. We
note that the analysis of the holographic Schwinger effect in
static dS coordinates has been performed in [19]. There a
static world sheet corresponding to the Wilson loop has
been found and the subtraction of the UV divergences was
made by the massive quarks. As already mentioned in the
Introduction, a crucial difference with them is that there is
no cosmological horizon in our metric. We will elaborate
on the similarities and differences among the setups, the
string solutions, and the regularization methods in the next
sections, where we point out that through our analysis we
obtain many interesting insights for the Wilson loop in the
expanding spacetime.

FIG. 1. The absolute value of the entanglement entropy
multiplied by 4GðdÞ

N in terms of the proper length for d ¼ 3.

FIG. 2. For the case of d ¼ 4.
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A. The string solution

We consider the quark-antiquark pair at the boundary
(36) at

t ¼ τ; x1 ¼ �L
2
e−Ht; ð37Þ

where the � sign corresponds to the positions of Q and Q,
respectively. Note that in contrast to the flat space case, we
have specified a specific time dependence for the positions
of the quarks, which give them a constant speed

v ¼ �HL
2

; ð38Þ

pointing towards each other. This counterbalances the
expansion of the dS space and results in a constant dS
invariant distance between the quarks

σ2invðQ; Q̄Þ ¼ L2: ð39Þ

In other words, we have chosen here to consider a meson of
constant size and this is the closest analogy to the flat space
case. Motivated by (37), we parametrize the string world
sheet as

t ¼ τ; x1 ¼ e−Htσ; z ¼ zðσÞ: ð40Þ

As we will see below, this parametrization guarantees time
translation invariance for the Wilson loop and greatly
simplifies the problem since the string world sheet is then
governed by ordinary differential equations instead of
partial differential equations. This is not the case if we
have considered the usual static gauge parametrization
t¼ τ;x1¼ σ;z¼ zðσÞ, which does not satisfy the equations
of motion.
It is not difficult to check that the Nambu-Goto (NG)

action

S ¼
ffiffiffi
λ

p

4π

Z
dσdτ

ffiffiffiffiffiffi
−g

p ð41Þ

for the parametrization (40) is consistent and gives only one
nontrivial equation of motion:

ð1 −H2σ2Þsinh2ðHzðσÞÞz00ðσÞ −H2σð1 −H2σ2Þz0ðσÞ3

−
3H
2

ð1 −H2σ2Þ sinhð2HzðσÞÞz0ðσÞ2

− 2H2σsinh2ðHzðσÞÞz0ðσÞ
− 2H coshðHzðσÞÞsinh3ðHzðσÞÞ ¼ 0: ð42Þ

The on-shell action takes the compact form

4π

T
ffiffiffi
λ

p S ¼
Z

dσ sinhHz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2Hzþ ð1 −H2σ2Þz0ðσÞ2

q
;

ð43Þ
where we have integrated the world-sheet time to give a
factor of T . Notice that the resulting action is time
independent, reflecting the fact that the end points of the
string have static invariant distance. For Hσ > 1 the action
(43) may become zero or imaginary; this is a common
characteristic for the orthogonal Wilson loop action in finite
temperature field theories, where H−1 here plays the role
of the radius of the black hole horizon. Notice that all
coordinates in the on-shell action and its equation of motion
can be reexpressed in terms of dimensionless quantities
using the units of H.
The solution of Eq. (42) can be found numerically and is

presented in Fig. 3.1 For small interquark distances
LH ≪ 1, the profile of the string has the usual U-shape
of a hanging chain form with two fixed end points. As the
distance between the pair increases, the gravitational effects
of the cosmological expansion in the interior of the AdS
space give rises to a deformed U-shaped profile with more
substantial modification around its turning point.
A couple of remarks are in order:
(1) A common property of the holographic finite tem-

perature field theories is that to each boundary
distance of the string, there are two string solutions
extending inside the bulk with different radial
dependence [46,47]. This is also the case here. As
can be seen in Fig. 3, there are two different string
profiles in the bulk with different turning points z0

– 0.4 – 0.2 0.2 0.4 L
0

1

2

3

4

5

z

FIG. 3. The string profile for different values of the interquark
distance L. The boundary is at the large values of z. We plot string
solutions with three different turning points z0. The one with
smallest L has a string profile that is minimally deformed by the
cosmological expansion. The other two string solutions corre-
spond to the same interquark distance L, while the acceptable one
has an end point closer to the boundary and is the energetically
favorable. The string solution that goes deeper into the bulk is
clearly deformed by the cosmological expansion.

1All plots are in units of H ¼ 1 unless otherwise stated.
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for each boundary separation L. In Fig. 4, we plot L
as a function of the turning point z0. We find that for
an interquark distance less than a certain maximum,
namely,

LmaxH ≃ 0.92; ð44Þ
there always exists two different connected string
solutions. At this point a natural question arises for
the reason of the resemblance of our string solutions
with the ones in the usual holographic thermal field
theories. The mechanism that provides here twin
world-sheets solutions is not because of the presence
of a black hole in the bulk but is due to the expansion
of the dS factor of the AdS space, an effect which is
visible when the AdS metric is expressed in the form
(1) in terms of the dS-sliced coordinates. Effectively,
we have placed the string in the AdS space while
keeping fixed the distance of the two boundary
string end points by counterbalancing the expansion
of the space with a given boundary velocity. How-
ever the rest of the string is still affected by the
expansion, where the effect is enhanced as one goes
deeper in the bulk. At some point the deformation of
the connected string becomes so large that the string
prefers energetically to break and become two
separate strings and this is when the heavy quark
bound state dissociates. We note that a similar
observation of (44) has been made in [19], where
a string solution corresponding to a boundary
Wilson loop was obtained in static coordinates. In
[19], the pair of quarks is placed symmetrically with
respect to the origin by extending the range of r to
negative values. Presumably some kind of analytic
continuation has been assumed implicitly. The
current study on the dynamics of the Wilson loop
in planar coordinates reveals many new interesting

properties, especially their thermal properties. The
analysis is very interesting on its own and in the
following we elaborate on these properties in detail.

(2) The deformation of the string in the bulk due to the
cosmological expansion leads to a minor complica-
tion in the numerics.2 To obtain the string profile
we solve Eq. (42) by selecting the initial value of
the holographic distance of the turning point of the
world sheet in the bulk z0 and we shoot from this
point towards the boundary. The selection of z0
specifies the interquark distance L at the boundary.
For σ ¼ σ1 the string has a second turning point at
z1 ¼ zðσ1Þ, where z0ðσ1Þ ¼ ∞ (Fig. 3). At this point
we need to invert the differential Eq. (42) to obtain
the equation for σðzÞ and to shoot from the point σ1
with initial conditions σðz1Þ ¼ σ1 and σ0ðz1Þ ¼ 0.
The two solutions can be combined to get the full
profile of the string. Notice that we need the full
solutions in order to find the energy of the string,
wherewe integrate the energy density from σ ¼ σ0 to
σ ¼ σ1 as a function of σ, and from z1 to the boundary
as a function of z. A series of such solutions are shown
in Fig. 5.

(3) Notice that the deformation on the world sheet due to
the cosmological expansion is symmetric in the two
edges. This is because we place theQ andQ at equal
distances from the origin x1 ¼ 0. Nonsymmetric
displacement of the pair along the x1-axis leads to
asymmetric deformation of the string world sheet,
enhanced on the side that is further away from the
origin. A representative solution is shown in Fig. 6.

1 2 3 4 z0

0.2

0.4

0.6

0.8

L

FIG. 4. The interquark distance L in units of H, in terms of the
turning point z0 of the string. For each value of L there exist two
string solutions with different turning points and energy. The
acceptable one lies on the right branch of the maximum of the
curve, since it has lower energy and it is stable. An example of
such twin solutions with the same boundary conditions is
presented in Fig. 3.

FIG. 5. The string world sheet for different values of the
interquark distance L. We observe the changes on the solution
as the turning point z0 moves away from the boundary. In the
bottom blue-colored region the derivatives z0ðσÞ are finite, while
the red-colored part includes the point of the infinite z0ðσÞ
derivative. Notice the string deformation enhancement as it goes
closer to the bulk.

2Similar complications have been observed in strings with
rotating end points [48]. To simplify the numeric procedure, one
may choose a different gauge in the string parametrization.
Another such observation has been made in Rindler space [49].
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B. The energy of the bound state

To obtain the energy of the bound state, one needs to
regulate the on-shell Nambu-Goto action which is infinite
due to the infinite length of the string world sheet. Two
subtraction schemes, the Legendre subtraction scheme and
the mass subtraction scheme, have been widely used.
As the NG action is a functional of coordinates and the

holographic direction of the string world sheet satisfies a
Neumann boundary condition, one needs to perform a
Legendre transformation to change the boundary condition
for the modified action. We point out that the Legendre
transform is not diffeomorphic invariant, and for a suc-
cessful canceling of the UV divergences, we should use the
coordinate system ρ (24), which is analogous to the AdS
Poincaré coordinates. The Legendre transform of the action
in the ρ coordinates is [50,51]

SLegendre ¼
Z

dτρpρjσ→σ2
σ→σ1 ; ð45Þ

where ρ is the holographic direction, pρ is the conjugate
momentum

pρ ¼
δS

δð∂σρÞ
; ð46Þ

and σ1 and σ2 are the end points of the string. Using
Eq. (24), we obtain Hρpρ ¼ pz, where

pz ¼
δS

δð∂σzÞ
ð47Þ

is the conjugate momentum in the z coordinate, and the
desired Legendre term takes the form

~S ¼ S −
1

H

Z
dτpzjσ→σ2

σ→σ1 : ð48Þ

The idea of the mass subtraction scheme is intuitive.
For the standard case ofN ¼ 4 SYM, a single heavy quark
is the end point of a straight string that initiates from
the boundary of the space (z ¼ ∞) and goes into the bulk.
The infinite mass of the quark is given by

MQ ¼
Z

∞

0

dz: ð49Þ

The subtraction of this mass from the energy is equivalent
to the subtraction using the Legendre term. For the finite
temperature N ¼ 4 SYM theory, the gravity dual has a
black hole, which introduces a lower bound on the holo-
graphic coordinate with a range ½zh;∞Þ, where zh is the
position of the black hole. Then the corresponding mass for
the heavy quark is given by

MQ ¼
Z

∞

zh

dz: ð50Þ

Note that apart from allowing us to cancel the UV
divergence of the NG action of the connected string world
sheet, MQ now also makes an IR contribution zh, which is
interpreted as a thermal contribution to the bound state
energy. On the other hand in the Legendre term (48),
information about the thermal properties of the horizon is
present through the conjugate momentum and the string
solution itself, although in a less direct manner. When
computed at the boundary, the black hole contribution is
negligible and the Legendre boundary term is equal to that
of the zero temperature theory. In general, while both
schemes offer the cancellation of the UV divergences, they
could differ in their finite IR contribution and the two
schemes are not equivalent. The choice of regularization
scheme depends on the problem and the physical quantity
one desires to compute.
In the present case, due to its intuitive picture, one may

want to use the mass subtraction scheme by subtracting out
the energy of two single noninteracting quarks moving with
the velocity (38). To do this, one needs an appropriate string
solution with a single moving end point at the dS boundary,

x0 ¼ τ; x1 ¼
L
2
e−Ht; ð51Þ

with constant velocity. This is however not straightforward
to find. In fact the most straightforward string world-sheet
parametrization,

x0 ¼ τ; x1 ¼
L
2
e−Ht; z ¼ zðσÞ; ð52Þ

is not a solution of the full system of equations of motion,
and a more involved string profile is required. We need to

FIG. 6. The heavy quark pair is located asymmetrically with
respect to the origin. This asymmetry generates an asymmetric
deformation of the bulk string, enhanced on the side that is further
away from the origin, in this case at the right side. The midpoint
of the string is at σ0H ¼ 0.3.
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abandon the straightness of the string in the bulk. We do it
by using the same parametrization for the disconnected
string with the connected one, where we find that the
disconnected string

x0 ¼ τ; x1 ¼ σe−Ht; z ¼ 1

H
arccoth

�
2σ

L

�
; ð53Þ

satisfies all the equations of motion. Its action reads

4π

T
ffiffiffi
λ

p SQ ¼ L2

4H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2L2

4

r Z
σ�

L=2
dσ

�
σ2 −

L2

4

�−3=2
; ð54Þ

where σ� is to be determined. To have real action we require
L=2 < 1=H and σ > L=2 or both the inequalities inverted.
Our connected string world sheet satisfies the first one since
Eq. (44) holds. The form of the single string solution
becomes clear by looking at (53): the string originates from
the boundary at x ¼ L=2 and bends towards the infinity,
the opposite direction to the connected string solution, as
it goes into the bulk. However, we have restricted the
contribution to the energy (action) to the segment
L=2 ≤ σ ≤ σ� since the string is actually moving faster
than the speed of light at σ ¼ σ� and beyond:

v ¼ Hσ ≤ 1 ⇒ σ ≤ σ� ≔
1

H
: ð55Þ

Beyond this point the string is not causally connected to the
part of it that touches the horizon and so should not
contribute to the energy. A disconnected string at x ¼ L=2
on the boundary can probe the bulk up to distances

z� ¼
1

H
arccoth

�
2

HL

�
ð56Þ

and this acts as an infrared cutoff, similar to the role of the
black hole horizon in the standard AdS black hole scenario.
This is depicted in Fig. 7.
Using (54) we obtain the energy of the single quark

4π

T
ffiffiffi
λ

p SQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2L2

4

r
coshHz

H

����
z→∞

−
1

H
: ð57Þ

The energy of the static quark (57) can be interpreted as the
thermal mass of the quark which turns out to depend on the
expansion rate of the strongly coupled Universe. By increas-
ing the expansion rate H, the string can access larger
distances in the bulk of the space and its energy increases.
It is interesting how such a natural expectation arises from the
algebra leading to (57). Therefore, the regularized energy for
our meson system is given by

EtotðLÞ ¼ SQQ̄ − 2SQ; ð58Þ

where SQQ is given by the on-shell action (43) and we have
subtracted twice the thermal masses of the quarks in the
system.
On the other hand, the Legendre subtraction can be

performed also without any problem. Similarly the regu-
larized energy is given by

EtotðLÞ ¼ SQQ̄ − 2SUV; ð59Þ

where SUV is given by

4π

T
ffiffiffi
λ

p SUV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2L2

4

r
sinhHz

H

�����
z→∞

; ð60Þ

where we have used the fact that our solution is indepen-
dent of τ to integrate through the time to get an overall
factor of T . The factor of 2 accounts for the contribution
from both end points. We have also used the fact that near
the end points σ ¼ �L=2, z → ∞, the differential Eq. (42)
is solved by

z0 ¼∓ 1

2HL
e2Hz; ð61Þ

where the sign ∓ is for σ ¼ �L=2. As a result, near the
boundary, pz is given by

pz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2L2

4

r
sinhHz; ð62Þ

where the sign � is for σ ¼ �L=2. We remark that unlike
the AdS case in the Poincaré coordinates where the UV
divergences of the Wilson loop do not depend on the spatial
position of the string, in the present dS-sliced description of
the AdS spacewhere themetric becomes time dependent, the
UV boundary term is multiplied by a factor that depends on

FIG. 7. The connected and the disconnected string solutions.
In the disconnected string there is a natural cutoff z� given by (56)
(in this plot at σ� ¼ 1) where the cutoff portion of the string is not
causally connected to the boundary.
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the spatial position of the string. This is essential to cancel out
the infinity.
By comparing the two regularization schemes in the

energy of the bound state,we confirm that they are equivalent
in the UV region, since the infinite terms in the actions (57)
and (60) have the same asymptotics. In addition, we find that
the mass subtraction scheme contributes an additional IR
finite termwhich can be interpreted as the thermal correction
to the mass of the quark, leading to a quicker dissociation for
larger expansion rates in the strongly coupled space.
Our result for EtotðLÞ using the Legendre subtraction

scheme is plotted in Fig. 8, while the one using the mass
subtraction scheme is plotted in Fig. 9. The regularized
energy of the bound state in theAdS/dS space has similarities
with that of the bound state in theAdSblack hole and the dual
finite temperature N ¼ 4 SYM field theory. The energy
EðLÞ has a turning point, indicating a maximum size of the
heavy quark bound state with maximal energy for the state,
beyond which it does not exist. Moreover, there exist two
string solutions that correspond to the same size meson but
have different energy. The acceptable solution is the onewith
the minimum energy which corresponds to the stable and
energy preferred state. This resembles the known holo-
graphic results of finite temperature field theories including
a black hole horizon. Notice that the energy of our solution
using the Legendre subtraction scheme does not cross the
horizontal axis, in contrast with the use of the mass
subtraction scheme. The crossing indicates that the discon-
nected string has less energy and therefore the crossing point
is where the bound state melts to two individual quarks. This
is similar to the behavior in thermal field theory with a black
hole dual [46,47]. There the mass subtraction scheme was
adopted, and it was found that the energy becomes positive at
a certain interquark separation L� < Lmax. This signifies a

phase transition where having a pair of straight line strings
ending directly on the horizon of the black hole has become
the energetically more favorable string configuration.
To summarize, we find that our mesons admit a pair of

string solutions for each admissible boundary condition
which leads to a bound state similar to the situation of
mesons in the usual thermal field theory whose temperature
has a holographic origin in terms of a black hole. However
the responsible mechanism here is different: it is due to the
presence of cosmological expansion in longitudinal direc-
tions parallel to the boundary, rather than attraction due to
the black hole in the radial/transverse direction [46,47].
By using the mass of the infinite quarks to regularize the
energy we find that there is an IR cutoff in the string that
is introduced by the need to include only the contribution
of that part of the string that is causally connected to the
boundary of the space. It resembles the presence of the
black hole in the string dynamics. The effects depend on
the expansion rate of the spacetime. This signals a very
interesting interplay between heavy bound states placed in
a dual black hole background and in an expanding strongly
coupled Universe. To elaborate further on the properties of
a bound state, let us add one more degree of freedom to our
system in the next section.

IV. SPINNING MESONS IN dS THEORY

In this section we examine the spinning mesons modeled
by rotating hanging strings from the dS boundary.

A. The holographic setup

The spinning string we consider has its two end points on
the boundary, corresponding to the quarks of the spinning
meson. To consider rotation, it is convenient to rewrite the

FIG. 8. The regularized energy of the bound state using the
Legendre subtraction scheme in terms of the size of the bound
state L. We notice that there is a maximum value of distance L
with a maximal energy, beyond which there is no minimal surface
satisfying the boundary conditions (37). The turning point occurs
for negative values of energy, and the almost flat branch
corresponds to the nonstable solutions that are energetically
unfavorable. Both quantities V and L are dimensionless, nor-
malized with units of H.

0.2 0.4 0.6 0.8 1.0
L

2.5

2.0

1.5

1.0

0.5

V

FIG. 9. The regularized energy of the bound state using the
mass subtraction scheme in terms of the size of the bound state L.
The energy has similar characteristics with the ones in Fig. 8,
with the additional ingredient that can take positive values.
The crossing point with the horizontal axis is where melting
of the bound state to the individual quarks happens. Both
quantities V and L are dimensionless using units ofH as in Fig. 8.
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planar coordinates metric (36) in the following spherical
form:

ds2 ¼ dz2 þ sinh2Hzð−dt2 þ e2Htðdρ2 þ ρ2dθ2

þ ρ2sin2θdϕ2ÞÞ: ð63Þ

Without loss of generality, we consider rotation along the
equator of the sphere with the following parametrization
(0 ≤ σ ≤ L=2),

t ¼ τ; θ ¼ π

2
; ϕðσ; tÞ ¼ cþ ωt − ωfðσÞ;

ρðσ; tÞ ¼ σe−Ht; z ¼ zðσÞ; ð64Þ

where c is a constant to be determined by the two points of
the boundary. The function fðσÞ parametrizes the string
world sheet in the bulk and moreover specifies the initial
angle for the angular momentum. The boundary conditions
of the string are

z

�
�L

2

�
¼ ∞; ρ

�
�L

2
; t

�
¼ L

2
e−Ht;

ϕ

�
�L

2
; t

�
¼ ϕ� þ ωt; ð65Þ

where the two end points of the string are antipodal in the
equator, at ϕþ ¼ 0 and at ϕ− ¼ π. The parametrization
(64), (65) describes a string on the equator of the spatial
sphere, with antipodal end points having an angular
velocity ω, and a component of velocity transverse to
the spinning motion and along the axis that connects the

end points, pointing inwards with measure (38), just enough
to counterbalance the time dependent expansion of the dS
boundary. Below we will solve for the string solution for the
region 0 ≤ σ ≤ L=2 subject to the boundary condition (65)
at the end point σ ¼ L=2. In addition we will require our
solution to satisfy

z0ðσ0Þ ¼ 0; zðσ0Þ ¼ z0; ð66Þ

so that we can extend the solution to the other half,
−L=2 ≤ σ ≤ 0. The constant z0 is a free parameter that
specifies the coordinates of the turning point of the string.
It turns out that the parametrization (64) is a consistent

solution to the full system of equations of motion obtained
by the NG action only if the function fðσÞ is given by

fðσÞ ¼ logð1 −H2σ2Þ
2H

: ð67Þ

Notice that the function (67) happens to be also part of the
coordinate transformation from planar to static coordinates.
Physically, it gives a nontrivial σ dependence along theUð1Þ
angle which describes a drag of the string profile in the bulk.
We also remark that with a coordinate transformation from
planar coordinates to static ones, one can bring the rotating
string solution (64) to a form close to a boosted string in static
coordinates where the same function (67) also appears.
Having specified the function fðσÞ, we now need to

solve the equations of motion to determine zðσÞ and obtain
the string profile in the bulk. The on-shell action is time
independent,

4πffiffiffi
λ

p
T
S ¼

Z
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2ðH2 þ ω2Þ

1 −H2σ2
sinh2Hzðsinh2Hzþ ð1 −H2σ2Þz02Þ

s
≔

Z
dσ

ffiffiffiffi
D

p
; ð68Þ

and depends explicitly on the world-sheet parameter σ.
Variation of the full action gives only one independent
equation of motion and reads

z00sinh2Hzð1 −H2σ2Þð1 − ðH2 þ ω2Þσ2Þ
− z03ðH2 þ ω2Þð1 −H2σ2Þ2σ

−
3

2
z02 sinh 2Hzð1 −H2σ2Þð1 − ðH2 þ ω2Þσ2Þ

− z0sinh2Hzðω2 þ 2H2ð1 − σ2ðH2 þ ω2ÞÞÞσ
− sinh2Hz sinh 2Hzð1 − ðH2 þ ω2Þσ2Þ ¼ 0: ð69Þ

The string carries energy and angular momentum defined
by differentiating the Lagrangian with respect to _t and _ϕ
and integrating the densities along the length of the string:

EQQ̄ ¼ 2

Z
L=2

0

dσ
ð1 −H2σ2Þ ffiffiffiffi

D
p

1 − σ2ðH2 þ ω2Þ ; ð70Þ

JQQ̄ ¼ 2

Z
L=2

0

dσ
−ωσ2

1 − σ2ðH2 þ ω2Þ
ffiffiffiffi
D

p
: ð71Þ

The dependence on the parameter ω is continuous and by
switching it off ω ¼ 0, the energy (70) is equal to the static
on-shell action corresponding to the energy of the bound
state of the quark (43), and the angular momentum
becomes null. Due to the infinite length of the string, both
energy and angular momentum are infinite and a regulari-
zation is required. Let us first apply the Legendre sub-
traction here and comment on the mass subtraction
regularization scheme later. The infinite terms that regu-
larize the energy and the angular momentum are given by
(48) and applying it to our case we obtain
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E ¼ EQQ̄ − 2 sinhHz
1 −H2 L2

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2

4
ðH2 þ ω2Þ

q ����
z→∞

; ð72Þ

J ¼ JQQ̄ −
−L2ω sinhHz

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2

4
ðH2 þ ω2Þ

q ����
z→∞

: ð73Þ

For no rotation, the energy (72) is equal to the one in the
on-shell action corresponding to the energy of the bound
state of the quark (59).

B. The spinning string solutions

The string profile is obtained first by solving the single
Eq. (69) on the region 0 ≤ σ ≤ L=2 and then extending to
the other half. That this is possible is based on the following
observations: In the region close to the center of the sphere,
the string parametrized by (64), (65) does not have a
discontinuity along the ϕ coordinate, since the minimum
point of the string does not rotate. This can be checked by
looking at the equations of motion and noticing that in the
full action the derivatives ∂σϕ

2 are multiplied by the term
σ2 sinh2 HzðσÞ. The function zðσÞ is even, with a minimum
point at σ ¼ 0, so its expansion around σ ¼ 0 is at least of
second order. Therefore in the resulting equations of
motion the terms involving derivatives of ϕ are all zero
at σ ¼ 0 and the string solution is smooth there too.
Our obtained string profiles are presented in Figs. 10 and

11. The deformation of the U-shaped string inside the bulk
is enhanced by the rotation compared to the static case
(Fig. 10). Moreover, rotating strings with fixed turning
point interquark distance L correspond to surfaces that go

deeper into the bulk compared to the static strings (Fig. 11).
This is naturally expected since rotation will tend to
increase the distance between the quarks, while the string
tension acts in the opposite direction. This is already a hint
that rotating strings dissociate easier than static ones;
however, for rigorous evidence we need to compute the
energy of the bound states.
In the case of the rotating string we have two free

parameters that the energy of the state depends on. By
fixing the angular velocity of the string and varying the
string world-sheet end point we can obtain the function
Lðz0Þ. Then we can justify what we have already noticed by
comparing the rotating and static strings: the first ones
correspond to larger interquark distances for the same
turning point z0, compared to the latter ones. This is
presented in Fig. 12. When we fix the length of the string
world sheet and increase the angular velocity, we obtain a
function ωðz0Þ, where we notice that for the higher angular
velocities the minimal surface goes deeper in the bulk in

FIG. 10. The string world-sheet solution corresponding to a
spinning meson (ω ¼ 1), compared to the static one for fixed bulk
distance z0. The blue-and-purple-colored outer string solutions
are the ones that correspond to the static string, while the inner
red-and-cyan-colored strings are the ones corresponding to the
spinning state. Notice the spinning strings have less boundary
distance between their end points, while the deformation of the
U-shaped string is enhanced due to rotation compared to the static
configuration.

FIG. 11. Spinning and static string world sheets with equal
distance string end points. The spinning (red-and-cyan colored)
string goes deeper in the bulk and is more deformed compared to
the static one. The parameter ω is chosen equal to the unit.

FIG. 12. The function Lðz0Þ for fixed angular velocity. There
are two minimal surfaces for each set of boundary conditions.
Increasing angular velocity decreases the maximum length that
the state can have.
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order to preserve the invariant distance at the boundary
(Fig. 13). This is in agreement with the previous observa-
tions on the string profiles.
To observe the dissociation of the quark bound state in

relation with rotation, we fix the length of the state and the
cosmological expansion rate H associated with the temper-
ature, and we modify the angular momentum. To keep a
state at a constant length as ω increases, we need a world
sheet that comes closer to the boundary. We find that the
angular momentum of the bound state is increasing for
increasing ω until it reaches a maximum value for
ω ¼ ωmax, where the decrease begins. For lower values
of H corresponding to lower temperatures, the magnitude
of the angular momentum is larger (Fig. 14). This is due to
a simple thermal effect on the energy distribution within the
quark bound state.
We find that the energy in terms of ω increases for

increasing angular velocity until it reaches a maximum value
for ω ¼ ωmax (Fig. 15). Lower values ofH corresponding to
lower temperatures lead to higher energiesEðωÞ of the bound

state with fixed interquark distance. The maximum of the
angular momentum and energy occur for the same value of
the angular velocity. Therefore the expression E2ðJÞ will
have a cusp point at J ¼ Jmax, indicating that a state of
fixed interquark distance can reach to a maximum angular
momentum. Moreover, for each value of J < Jmax the state
canbe foundwithboth energies, theupper and lower segment
in theE2ðJÞ function (Fig. 16). The upper segment is for large
values of ω and large energies and is not energetically
preferable. The lower part of the curve depicts the energy of
a stable spinning state and has a continuous limit to the
spinless state.
The existence of a maximum energy and angular

momentum with respect to the angular velocity can be
explained by looking at the behavior of the minimal

FIG. 14. The angular momentum in terms of the angular
velocity. There is a maximum angular momentum that the state
can reach for each value of ωmax.

FIG. 15. The square of energy versus the angular velocity
E2ðωÞ for a constant interquark distance at the boundary. There is
an increase of energy until the angular velocity reaches the value
ωmax, and after that it decreases.

FIG. 16. Energy versus angular momentum for a fixed boun-
dary distance. Notice the maximum reachable angular momen-
tum for the bound state and the fact that for each value of angular
momentum the state is allowed to have two energies. The upper
segment corresponds to large values of ω. It is unstable and not
energetically favorable. The behavior of the bound state is like
that of a finite temperature field theory in flat space, with the
Hubble constant H corresponding to the temperature of the
theory.

FIG. 13. The function ωðz0Þ for a constant interquark distance
at the boundary. A decrease of the angular velocity leads to
surfaces that go deeper into the bulk in order to preserve the
length on the boundary. This explains naturally the finding of
Fig. 12.
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surface. We have shown that for a fixed interquark distance
and increasing angular velocity, the surface has to extend
deeper into the bulk in order to preserve the invariant
distance at the boundary. There is a critical point at which
the effect of the cosmological expansion and the rotation
becomes so big that it is no longer possible to have a stable
bound state.
To summarize our findings in this section, we conclude

that the spinning bound state on a dS CFT theory has all the
characteristics of a spinning bound state in a finite temper-
ature dual field theory in flat spacetime. Therefore, it feels
the heat bath in a similar way as it would be in the gravity
dual theory with a black hole, for example, as in [48]. For
a fixed cosmological expansion rate of space, there is a
maximal value of the angular momentum which a meson
can have. Beyond this value, the meson is interpreted to
melt. We note that already in the Legendre subtraction
scheme we are able to reproduce the expected thermal
effects on the system, like the qualitative dependence of the
maximal angular momentum of the meson on the melting
temperature. We do not expect that the mass subtraction
scheme would produce anything qualitatively different.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have used holography to examine the
thermal properties of the de Sitter field theories in planar
coordinates. We have studied heavy quark probes placed in
a strongly coupled de Sitter Universe and obtained new
interesting insights. A heavy quark and antiquark pair was
placed on the dS boundary, where each quark has a constant
speed pointing to each other in order to counterbalance the
expansion of the spacetime. The heavy meson bound state
has a constant invariant interquark distance which corre-
sponds to a time-translational invariant world sheet. We
have discussed the physical effects on string configurations
due to the presence of cosmological expansion in the bulk.
We have compared the Legendre subtraction and the mass
subtraction schemes for the regularization of the energy.
Using the latter, we find a natural IR cutoff in the dynamics
of the disconnected string, imposed by keeping the con-
tribution of the portion of the string that is causally
connected to the boundary of the space. The IR cutoff in
the strongly expanding Universe depends on the inverse
rate of its expansion and resembles the role of the black
hole horizon on the dynamics of the disconnected string.
We find that an increase of the expansion rate leads to easier
dissociation of the heavy quark bound state. Our findings
not only fully reproduce the expected thermal properties of
the meson bound state system, they also show a very
interesting analogy between heavy bound states placed in a
dual black hole background and in an expanding strongly

coupled Universe. It would be interesting to independently
confirm the thermal behavior noticed in the heavy quark
system by computing correlators in the strongly coupled de
Sitter theory, where their form would reveal clearly the
thermal properties.
By examining the spinning heavy quark bound states,

our system gets one more degree of freedom. We observe
that there is a maximum angular momentum beyond which
the spinning bound state ceases to exist. We compute the
energy of the spinning meson in terms of its angular
momentum and conclude that the spinning string realizes
the Hawking temperature. It would be very interesting to
develop a methodology for other observables in the gravity
dual of dS field theories, especially the ones whose
evaluation in flat thermal field theories depends heavily
on the presence of a black hole horizon, like the jet
quenching, and to examine how the generic formulas of
[52] would be modified in the present setup. Along these
lines we mention the interesting study of fluctuation and
dissipation in de Sitter space [53].
It is worth noting that the effect of the cosmological

expansion of the de Sitter factor persists in the bulk and its
effect on the string world sheet is evident. However, the
effect is different compared to the strings placed in a black
hole background where the tidal gravitational attraction of
the black hole tends to pull and deform the string in the
radial direction, while the cosmological expansion of the de
Sitter factor of the AdS space affects the string in the
longitudinal directions parallel to the boundary.
In this paper we have considered de Sitter space written

in planar or conformal coordinates. Nevertheless we show
that by a suitable choice of ansatz for the string world sheet,
one can eliminate from the effective system all the time
dependence consistently. By doing that we end up with a
time invariant system and ordinary differential equations
which are solvable, instead of the more involved partial
differential equations. Therefore, the consideration in this
paper may also provide some guidance towards the study of
other observables in general time dependent theories.
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