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We study Kähler moduli stabilizations in semirealistic magnetized D-brane models based on Z2 × Z0
2

toroidal orbifolds. In type IIB compactifications, 3-form fluxes can stabilize the dilaton and complex
structure moduli fields, but there remain some massless closed string moduli fields, Kähler moduli. The
magnetic fluxes generate Fayet-Iliopoulos terms, which can fix ratios of Kähler moduli. On top of that, we
consider D-brane instanton effects to stabilize them in concrete D-brane models and investigate the brane
configurations to confirm that the moduli fields can be stabilized successfully. In this paper, we treat two
types of D-brane models. One is based on D9-brane systems respecting the Pati-Salam model. The other is
realized in a D7-brane system breaking the Pati-Salam gauge group. We find suitable configurations where
the D-brane instantons can stabilize the moduli fields within both types of D-brane models, explaining an
origin of a small constant term of the superpotential, which is a key ingredient for successful moduli
stabilizations.
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I. INTRODUCTION

Superstring theories are expected for an ultimate unified
theory of particle physics including gravitational inter-
actions. One of their remarkable features is that superstring
theories are defined in ten-dimensional (10D) spacetime
and predict the presence of extra dimensions of space for
theoretical consistencies. We usually consider that the extra
six-dimensional (6D) space is compactified in order to
describe our Universe.
In such string compactifications, one of the challenging

tasks is to realize a chiral spectrum in their four-dimensional
(4D) effective theories, because they must be consistent
with the standard model (SM) or some extensions such as
the minimal supersymmetric standard model (MSSM). For
this purpose, D-brane models are attractive because they
can lead to various gauge groups with generations of chiral
fermions [1–5], and several D-brane models were proposed
realizing suitable 4D chiral spectra as zero modes of open
strings on intersecting D-branes [6–9]. For the last decade,
similar model building was actively attempted in the T-dual
picture of the type IIA string theory, that is, in the
framework of IIB strings with magnetized D-branes, and
it was found that viable three-generation models can be
obtained [10–12]. In particular, in the concrete model
proposed in Ref. [13], a semirealistic flavor structure of
the quarks and the leptons including their hierarchical
masses and mixing angles was obtained, and furthermore,
a spectrum of the supersymmetric particles and the Higgs
bosons was calculated to verify its consistency with
experimental results.
Another one of the key issues in the string compactifi-

cations is the stabilization of moduli fields that are massless

scalar modes originating from extra components of the
higher-dimensional gravitational fields and n-form fields.
Moduli stabilization is necessary to stabilize the extra
compact space, and that is also significant in particle and
cosmological phenomenologies. In these decades, several
moduli stabilization mechanisms are proposed in the frame-
work of superstring theories. We will discuss the moduli
stabilization, concentrating on type IIB compactifications in
this paper to associate them with magnetized D-brane
models (moduli stabilizations with the magnetic fluxes were
discussed in Refs. [14–16]). We find three types of dynami-
cal variables to stabilize: the dilaton field, complex structure
moduli, and Kähler moduli fields. Basically, in IIB string
theories, we can introduce nontrivial fluxes for 3-form field
strengths to stabilize the dilaton and complex structure
moduli fields [17,18]. When the presence of the 3-form
fluxes is turned on, however, the potential for the Kähler
moduli stays flat at the tree level, and there remain some flat
directions even when α0-corrections and string one-loop
corrections are taken into account. We usually expect that
those flat directions of Kähler moduli fields are stabilized by
nonperturbative effects somehow.
In D-brane models, one of the computable nonperturba-

tive effects is D-brane instantons [19–23], which we call
Euclidean-branes (E-branes) in the present paper. These are
D-branes that are localized at a point on 4D Minkowski
spacetime but have a nonzero volume in the extra compact
space. Thus, they can possibly yield a superpotential for
the Kähler moduli and the dilaton field. Besides that,
gaugino condensations of hidden D-branes also have
computable nonperturbative effects to yield the super-
potential of the moduli fields, but we will focus on the
former in this paper.
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In most of the previous works,1 D-brane model building
for the visible sector and for the moduli stabilization were
discussed independently of each other. Such a scenario can
be justified under the situation that the visible sector is
irrelevant to the sector to stabilize moduli. For example, if
the SM sector is localized at a certain point on the 6D
compact space and the dynamics to stabilize moduli
originates from the sector on cycles far away from the
SM-localized point, those would be independent. However,
if the SM sector and the moduli-stabilizing sector occupy a
similar place in the 6D compact space, they would affect
each other. Indeed, it is not trivial that the instanton effect
yields a superpotential suitable for the moduli stabilization
such as W ∼ Ae−aT , where T is the modulus, and that in
practice depends on configurations of D-branes for the
visible sector. This is due to the fact that one needs to
integrate over the instanton zero modes to obtain non-
perturbative superpotentials. We can realize the superpo-
tential successfully when there is only a single E-brane
wrapping Oð1Þ-cycles without D-branes. On the other
hand, in association with D-branes, there appear open
string zero modes between the E-branes and the D-branes.
When they cannot be soaked up by fermionic integration,
the nonperturbative superpotential vanishes. Furthermore,
even if zero modes are successfully soaked up, the
superpotential including matter fields can be induced as
W ∼ ðΦ1Φ2 � � �Þe−aT , but not the pure moduli term
W ∼ Ae−aT . Such moduli-dependent terms with matter
fields would be important in order to realize the right-
handed Majorana neutrino masses and μ-terms of the Higgs
fields in the MSSM [19–23,28,29]. However, such moduli-
dependent terms with matter fields are not suitable for
moduli stabilizations. We are thus required to study dis-
tributions of the zero modes for each brane configuration
and confirm that no harmful fermionic zero modes remain
to incorporate the moduli stabilizations with the D-brane
models.
In this paper, we study the moduli stabilization due to the

E-branes in association with concrete magnetized D-brane
models for the visible sector in type IIB orientifolds. We
assume the 3-form fluxes to stabilize the dilaton and the
complex structure moduli fields preserving supersymmetry
(SUSY), which allows us to concentrate on the Kähler
moduli stabilization.2 In those models, we will also turn on
the “magnetic” fluxes for the world volume gauge field
strength of the D-branes in order to realize the flavor
structure of the SM. These magnetic fluxes classically
produce moduli-dependent Fayet-Iliopoulos (FI) terms. We
will find supersymmetric vacua with a certain ratio of the

vacuum expectation value (VEV) of the moduli fields,
which means that the D-term potential can stabilize the
Kähler moduli fields except for one flat direction. In order
to stabilize the flat direction, we introduce E-branes and
investigate the zero-mode structure in the D-brane models.
This paper is organized as follows. In Sec. II, we first

review the magnetized T6=Z2 × Z0
2 orbifolds in 10D super-

symmetric Yang-Mills (SYM) theories, which correspond
to the low-energy effective field theory of D9-brane
systems, which explains an essence of magnetized orbifold
models. Consequently, we propose several concrete models
based on the Pati-Salam gauge group. Two types of
E-branes are possible to give stable brane configurations
in association with D9-branes. In the rest of the section, we
study both the instanton effects to find several brane
configurations with which the instanton effects work
successfully and the induced superpotential that stabilizes
the moduli field. In Sec. III, we perform a similar analysis
with D7-brane models of the visible sector where the Pati-
Salam gauge group is broken by the magnetic fluxes to
realize a more realistic spectrum. Section IV is devoted to
conclusions and discussions. In the Appendix, we discuss
the zero-mode structure in the T-dual picture.

II. D9-BRANE MODELS

We study mixed configurations of magnetized D-branes
and E-branes to construct models with all the moduli fields
stabilized. In this section, we focus on Pati-Salam models
based on a stack of eight D9-branes as the SM sector. These
are the simplest but still semirealistic magnetized orbifold
models. First we briefly review the 10D SYM theories
compactified on a magnetized orbifold, which are low-
energy effective field theories of magnetized D9-branes. In
the theories, we can find several semirealistic models based
on the Pati-Salam gauge group. Finally, we will investigate
an E-brane’s effects on the D9-brane systems, which
generate a nonperturbative superpotential and stabilize
the moduli fields. Note that any configuration of E-branes
can appear and we have to take into account all possible
E-branes. Some of them have no effects in low-energy
effective field theory, but a certain E-brane can have
nonperturbative moduli terms such as W ∼ Ae−aT . We
are interested in such E-brane effects.

A. Review of magnetized orbifolds
in 10D SYM theories

We give an overview of magnetized orbifolds in 10D
SYM theories. In this paper, we consider three 2-tori,
T2 × T2 × T2, as an extra compact space, denoting their
coordinates by zi and z̄i (i ¼ 1, 2, 3). The 10D SYM
theories can be described in the formulation of 4D N ¼ 1
superspace, focusing on a 4D N ¼ 1 SUSY out of full
N ¼ 4 SUSY of the 10D SYM theories [31]. This was
developed in compactifications of T2 × T2 × T2 with

1There have been several studies of moduli stabilizations in
D-brane models; see Refs. [24–27].

2Strictly speaking, we assume that the 3-form fluxes do not
change the toroidal geometry so much, and blow-up moduli are
set to zero. Their stabilization is investigated in, e.g., [30].
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magnetic fluxes in Ref. [32]. 10D SYM theories consist of
10D vector and Majorana-Weyl spinor fields, which are
decomposed into 4D vector, complex scalar, and Weyl
spinor fields. These 4D fields form 4D N ¼ 1 super-
multiplets. As a result, field contents of the theories are
expressed by a vector superfield V and three chiral super-
fields Φi. Note that they are in adjoint representations of
gauge symmetry of the SYM theories. In the following, we
consider UðNÞ SYM theories as effective field theories of
one stack of N D9-branes.
We introduce Abelian magnetic fluxes in the UðNÞ

theories, which are parametrized by N × N diagonal
matrices as

MðiÞ ¼ diagðmðiÞ
1 ; mðiÞ

2 ;…; mðiÞ
N Þ;

where i runs over 1,2,3 corresponding to three T2. When

mðiÞ
n takes nondegenerate values, the UðNÞ gauge group is

broken down. For example, suppose the simplest case as
follows:

MðiÞ ¼ diagðmðiÞ
a ;…; mðiÞ

a ; mðiÞ
b ;…; mðiÞ

b Þ; ð2:1Þ

where mðiÞ
a ≠ mðiÞ

b . Then, these magnetic fluxes break the
gauge group as UðNÞ → UðNaÞ ×UðNbÞ. In this gauge
symmetry breaking, we express the superfields as

Φi →

�Φaa
i Φab

i

Φba
i Φbb

i

�
; ð2:2Þ

where diagonal and off-diagonal entries are in adjoint
and bifundamental representations of the unbroken gauge
group UðNaÞ ×UðNbÞ, respectively. On this magnetized
background, zero-mode equations for Φab

j on the ith T2 are
given by

�
∂̄ ī þ

π

2τi
ðmðiÞ

a −mðiÞ
b Þzi

�
Φab

j ¼ 0 ðfor i ¼ jÞ; ð2:3Þ
�
∂i −

π

2τi
ðmðiÞ

a −mðiÞ
b Þz̄ī

�
Φab

j ¼ 0 ðfor i ≠ jÞ; ð2:4Þ

where τi is a complex structure of the ith T2. For i ¼ j, that

has mðiÞ
a −mðiÞ

b degenerate zero modes when mðiÞ
a −mðiÞ

b is
positive, while its conjugate one Φba

j has no zero modes

becausemðiÞ
b −mðiÞ

a < 0. Thus, the magnetic fluxes produce
generations of chiral fermions in 4D effective theories. This
is almost the same for i ≠ j, except for a relative sign in

Eq. (2.4), and jmðiÞ
a −mðiÞ

b j degenerate zero modes are

produced for Φab
j when mðiÞ

a −mðiÞ
b is negative.

Next we study Z2 orbifolding in this magnetized SYM
theories. Let us consider Z2 orbifolding, which acts on the
first and second T2, that is,

ðz1; z2; z3Þ → ð−z1;−z2; z3Þ:

On this orbifold, the superfields have to transform as

Vðz1; z2; z3Þ → þPVð−z1;−z2; z3ÞP−1;

Φ1ðz1; z2; z3Þ → −PΦ1ð−z1;−z2; z3ÞP−1;

Φ2ðz1; z2; z3Þ → −PΦ2ð−z1;−z2; z3ÞP−1;

Φ3ðz1; z2; z3Þ → þPΦ3ð−z1;−z2; z3ÞP−1; ð2:5Þ

where the projection operator P is an N × N matrix
satisfying P2 ¼ 1. In accordance with these transformation
laws, each entry of Eq. (2.2) is assigned to either a Z2 even
or odd mode. This Z2 projection reduces the number of
degenerate zero modes induced by the magnetic fluxes, as
shown in Table I [33]. We can also introduce discrete
Wilson lines, and the number of zero modes depends on the
values of the discrete Wilson lines [34]. Here, for simplic-
ity, we restrict ourselves to models with vanishing Wilson
lines.
It is most important that the Abelian magnetic fluxes

generically induce the FI term for trivial Uð1Þ parts of
unbroken gauge subgroups. For instance, in the case of
Eq. (2.1), there appear the FI terms with the following
parameters in diagonal parts Uð1Þa ×Uð1Þb of UðNaÞ and
UðNbÞ,

ξa ¼
1

Að1Þ m
ð1Þ
a þ 1

Að2Þ m
ð2Þ
a þ 1

Að3Þm
ð3Þ
a ;

ξb ¼
1

Að1Þ m
ð1Þ
b þ 1

Að2Þ m
ð2Þ
b þ 1

Að3Þm
ð3Þ
b ;

whereAðiÞ is the area of the ith T2. When settingAðiÞ for ξa
and ξb to vanish, we can find a supersymmetric vacuum
with unbroken UðNaÞ and UðNbÞ gauge symmetries.3 This
means that some of the Kähler moduli fields are stabilized
by the D-term potential at the supersymmetric vacuum. In
the present case, only the ratios of AðiÞ are completely

determined unless mð1Þ
a ¼ mð2Þ

a ¼ mð3Þ
a ¼ 0 and/or mð1Þ

b ¼
mð2Þ

b ¼ mð3Þ
b ¼ 0, and thus, only a linear combination of the

TABLE I. The number of active zero modes on the magnetized
orbifold, where M represents an effective magnetic flux [that

corresponds to mðiÞ
a −mðiÞ

b in Eqs. (2.3) and (2.4)].

jMj 0 1 2 3 4 5 2n 2nþ 1

Even 1 1 2 2 3 3 nþ 1 nþ 1
Odd 0 0 0 1 1 2 n − 1 n

3Magnetized supersymmetric vacua with broken UðNaÞ and
UðNbÞ can also exist when charged fields develop their non-
vanishing VEV in D-flat directions. This was discussed in
Ref. [35].
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three Kähler moduli remains massless. There exists one flat
direction even when we consider more complicated con-
figurations of the magnetic fluxes to get three or more
unbroken gauge subgroups. The aim of this paper is to
stabilize this remaining massless moduli field by a non-
perturbative superpotential originating from E-branes.

B. Pati-Salam models based on D9-branes

We construct Pati-Salam models based on a stack of
eight D9-branes, whose low-energy effective field theory is
10D Uð8Þ SYM theory. In the rest of this paper, we
consider Z2 × Z0

2 orbifolding to eliminate harmful zero
modes, which acts as

Z2∶ ðz1; z2; z3Þ → ð−z1;−z2; z3Þ;
Z0
2∶ ðz1; z2; z3Þ → ðz1;−z2;−z3Þ: ð2:6Þ

Under these Z2 and Z0
2 symmetries, the superfields trans-

form properly [see Eq. (2.5)] with projection operators P
and P0, respectively. For later convenience we define the
following matrix,

Pαβγ ¼

0
B@

α × 14 0 0

0 β × 12 0

0 0 γ × 12

1
CA; ð2:7Þ

where α, β, and γ take þ1 or −1 and 1n denotes an (n × n)
unit matrix. Orbifolding with a projection operator of this
form must respect the Pati-Salam gauge group.
In the Uð8Þ SYM theories, magnetic fluxes are repre-

sented by three 8 × 8 matrices. It is convenient to para-
metrize them as

Mð1Þ ¼ diagð0; 0; 0; 0; X; X;−Y;−YÞ þ a × 18;

Mð2Þ ¼ diagð0; 0; 0; 0;−1;−1; 0; 0Þ þ b × 18;

Mð3Þ ¼ diagð0; 0; 0; 0; 0; 0; 1; 1Þ þ c × 18;

where a; b; c ∈ Z and X; Y ∈ N. Note that the 4D effective
theories are independent of a, b, and c within the D9-brane
sector except for the FI parameters. They will play a
significant role in the association with E-branes. These
magnetic fluxes break the Uð8Þ gauge group down to the
Pati-Salam gauge group, Uð4ÞC ×Uð2ÞL ×Uð2ÞR up to
Uð1Þ factors, and produce the FI terms for diagonal parts of
them as

ξC ¼ 1

Að1Þ aþ 1

Að2Þ bþ 1

Að3Þ c;

ξL ¼ 1

Að1Þ ðaþ XÞ þ 1

Að2Þ ðb − 1Þ þ 1

Að3Þ c;

ξR ¼ 1

Að1Þ ða − YÞ þ 1

Að2Þ bþ 1

Að3Þ ðcþ 1Þ:

These FI parameters vanish when

Að1Þ=Að2Þ ¼ X; Að1Þ=Að3Þ ¼ Y; aþXbþ Yc ¼ 0:

ð2:8Þ

At supersymmetric vacua with the Pati-Salam gauge group,
this implies that two of the three Kähler moduli are
stabilized by the D term.
On this magnetized orbifold with P0 ¼ Pþ−− [see

Eq. (2.7)], there remain the following zero modes,

Φ1 ¼

0
B@

0 0 0

0 0 H

0 0 0

1
CA; Φ2 ¼

0
B@

0 QL 0

0 0 0

0 0 0

1
CA;

Φ1 ¼

0
B@

0 0 0

0 0 0

QR 0 0

1
CA;

where three rows and columns correspond to Uð4ÞC,
Uð2ÞL, and Uð2ÞR. We can find degenerate zero modes
in the bifundamental representation ð1; 2; 2̄Þ; ð4; 2̄; 1Þ; and
ð4̄; 1; 2Þ, which can be identified with the Higgs fields H,
the left-handed matter fields QL, and the right-handed
matter fieldsQR, respectively. Their degeneracy, that is, the
number of generations, is determined by X, Y, and the Z2

projection operator P. Three-generation magnetized orbi-
fold models based on the Pati-Salam gauge group were
systematically studied in Ref. [11]. According to that, we
summarize all possible Ansätze of ðX; Y; PÞ for realizing
the three generations of the quarks and the leptons in
Table II. In these models, a reasonable mechanism to
realize hierarchical masses and mixing angles works, which
leads to a semirealistic spectrum without fine-tunings
for the parameters [36]. Note that there are other con-
figurations to realize the three generations, but they have a

TABLE II. They are all possible sets of X, Y, and P to realize
the three-generation structure of the SM. One can exchange the
values of X and Y in configurations 5 and 6. In configurations 7–
10, we have to replace the projection operator by Pþþþ when
exchanging X and Y.

X Y P Number of Higgs

Number 1 4 4 Pþ−þ 5
Number 2 5 5 Pþ−þ 6
Number 3 7 7 Pþþ− 8
Number 4 8 8 Pþþ− 9
Number 5 4 5 Pþ−þ 5
Number 6 7 8 Pþþ− 8
Number 7 4 7 Pþ−− 5
Number 8 4 8 Pþ−− 5
Number 9 5 7 Pþ−− 5
Number 10 5 8 Pþ−− 6
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phenomenological difficulty in textures of Yukawa matri-
ces and we have omitted them here. It is remarkable that
zero modes cannot remain in diagonal entries of the above
matrices which correspond to open string moduli fields.
That is, open string moduli are completely stabilized.
The idea of this open string moduli stabilization would
be a T-dual picture to intersecting D-branes wrapping rigid
cycles [24].
One may expect that magnetized backgrounds with more

complicated gauge symmetry breaking, e.g., Uð8Þ →
Uð3ÞC ×Uð1Þl ×Uð2ÞL ×Uð2ÞR, lead to a new class of
three-generation models. In that case, however, a non-
vanishing FI term inevitably appears within the 10D Uð8Þ
SYM theories [36]. We will propose such a model with all
the vanishing FI parameters on the basis of D7-brane
systems in Sec. III.

C. Nonperturbative superpotential: E1-branes

We study E-branes in D9-brane models. In general, there
can be various E-branes generating superpotential. Here,
we focus only on E-brane configurations that contribute to
the moduli stabilization. In the presence of D9-branes, two
types of E-branes can possibly lead to a stable brane
system: E1-branes wrapping 2-cycles and E5-branes.
E-branes generically have OðNÞ or USpðNÞ gauge groups,
and only the OðNÞ-type instantons can generate the super-
potential. In the present setup, we can choose discrete
torsions to obtain the OðNÞ-type instantons [24], and we
assume that the discrete torsions are tuned suitably in
this paper.
These instantons can induce a superpotential of the form

Wnp ¼
X
i

Aie−aiTi þ ASe−S; ð2:9Þ

where Ti and S are Kähler moduli and dilaton superfields,
respectively. Coefficients Ai and AS depend on complex
moduli fields, which are supposed to be stabilized by the
3-form fluxes and replaced by their VEVs. In the present
case, they are given by

Ti ¼ e−ϕAðiÞ þ i
Z
T2

C2;

S ¼ e−ϕAð1ÞAð2ÞAð3Þ þ i
Z
T6

C6;

where C2 and C6 are RR-forms and ϕ is the 10D dilaton
field. The SUSY condition (2.8) stabilizes two directions
of Ti. It is important for this superpotential to change or
vanish if there exist open string zero modes between the
D9-branes and the E-branes. We have to study configura-
tions of these branes in order to eliminate such harmful
zero modes.
First we study E1-branes, which wrap one of the three T2

and are collapsed at a fixed point on the other T2. A single

E1-brane has an Oð1Þ gauge symmetry and is to generate
the superpotential for the Kähler moduli [the first term of
Eq. (2.9)] as long as there is no extra zero mode. A zero
mode configuration of E1/D9 systems is equivalent to that
of a system consisting of D9-branes and an unfluxed
D5-brane wrapping the ith T2. Such a D-brane system
contains a six-dimensional N ¼ 1 hypermultiplet as
D5-D9 (or E1-D9) open strings. Naming these D9-branes
“D9A,” we can represent the hypermultiplet by using two
4D N ¼ 1 superfields as (ΦAE

j , ΦEA
k ) (i ≠ j ≠ k ≠ i) in the

superfield description (see Ref. [37]). Note that superscripts
AE and EA reflect their gauge transformation laws, and
they are an (anti)fundamental representation of the UðNÞ
gauge group of the D9-branes. They are affected by the
magnetic fluxes of the D9-branes, and thus a chiral
spectrum with generation structure is produced in this
E1-D9 sector, in the same way as the D9-brane sector. The
transformation law of these chiral superfields under the Z2

and Z0
2 orbifolding is given in a similar way to the D9-brane

fields, e.g.,

ΦAE
1 → −PΦAE

1 P−1
E ; ΦAE

1 → þP0ΦAE
1 P0−1

E ;

where we can set PE and P0
E to �1. Note that all of the

E1-branes with PE ¼ �1 and P0
E ¼ �1 can appear and we

have to take into account all the possible E1-branes
including projections, PE ¼ �1 and P0

E ¼ �1. However,
some of them do not induce nonperturbative terms and
others induce nonperturbative terms such as (2.9), as well
as nonperturbative terms with matter fields. We are inter-
ested in E1-branes with proper orbifold parities, PE and P0

E,
which can induce (2.9). When the superfield has a different
subscript, the overall signs can be changed. Their wave
functions can be even or odd functions on the ith T2. On the
other T2, however, they cannot survive the orbifold
projection when they are assigned into an odd mode,
because they are localized at a fixed point of the T2 and
their wave functions must be given by a delta function.
We study how to find the E1-brane configurations where

all the harmful massless modes are eliminated, taking an
E1-brane wrapping the third T2 as an example. For this
purpose, it is satisfactory to investigate a zero-mode
configuration of ΦAE

1 and ΦEA
2 . They transform under

the Z2 symmetry as

ΦAE
1 → −PΦAE

1 P−1
E ; ΦEA

2 → −PEΦEA
2 P−1:

They cannot have zero modes when they are assigned into a
Z2 odd mode on the first and the second T2 as discussed
above. Thus, for P ¼ Pþþþ, we can eliminate all the
components of ΦAE

1 and ΦEA
2 by PE ¼ þ1. Even when

P ≠ Pþþþ, it is possible to eliminate them as follows. In the
Pati-Salam models, both of them have eight components,
which are classified into three parts by their gauge
representations, i.e., Uð4ÞC, Uð2ÞL, and Uð2ÞR. A proper
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choice for PE can forbid the charged zero modes in two of
the three parts. Seen from Table I, we can eliminate the
remaining ones when the absolute values of their effective
magnetic fluxes are less than 3 and they are assigned into
the Z0

2 odd mode on the third T2. We can always find P0
E

and c that realize such a situation, satisfying Eq. (2.8).
Thus, it is always possible for the E1-brane to generate the
nonperturbative superpotential. One can easily confirm that
E1-branes wrapping the first or the second T2 can also
induce nonperturbative terms to stabilize the moduli.
We examine the stabilization of the moduli field min-

imizing its potential. We expect to obtain the following
nonperturbative superpotential,

W ¼ Ae−2πT3 þW0: ð2:10Þ

We assumed that the nonperturbative term due to the
E1-brane wrapping the third T2 is dominant. Even when
other terms are dominant, the following discussion is the
same. A constant term W0 is also necessary for the moduli
stabilization, and we will discuss its origin later. In toroidal
compactifications of type IIB with O5=O9 planes, the
Kähler potential for the moduli fields is given by

K0 ¼ − logðSþ S̄Þ−
X3
i¼1

logðTi þ T̄iÞ−
X3
i¼1

logðUi þ ŪiÞ:

Setting ReTi ¼ τi and ImTi ¼ 0, we get the F-term
potential

VF ¼ πAe−4πτ3

τ1τ2
ðAþ 2πAτ3 þW0e2πτ3Þ:

Minimizing this potential, we find a supersymmetric
minimum,

W0

A
¼ −ð1þ 4πτ3Þe−2πτ3 ;

where τ3 is stabilized. In this case, one sees that a legitimate
value of hτ3i implies a quite small value of W0; indeed,
hτ3i ¼ 1 requiresW0=A ∼ 10−2. The origin of such a small
W0 will be discussed in the next subsection.

D. Nonperturbative superpotential: E5-branes

We perform a study similar to the previous subsection for
E5-branes. The number of zero modes in D9-E5 open
strings can be counted in the same way as a mixed
configuration of the magnetized D9-branes and an addi-
tional D9-brane with no magnetic fluxes.
Although it is difficult in D9/E5 systems to give a setup

to eliminate all the harmful zero modes systematically, we
show a reasonable setup to generate the nonperturbative
superpotential to be incorporated in a wide class of the Pati-
Salam models shown in Table II. First we set b ¼ −1 and

c ¼ þ1, which implies a ¼ X − Y for the vanishing D
terms [see Eq. (2.8)]. That is, the magnetic fluxes in the
Pati-Salam sector are given by

Mð1Þ ¼ diagðX − Y; X − Y; X − Y; X − Y; 2X − Y;

2X − Y; X − 2Y; X − 2YÞ;
Mð2Þ ¼ diagð−1;−1;−1;−1;−2;−2;−1;−1Þ;
Mð3Þ ¼ diagð1; 1; 1; 1; 1; 1; 2; 2Þ:

When 2X − Y ≠ 0 and X − 2Y ≠ 0, an association of
chirality projections due to the magnetic fluxes and Z0

2

orbifold projections with P0
E ¼ −1 eliminates open string

zero modes charged under Uð2ÞL and Uð2ÞR. The remain-
ing ones, which are (anti)fundamentals in the Uð4ÞC gauge
group, can also be eliminated by Z2 orbifolding with a
suitable choice for PE, if 0 < jX − Yj < 3. Thus we can
always provide configurations of D9/E5 systems to gen-
erate the nonperturbative superpotential for the dilaton
superfield [the second term of Eq. (2.9)], when X and Y
satisfy

2X − Y ≠ 0; X − 2Y ≠ 0; 0 < jX − Yj < 3:

That is, models 5, 6, and 9 shown in Table II are available
(we can exchange the values of X and Y as discussed there).
In particular, we find that some of these models can be
associated with an E5-brane and an E1-brane simultane-
ously (e.g., X ¼ 7, Y ¼ 5, and P ¼ Pþþþ). In this case, we
can obtain the nonperturbative superpotential

W ¼ AEe−2πT3 þ ASe−S: ð2:11Þ

We have assumed the presence of supersymmetric 3-form
fluxes to stabilize the dilaton satisfying hW3−formi ¼ 0. The
superfield S can be replaced by its VEV, and then the
effective superpotential is equivalent to Eq. (2.10), that is,

W0 ¼ ASe−hSi:

From this expression, it is found that a reasonable value of
hSi induces a sufficiently small W0 which is required for
the above successful moduli stabilization. Thus, all the
moduli fields can be stabilized in the framework of
magnetized D-branes by an interplay of the two instanton
effects.

III. D7-BRANE MODELS

In this section, we consider another model based on
D7-branes, instead of the Pati-Salam models based on
D9-branes.4

4The model discussed in this section was proposed in Ref. [38].
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A. MSSM-like model

We consider a MSSM-like model on the basis of two
stacks of four D7-branes, which we denote by D7A-branes
and D7B-branes with a configuration shown in Table III. An
effective field theory of D7-branes is derived from a 10D
SYM theory, and the superfield description of that was
formulated in Ref. [37]. One of the three chiral superfields
Φi contained in 10D SYM theories turns into a position
moduli field there. In the present case of the mixed
D7-brane system, there also appears a hypermultiplet
corresponding to the open string modes between the
D7A- and D7B-branes, which is denoted by two chiral
superfields ΦAB

2 and ΦBA
3 . Thus, this system consists of the

following chiral superfields,

ΦA
1 ; ~ΦA

2 ; ΦA
3 ; ΦB

1 ; ΦB
2 ; ~ΦB

3 ; ΦAB
2 ; ΦBA

3 :

The first three superfields are in the Uð4ÞA adjoint
representation, and the next three are in the Uð4ÞB adjoint
one. The last two are a bifundamental representation of
Uð4ÞA ×Uð4ÞB. The tilde represents that the superfield
turns out to be a position moduli of the corresponding
D7-branes.
In this section, we again consider T2 × T2 × T2 as the

extra compact space with Z2 × Z0
2 orbifolding. These

Z2 × Z0
2 act on the three T2 in the same way as in the

previous section, and the transformation laws of the super-
fields are determined by their subscript and four 4 × 4
projection matrices, PA, PB, P0

A, and P0
B. Note that

active D7-brane fields must be assigned into an even mode
on T2 where the D7-brane is localized as a point because
such a pointlike localization implies a wave function of
the delta function. In particular, D7-D7 open strings, ΦAB

2

and ΦBA
3 , have to be assigned into an even mode on the

second and the third T2 in order to survive the orbifold
projections.
We introduce the magnetic fluxes in this D7A=D7B brane

system as follows:

Mð1Þ
A ¼

�−5×13 0

0 −4×11

�
; Mð3Þ

A ¼
�
5×13 0

0 4×11

�
;

Mð1Þ
B ¼

�
0×13 0

0 −12×12

�
; Mð2Þ

B ¼
�
0×12 0

0 1×12

�
:

These magnetic fluxes break Uð4ÞA ×Uð4ÞB →
Uð3ÞC ×Uð1Þl ×Uð2ÞL ×Uð2ÞR. One remarkable feature
of this model is the breaking of the Uð4ÞC gauge symmetry
of the Pati-Salam models. This means that the quarks and
the leptons can have a distinguished difference in their
flavor structure. The flux-induced FI terms vanish in all the
unbroken gauge subgroups when

Að1Þ=Að2Þ ¼ 12 and Að1Þ=Að3Þ ¼ 1: ð3:1Þ

Setting the projection operators as PA ¼ PB ¼ P0
A ¼ 14

and P0
B ¼ −14, we find the following zero-mode structure,

ΦB
1 ¼

�
0 H

0 0

�
; ΦAB

2 ¼
�
QL 0

LL 0

�
; ΦBA

3 ¼
�

0 0

QR LR

�
;

and ΦA
1 , ΦA

2 , ΦA
3 , ΦB

2 , and ΦB
3 have no zero mode. We can

identify H, QL, QR, LL, and LR with the Higgs fields, the
left-handed quarks, the right-handed quarks, the left-
handed leptons, and the right-handed leptons of the
MSSM, respectively. All of the position and Wilson-line
moduli fields are stabilized in this model as well as in the
D9-models.

B. Nonperturbative superpotential: E3-branes

In the present D7-brane system, there are two types of
E-branes keeping the whole brane system stable: E3-branes
and Eð−1Þ-branes. When there are no open string zero
modes interplaying the D-branes and the E-branes, these
instantons generate the nonperturbative superpotential
[note again that we have assumed discrete torsions tuned
to obtain OðNÞ-type E-branes],

Wnp ¼
X
i

Aie−aiTi þ ASe−S: ð3:2Þ

In the IIB orientifold with O3=O7-planes, Ti and S are
given by (i ≠ j ≠ k ≠ i)

Ti ¼ e−ϕAðjÞAðkÞ þ i
Z
T4

C4; S ¼ e−ϕ þ iC0;

and again, we see that two of the Kähler moduli fields are
stabilized by Eq. (3.1).
We first discuss an E3-brane wrapping two of three T2

and localized at a fixed point on the other one, which has an
Oð1Þ gauge symmetry and generates the first term super-
potential of Eq. (3.2), without extra zero modes. Generic
E3/D7 systems are classified into two cases. One is the case
when the E-branes and the D-branes wrap the same T4 ¼
T2 × T2 and are localized at fixed points on the last T2. In
this case, it is easy to eliminate the E3-D7 open string zero
modes, because the two stacks of the branes can be
sequestered spatially when the two stacks are localized
at different fixed points. In the other case, we have to study

TABLE III. The configuration of two stacks of D7-branes is
shown. A symbol “✓”means that D-branes wrap T2, and another
one “×” expresses that D-branes are localized at a fixed point on
T2.

T2 T2 T2

D7A ✓ × ✓

D7B ✓ ✓ ×
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the zero-mode distribution in detail for each model. Recall
again that any E3-brane including all the possible positions
and orbifold parities can appear and we have to take into
account all the possibilities. However, we are interested
only in E3-brane configurations to lead moduli-dependent
superpotential terms.
In the present D7-brane system, there are two stacks of

D7-branes which wrap the four different directions of extra
compact space. An additional E-brane can be sequestered
from one stack by a localization at different fixed points,
but there exist massless open strings between the E-brane
and the other stack of D7-branes to be eliminated by the
orbifold projection. Let us consider an E3-brane which
wraps the first and the second T2 and is localized at a
“vacant” fixed point on the third T2. E3-D7B zero modes
cannot appear, but there are E3-D7A open strings denoted
byΦAE

2 andΦEA
3 . Fortunately, we can eliminate them easily

as follows. They transform under the Z0
2 symmetry

(P0
A ¼ þ14) as

ΦAE
2 → −ΦAE

2 P0
E; ΦEA

3 → −P0−1
E Φ3:

Thus they all can be assigned into a Z0
2 odd mode by

P0
E ¼ þ1 and are eliminated as we wanted, because wave

functions of these open strings must be an even function on
the second and the third T2 as explained above. As a result
we obtain the superpotential

W ¼ A3e−2πT3 :

We will see that this stabilizes the moduli in association
with an additional Eð−1Þ-brane in the following subsection.

C. Nonperturbative superpotential: Eð− 1Þ-branes
It is much easier to find an Eð−1Þ-brane configuration

generating the superpotential for the dilaton superfield. The
Eð−1Þ-brane is an instanton localized completely at a point
on the whole compact space. Thus we can trivially
sequester the Eð−1Þ-brane from the D7-brane system in
order not to produce the harmful zero modes, unless four
fixed points of a T2=Z2ðZ0

2Þ are occupied by multiple stacks
of D7-branes.
One can straightforwardly see that the D7-brane system

admits an Eð−1Þ-brane and an E3-brane simultaneously
and superpotential (2.11) is generated. Similarly to the
D9-brane systems, the second term of Eq. (2.11) produces a
small constant term in the superpotential, and the Kähler
moduli field is stabilized with a moderate value of the VEV.

IV. CONCLUSION AND DISCUSSION

We have studied the nonperturbative superpotential
induced by E-branes in semirealistic D-brane models based
on the toroidal orbifolds.

We have considered two types of D-brane models for the
visible sector. One is based on a stack of eight D9-branes,
where the magnetic fluxes and the orbifold projection yield
the Pati-Salam gauge group with the three generations of
the quarks and the leptons. In the models, magnetic fluxes
generate FI terms, which depend on the Kähler moduli,
and those fix the ratio among three Kähler moduli.
Furthermore, we have found that an E1-brane and an
E5-brane generate the superpotential for the dilaton and
the Kähler moduli, respectively. The dilaton is replaced by
its VEV in the nonperturbative superpotential because we
have assumed the 3-form fluxes to stabilize that. That gives
rise to the sufficient small constant term, and as a result, the
Kähler moduli field is stabilized with a moderately large
value of the VEV. The other D-brane model is derived from
the two stacks of the D7-branes. In this model, the moduli-
dependent FI terms can fix the ratio of three Kähler moduli.
On top of that, we have found that an E3-brane and an
Eð−1Þ-brane successfully generate the superpotential and
stabilize the moduli. In our study, we have found some
constraints on the magnetic fluxes and the orbifold parities
for realizing the moduli stabilization, and it is quite non-
trivial that there exists a successful configuration of
D-branes and E-branes.
In this paper, we have studied moduli stabilizations with

only the visible sector. Since the vacuum we have studied is
supersymmetric and has the negative energy, we need SUSY
breaking and uplifting of the vacuum energy to almost zero
energy. Thus, towards more realistic models, we should also
consider a hidden sector for SUSY breaking.5 A further
additional hidden sector might be requested for the RR
tadpole cancellations and/or other reasons. In these cases, we
have to care about open string zero modes between the
E-branes and the hidden D-branes, because the moduli
stabilizing superpotential vanishes if there appears an extra
zero mode. Besides the open string zero modes, we expect
that there are several important interplays between the SUSY
breaking and the moduli stabilization. It seems that such an
extension to accommodate the SUSY breaking sector is a
very challenging task towards realistic D-brane models.
We have also assumed that the orientifold projections are

well defined and we can obtain the desired gauge groups
and zero modes. Although it might be challenging to embed
the models shown in this paper into a full system of the
string theory holding those assumptions, that would be an
important task towards getting realistic string models and
we would study that elsewhere.
Nonperturbative effects due to E-branes are applied to

other phenomenological issues than the moduli stabiliza-
tion. Another challenging task of D-brane models is to
obtain Majorana mass terms and the supersymmetric Higgs
mass term (μ term). We are able to consider additional

5See, e.g., for explicit construction of the SUSY breaking
sector [39].
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E-branes to generate these mass terms [19–23,28,29]. It is
also an attractive prospect to try that in the D-brane models
shown in this paper.
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APPENDIX: T-DUAL PICTURE

Magnetized D-brane systems are T-dual to intersecting
D-branes. Although they are physically equivalent to each
other, one may more easily be able to investigate the
remaining zero modes in intersecting D-brane systems than
in magnetized D-brane systems. In this appendix, we
introduce an instrument to count the active zero modes
in the T-dual picture, i.e., intersecting D6-branes wrapping
rigid 3-cycles on T6=Z2 × Z0

2 with discrete torsion (see
Ref. [24] for reference).

1. T-dual to D9-brane models

E1-branes and E5-branes discussed in Sec. II are
both equivalent to E2-branes wrapping different extra-
dimensional directions in the T-dual side. That is sche-
matically depicted in Fig. 1. Note that this figure does not
take into account orbifolding for simplicity.
The number of zero modes between an E2-brane and

a D6-brane is counted by the topological intersection
number [24],

1

4

Y3
i¼1

ðnðiÞE ~mðiÞ
D − ~mðiÞ

E nðiÞD Þ

þ 1

4

X
g∈G

X
i;j∈JEg

X
k;l∈JDg

ϵgE;ijϵ
g
D;klδikδjlðn

ðIgÞ
E ~m

ðIgÞ
D − ~m

ðIgÞ
E n

ðIgÞ
D Þ:

ðA1Þ

In this expression, subscripts E and D express the E-brane
and the D-brane. When we denote nontrivial elements of Z2

and Z0
2 by θ and θ

0, respectively, G is a set of θ, θ0, and θθ0.
For each g, sets of fixed points where the E-branes and the
D-branes live are given by JgE and JgD, respectively. There
are two possible orientations on 2-cycles collapsed at a
fixed point contained in JgE or JgD. This degree of freedom is
defined by ϵga;ij ¼ �1. In the magnetized D9-brane models,
that corresponds to the discrete Wilson lines and parities P
and P0. (We have not considered the Wilson lines in this
paper, and then we get ϵgE;ij ¼ ϵgE and ϵgD;kl ¼ ϵgD.) A set of

ðnðiÞD ;mðiÞ
D Þ represents winding numbers along two funda-

mental cycles of the ith T2, and ðnðIgÞa ; m
ðIgÞ
a Þ denotes

winding numbers on a T2 invariant under g ∈ Z2 × Z0
2.

That is, in the present case (2.6), we see ðIθ; Iθ0 ; Iθθ0 Þ ¼
ð3; 1; 2Þ. The tilde on the winding number is a reflection of

nontrivial complex structure, e.g., ~mðiÞ
D ≡mðiÞ

D þ 1
2
nðiÞD when

the torus is tilted, and ~mðiÞ
D ¼ mðiÞ

D when the torus is
rectangular. In the following, we take ~mðiÞ ¼ mðiÞ for
simplicity which is satisfactory for the aim of this section.
In the upper case of Fig. 1, the winding numbers of the

corresponding E2-brane are given by

ðnð1ÞE ;mð1Þ
E Þ ¼ ð−1; 0Þ; ðnð2ÞE ;mð2Þ

E Þ ¼ ð0; 1Þ;
ðnð3ÞE ;mð3Þ

E Þ ¼ ð0; 1Þ: ðA2Þ

In the lower case, the winding numbers are

ðnðiÞE ;mðiÞ
E Þ ¼ ð1; 0Þ ∀ i: ðA3Þ

For example, we will count the number of E2-D6 open
string zero modes with winding numbers (A2). The
corresponding intersection number is given by

IAE ¼ 1

4
mð1Þ

D þ 1

4
ϵθ

0
Dϵ

θ0
Em

ð1Þ
D

þ 1

4

X
i;j∈Sa

θ0

X
k;l∈Sb

θ0

ϵθDϵ
θ
Eδikδjlð1þ ϵθ

0
Dϵ

θ0
E Þ:

One can see that this intersection number vanishes when
ϵθ

0
Dϵ

θ0
E ¼ −1. Thus we can add an E2-brane into the Pati-

Salam models based on the eight D6-branes to generate the
moduli stabilizing superpotential, if ϵθ

0
Da
ϵθ

0
E ¼ −1 is held for

all of the eight D6-branes (a ¼ 1; 2;…; 8). This implies
ϵθ

0
D1

¼ ϵθ
0

D1
¼ � � � ¼ ϵθ

0
D8
. The same result has been obtained

in the magnetized D-brane systems; that is, we have shown
that the zero modes of E1/D9 open strings are completely
eliminated for P ¼ Pþþþ in Sec. II C. Similarly one can
regain the result obtained in Sec. II D by using the winding
numbers (A3).

FIG. 1. A set of three squares expresses a fundamental region of
T2 × T2 × T2. The left and right sides correspond to each other in
T-duality along three vertical axes.
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2. T-dual to D7-brane models

We study the T-dual picture of the D7-brane model with
E3- and Eð−1Þ-branes. They correspond to two types of
E2-branes in the T-duality as shown in Fig. 2. In the upper
case, the winding number of the E2-brane is given by

ðnð1ÞE ;mð1Þ
E Þ ¼ ð1; 0Þ; ðnð2ÞE ;mð2Þ

E Þ ¼ ð1; 0Þ;
ðnð3ÞE ;mð3Þ

E Þ ¼ ð0; 1Þ:

In the other case one sees

ðnðiÞE ;mðiÞ
E Þ ¼ ð0; 1Þ: ∀ i

Substituting them in Eq. (A1), one is able to confirm the
result obtained in the previous section.
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