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We investigate the structure of the three-qubit magic Veldkamp line (MVL). This mathematical notion
has recently shown up as a tool for understanding the structures of the set of Mermin pentagrams, objects
that are used to rule out certain classes of hidden variable theories. Here we show that this object also
provides a unifying finite geometric underpinning for understanding the structure of functionals used in
form theories of gravity and black hole entropy. We clarify the representation theoretic, finite geometric and
physical meaning of the different parts of our MVL. The upshot of our considerations is that the basic finite
geometric objects enabling such a diversity of physical applications of the MVL are the unique generalized
quadrangles with lines of size three, their one-point extensions as well as their other extensions isomorphic
to affine polar spaces of rank 3 and order 2. In a previous work we have already connected generalized
quadrangles to the structure of cubic Jordan algebras related to entropy fomulas of black holes and strings
in five dimensions. In some respect the present paper can be regarded as a generalization of that analysis for
also providing a finite geometric understanding of four-dimensional black hole entropy formulas. However,
we find many more structures whose physical meaning is yet to be explored. As a familiar special case our
work provides a finite geometric representation of the algebraic extension from cubic Jordan algebras to
Freudenthal systems based on such algebras.
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I. INTRODUCTION

In quantum information instead of bits we use qubits.
Qubits are elements of a two-dimensional complex vector
space C2. The basic observables for a single qubit are the
Pauli operators I, X, Y, Z where I is the identity operator
and the remaining ones are the usual operators represented
by the Pauli spin matrices. For a system consisting of N
qubits quantum states correspond to the rays of the N-fold
tensor product space C2 ⊗ � � � ⊗ C2 and the simplest type
of observables are the N-fold tensor products of the
single qubit Pauli operators. Since the algebra of these
simple N-qubit observables is a noncommutative one,
commuting subsets of observables enjoy a special status.
Special arrangements of observables containing such com-
muting subsets are widely used in quantum theory.
Perhaps the most famous arrangements of that type are

the ones that show up in considerations revisiting the
famous proofs of the Kochen-Specker [1] and Bell theo-
rems [2]. Using special configurations of two, three and
four qubits Peres [3], Mermin [4] and Greenberger, and
Horne and Zeilinger [5], have provided a new way of
looking at these theorems. A remarkable feature appearing
in these works was that they were able to rule out certain
classes of hidden variable theories without the use of

probabilities. For the special configurations featuring com-
muting subsets of simple observables, the terms Mermin
squares and pentagrams were coined. Since the advent of
quantum information theory similar structures have been
under intense scrutiny [6–11].
Another important topic where special commuting sets

of Pauli operators are of basic importance is the theory of
quantum error-correcting codes. The construction of such
codes is naturally facilitated within the so-called stabilizer
formalism [12–14]. Here it is recognized that the basic
properties of error-correcting codes are related to the fact
that two operators in the Pauli group are either commuting
or anticommuting. A quantum error control code is a
subspace of the N-qubit state space. In the theory the code
subspace is defined by a set of mutually commuting simple
Pauli operators stabilizing it. Correctable errors are imple-
mented by a special set of operators anticommuting with
the generators taken from the commuting subset.
Surprisingly, the third field where Pauli observables of

simple qubit systems turned out to be useful is black hole
physics within string theory. In the so-called black hole/
qubit correspondence [15] it has been observed that simple
entangled qubit systems and certain extremal black hole
solutions sometimes share identical patterns of symmetry.
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In particular, certain macroscopic black hole entropy
formulas on the string theoretic side turned out to be
identical to certain multiqubit measures of entanglement
[16]. In the string theoretic context the group of continuous
transformations leaving invariant such formulas turned out
to contain physically interesting discrete subgroups named
the U-duality groups [17]. For example, in the special
case of compactifying type IIA string theory on the six-
dimensional torus one obtains a classical low energy theory
which has on shell continuous E7ð7Þ symmetry [18]. In the
quantum theory this symmetry breaks down [17] to the
discrete U-duality group E7ðZÞ. This group, in turn,
contains the physically important subgroup WðE7Þ, the
Weyl group of the exceptional group E7, implementing a
generalization of the electric-magnetic duality group
known from Maxwell theory [19]. Now WðE7Þ=Z2 is
isomorphic to [20] Spð6;Z2Þ, which is the symplectic
group encapsulating the commutation properties of the
three-qubit Pauli observables. This observation provided a
new way of understanding the mathematical structure of
the E7-symmetric black hole entropy formula in terms of
three-qubit quantum gates [21,22].
Recent work also attempted to relate configurations like

Mermin squares to finite geometric structures. In finite
geometry the basic notion is that of incidence. We have two
disjoint sets of objects called points and lines and incidence
is a relation between these sets. For simple incidence
structures the lines are comprising certain subsets of the
set of points, and incidence is just the set-theoretic member-
ship relation. Regarding the nontrivial Pauli observables
as points and observing that any pair of observables is
either commuting or anticommuting, one can define inci-
dence either via commuting or anticommuting. For N-qubit
systems an approach of that kind was initiated in Ref. [23]
with the incidence structure arising from commuting called
Wð2N − 1; 2Þ, the symplectic polar space of rank N and
order 2 [24]. In this spirit it has been realized that certain
subconfigurations of Wð2N − 1; 2Þ, called geometric
hyperplanes [25], are also worth studying. For example,
for the case ofWð3; 2Þ one particular class of its geometric
hyperplanes features the ten possible Mermin squares one
can construct from two-qubit Pauli operators.
Geometric hyperplanes turned out to have an interesting

relevance to the structure of black hole entropy formulas as
well. One particular type of geometric hyperplane of an
incidence structure related to Wð5; 2Þ features 27 points
and 45 lines and has the incidence geometry of a gener-
alized quadrangle [26] GQð2; 4Þ, with the automorphism
groupWðE6Þ. In Ref. [27] it has been shown howGQð2; 4Þ
encodes information about the structure of the E6ð6Þ-
symmetric black hole entropy formula. It has also been
observed [15,27] that certain truncations of this entropy
formula correspond to truncations to further interesting
subconfigurations. For example, the 27 points of GQð2; 4Þ
can be partitioned into three sets of Mermin squares with

nine points each. This partitioning corresponds to the
reduction of the 27-dimensional irreducible representation
of E6ð6Þ to a substructure arising from three copies of three-
dimensional irreps of three SLð3;RÞs. The configuration
related to this truncation has an interesting physical
interpretation in terms of wrapped membrane configura-
tions and is known in the literature as the bipartite
entanglement of three qutrits [15,28].
Sometimes it is useful to form a new incidence structure

with points being geometric hyperplanes. In this picture
certain geometric hyperplanes, regarded as points, form
lines called Veldkamp lines. These lines and points are in
turn organized into the so-called Veldkamp space [25,29].
Applying this notion to the simplest nontrivial case the
structure of the Veldkamp space of Wð3; 2Þ has been
thoroughly investigated, and the physical meaning of the
geometric hyperplanes clarified and pictorially illustrated
[30]. For an arbitrary number of qubits the diagrammatic
approach of Ref. [30] is not feasible. However, a later study
[31] has shown how the structure of the Veldkamp space of
Wð2N − 1; 2Þ can be revealed in a purely algebraic fashion.
In a recent paper [32] it has been shown that the space of

possible Mermin pentagrams of cardinality 12 096 (see [8])
can be organized into 1008 families, each of them con-
taining 12 pentagrams. Surprisingly, the 1008 families can
be mapped bijectively to the 1008 members of a subclass of
Veldkamp lines of the Veldkamp space for three qubits
[32]. For the families comprising 12 pentagrams the term
double sixes of pentagrams has been coined. Due to the
transitive action of the symplectic group Spð6;Z2Þ on this
class of Veldkamp lines [31], it is enough to study merely
one particular family, called the canonical one. It turned out
that the structure of the canonical double six is encapsu-
lated in the weight diagram for the 20-dimensional irre-
ducible representation of the group SUð6Þ.
For three qubits (N ¼ 3) this class of Veldkamp lines

associated with the space of Mermin pentagrams is of a very
special kind. For reasons to be clarified later we call this line
the magical Veldkamp line. The canonical member from this
magical class of Veldkamp lines features three geometric
hyperplanes. Two of them are quadrics of physical impor-
tance. One of them contains 35 points. Its incidence structure
is that of the so-called Klein quadric over Z2. In physical
terms the points of this quadric form the set of nontrivial
symmetric Pauli observables (i.e. the ones containing an
even number of Y operators, the trivial one III excluded).
The other one contains 27 points. Its incidence structure is
that of a generalized quadrangleGQð2; 4Þ. In physical terms
the points of this quadric form the set of nontrivial operators
that are either symmetric and commuting (15 ones), or
antisymmetric and anticommuting (12 ones) with the special
operator YYY. In entanglement theory these 27 Pauli
observables are precisely the nontrivial ones that are left
invariant with respect to the so-called Wootters spin flip
operation [33]. The third geometric hyperplane comprising
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our Veldkamp line arises from the 31 nontrivial observables
that are commuting with our fixed special observable YYY.
For three qubits one has 63 nontrivial Pauli observables.

All of our geometric hyperplanes featuring the magical
Veldkamp line are intersecting in the 15-element core set of
symmetric operators, which are at the same time commut-
ing with the fixed one YYY. It can be shown that this set
displays the incidence structure of a generalized quadrangle
GQð2; 2Þ. In physical terms this incidence structure is
precisely the one of the 15 nontrivial two-qubit Pauli
observables. The core set and the three complements with
respect to the three geometric hyperplanes give rise to a
partitioning of the 63 nontrivial observables of the form
63 ¼ 15þ 12þ 20þ 16.
The results of [27,32] clearly demonstrate that apart

from information concerning incidence, our magic
Veldkamp line also carries information concerning repre-
sentation theory of certain groups and their invariants.
Indeed, the 15þ 12 ¼ 27 point GQð2; 4Þ part encapsulates
information on the structure of the cubic invariant of the
27-dimensional irreducible representation of the exceptional
group E6, with the physical meaning being black hole
entropy in five dimensions. On the other hand, the 20-point
double six of the pentagrams part encapsulates information
on the 20-dimensional irreducible representation associated
with the action of the group A5 ¼ SUð6Þ on three forms in a
six-dimensional vector space. Moreover, we show that this
part of our Veldkamp line also encodes information on the
structure of Hitchin’s quartic invariant for three forms [34],
and certain black hole entropy formulas in four dimensions
[35]. Amusingly, this invariant also coincides with the
entanglement measure used for three fermions with six
single particle states [36], a system of importance in the
history of the N-representability problem [37].
Motivated by these interesting observations coming

from different research fields, in this paper we answer
the following three questions. What is the representation
theoretic meaning of the different parts of our magic
Veldkamp line? What kind of finite geometric structures
does this Veldkamp line encode? And, finally, how are
these geometric structures related to special invariants that
show up as black hole entropy formulas and Hitchin
functionals in four, five, six and seven dimensions?
The organization of this paper is as follows. For the

convenience of high energy physicists not familiar with the
slightly unusual language of finite geometry, we devoted
Sec. II to presenting the background material on incidence
structures. In this section the main objects of scrutiny
appear: generalized quadrangles, extended generalized
quadrangles and Veldkamp spaces. Following the current
trend of high energy physicists also adopting the language
of quantum information and quantum entanglement we
gently introduce the reader to these abstract concepts
via the language of Pauli groups of multiqubit systems.
In Sec. III we introduce our main finite geometric object of

physical relevance: the magic Veldkamp line (MVL).
We have chosen the word magic in reference to objects
called magic configurations (like Mermin squares and
pentagrams) that are used in the literature to rule out
certain classes of hidden variable theories. As we see, these
objects are intimately connected to the structure of our
Veldkamp line, justifying our nomenclature. In the main
body of the paper in different subsections of Sec. III we
study different components of our MVL. In each of these
subsections (Secs. IIIA–IIIG) our considerations involve
studying the interplay between representation theoretic,
finite geometric and invariant theoretic aspects of the
corresponding part. As we demonstrate, each part can be
associated with a natural invariant of physical meaning.
These invariants are the ones showing up in Hitchin
functionals of form theories of gravity and certain entropy
formulas of black hole solutions in string theory, and hence
contain the physical meaning. Of course, the physical role
of these invariants is well known but their natural appear-
ance in concert within a nice and unified finite geometric
picture is new. In developing our ideas one can see that
the finite geometric picture helps to reformulate some of the
known results in an instructive new way. At the same time
this approach also establishes some new connections
between functionals of form theories of gravity. We are
convinced that in the long run these results might help
establish further new results within the field of generalized
exceptional geometry.
Throughout the paper we emphasized the role of grids [i.e.

generalized quadrangles of type GQð2; 1Þ] labeled by Pauli
observables, alias Mermin squares, as basic building blocks
(geometric hyperplanes) comprising certain Veldkamp lines.
In concluding, in Sec. IV we also hint at a nested structure
of Veldkamp lines for three and four qubits with grids sitting
in their cores. In light of this basic role for these simple
objects, it is natural to ask the following:What is the physical
meaning of this building block? Originally, these objects
were used to rule out certain classes of hidden variable
theories. Since they are now appearing in a new role this
question is of basic importance. However, apart from
presenting some speculations at the end of Sec. IV, in this
paper we are not attempting to answer this interesting
question. Here we are content with the aim of demonstrating
that these building blocks can be used for establishing a
unified finite geometric underpinning for form theories of
gravity. We explore the possible physical implications of the
unified picture provided by our MVL in future work.

II. BACKGROUND

The aim of this section is to present the basic definitions,
and refer to the necessary results already presented else-
where. In the following we conform with the conventions
of Refs. [9,31]. The basic object we are working with is
defined as follows:
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Definition 1. The triple ðP;L; IÞ is called an incidence
structure (or point-line incidence geometry) if P and L
are disjoint sets and I ⊆ P × L is an incidence relation.
The elements of P and L are called points and lines,
respectively. We say that p ∈ P is incident with l ∈ L if
ðp; lÞ ∈ I . Two points incident with the same line are
called collinear.
In the following we consider merely those incidence

geometries that are called simple. In simple incidence
structures the lines may be identified with the sets of
points they are incident with, so we can think of these as a
set P together with a subset L ⊆ 2P of the power set of P.
Then if ∈ is defined to be the set theoretic membership
relation, then ðP;L;∈Þ is an incidence structure. The points
incident with a line are called the elements of that line. In a
point-line geometry there are distinguished sets of points
called geometric hyperplanes [25].
Definition 2. Let ðP;L; IÞ be an incidence structure.

A subset H ⊆ P of P is called a geometric hyperplane if
the following two conditions hold:
(H1) ð∀ l ∈ LÞ∶ ðjH ∩ lj ¼ 1 or l ⊆ HÞ,
(H2) H ≠ P.
Our aim is to associate a point-line incidence geometry

to the N-qubit observables forming the Pauli group PN .
In order to do this we summarize the background con-
cerning PN .
Let us define the 2 × 2 matrices

X ¼
�
0 1

1 0

�
Z ¼

�
1 0

0 −1

�
: ð1Þ

Observe that these matrices satisfy X2 ¼ Z2 ¼ I where I is
the 2 × 2 identity matrix. The product of the two is denoted
by iY ¼ ZX ¼ −XZ. The N-qubit Pauli group, PN , is the
subgroup of GLð2N;CÞ consisting of the N-fold tensor
(Kronecker) products of the matrices f�I;�iI;�X;�iX;
�Y;�iY;�Z;�iZg. Usually the shorthand notation
AB…C is used for the tensor product A ⊗ B ⊗ … ⊗ C
of one-qubit Pauli group elements A;B;…; C. The center
of this group is the same as its commutator subgroup; it is
the subgroup of the fourth roots of unity, i.e.

G4 ≡ f�1;�ig ⊂ C×: ð2Þ

It is useful to restrict to theN ¼ 3 case, our main concern
here. The N-qubit case can be obtained by rewriting the
expressions below in a trivial manner. An arbitrary element
of p ∈ P3 can be written in the form

p ¼ sZμ1Xν1 ⊗ Zμ2Xν2 ⊗ Zμ3Xν3 ; s ∈ G4;

ðμ1; ν1; μ2; ν2; μ3; ν3Þ ∈ Z6
2: ð3Þ

Hence if p is parametrized as

p ↔ ðs; μ1;…; ν3Þ ð4Þ

then the product of two elements p; p0 ∈ P3 corresponds to

pp0 ↔ ðss0ð−1Þ
P

3

j¼1
μ0jνj ; μ1 þ μ01;…; ν3 þ ν03Þ: ð5Þ

Hence two elements commute, if and only if

X3
j¼1

ðμjν0j þ μ0jνjÞ ¼ 0: ð6Þ

The commutator subgroup of P3 coincides with its center
ZðP3Þ, which is G4 of Eq. (2). Hence the central quotient
V3 ¼ P3=ZðP3Þ is an Abelian group which, by virtue of
(3), is also a six-dimensional vector space over Z2, i.e.
V3 ≡ Z6

2. Moreover, on V3 the left-hand side of (6) defines
a symplectic form

h·; ·i∶ V3 × V3 → Z2;

ðp; p0Þ ↦ hp; p0i≡X3
j¼1

ðμjν0j þ νjμ
0
jÞ: ð7Þ

The elements of the vector space ðV3; h·; ·iÞ are equivalence
classes corresponding to quadruplets of the form f�O1 ⊗
O2 ⊗ O3;�iO1 ⊗ O2 ⊗ O3g where Oj ∈ fI; X; Y; Zg;
j ¼ 1, 2, 3. We choose O1 ⊗ O2 ⊗ O3 (or O1O2O3 in
short) as the canonical representative of the corresponding
equivalence class. This representative O1O2O3 is
Hermitian, and hence is called a three-qubit observable.
In our geometric considerations the role of the (7)

symplectic form is of utmost importance. It is taking its
values in Z2 according to whether the corresponding
representative Pauli operators are commuting (0) or not
commuting (1). In our geometric considerations Pauli
operators commuting or not correspond to the points in
the relevant geometry that are collinear or not.
According to (3), for a single qubit the equivalence

classes are represented as

I ↦ ð00Þ; X ↦ ð01Þ; Y ↦ ð11Þ; Z ↦ ð10Þ:
ð8Þ

Adopting the ordering convention

O1O2O3 ↔ p≡ ðμ1; μ2; μ3; ν1; ν2; ν3Þ ∈ V3 ð9Þ

the canonical basis vectors in V3 are associated to equiv-
alence classes as follows:

ZII ↔ e1 ¼ ð1; 0; 0; 0; 0; 0Þ; … IIX ↔ e6

¼ ð0; 0; 0; 0; 0; 1Þ: ð10Þ

With respect to this basis the matrix of the symplectic
form is
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Jab ≡ hea; ebi ¼

0
BBBBBBBBBB@

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CCCCCCCCCCA
;

a; b ¼ 1; 2;…6: ð11Þ

Since V3 has even dimension and the symplectic form is
nondegenerate, the invariance group of the symplectic form
is the symplectic group Spð6;Z2Þ. This group is acting on
the row vectors of V3 via 6 × 6 matrices S ∈ Spð6;Z2Þ≡
Spð6; 2Þ from the right, leaving the matrix J of the
symplectic form invariant,

v ↦ vS; SJSt ¼ J: ð12Þ

It is known that jSpð6; 2Þj ¼ 1451520 ¼ 29 · 34 · 5 · 7 and
this group is generated by transvections [22] Tp ∈
Spð6; 2Þ; p ∈ V3 of the form

Tp∶ V3 → V3; q ↦ Tpq ¼ qþ hq; pip ð13Þ

and they are indeed symplectic, i.e.

hTpq; Tpq0i ¼ hq; q0i: ð14Þ

There is a surjective homomorphism [20] from WðE7Þ, i.e.
the Weyl group of the exceptional group E7, to Spð6; 2Þ
with kernel Z2.
The projective space PGð2N − 1; 2Þ consists of the

nonzero subspaces of the 2N-dimensional vector space
VN over Z2. The points of the projective space are one-
dimensional subspaces of the vector space, and more
generally, k-dimensional subspaces of the vector space
are (k − 1)-dimensional subspaces of the corresponding
projective space. A subspace of ðVN; h·; ·iÞ (and also the
subspace in the corresponding projective space) is called
isotropic if there is a vector in it which is orthogonal (with
respect to the symplectic form) to the whole subspace,
and totally isotropic if the subspace is orthogonal to itself.
The space of totally isotropic subspaces of ðPGð2N −
1; 2Þ; h·; ·iÞ is called the symplectic polar space of rank N,
and order 2, denoted byWð2N − 1; 2Þ. The maximal totally
isotropic subspaces are called Lagrangian subspaces.
For an element x ∈ V3 represented as in (9), let us define

the quadratic form

Q0ðpÞ≡
X3
j¼1

μjνj: ð15Þ

It is easy to check that for vectors representing symmetric
observables Q0ðpÞ ¼ 0 (the ones containing an even
number of Ys) and for antisymmetric ones Q0ðpÞ ¼ 1
(the ones containing an odd number of Ys). Moreover, we
have the relation

hp; p0i ¼ Q0ðpþ p0Þ þQ0ðpÞ þQ0ðp0Þ: ð16Þ

The (15) quadratic form is regarded as the one labeled by
the 0-element of V3 with representative observable III.
There are however, 63 other quadratic formsQp compatible
with the symplectic form h·j·i labeled by the nontrivial
elements q of V3 also satisfying

hp; p0i ¼ Qqðpþ p0Þ þQqðpÞ þQqðp0Þ: ð17Þ

They are defined as

QqðpÞ≡Q0ðpÞ þ hq; pi2 ð18Þ

and, since we are over the two-element field, the square can
be omitted.
For more information on these quadratic forms we

orient the reader to [22,31]. Here we merely elaborate
on the important fact that there are two classes of such
quadratic forms. They are the ones that are labeled by
symmetric observables (Q0ðqÞ ¼ 0), and antisymmetric
ones (Q0ðqÞ ¼ 1). The locus of points in PGð5; 2Þ satisfy-
ing QqðpÞ ¼ 0 for Q0ðqÞ ¼ 0 is called a hyperbolic
quadric and the locus QqðpÞ ¼ 0 for which Q0ðqÞ ¼ 1

is called an elliptic one. The space of the former type of
quadrics is denoted by Qþð5; 2Þ and the latter type by
Q−ð5; 2Þ. Looking at Eq. (18) one can see that in terms of
three-qubit observables (modulo elements of G4) one can
characterize the quadrics Qð5; 2Þ as follows. The three-
qubit observables p ∈ Qð5; 2Þ characterized byQqðpÞ ¼ 0

are the ones that are either symmetric and commuting with
q or antisymmetric and anticommuting with q. It can be
shown [22,31] that we have 36 quadrics of type Qþð5; 2Þ
and 28 ones of typeQ−ð5; 2Þ, with the former containing 35
and the latter containing 27 points of PGð5; 2Þ. A quadric
of Qþð5; 2Þ type in PGð5; 2Þ is called the Klein quadric.
Note that the points lying on the Klein quadric Q0 ∈
Qþð5; 2Þ given by the equation Q0ðpÞ ¼ 0 can be repre-
sented by symmetric observables, i.e. ones that contain an
even number of Ys.
On the other hand, a quadric of Q−ð5; 2Þ type can be

shown to display the structure of a generalized quadrangle
[26] GQð2; 4Þ, an object we already mentioned in the
introduction and define below.
Definition 3. A generalized quadrangle GQðs; tÞ of

order ðs; tÞ is an incidence structure of points and lines
(blocks) where every point is on tþ 1 lines (t > 0), and
every line contains sþ 1 points (s > 0) such that if p is a
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point and L is a line, p not on L, then there is a unique point
q on L such that p and q are collinear.
It is easy to prove that in a GQðs; tÞ there are ðsþ 1Þ

ðstþ 1Þ points and ðtþ 1Þðstþ 1Þ lines [26]. In what
follows, we are uniquely concerned with generalized quad-
rangles having lines of size three, GQð2; tÞ and t ≥ 1.
One readily sees [26] that these quadrangles are of three
distinct kinds, namely GQð2; 1Þ, GQð2; 2Þ and GQð2; 4Þ.
AGQðs; 1Þ is called a grid. In this paperGQð2; 1Þgrids,with
their points labeled by Pauli observables, play an important
role. Their points correspond to nine observables commuting
along their six lines. Clearly, every observable is on two
lines and every line contains three observables. Since the
observables are commuting along the lines, one can take their
product unambiguously.We are interested in lines labeled by
observables producing plus or minus the identity when
multiplied. Such lines are called positive or negative lines.
AMermin square is aGQð2; 1Þ labeled by Pauli observables
having an odd number of negative lines. It can be shown [38]
that any grid labeled by multiqubit Pauli observables has an
odd number of negative lines. Hence, any GQð2; 1Þ labeled
by multiqubit Pauli observables is a Mermin square.
A generalized quadrangle of type GQð2; 2Þ is also called

the doily [26,39]. It has 15 points and 15 lines. Its simplest
representation can be obtained by the so-called duad
construction as follows. Take the 15 two-element subsets
(duads) of the set S ¼ f1; 2; 3; 4; 5; 6g and regard triples of
such duads collinear whenever their pairwise intersection
is the empty set: e.g. ff12g; f34g; f56gg is such a line.
A visualization of this construction is given in Fig. 1.
An alternative realization of the doily, depicted in Fig. 2, is

obtained by noticing that we have precisely 15 nontrivial
(identity removed) two-qubit Pauli observables [23], and also
15 pairwise commuting triples of them. It can be shown that
there are precisely ten grids, i.e. GQð2; 1Þs, living as geo-
metric hyperplanes inside the doily [23,31]. A particular
example of a grid inside the doily is shown in Fig. 2. All of
these grids give rise to Mermin squares as shown in Fig. 3.
The final item in the line of generalized quadrangles

with s ¼ 2 is GQð2; 4Þ, i.e. our elliptic quadric Q−ð5; 2Þ.
In order to label this object by Pauli observables three

qubits are needed. A pictorial representation of GQð2; 4Þ
having 27 points and 45 lines labeled by three-qubit
observables can be found in Ref. [27]. GQð2; 4Þ contains
36 copies of doilies as geometric hyperplanes. It also
contains grids, though they are not geometric hyperplanes
of GQð2; 4Þ. It can be shown that there are 40 triples of
pairwise disjoint grids [27] inside GQð2; 4Þ. Grids giving
rise to Mermin squares labeled by three-qubit Pauli
observables are arising in groups of ten living inside doilies
with three-qubit labels. A trivial example of that kind can
be obtained by adjoining as a third observable the identity
to all the two-qubit labels of Fig. 3.
For our purposes it is important to know that the notion

of generalized quadrangles can be extended [40,41]. Let us
consider an incidence structure S consisting of points
and blocks (lines). For any point p, let us then define
Sp as the structure of all the points different from p that are
on a block on p, and all the blocks on p. Sp is called the
residue of p. Then we have the following definition.
Definition 4. An extended generalized quadrangle

EGQðs; tÞ of order ðs; tÞ is a finite connected incidence
structure S, such that for any point p its residue Sp is a
generalized quadrangle of order ðs; tÞ.
We have seen that incidence structures labeled by three

commuting observables giving rise to the identity up to sign
are of special status. This motivates the introduction of the
following point-line incidence structure.
Definition 5. Let N ∈ Nþ 1 be a positive integer, and

VN be the symplectic Z2-linear space. The incidence
structure GN of the N-qubit Pauli group is ðP;L;∈Þ where
P ¼ VNnf0g,

L ¼ ffp; q; pþ qgjp; q ∈ P; p ≠ q; hp; qi ¼ 0g: ð19Þ

Clearly the points and lines of GN are the ones of the
symplectic polar space Wð2N − 1; 2Þ. Of course our main
concern here is theN ¼ 3 case. In this case G3 has 63 points
and 315 lines.

FIG. 1. The doily with the duad labeling. FIG. 2. The doily labeled by nontrivial two-qubit Pauli ob-
servables. Inside the doily a geometric hyperplane (see definition
II), or grid is shown.
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Our next task is to recall the properties of the geometric
hyperplanes of GN . The following lemma was proved in
Ref. [31].
Lemma 1. Let N ∈ Nþ 1 be a positive integer, GN ¼

ðP;L;∈Þ and q ∈ VN be any vector. Then the sets

Cq ¼ fp ∈ Pjhp; qi ¼ 0g ð20Þ
and

Hq ¼ fp ∈ PjQqðpÞ ¼ 0g ð21Þ
satisfy (H1).
This lemma shows that apart from C0, all of the sets

above are geometric hyperplanes of the geometry GN.
The set Cq is called the perp-set, or the quadratic cone
of q ∈ VN . Modulo an element of G4, Cq represents the set
of observables commuting with a fixed one q. Back to the
implications of our lemma one can show that in fact more is
true; all geometric hyperplanes arise in this form [31].
Theorem 1. Let N ∈ Nþ 1, Gn ¼ ðP;L;∈Þ, with

H ∈ P being a subset satisfying (H1). Then either
H ¼ Cp or H ¼ Hp for some p ∈ VN .
One can prove that for N ≥ 2 no geometric hyperplane is

contained in another one, more precisely [31].
Theorem 2. Let N ∈ Nþ 2, Gn ¼ ðP;L;∈Þ and sup-

pose that A;B ⊂ P are two geometric hyperplanes.
Then A ⊆ B implies A ¼ B.

Another property of two different geometric hyperplanes
is that the complement of their symmetric difference gives
rise to a third geometric hyperplane i.e. the following:
Lemma 2. For A ≠ B geometric hyperplanes in GN ¼

ðP;L;∈Þ with N ≥ 1 the set

A ⊞ B ≔ A△B ¼ ðA ∩ BÞ ∪ ðĀ ∩ B̄Þ ð22Þ

is also a geometric hyperplane.
One can also check that by using the notation

C≡ A ⊞ B

A∩C¼ A∩B; B∩C¼ A∩B; A⊞C¼B: ð23Þ
A corollary of this is that any two of the triple ðA;B;A⊞BÞ
of hyperplanes determine the third.
Sometimes it is also possible to associate to a particular

incidence geometry another one called its Veldkamp space
whose points are geometric hyperplanes of the original
geometry [25].
Definition 6. Let Γ ¼ ðP;L; IÞ be a point-line geom-

etry. We say that Γ has Veldkamp points and Veldkamp
lines if it satisfies the following conditions:
(V1) For any hyperplane A it is not properly contained in
any other hyperplane B.
(V2) For any three distinct hyperplanes A, B and C,
A ∩ B ⊆ C implies A ∩ B ¼ A ∩ C.

FIG. 3. The full set of Mermin squares living inside the doily. The ten copies of relevant grids can be identified after successive
rotations by 72 degrees of the embedded patterns of grids seen in the second and fourth columns. The first Mermin square, up to an
automorphism, is the grid of Fig. 2. It is embedded in the doily after a counter clockwise rotation by 72 degrees of the second pattern
seen in the lower right corner.
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If Γ has Veldkamp points and Veldkamp lines, then we
can form the Veldkamp space VðΓÞ ¼ ðPV;LV;⊇Þ of Γ,
where PV is the set of geometric hyperplanes of Γ, and LV
is the set of intersections of pairs of distinct hyperplanes.
Clearly, by theorem 2, GN contains Veldkamp points for

N ≥ 2; hence in this case V1 is satisfied. In order to see that
V2 holds as well, we note [31] the following:
Lemma 3. Let N ∈ Nþ 1, p; q ∈ VN and GN ¼

ðP;L;∈Þ. Then the following formulas hold:

Cp ⊞ Cq ¼ Cpþq;

Hp ⊞ Hq ¼ Cpþq;

Cp ⊞ Hq ¼ Hpþq: ð24Þ

From this it follows that for any three geometric hyper-
planes A, B,Cwe have A ∩ B ¼ A ∩ C ¼ B ∩ C. One can
however show more [31], namely that there is no other
possibility i.e. A ∩ B ⊆ C implies C ∈ fA;B; A ⊞ Bg.
Theorem 3. Let N ∈ Nþ 3, and suppose that A, B, C

are distinct geometric hyperplanes of GN ¼ ðP;L;∈Þ such
that A ∩ B ⊆ C. Then A ∩ B ¼ A ∩ C.
Notice that the statement is not true for N ¼ 2.
From these results it follows that there are two different

types of Veldkamp lines incident with three C-hyperplanes
and three types of lines which are incident with one
C-hyperplane and two H-hyperplanes. Indeed, the two
types arise from the possibilities for Cp and Cq having
hp; qi ¼ 0 or hp; qi ¼ 1. For the three types featuring also
two H-type hyperplanes we mean

ffHp;Hqgjp;q∈VN;p≠ q;Q0ðpÞ¼Q0ðqÞ¼ 0g; ð25Þ

ffHp;Hqgjp;q∈VN;p≠ q;Q0ðpÞ¼Q0ðqÞ¼ 1g; ð26Þ

ffHp;Hqgjp; q ∈ VN;Q0ðpÞ ≠ Q0ðqÞg: ð27Þ

III. THE MAGIC VELDKAMP LINE

From the previous section we know that for the incidence
geometry GN we have five different classes of Veldkamp
lines. Three classes contain lines featuring two quadrics
and a perp-set as geometric hyperplanes. These lines are
defined by the triple of the form ðHp;Hq; CpþqÞ.
Let us now consider N ¼ 3 and the choice ffHp;Hqgj

p; q ∈ V3; Q0ðpÞ ≠ Q0ðqÞg. Hence, one of our quadrics
should be an elliptic and the other a hyperbolic one. For
N ¼ 3 we have 36 possibilities for choosing the hyperbolic
and 28 ones for choosing the elliptic one; hence altogether
this class contains 28 × 36 ¼ 1008 lines. Let us now
consider the special case of p ¼ III and q ¼ YYY. In
the following we call the corresponding Veldkamp line
fHIII; HYYY; CYYYg the canonical magic Veldkamp line.
By transitivity in our class of Veldkamp lines from the

canonical one we can reach any of the 1008 lines via
applying a set of suitable symplectic transvections of the
(13) form. For the construction of the explicit form of such
transvections see Refs. [31,32].
According to [32], to our Veldkamp line one can

associate subsets of Pauli observables of cardinalities: 15
[core set, a generalized quadrangle GQð2; 2Þ doily], 27
[elliptic quadric, a generalized quadrangle GQð2; 4Þ], 35
(hyperbolic quadric, i.e. the Klein quadric), and 31 (perp-
set, a quadratic cone). In addition to these basic cardinal-
ities one also has the characteristic numbers: 12 (Schläfli’s
double-six [27,39]), 20 (the double-six of Mermin penta-
grams [32]), and 16 (the complement of the core in the
perp-set). These sets are displayed in Figs. 4 and 5.
In [32] the complement of the doily in the hyperbolic-

quadric part of this Veldkamp line, i.e. the green triangle
of Fig. 4, has been studied. It was shown that this
cardinality 20 part forms a very special configuration
of 12 Mermin pentagrams. For this structure the term
double six of Mermin pentagrams has been coined. In [32]
the representation theoretic meaning of this part has been
clarified. Our aim in this paper is to achieve a unified
representation theoretic understanding for all parts of
this Veldkamp line and connect these findings to the
structure of black hole entropy formulas and Hitchin
invariants. As we see the Veldkamp line of Fig. 4 acts
as an agent for arriving at a unified framework for a finite
geometric understanding of Hitchin functionals giving
rise to form theories of gravity [35].

FIG. 4. The structure of the magic Veldkamp line. The colored
parallelograms are geometric hyperplanes with characteristic
cardinalities (number of points) as follows: red 31 (perp-set),
blue 27 (elliptic quadric), and green 35 (hyperbolic quadric).
Their common intersection is the core set of 15 points, which
forms a doily. The three hyperplanes satisfy the properties of
Eqs. (22) and (23). The red dot on the top of the triangle
corresponds to the special point defining the perp-set. For the
canonical magic Veldkamp line this point is labeled by the
observable YYY.
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As we stressed, the hint for using the notion of a
Veldkamp line for arriving at this unified framework came
from a totally unrelated field: a recent study of the space of
Mermin pentagrams. The basic idea of [32] was to establish
a bijective correspondence between the 20 Pauli observ-
ables of the double six of pentagrams part and the weights
of the 20-dimensional irrep of A5 in such a way that the
notion of commuting observables translates to weights
having a particular angle between them. Then the notion of
four observables comprising a line translates into the notion
that the sum of four incident weights is 0. As a result of
that procedure, a labeling of the Dynkin diagram and the
highest weight vector with three-qubit Pauli observables of
A5 was found. Then, due to the correspondence between
the Weyl reflections and the symplectic transvections, the
weight diagram labeled with observables can also be found.
Hence, as the main actors for the role of understanding the
geometry of the space of Mermin pentagrams the approach
of [32] employed finite geometry and representation theory.
In this paper we add new actors to the mix. They are certain
invariants that are inherently connected to the finite geo-
metric and representation theoretic details.
In order to arrive at a similar level of understanding for

all parts of our Veldkamp line as in [32] we proceed as
follows. First we employ a labeling scheme that displays
the geometric content more transparently than the one in
terms of observables. A convenient labeling of that kind is
provided by using the structure of a seven-dimensional
Clifford algebra. As a particular realization we consider the
following set of generators,

ðΓ1;Γ2;Γ3;Γ4;Γ5;Γ6;Γ7Þ
¼ ðZYI; YIX; XYI; IXY; YIZ; IZY; YYYÞ; ð28Þ

satisfying

fΓI;ΓJg ¼ 2δIJ; I; J ¼ 1; 2;…7; ð29Þ

and

iΓ1Γ2Γ3Γ4Γ5Γ6Γ7 ¼ III: ð30Þ

Let us then consider the following three sets of operators:

ΓI; ΓIΓJ; ΓIΓJΓK; 1 ≤ I < J < K ≤ 7:

ð31Þ

It is easy to check that the first two sets contain 7þ 21 ¼ 28
antisymmetric operators and the third set contains 35
symmetric ones. Consider now the relations above modulo
elements of G4. Using a labeling based on this Clifford
algebra one can derive an explicit list of Pauli operators
featuring our magic Veldkamp line. Indeed the relevant
subsets, corresponding to the triangles of Fig. 5, of cardi-
nalities 20,12,16,15, can be labeled as

fΓaΓbΓcg; fΓa;ΓaΓ7g; fΓaΓb;Γ7g;
fΓaΓbΓ7g 1 ≤ a < b < c ≤ 6: ð32Þ

One can then check that the particular choice of (28)
automatically reproduces the set of Pauli observables of
[32] that make up the ones of the double six of pentagrams
in the form fΓiΓjΓkg. This procedure results in a labeling
of the 20 operators of the canonical set in terms of
the three element subsets of the set f1; 2; 3; 4; 5; 6g ¼
f1; 2; 3; 1̄; 2̄; 3̄g. Indeed, we have

Γð123Þ ↔ IIX;

0
B@

Γð1̄23Þ Γð1̄31Þ Γð1̄12Þ

Γð2̄23Þ Γð2̄31Þ Γð2̄12Þ

Γð3̄23Þ Γð3̄31Þ Γð3̄12Þ

1
CA

↔

0
B@

ZZZ YXY XZZ

XYY IIZ ZYY

ZXZ YZY XXZ

1
CA; ð33Þ

Γð123Þ ↔ YYZ;

0
B@

Γð123Þ Γð131Þ Γð112Þ

Γð223Þ Γð231Þ Γð212Þ

Γð323Þ Γð331Þ Γð312Þ

1
CA

↔

0
B@

XXX ZII XZX

IZI YYX IXI

ZXX XII ZZX

1
CA; ð34Þ

where we employed the notation ΓðμνρÞ ≡ ΓμΓνΓρ. Note that
the transvection TYYY ¼ TΓ7

acts as the involution of
taking the complement in the set f1; 2; 3; 1̄; 2̄; 3̄g, since
for example,

FIG. 5. Decomposition of the magic Veldkamp line into
triangles of characteristic substructure via Clifford labeling. In
this decomposition the basis vector Γ7 corresponding to the red
dot enjoys a special status. It belongs to the perp-set part of the
Veldkamp line.
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Γ7Γð1̄23Þ ¼ Γ7Γ2Γ3Γ4 ≃ Γ1Γ5Γ6 ¼ Γð123Þ ≃ XXX; ð35Þ

where≃means equality modulo an element of G4. One can
also immediately verify that the transvection TΓ7

exchanges
the two components of the set fΓμ;Γμ7g (Schläfli’s double
six [27,39]) and the 15 operators fΓμΓνΓ7g and fΓμΓνg
provide two different labelings for the doily (GQð2; 2Þ), the
first giving a labeling for the core set [32], the second one
providing the duad labeling corresponding to Fig. 1.
Now, according to (32), the special structure of our

canonical Veldkamp line seems to be related to the special
realization of our Clifford algebra. Indeed, all of the
operators of (28) are antisymmetric ones. However, since
all of what is important for us is merely commutation
properties, we could have used any such realization of the
algebra. Hence our labeling convention suggests that one
should be able to recast all the relevant information
concerning our Veldkamp line entirely in terms of one,
two, and three element subsets of the set f1; 2;…; 7g.
This is indeed the case.
Let us elaborate on that point [42–44]. Let S≡ f1; 2; 3;

4; 5; 6; 7g. Then we are interested in incidence structures
defined on certain sets of elements of PðSÞ≡ 2S with
cardinality 1,2 and 3. PðSÞ can be given the structure of
a vector space over Z2. Addition is defined by taking the
symmetric difference of two elements A;B ∈ PðSÞ, i.e.

Aþ B ¼ ðA ∪ BÞ − ðA ∩ BÞ ð36Þ

and 1 ·A ¼ A and 0 ·A ¼ f0g. Let us denote by jAj the
cardinality of A modulo 2. Then one can define a
symplectic form h·j·i∶ PðSÞ × PðSÞ → Z2 by

hAjBi ¼ jAj · jBj þ jA ∩ Bj: ð37Þ

One can again define the symplectic transvections, as
involutive Z2-linear maps given by the expression

TBA ¼ Aþ hAjBiB: ð38Þ

Now it is easy to connect this formalism to our
description of Pauli observables in terms of a seven-
dimensional Clifford algebra. Define the map f∶ PðSÞ →
Cliffð7Þ by

fðAÞ ¼ ΓðAÞ ð39Þ

where, for example, for A ¼ f134g we have fðAÞ ¼
Γð134Þ ¼ Γ1Γ3Γ4 etc. Now it is easy to prove that [42]

ΓðAÞΓðBÞ ¼ ð−1ÞhAjBiΓðBÞΓðAÞ: ð40Þ

Hence, for example, for sets A and B of cardinality 3 if
jA ∩ Bj ¼ 1 the observables ΓðAÞ and ΓðBÞ commute;
otherwise they anticommute. Now one can check that all

of the relevant information on the commutation properties
of observables, and also information on the action of the
symplectic group can be nicely expressed in terms of data
concerning one-, two- and three-element subsets of S.

A. The Doily and Hitchin’s symplectic functional

In our magic Veldkamp line we have two subsets of 15
observables. One belongs to the core set of our Veldkamp
line (black triangle of Fig. 5), and the other belongs to the
complement of the core in the perp-set of the special
observable Γ7 ¼ YYY (red triangle in Fig. 5). Let us
concentrate on the latter subset. According to Fig. 5 this
set is described by an A ∈ PðSÞ of the form A ¼
fa; bj1 ≤ a < b ≤ 6g. The corresponding observables are
iΓðAÞ ↔ iΓaΓb. They are represented by antisymmetric,
Hermitian matrices. It is easy to establish a bijective
correspondence between these 15 observables and the 15
weights of the 15-dimensional irrep of A5.
As is well known [45] these weights live in a five-

dimensional hyperplane, with normal vector n≡ ð1; 1; 1;
1; 1; 1ÞT of R6. Knowing that the Dynkin labels [45] of
the highest weight vector of this representation are (01000),
an analysis based on the Cartan matrix of A5 similar to the
detailed one that can be found in [32] yields the following
set of 15 weights:

ΛðabÞ ¼ ea þ eb −
1

3
n; n ¼ ð1; 1; 1; 1; 1; 1ÞT;

1 ≤ a < b ≤ 6: ð41Þ

One can immediately check that the weights ΛðabÞ are
orthogonal to n and satisfy the scalar product relations

ðΛðAÞ;ΛðBÞÞ ¼

8>><
>>:

− 2
3
; jA ∩ Bj ¼ 0;

þ 1
3
; jA ∩ Bj ¼ 1;

þ 4
3
; jA ∩ Bj ¼ 2≡ 0 mod 2:

ð42Þ

Hence, by virtue of (40), if jA ∩ Bj ¼ 0 the corresponding
observables are commuting otherwise anticommuting ones.
Notice that for two different commuting observables the
corresponding weights have an angle of 120 degrees. Three
different mutually commuting observables represented by
three weights that satisfy the sum rule

ΛðA1Þ þ ΛðA2Þ þ ΛðA3Þ ¼ 0; jAα ∩ Aβj ¼ 0;

α; β ¼ 1; 2; 3 ð43Þ

are of special status. Indeed, it is easy to show that the 15
weights regarded as points and the 15 triples of points
satisfying our sum rule, regarded as lines, give rise to an
incidence structure of a doily, GQð2; 2Þ. For example, the
weights Λð12Þ;Λð34Þ;Λð56Þ satisfy the sum rule and give rise
to the line (12,34,56) of GQð2; 2Þ. This GQð2; 2Þ structure
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can also be realized as a distribution of 15 points on the
surface of a four-sphere with the radius 2=

ffiffiffi
3

p
lying in

the five-dimensional hyperplane with a normal vector
(1,1,1,1,1,1). The lines are then formed by any three
equidistant points connected by a geodesic on the surface
of that four-sphere (the three points correspond to three
vectors with an angle of 120 degrees lying on a great
circle). Alternatively, triples of points representing lines
correspond to three mutually commuting observables with
their products giving rise to Γ7 modulo G4.
There is, however, an alternative way of producing the

incidence structure of the doily. This way arises from
regarding the weights of Eq. (41) as ones labeled by four-
element subsets A of S. Hence, for example the highest
weight Λð12Þ can alternatively be labeled as Λð3456Þ.
Moreover, since Γð3456Þ ≃ Γð127Þ this labeling by four-
element subsets can be converted to three-element ones.
This means that we can dually label the points of a
GQð2; 2Þ by triples of the form fab7g. Since according
to Fig. 5 this set covers precisely the core set of our
Veldkamp line, we conclude that the finite geometric
structure of the core is just another copy of the doily.
An example of a line of this doily is (127,347,567).
By virtue of Eq. (30) to any such triples of triads there
corresponds a triple of mutually commuting symmetric
Pauli observables such that their product equals the identity
III (modulo G4).
If we label the nodes of the A5-Dynkin diagram by the

simple roots αn, n ¼ 1, 2, 3, 4, 5, as can be seen in Fig. 6 and
apply the (38) transvections TA with A taken from the five
subsetsf12; 23; 34; 45; 56g to theweights, then starting from
the highest weight B ¼ f127g the weight diagram can be
generated. The result can be seen in Fig. 7. Notice that
according to the (28) dictionary and the bijective mapping of
Eq. (39) this labeling via elements ofPðSÞ of the Dynkin and
the weight diagrams automatically gives rise to a labeling in
terms of Pauli observables. Similar labeling schemes can be
found in [22,32]. This result establishes a correspondence
between a representation theoretic and a finite geometric
structure (namely the doily).
Let us now show that the incidence structure of the

15-element core set of our Veldkamp line encodes the
structure of a cubic SLð6Þ invariant related to the 15 of A5.
As is well known this invariant is the Pfaffian of an
antisymmetric 6 × 6 matrix ωij,

PfðωÞ ¼ 1

3!23
εabcdefωabωcdωef

¼ ω12ω34ω56 − ω13ω24ω56 þ � � � : ð44Þ

Clearly, according to Fig. 1, the 15 monomials of this cubic
polynomial can be mapped bijectively to the 15 lines of the
doily residing in the core of our Veldkamp line. What about
the signs of the monomials?
In order to tackle the problem of signs we relate this

invariant to Pauli observables of the form Oab ¼ O†
ab ¼

iΓaΓbΓ7 with 1 ≤ a < b ≤ 6 and define the 8 × 8matrixΩ,

Ω ¼ i
X
a<b

ωabΓaΓbΓ7 ¼ ω12ðiΓ1Γ2Γ7Þ

þ ω13ðiΓ1Γ3Γ7Þ þ � � � þ ω56ðiΓ5Γ6Γ7Þ: ð45Þ

Then the Pfaffian can also be written in the form

PfðωÞ ¼ −1
3!23

TrðΩ3Þ: ð46Þ

Indeed, in this newversion of thePfaffian the 15 basis vectors
in the expansion of Ω are three-qubit observables. Since,
according to Eq. (30), the product of commuting triples of
observables corresponding to lines in Fig. 1 results in �1
times the 8 × 8 identitymatrix, these terms give rise to the 15
signed monomials of Eq. (44). The remaining triples give
trace zero terms; hence the result of Eq. (46) follows.
A dual of this invariant is obtained by considering the

dual 6 × 6 matrix

~ωef ¼ 1

8
εefabcdωabωcd ≡ 1

24
εefabcdQabcd: ð47Þ

FIG. 6. The A5 Dynkin diagram labeled by duads.

FIG. 7. The weight diagram for the 15 of A5. The weights
labeled by three-element subsets as fab7g correspond to the core
set of Fig. 5 of our Veldkamp line labeled by ΓaΓbΓ7.
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Note that, for example,

~ω56 ¼ Q1234 ¼ ω12ω34 − ω13ω24 þ ω14ω23: ð48Þ

Then

Pfð ~ωÞ ¼ ½PfðωÞ�2: ð49Þ

Introducing a new 8 × 8 matrix

~Ω ¼ Q3456Γ3Γ4Γ5Γ6 −Q2456Γ2Γ4Γ5Γ6 þ � � �
¼ i ~ω12Γ1Γ2Γ7 þ i ~ω13Γ1Γ3Γ7 þ � � � ð50Þ

one can write

Pfð ~ωÞ ¼ −1
3!23

Trð ~Ω3Þ: ð51Þ

If PfðωÞ > 0, then

PfðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Pfð ~ωÞ

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
F ðQÞ

p
: ð52Þ

The quantity
ffiffiffiffiffiffiffiffiffiffiffiffi
F ðQÞp

is the invariant which is used to define
a functional [35] on a closed orientable six-manifold M
equipped with a (nondegenerate) four form Q ¼ 1

2
ω ∧ ω,

VSH½Q� ¼
Z
M

ffiffiffiffiffiffiffiffiffiffiffiffi
F ðQÞ

p
d6x: ð53Þ

The critical point of this Hitchin functional [35,46] defines a
symplectic structure for the six-manifold.
Let us elaborate on the structure of F ðQÞ underlying this

Hitchin functional. Clearly, its structure is encoded into the
one of the matrix of Eq. (50). It can be regarded as an
expansion in terms of three-qubit Pauli observables. Now
the labels fabcdg, with a < b < c < d can be regarded as
dual ones to the familiar labels fmn7g of our core doily.
Indeed, a line of the doily like 127 − 347 − 567 can be
labeled dually as 3456 − 1256 − 1234. In the cubic expres-
sion of Eq. (51) this line gives rise to a term proportional
to Γ3456Γ1256Γ1234 ¼ −III, i.e. the negative of the 8 × 8
identity matrix. Alternatively, one can regard this identity
as the one between three commuting Pauli observables with
the product being the negative of the identity. Now all the
lines giving contribution to F ðQÞ feature triples of com-
muting observables giving rise to either −III or þIII.
These lines are called positive or negative lines. Now from
Fig. 3 we know that Mermin squares are geometric
hyperplanes of the doily with nine points and six lines,
and a particular distribution of signs for the 15 lines of the
doily governed by F ðQÞ implies a distribution for the six
lines of the ten possible Mermin squares. It is easy to check
that all of them contain an odd number of negative lines,
and hence can furnish a proof for ruling out noncontextual
hidden variable theorems.

As an illustration let us use again the notation
f1; 2; 3; 4; 5; 6g ¼ f1; 2; 3; 1̄; 2̄; 3̄g and keep only nine
terms from the expression of ~Ω of (50) defining the matrix

M ¼ i
X3
α¼1

X3̄
β̄¼1̄

~ωαβ̄Γαβ̄7 ¼ i ~ω14Γ147 þ � � �

¼ Q2356Γ2356 þ � � � : ð54Þ

Then it is easy to check that the nine observables showing
up in the expansion ofM form a 3 × 3 grid labeled by Pauli
observables such that the ones along its six lines are
commuting. A short calculation shows that we have three
negative and three positive lines. Hence, the object we
obtained is an example of a Mermin square [4].
Let us now calculate the restriction of (51) to M.

The result is

1

3!23
TrðM3Þ ¼ Detð ~ωαβ̄Þ: ð55Þ

Since it is the determinant of a 3 × 3 matrix, it has three
monomials with a plus and three ones with a minus sign,
hence reproducing the distribution of signs of a Mermin
square via a substructure of the Pfaffian.
Summing up: to an incidence structure (doily) forming

the core of our magic Veldkamp line one can associate an
invariant which encodes information on the structure of
its lines and also on the distribution of signs for these lines.
Moreover, Eqs. (52) and (55) also show that substructures
like Mermin squares live naturally inside the expression for
Hitchin’s invariant F ðQÞ.
We note in closing that from (48) we see that the 15

independent components of Qabcd are built up from those
components of ωab that are labeling the perp-sets (geo-
metric hyperplanes again) of the doily. For example, in the
duad labeling the perp-set of (56) consists of the points
labeled by the ones (12),(34),(13),(24),(14),(23). In terms
of observables these correspond to the ones commuting
with the fixed one −iΓ5Γ6 ¼ YZX. This occurrence of the
perp-sets inside the core doily can be understood yet
another way. We already know from Fig. 7 that the weights
of the 15 of A5 are labeled as fab7g. We can decompose
this irrep with respect to the subgroup A1 × A3. More
precisely let us consider the real form SUð6Þ of A5.
Then under the subgroup SUð2Þ × SUð4Þ ×Uð1Þ the 15
of SUð6Þ decomposes as [45]

15 ¼ ð1; 1Þð4Þ þ ð1; 6Þð−2Þ þ ð2; 4Þð1Þ: ð56Þ

Let us make a split of the set fab7g as follows: fαβ7g
where 1 ≤ α < β ≤ 4, f567g and fα57g, fα67g. Let us
delete the node of the Dynkin diagram labeled by α4. Then
we are left with the two Dynkin diagrams of an A3 and an
A1. Now fαβ7g corresponds to the 6 of SUð4Þ. Indeed,
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starting from the highest weight f127g the six weights of
this representation are obtained using the roots α1, α2, α3,
comprising the SUð4Þ part of the Dynkin diagram.
The f567g part forms a singlet both under SUð2Þ and
SUð4Þ. In the language of Pauli observables, the singlet
part corresponds to the observable −iΓ5Γ6Γ7 ¼ IXZ, and
the weights of the six-dimensional irrep correspond to
observables commuting with IXZ. These seven observables
form a geometric hyperplane which is the perp-set of the
doily. The complements of this perp-set in the doily
decompose into the two sets of four observables namely
fα57g and fα67g. Each of them forms a four-dimensional
irrep under SUð4Þ. They are exchanged by the transvection
T56; hence they form an SUð2Þ doublet.
For the sake of completeness, we should also mention

that one more type of geometric hyperplane ofGQð2; 2Þ, an
ovoid [that is a set of points of GQð2; 2Þ such that each line
of GQð2; 2Þ is incident with exactly one point of the set]
is represented by fab7g, where b is fixed. For example,
for b ¼ 6 we have the set f167; 267; 367; 467; 567g. The
five observables corresponding to these triples iΓaΓbΓ7 are
mutually anticommuting, i.e. form a five-dimensional
Clifford algebra. In terms of the duad version f16; 26; 36;
46; 56g of this five tuple, Fig. 1 clearly shows the ovoid
property of the corresponding five points.

B. An extended generalized quadrangle
EGQ(2,1) and Hitchin’s functional

Let us now revisit the results of [32] from a different
perspective. Let S ¼ f1; 2; 3; 4; 5; 6g. We consider the
green triangle part of Fig. 5. This part is labeled by subsets
A ∈ S ⊂ PðSÞ of the form A ¼ fabcg where 1 ≤ a <
b < c ≤ 6. As was shown in [32] starting from the highest
weight (00100) of the 20-dimensional irrep of A5, the 20
weights can be constructed. They reside in the hyperplane
through the origin of R6 with normal n ¼ ð1; 1; 1; 1; 1; 1ÞT .
They take the following form:

ΛðabcÞ ¼ ea þ eb þ ec −
1

2
n: ð57Þ

According to Eqs. (33), (34) and (40), if the intersection
sizes of weight vector labels are odd (even) the correspond-
ing operators are commuting (not commuting). This infor-
mation translates to an incidence structure between weight
vectors. Namely, having scalar product − 1

2
; 3
2
corresponds

to incident vectors (commuting operators), and 1
2
;− 3

2
to not

incident vectors (not commuting operators). This is sum-
marized as

ðΛðAÞ;ΛðBÞÞ ¼

8>>>>><
>>>>>:

− 3
2
; jA ∩ Bj ¼ 0

− 1
2
; jA ∩ Bj ¼ 1

þ 1
2
; jA ∩ Bj ¼ 2≡ 0 mod 2

þ 3
2
; jA ∩ Bj ¼ 3≡ 1 mod 2:

ð58Þ

Since norm squared for weight vectors equals 3
2
, two different

weights ΛðAÞ and ΛðBÞ are incident when the angle between
them satisfies cos θAB ¼ −1=3. Weights with labels satisfy-
ing jA ∩ Bj ¼ 0 are called antipodal. Indeed, for such pairs
(e.g. 123 and 456) we have cos θAB ¼ −1.
Let us now consider four different weights, called

quadruplets. Subsets As, s ¼ 1, 2, 3, 4, with the corre-
sponding quadruplets satisfying

ΛðA1Þ þ ΛðA2Þ þ ΛðA3Þ þ ΛðA4Þ ¼ 0;

jAs ∩ Atj ¼ 1; s; t ¼ 1; 2; 3; 4; ð59Þ

are called blocks. An example of a block is

ðA1;A2;A3;A4Þ ¼ ð123; 156; 246; 345Þ: ð60Þ

Hence, apart from the constraint jAs ∩ Atj ¼ 1, a block is
characterized by a double occurrence of all elements of
S ¼ f1; 2;…6g. We note that in terms of the 20 observ-
ables Oabc ¼ iΓaΓbΓc ¼ O† the blocks bijectively corre-
spond to the lines of a double six of Mermin pentagrams of
[32]. In this language the (59) rule defining the blocks
translates to the fact that the product of four commuting
observables is (up to a crucial sign) the identity.
Let us now choose any of the triples, e.g. 123. This triple

shows up in six blocks. These blocks can be described by
adjoining to 123 the following 3 × 3 arrangement of triples:

123 ↦ S123 ≡
0
B@

156 146 145

256 246 245

356 346 345

1
CA: ð61Þ

Regard temporarily these triples as numbers and the
arrangement as a 3 × 3 matrix. Then multiplying the triple
123 with the determinant of the matrix S123 we get six
terms. The six terms showing up (signs are not important)
in this quartic polynomial are the six blocks featuring 123.
In particular, the block of Eq. (60) arises from the diagonal
of S123. One can furnish S123 with the structure of all the
points A ≠ 123 that are on a block on 123, and all the
blocks on 123. We call S123 equipped with this structure
the residue [41] of the point 123.
Since we have 20 points, we have 20 residues SA. One

can generate all residues from the one of Eq. (61), dubbed
the canonical one, as follows. First, notice that to our
canonical residue one can associate its antipode

456 ↦ S456 ≡
0
B@

234 134 124

235 135 125

236 136 126

1
CA: ð62Þ

Now the symmetric group S6 clearly acts on S via
permutations. The canonical residue and its antipode are
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left invariant by the group S3 × S3 acting via separate
permutations of the numbers 1,2,3 and 4,5,6. Hence, the
nine transpositions of the form f14g; f15g; f16g;…; f36g
generate nine new residues from the canonical one.
Combining this with the antipodal map 18 new residues
are obtained. Taken together with the canonical one and its
antipode all of the 20 residues can be obtained. For example,
after applying the transposition f14g the new residues are

S234 ≡
0
B@

456 146 145

256 126 125

356 136 135

1
CA;

S156 ≡
0
B@

123 134 124

235 345 245

236 346 246

1
CA: ð63Þ

One can then check the following. The number of blocks is
jBj ¼ 30. Moreover, two distinct blocks meet in zero, one or
two points. On the other hand, two distinct points are
either on no common block or on two common blocks.
An illustration of this structure can be found in Fig. 4 of
Ref. [32] depicting the double-six structure of Mermin
pentagrams. We have 12 pentagrams in this configuration
with each pentagram having five lines. However, certain
pairs of pentagrams have lines in common. As a result we
have merely 30 lines in this configuration. After identifying
the lines of the double sixes with our blocks one can check
that the incidence structures are isomorphic.
Let us now turn back to our construction of this

incidence structure based on residues. Recalling definition
3 one can observe that each residue has the structure of a
generalized quadrangle of typeGQð2; 1Þ, i.e. a grid. On the
other hand, according to definition 4 a connected structure
with two types, namely points and blocks, such that each
residue Sp of a point p is a generalized quadrangle
GQðs; tÞ, is called an extended generalized quadrangle:
EGQðs; tÞ. Hence, in our case we have found two interest-
ing applications of this concept. Namely, we have verified
that the block structure defined on the set of weights of the
20 of A5 by Eq. (59), and the double-six structure of
pentagrams of Ref. [32] with blocks defined via commuting
quadruplets of observables give rise to two realizations of
an EGQð2; 1Þ. A nice way of illustrating the structure of
our EGQð2; 1Þ can be obtained by observing that this
configuration can be built from two copies of the so-called
Steiner-Plücker configuration; see Fig. 8.
Now as the most important application of this concept let

us show that our EGQð2; 1Þ encapsulates the geometry of
Hitchin’s functional [34] in terms of the information
encoded in the canonical residue S123 of Eq. (61).
Let us first give two alternative forms of Hitchin’s

functional. The original one [34], widely used by string

123

235

135

345

145456146

246

126

236

156

346

124

256

136234125

356

134

245

123

235

135

345

145456146

246

126

236

156

346

124

256

136234125

356

134

245

FIG. 8. The twin Steiner-Plücker configurations illustrating the
30 blocks of EGQð2; 1Þ related to the 20 of A5. Our EGQð2; 1Þ,
which is the affine polar space of order 2 and typeDþ

2 [41], can be
viewed as the union of twin Steiner-Plücker configurations.
The two configurations are identical as point sets, their points
being represented by unordered triples of elements from the set
S ¼ f1; 2; 3; 4; 5; 6g. Lines (blocks) of the configurations are
represented by four points that pairwise share one element. The
name Steiner-Plücker configuration comes from the fact [47] that
it is a ð203; 154Þ configuration that consists of 20 Steiner points
and 15 Plücker lines of the famous hexagrammum mysticum of
Pascal (see e.g., [48,49]).
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theorists [35,50], is defined via introducing K, a 6 × 6
matrix giving rise to an almost complex structure on M, a
closed, real, orientable six manifold equipped with a
(nondegenerate, negative) three-form P,

ðKPÞab ¼
1

2!3!
εai2i3i4i5i6Pbi2i3Pi4i5i6 ;

1 ≤ a; b; i2;…i6 ≤ 6: ð64Þ
In terms of this quantity Hitchin’s invariant can be
expressed as

DðPÞ ¼ 1

6
TrðK2

PÞ: ð65Þ

It is known that for real forms there are two nondegenerate
classes of such forms, forms with D < 0 and D > 0.
Now Hitchin’s functional is defined as

VH½P� ¼
Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDðPÞj

p
d6x: ð66Þ

In the special case when DðPÞ < 0 varying this functional
in a fixed cohomology class the Euler-Lagrange equations
imply that the almost complex structure K=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−DðPÞp

, with
P being the one defining the critical point, is integrable [34].
Hence, the critical points of this functional define complex
structures on M. The quantum theory based on this
functional was studied by Pestun and Witten [50]. It is
related to the quantum theory of topological strings [51].
An alternative form of this functional is given by writing

Hitchin’s invariant in the following form [52]. Recall our
labeling convention ð1;2;3;4;5;6Þ¼ ð1;2;3; 1̄; 2̄; 3̄Þ. Define

η≡ P123; ξ≡ P123; ð67Þ

X¼

0
B@

X11 X12 X13

X21 X22 X23

X31 X32 X33

1
CA≡

0
B@

P123 P131 P112

P223 P231 P212

P323 P331 P312

1
CA;

ð68Þ

Y ¼

0
B@

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

1
CA≡

0
B@

P1̄23 P1̄31 P1̄12

P2̄23 P2̄31 P2̄12

P3̄23 P3̄31 P3̄12

1
CA:

ð69Þ

With this notation Hitchin’s invariant is

DðPÞ ¼ ½ηξ − TrðXYÞ�2 − 4TrðX♯Y♯Þ þ 4ηDetðXÞ
þ 4ξDetðYÞ ð70Þ

whereX♯ and Y♯ correspond to the regular adjoint matrices
for X and Y; hence, for example XX♯ ¼ X♯X ¼ DetðXÞI
with I the 3 × 3 identity matrix.

Let us refer to this 1þ 9þ 9þ 1 split via introducing the
arrangement P ¼ ðη;X;Y; ξÞ. Then one can define a dual
arrangement ~P ¼ ð~η; ~X; ~Y; ~ξÞ as follows [53],

~η

2
¼ ηκ þ DetY;

~X
2
¼ ξY♯ − 2Y ×X♯ − κX;

~Y
2
¼ −ηX♯ þ 2X × Y♯ − κY;

~ξ

2
¼ −ξκ − DetX; ð71Þ

where

2κ ¼ ηξ − TrðXYÞ;
2ðX × YÞ ¼ ðXþ YÞ♯ −X♯ − Y♯: ð72Þ

Then by defining the symplectic form [53]

fP1; P2g≡ η1ξ2 − η2ξ1 þ TrðX1Y2Þ − TrðX2Y1Þ ð73Þ

one can alternatively write

DðPÞ ¼ 1

2
f ~P;Pg: ð74Þ

The (70) and (74) ways of writing Hitchin’s invariant are
very instructive. The reason for this is twofold. First, they
reveal their intimate connection with the fermionic entan-
glement measure introduced in Refs. [36,52]. It turns out
that the entanglement classes of a three-fermion state with
six modes represented by P are characterized by the
quantities DðPÞ, KP, and ~P. This observation connects
issues concerning the Hitchin functional to the black hole/
qubit correspondence [15].
Second, one can immediately realize that X is just the

matrix associated to the one of Eq. (61), i.e. up to a sign in the
second column it is the residue1 of 123. Now the term
ηDetðXÞ features precisely the six terms defining the blocks
on 123. Similarly, the matrix associated with the residue of
456 isY and the corresponding six terms of ξDetðYÞ encode
the six antipodal blocks on 456. Based on these observations
one expects that the structure of Hitchin’s invariant is
encapsulated into the geometry of a single residue of
EGQð2; 1Þ, i.e. the canonical one of Eq. (61).
In order to prove this recall that, according to Eqs. (61)–

(63), from the canonical residue one can obtain all of the 20
residues by two types of operations. One of them is the
antipodal map relating e.g. Eq. (61) with (62), and the
other is an application of nine transpositions of the form
ðαβ̄Þ where 1 ≤ α; β ≤ 3. As discussed in Eq. (38), these
operations are neatly described by transvections: T7, Tαβ̄.
In order to understand how these transvections act on the 20

1For issues of incidence the signs are not important. However,
here for understanding the structure of Hitchin’s invariant they
turn out to be important. Clearly, sign flips arise when “normal
ordering” of labels like P131 ¼ P164 ¼ −P146 is effected.
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Pabc, with 1 ≤ a < b < c ≤ 6, we have to lift the action of
the transvections to three-qubit observables [22]. This lift
associates to T7, Tαβ̄ the adjoint action of 8 × 8 unitary
matrices,

UðT7Þ ¼
1ffiffiffi
2

p ðI8 þ iΓ7Þ; UðTαβ̄Þ ¼
1ffiffiffi
2

p ðI8 þ ΓαΓβ̄Þ;

ð75Þ
on observables as follows:

O ↦ U†ðT7ÞOUðT7Þ; O ↦ U†ðTαβ̄ÞOUðTαβ̄Þ: ð76Þ

Explicitly, for the 20 observables of the form

Oabc ¼ O†
abc ¼ iΓaΓbΓc; 1 ≤ a < b < c ≤ 6; ð77Þ

we have

Oabc ↦ U†ðTαβ̄ÞOabcUðTαβ̄Þ

¼
�
Oabc; jfαβ̄g ∩ fabcgj≡ 0 mod 2

−ΓαΓβ̄Oabc; jfαβ̄g ∩ fabcgj≡ 1 mod 2:

ð78Þ
For example, choosing T11̄ ¼ T14 we have

O346 ↦ U†ðT11̄ÞO346UðT11̄Þ ¼ −iΓ1Γ4ðΓ3Γ4Γ6Þ
¼ iΓ1Γ3Γ6 ¼ O136: ð79Þ

Let us now define the following Hermitian 8 × 8 matrix Π
associated to the three-form P featuring DðPÞ of Eq. (70):

Π ¼
X

1≤a<b<c≤6
PabcOabc: ð80Þ

Then the action on the observable Π ↦ Π0 ¼ U†ΠU
defines an action on the coefficients Pabc as follows:

Π0 ¼
X

1≤a<b<c≤6
PabcU†ðTαβ̄ÞOabcUðTαβ̄Þ

¼
X

1≤a<b<c≤6
P0
abcOabc; P0

abc ≡ ½T αβ̄ðPÞ�abc: ð81Þ

As an example of the rules given by Eqs. (79) and (81), we
give the explicit form of the action of the transvection
T13̄ ¼ T16 on the Pabcs,

P123 ↦ −P236 ↦ −P123; P456 ↦ P145 ↦ −P456;

P134 ↦ −P346 ↦ −P134; P135 ↦ −P356 ↦ −P135;

P124 ↦ −P246 ↦ −P124; P125 ↦ −P256 ↦ −P125;

ð82Þ
and the remaining components are left invariant. One can
also check that the transformation rule of Eq. (81) for the
map UðT7Þ gives rise to the following transformation,

UðT7Þ∶ ðη;X;Y; ξÞ ↦ ð−ξ;−YT;XT; ηÞ; ð83Þ

which is the lift of the antipodal map. Equation (70) clearly
shows that under the (83) antipodal map DðPÞ is invariant.
Let us now define the following new quartic polynomial

associated to our canonical residue and its antipode:

GðPÞ ¼ ðηξÞ2 − ηξTrðXYÞ þ ηDetðXÞ þ ξDetðYÞ

¼ 1

2
ðξ~η − η~ξÞ: ð84Þ

One can immediately see that GðPÞ is invariant under the
(83) antipodal map, and all of the transformations Pabc ↦
½T αβðPÞ�abc, Pabc ↦ ½T ᾱ β̄ðPÞ�abc where 1 ≤ α < β ≤ 3.
Indeed, the latter ones are effecting an exchange of either
the rows or the columns of the matrices X and Y together
with a compensating sign change. Under the latter two
types of transformations the quantities η and ξ, and theDetX,
DetY, TrðXYÞ factors are left invariant. Now the trans-
formations fT 12; T 23g and fT 12; T 23g can be regarded as
thegenerators of two copies of thegroupS3 × S3. Combining
these transformations with a transposition of the correspond-
ing matrices X and Y, one obtains a representation of the
automorphism group of our residue GQð2; 1Þ which is
the wreath product S3 ≀ S2. Since GðPÞ is left invariant under
the automorphism group ofGQð2; 1Þ and the antipodalmap,
one suspects that this polynomial can be regarded as a seed
for generating the polynomial DðPÞ invariant under the
automorphism group WðA5Þ of the full extended geometry,
i.e. EGQð2; 1Þ. Indeed, since WðA5Þ ¼ S6 one has jS6j=j
S3 ≀ S2j ¼ 6!=2 · 3! · 3! ¼ 10; then one should be able to
generate DðPÞ by acting on GðPÞ with suitable represent-
atives of the cosetWðA5Þ=S3 ≀ S2. These representatives are
precisely the nine unitaries of (75). As a result of these
considerations we obtain the following nice result:

DðPÞ ¼ GðPÞ þ
X3
α;β¼1

GðT αβ̄ðPÞÞ: ð85Þ

Or, in a more abstract notation

DðPÞ ¼
X

A∈G=H
GðT APÞ; G ¼ WðA5Þ; H ¼ S3 ≀ S2;

ð86Þ
where, by an abuse of notation, we referred to A ∈ ff0g;
fα; β̄gg≡ G=H. Here T f0g is the identity operator which
represents the H-part of the coset.
This compactified form of Hitchin’s invariant clearly

shows that it is geometrically underpinned by the smallest
EGQð2; 1Þ that is a one-point extension of GQð2; 1Þ,
related to Mermin squares. The new (85) appearance of
Hitchins invariant displays ten copies of the simple poly-
nomial GðPÞ. Each copy is associated with a residue taken
together with its antipodal version. The antipodal map acts
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like a covering transformation via taking two copies: the
canonical residue and its antipode (for a mathematical
discussion on this point, see, e.g., example 9.7 of Ref. [40]).
At first sight, in our treatise the pair η,X and its antipode ξ,
Y seem to play a special role. However, since independent
of the residue chosen each of the summands in Eq. (86)
has the same substructure, our new formula (86) treats all
of the ten doublets of residues democratically. This is to
be contrasted with the (70) version of DðPÞ, where the
distinguished role of the 1þ 9þ 9þ 1 split to a quadruplet
ðη;X;Y; ξÞ is manifest.
The explicit form ofDðPÞ shows that it has 85monomials.

30 monomials are directly associated to the blocks of
EGQð2; 1Þ. They are signed monomials (16 positive and
14 negative ones) labeled by different quadruplets of the
form given by Eq. (60) and giving rise to terms like
P123P156P246P345. These blocks are illustrated by the lines
of the twin Steiner-Plücker configurations of Fig. 8. In the
language of Eq. (70), these monomials are coming from the
12 terms of ηDetX and ξDetY and, partly, from 18 terms
contained in−4TrðX♯Y♯Þ. However, in the new (85) formula
each of these blocks appears on the same footing: they
are ordinary ones showing up in four different residues.
The remaining structure can be understood from the fact that
the residues ofEGQð2; 1Þ are also organized in ten antipodal
pairs. There are ten monomials coming from antipodal pairs
with double occurrence [e.g. ðP123P456Þ2] and 45monomials
from single occurrence [e.g. ðP123P456ÞðP156P234Þ].
Let us elaborate on the physical meaning of the finite

geometric structures found in connection with DðPÞ. As it
is well known from the literature, the value of Hitchin’s
functional at the critical point is related to black hole
entropy [35,50,52]. The simplest way to see this is to
compactify type II string theory on a six-dimensional torus.
Depending on whether we use IIA or IIB string theory, one
can consider wrappedD-brane configurations of an even or
odd type. These configurations give rise to charges of
electric and magnetic type in the effective four-dimensional
supergravity theory. In this theory one can consider static,
extremal black hole solutions of Reissner-Nordström
type and calculate the semiclassical Bekenstein-Hawking
entropy. For example, in type IIB theory one can consider
wrappedD3-branes [54]. Thewrapping configurations then
can be reinterpreted either as three qubits [55], or more
generally, as three-fermion states [52] related to our three-
form P, or our observable Π of Eq. (80). In this picture the
ðη;XÞ, ðξ;YÞ split for the amplitudes Pjkl is related to the
physical split of charges to electric and magnetic type. Our
antipodal map of (83) then implements electric-magnetic
duality and DðPÞ is related to the semiclassical extremal
black hole entropy as [15,54] (ℏ ¼ c ¼ GN ¼ kB ¼ 1)

S ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDðPÞj

p
: ð87Þ

According to whether DðPÞ is negative or positive
there are charge configurations of Bogomolny-Prasad-
Sommerfield (BPS) or non-BPS types [15]. Applying

T-duality one can relate the D3-brane configurations
of the type IIB theory to the combined D0; D2; D4;
D6-brane configurations of the type IIA one [56]. In this
type IIA reinterpretation, after a convenient (STU) truncation
[57], the ðη;X;Y; ξÞ, featuring the canonical residue and its
antipode, yields ðD0; D4; D2; D6Þ brane charges. Keeping
only theD0; D6 pairs we obtain just a single positive term in
the expression forGðPÞ, namely ðηξÞ2 ¼ ðP123P456Þ2; hence
this charge configuration is a non-BPS one [57,58]. Note that
the D0 and D6 charges are related to each other by electric-
magnetic duality, giving a special application of our antipo-
dal map of Eq. (75). The ηDetX and ξDetY terms of GðPÞ
implement the well-known D0D4 and D2D6 systems
[57,58] which can be both BPS and non-BPS. The (87)
entropy formula is invariant under an infinite discrete group
of U-duality transformations [17]. In our case a special finite
subgroup of these transformations is implemented by the
Weyl reflections of our weight diagram. Their meaning has
been identified as generalized electric-magnetic duality
transformations [19]. Now, our new formula of Eq. (85)
shows thatDðPÞ can be regarded as the image of the special
polynomial (84) under a subset of these Weyl reflections.
We also remark that there is a well-known connection

[59–61] between the semiclassical entropy of four-
dimensional BPS black holes in type IIA theory com-
pactified on a Calabi-Yau space M and the entropy of
spinning 5D BPS black holes in M-theory compactified
on M × TNη, where TNη is a Euclidean four-dimensional
Taub-NUT space with the Newman-Unti-Tamburino (NUT)
charge η. If the four-dimensional charges are represented
by the arrangement P ¼ ðη;X;Y; ξÞ, then there is a
simple relationship between these quantities and the five-
dimensional black hole charge and spin (angular momenta)
J η. It turns out that the latter quantity is related to ~η by the
simple formula

Jη ¼ −
~η

2
: ð88Þ

There is also a dual connection between four-dimensional
black holes and five-dimensional black strings. In this
case there is a relationship between the arrangement P ¼
ðη;X;Y; ξÞ and the five-dimensional magnetic charges.
Moreover, in this case the corresponding angular momentum
is related to the four-dimensional quantities as

Jξ ¼ −
~ξ

2
: ð89Þ

Amusingly in this five-dimensional lift the NUT charges
(η, ξ) and the corresponding angular momenta (J η, J ξ),
regarded as dual pairs, are related to our polynomial GðPÞ of
finite geometric meaning as

GðPÞ ¼ ηJξ − ξJη: ð90Þ
Combining this formula with the new (86) expression of
Hitchins invariant connects information concerning the
canonical residue, Mermin squares and physical parameters
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characterizing certain black hole solutions in a striking way.
The physical consequences of this interesting result should
be explored further.

C. An extended generalized quadrangle EGQ(2,2)
and the generalized Hitchin functional

Let us now consider the Schläfli double-six part taken
together with the EGQð2; 1Þ (twin Steiner-Plücker configu-
ration) part known from the previous section. The former is
described by 12 operators of the form Γa;ΓaΓ7 (the blue
triangle ofFig. 5) and the latter by20ones of the formΓaΓbΓc
with 1 ≤ a < b < c ≤ 6 (green triangle of Fig. 5).
It is easy to show that these two sets, taken together,

describe the weights of the 32-dimensional spinor repre-
sentation of spinð12Þ with negative chirality. Indeed, by
virtue of ΓaΓ7 ≃ ΓbΓcΓdΓeΓf, with 1 ≤ b < c < d < e <
f ≤ 6 and a ≠ fb; c; d; e; fg, in the fermionic Fock space
description of this representation [62,63] this irreducible
spinor representation is spanned by forms of an odd
degree. We have a one form with six (va), a three form with
twenty (Pabc) and a five form converted to a vector
(wa ≃ εabcdefwbcdef) with six components.
In order to construct the 32 weights we label the

D6-Dynkin diagram as shown in Fig. 9. Five nodes and
their labels from the Dynkin diagram of D6 coincide with
the A5 diagram and the extra node is labeled as α6 ↔ 1234.
Then the Dynkin labels of the representation are (000010).
Using the explicit form of the Cartan matrix and its inverse
and the explicit form [45]

α1 ¼ e1 − e2; α2 ¼ e2 − e3; α3 ¼ e3 − e4;

α4 ¼ e4 − e5; α5 ¼ e5 − e6; α6 ¼ e5 þ e6;

one obtains the weights

ΛðaÞ ¼ ea −
1

2
n; ΛðbcdefÞ ¼ 1

2
n − ea

ΛðbcdÞ ¼ 1

2
n − eb − ec − ed;

where n ¼ ð1; 1; 1; 1; 1; 1ÞT , 1 ≤ b < c < d < e < f ≤ 6
and a ≠ fb; c; d; e; fg. The weight diagram for the 32
of D6 takes the form as shown in Fig. 10. We can split

our 32-element set of labels of these weights into two
16-element ones as follows:

f1; 2; 3; 12345; 12356; 12346; 123; 156; 146; 145;
256; 246; 245; 356; 346; 345g; ð91Þ

f4; 5; 6; 12456; 23456; 13456; 456; 234; 134; 124;
235; 135; 125; 236; 136; 126g: ð92Þ

These combinations regarded as elements of PðSÞ are
denoted by T . Weights belonging to the two different 16-
element sets, with their corresponding labels satisfying
jA ∩ Bj ¼ 0 and A ∪ B ¼ S are called antipodal. Again,
for such pairs we have cos θAB ¼ −1. As in the previous
section we consider four different weights, called quadru-
plets. Quadruplets of subsets As, s ¼ 1, 2, 3, 4, taken from
T are called blocks if they satisfy (59). For an example of a
block again Eq. (60) can be used. However, now we have
blocks of a new type. For example, apart from the six
blocks through 123 we are familiar with from Eq. (61), one
has nine extra blocks of the form

ð123; 145; 1; 12345Þ; ð123; 146; 1; 12346Þ;
ð123; 156; 1; 12356Þ; ð123; 256; 2; 12356Þ;
ð123; 245; 2; 12345Þ; ð123; 246; 2; 12346Þ;
ð123; 356; 3; 12356Þ; ð123; 345; 3; 12345Þ;
ð123; 346; 3; 12346Þ: ð93Þ

Taking the 15 points collinear with 123 and giving them the
block structure via the 15 blocks discussed above one
obtains the residue of 123, namely T 123. For any A ∈ T
one can define a residue T A. Clearly, each residue can be
given the incidence structure of a doily, i.e. a GQð2; 2Þ.
As an example, we show this incidence structure for T 123

in Fig. 11.
Each of these residues contains 15 blocks. One can show

that altogether one has ð32 × 15Þ=4 ¼ 120 blocks. One can
then check that T , containing 32 points and equipped with
the block structure as described above, gives rise to the
structure of an extended generalized quadrangle of type
EGQð2; 2Þ. One can verify that the point graph of this
structure is the distance regular and of diameter 3. It is
known that an EGQð2; 2Þ with these properties is unique.
It is one of the seven affine polar spaces referred to in the
literature as type A2 [40,41]. Recalling our results from the
previous section we can record the weights of the 20 of A5

and the ones of the 32 of D6 with the block structure
defined by (59) give rise to extended generalized quad-
rangles EGQð2; tÞ with t ¼ 1, 2. Both of them are of
diameter 3 and distance regular. The grids regarded as
residues of the EGQð2; 1Þ are contained inside the doilies
regarded as residues of the EGQð2; 2Þs. This connection

FIG. 9. The D6 Dynkin diagram with our labeling convention
shown.
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between the point sets of the corresponding geometries is
related to the embedding of the weights of 20 of A5 inside
the weights of the 32 of D6. Indeed, according to Fig. 10,
cutting the weight diagram along α6 one obtains the weight
diagram of the 20 of A5.
Let us now connect the EGQð2; 2Þ structure we have

found to the structure of the generalized Hitchin func-
tional (GHF). The GHF for a six-dimensional, closed
orientable manifold M is defined by replacing the three-
form P in the usual formulation of the Hitchin functional
by a polyform of odd or even degree [64]. To an odd
degree form

φ ¼ uadxa þ
1

3!
Pabcdxa ∧ dxb ∧ dxc

þ 1

5!
vaεabcdefdxb ∧ dxc ∧ dxd ∧ dxe ∧ dxf ð94Þ

one can associate a three-qubit operator Φ of the form

Φ ¼ uaΓa þ
1

3!
PabcΓaΓbΓc þ

1

5!
vaεabcdefΓbΓcΓdΓeΓf:

ð95Þ

Here we dualized the five form part to a vector with
components va.
Then our split of the 32-element set of observables,

labeled as in (92), gives rise to a split of the set of real-
valued functions ðui; Pijk; vjÞ onM into two sets ðη; xÞ and
ðξ; yÞ of cardinalities 16 each as follows [63]:

xab ¼

0
BBBBBBBBB@

0 −u3 u2 −P156 P146 −P145

u3 0 −u1 −P256 P246 −P245

−u2 u1 0 −P356 P346 −P345

P156 P256 P356 0 −v6 v5

−P146 −P246 −P346 v6 0 −v4

P145 P245 P345 −v5 v4 0

1
CCCCCCCCCA
;

η ¼ P123; ð96Þ

FIG. 10. The weight diagram for the 32 of D6 labeled by one-, three-, and five-element subsets of S.

FIG. 11. The doily corresponding to the residue T 123.
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yab ¼

0
BBBBBBBBB@

0 −v3 v2 −P234 −P235 −P236

v3 0 −v1 P134 P135 P136

−v2 v1 0 −P124 −P125 −P126

P234 −P134 P124 0 −u6 u5
P235 −P135 P125 u6 0 −u4
P236 −P136 P126 −u5 u4 0

1
CCCCCCCCCA
;

ξ ¼ P456: ð97Þ

Hence we have two scalars ξ, η and two 6 × 6 antisymmetric
matrices xab; yab yielding the new split: 32¼1þ15þ15þ1.
Let us define the following 12 × 12 matrix,

KI
J ¼ 2

�
κδab − ðxyÞab ðηx − ~yÞad
ðξy − ~xÞcb −κδcd þ ðxyÞcd

�
; ð98Þ

where

2κ ¼ ηξ −
X
a<b

xabyab; ~xab ¼
1

8
εabcdefxcdxef;

~yab ¼ 1

8
εabcdefycdyef: ð99Þ

With these quantities we define the generalized Hitchin
invariant [52,64] as

CðφÞ ¼ 1

12
TrðK2Þ

¼ 4

�
κ2 −

X
a<b

~xab ~yab þ ηPfðxÞ þ ξPfðyÞ
�
; ð100Þ

where −6PfðxÞ ¼ Trð~xxÞ; see also Eq. (44). Now the
generalized Hitchin functional is given by the formula

VGH½φ� ¼
Z
M

ffiffiffiffiffiffiffiffiffiffiffiffi
jCðφÞj

p
d6x: ð101Þ

The generalized Hitchin functional is designed to produce
generalized complex structures onM. Such a mathematical
object, in some sense, combines the complex and Kähler
structures of M in an inherent way. These structures are of
utmost importance in string theory for Calabi-Yau three-
folds. Their combination to a generalized complex structure
gives rise to the important notion of generalized Calabi-Yau
manifolds [64]. For a polyform φ with CðφÞ < 0 the
quantity K=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−CðφÞp

defined using Eq. (98) gives rise to
a generalized almost complex structure. Then it can be
shown that critical points of (101) give rise to integrable
generalized complex structures.
Note that for the special choice of ua ¼ va ¼ 0 we have

x ¼
�

0 −X
XT 0

�
; y ¼

�
0 −YT

Y 0

�
; ð102Þ

where X and Y are given by Eqs. (68)–(69). One can then
check that in this special case the expression of CðφÞ boils
down to the (70) expression of DðPÞ. In this way the
generalized Hitchin functional boils down to the usual
Hichin functional of Eq. (66).
Let us now define Σ ⊂ PðSÞ as

Σ ¼ ff0g; fmng; f1234g; f1235g; f1236g; f1456g;
f2456g; f3456gg; ð103Þ

where m ¼ 1, 2, 3, n ¼ 4, 5, 6 and f0g is the empty set
containing no elements. Consider now the transvections TA,
whereA ∈ Σ and Tf0g is the identity. Notice that associating
to the 16 labels ofΣ observables the setΣ by itself can also be
regarded as a “pointed doily,” i.e. a residue.
Let us now define the quartic polynomial

EðφÞ ¼ ðηξÞ2 − ηξ
X
a<b

xabyab þ ηPfðxÞ þ ξPfðyÞ: ð104Þ

Then one can show that

CðφÞ ¼
X
A∈Σ

EðT AφÞ ¼
X

A∈G=H
EðT APÞ

G ¼ WðD6Þ=Z2; H ¼ WðA5Þ; ð105Þ

where we have used that WðD6Þ=Z2 ≃ 24 · Spð6; 2Þ and
WðA5Þ≃ Spð6; 2Þ≃ S6. This result can be regarded as a
generalization of the one encapsulated in Eq. (86). Here,
similar to Eq. (81), the UðTAÞ lifts of the transvections
define an action T A on the 32 functions ðua; Pabc; vaÞ with
1 ≤ a < b < c ≤ 6. Then our new formula of Eq. (105)
clearly shows that CðφÞ can be written as an average of a
polynomial based on a single residue (EðφÞ) over a residue
(Σ) and, geometrically thus corresponds to a unique one-
point extension of GQð2; 2Þ [40]. Our result demonstrates
how the EGQð2; 2Þ structure manifests itself in building up
the generalized Hitchin invariant giving rise to the (101)
functional of physical importance.
Let us elaborate on the action of T A, withA ∈ Σ, on the

polyform φ. First, in addition to UðTmn̄Þ of Eq. (75), we
define

UðTabcdÞ ¼
1ffiffiffi
2

p ðI8 þ ΓaΓbΓcΓdÞ; a < b < c < d;

fabcdg ∈ Σ; ð106Þ

then the action on (95),

Φ0 ¼ U†ðTAÞΦUðTAÞ; A ∈ Σ; ð107Þ

defines a set of transformations

T A∶ ðua; Pabc; vaÞ ↦ ðu0a; P0
abc; v

a0Þ ð108Þ
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or, alternatively, a set of T A∶ ðη; x; y; ξÞ ↦ ðη0; x0; y0; ξ0Þ
where A ∈ Σ. This fixes the explicit form of the action
on φ.
Just like in the previous section one can easily relate

these considerations to structural issues concerning four-
dimensional semiclassical black hole entropy formulas. The
simplest way to uncover these connections is in the type IIA
duality frame. When compactifying type IIA supergravity on
the six-torus T6, one is left with a classical four-dimensional
theory with on-shell E7ð7Þ duality symmetry [18,65]. There
areUð1Þ charges associated with the Abelian gauge fields of
this theory. They are transforming according to the 56-
dimensional representation of the E7ð7Þ duality symmetry.
There are also scalar fields (moduli) in the theory which are
parametrizing the 70-dimensional coset E7ð7Þ=SUð8Þ. The
56 charges can be represented in terms of the central charge
matrix ZAB of the N ¼ 8 supersymmetry algebra. This is an
8 × 8 complex antisymmetric matrix. Partitioning this matrix
into four 4 × 4 blocks, the block-diagonal part gives rise to
12 complex components which can be organized into the 24
real Neveu-Schwartz (NS) charges. The remaining 16
independent complex components are coming from one
of the off diagonal 4 × 4 blocks. They comprise the 32 real
Ramond-Ramond (RR) charges.
Let us concentrate merely on this RR sector. When one

writes the central charge matrix in an SOð8Þ basis one has
the form [66]

1ffiffiffi
2

p ðxMN þ iyMNÞ ¼ −
1

4
ZABðΓMNÞAB;

M;N; A; B ¼ 1; 2;…8: ð109Þ
In the case of the RR truncation the 8 × 8matrices xMN and
yMN take the following form [67]:

xMN ¼

0
B@

½D2�ab 0 0

0 0 ½D6�
0 −½D6� 0

1
CA;

yMN ¼

0
B@

½D4�ab 0 0

0 0 ½D0�
0 −½D0� 0

1
CA: ð110Þ

Here the quantities ½D0�; ½D2�ab; ½D4�ab; ½D6� are the
D-brane charges. They arise from wrapping configurations
on cycles of T6 of suitable dimensionality. Now the unique
quartic E7ð7Þ invariant [65,68] is of the form

Jðx; yÞ ¼ −TrðxyxyÞ þ 1

4
½TrðxyÞ�2 − 4½PfðxÞ þ PfðyÞ�;

ð111Þ
where

PfðxÞ ¼ 1

244!
εMNPQRSTUxMNxPQxRSxTU: ð112Þ

By virtue of (110) a truncation of the quartic invariant to the
RR sector takes the form

JRR ¼ 4½D6�Pfð½D2�Þ þ 4½D0�Pfð½D4�Þ
− Trð½D2�½D4�½D2�½D4�Þ

−
�
½D0�½D6� − 1

2
Trð½D2�½D4�Þ

	
2

− 2ð½D0�½D6�Þ2: ð113Þ

After the identifications

η ¼ −½D6�; xab ¼ ½D2�ab;
yab ¼ ½D4�ab; ξ ¼ −½D0�; ð114Þ

and using the identity

4Trð~x ~yÞ ¼ 2TrðxyxyÞ − ½TrðxyÞ�2 ð115Þ

the expression of JRR boils down to the negative of the
generalized Hitchin invariant of Eq. (100), i.e. JRR ¼
−CðφÞ. In this special case the semiclassical black hole
entropy formula takes the form

S ¼ π
ffiffiffiffiffiffiffiffiffiffi
jJRRj

p
: ð116Þ

For more details on the connection between the critical
points of the generalized Hitchin functional and black hole
entropy we orient the reader to the paper of Pestun [56].
Interestingly, this entropy structure inherently connected to
the generalized Hitchin functional has an alternative inter-
pretation in terms of the 32 amplitudes of four real,
unnormalized three-qubit states built up from six qubits
[15,52]. This structure is coming from the “tripartite
entanglement of seven qubits” interpretation of the (111)
quartic invariant of Refs. [69,70] after truncating to the
RR sector.

D. The generalized quadrangle GQ(2,4)
and Cartan’s cubic invariant

Nowwe consider the elliptic quadric part of our Veldkamp
line, which corresponds to the blue parallelogram of Fig. 4.
A detailed discussion of the finite geometric background,
and its intimate link to the structure of the five-dimensional
semiclassical black hole entropy formula, of this case can be
found in Ref. [27]. In this section we reformulate the results
of that paper in a manner that helps to elucidate the
connections to the structure of our magic Veldkamp line.
In this case we have 27 ¼ 6þ 6þ 15 operators corre-

sponding to the subsets fag; fa7g; fab7g. The finite geo-
metric interpretation of the fag; fa7g part, depicted by the
blue triangle of Fig. 5, corresponds to Schläfli’s double-six
configuration, and the black triangle represents our core
configuration: the doily. As it is known from Ref. [27], the
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operators ΓðAÞ corresponding via (39) to the subsets A ∈
ffag; fa7g; fab7gg provide a noncommutative labeling
for the generalized quadrangle GQð2; 4Þ. For an explicit
labeling in terms of three-qubit operators see Fig. 3 of [27].
One can elaborate on the representation theoretic mean-

ing of the GQð2; 4Þ structure as follows. The 27 points of
GQð2; 4Þ can be mapped to the 27 weights of the
fundamental irrep of E6. In order to see this one labels
the nodes of the E6-Dynkin diagram as shown in Fig. 12.
With this labeling convention the E6 weight diagram

takes the form as shown in Fig. 13.
Note that the labeling of the weights is in accord with the

usual labeling of exceptional vectors discussed in con-
nection with EN lattices for N ¼ 6. In particular, the 27
weights can be mapped to the seven component exceptional
vectors fΛðaÞ;Λða7Þ;Λðab7Þg ∈ R6;1. R6;1 is spanned by the
canonical basis vectors eμ with μ ¼ 0; 1;…6 and it is
equipped with a nondegenerate symmetric bilinear form
with signature ð−1; 1; 1; 1; 1; 1; 1Þ. Explicitly, we have

ΛðaÞ ¼ ea;Λða7Þ ¼ 2e0 − e1 − � � � − e6 þ ea;Λðab7Þ

¼ a0 − ea − eb: ð117Þ

As it is well known exceptional vectors are the ones that
satisfy the constraints kN · Λ ¼ 1 and Λ · Λ ¼ 1, where
kN ¼ −3e0 þ

P
N
a¼1 ea. Our special choice conforms with

the N ¼ 6 case.
Notice that due to the fact that the doily is embedded into

GQð2; 4Þ the weight diagram of the 27 of E6 contains the
weight diagram of the 15 of A5 we are already familiar with
from Fig. 7. This corresponds to the reduction

E6ð6Þ ⊃ SLð2Þ × SLð6Þ; 27 → ð1; 15Þ þ ð2; 6Þ: ð118Þ

There is a famous E6 invariant associated with the
GQð2; 4Þ structure. It is Cartan’s cubic invariant [71]. As
is well known this invariant is connected to the geometry of
smooth cubic surfaces in CP3. It is a classical result that the
automorphism group of configurations of 27 lines [72] on a
cubic can be identified with WðE6Þ, i.e. the Weyl group
of E6 of order 51840. WðE6Þ is also the automorphism
group of GQð2; 4Þ. For a nice reference on the connection
between cubic forms and generalized quadrangles we
orient the reader to the paper of Faulkner [73]. In order
to relate Cartan’s invariant to our Veldkamp line we proceed
as follows.

Let us define the observable

Ψ ¼ uaΓa þ
1

2!4!
ωabεabcdefΓcΓdΓeΓf

þ 1

5!
vaεabcdefΓbΓcΓdΓeΓf

¼ ðu1Γ1 þ � � �Þ þ ðω12Γ3Γ4Γ5Γ6 þ � � �Þ
þ ðv1Γ2Γ3Γ4Γ5Γ6 þ � � �Þ; ð119Þ

where the real quantities ωab; ua; va are the ones already
familiar from Eqs. (45) and (95). Here we also converted the
fab7g and fa7g index combinations using the identities

FIG. 12. The E6 Dynkin diagram labeled by subsets.

FIG. 13. The weight diagram of the 27 of E6 labeled by the
subsets fag; fa7g, and fab7g.
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Γ½aΓb�Γ7 ¼
i
4!
εabcdefΓcΓdΓeΓf;

ΓaΓ7 ¼
i
5!
εabcdefΓbΓcΓdΓeΓf: ð120Þ

Notice also that Ψ is Hermitian. Let us define q≡
ðua;ωab; vaÞ; then Cartan’s invariant is

IðqÞ ¼ 1

48
TrðΨ3Þ ¼ PfðωÞ þ vTωu: ð121Þ

The first term on the right-hand side contains 15 cubic
monomials corresponding to the 15 lines of the doily, and
the second term contains 15þ 15 ¼ 30 extra monomials.
Hence, altogether we have 45 cubic monomials in this
invariant corresponding to the 45 lines of GQð2; 4Þ.
In the physical interpretation the 27 components

q≡ ðua;ωab; vaÞ, corresponding to the points of our
GQð2; 4Þ, describe electrical charges of black holes, or
magnetic charges of black strings of the N ¼ 2, D ¼ 5
magic supergravities [74,75]. These configurations are
related to the structures of cubic Jordan algebras repre-
sented by 3 × 3 matrices over the division algebras (real
and complex numbers, quaternions and octonions) or their
split versions. The (121) Cartan’s invariant is then related to
the cubic norm of a cubic Jordan algebra over the split
octonions [27]. The corresponding supergravity theory is
N ¼ 8 supergravity in five dimensions and has classically
an E6ð6Þ symmetry. In the quantum theory the black hole/
string charges become integer valued. Hence, in this
case the classical symmetry group is broken down to the
U-duality group E6ð6ÞðZÞ. The Weyl group WðE6Þ can be
regarded as a finite subgroup of the infinite U-duality group
which is just the automorphism group of GQð2; 4Þ.
Cartan’s invariant can also be given an interpretation in

terms of the bipartite entanglement of three qutrits [28,76].
In this approach Cartan’s invariant can be regarded as an
entanglement measure encoding the charge configurations
of the black hole solution in a triple of three qutrit states.
Then semiclassical black hole entropy is related to this
entanglement measure as

S ¼ π
ffiffiffiffiffiffiffiffiffiffi
IðqÞ

p
: ð122Þ

Interestingly, in this qutrit approach the 27 charges can be
organized into three groups containing nine charges each.
The group theoretical reason for this rests on the decom-
position [76]

E6ð6Þ ⊃ SLð3;RÞA × SLð3;RÞB × SLð3;RÞC;
27 → ð30; 3; 1Þ þ ð1; 30; 30Þ þ ð30; 1; 3Þ: ð123Þ

In our GQð2; 4Þ picture this decomposition amounts to
regarding GQð2; 4Þ as a composite of three GQð2; 1Þs, i.e.
grids. Since grids labeled by observables are just Mermin

squares this gives rise to an alternative interpretation [27] of
describing the structure of Cartan’s invariant as a special
composite of three Mermin squares. It is also known that
there exist 40 different ways of dissecting GQð2; 4Þ into
triples of Mermin squares; hence altogether there are 120
possible Mermin squares lurking [27] inside a particularly
labeled GQð2; 4Þ.
A particular decomposition of GQð2; 4Þ (with its points

labeled by observables) to three Mermin squares can be
given as follows. Let us decompose our 6 × 6 matrix ω and
the two six-component vectors u, v into 3 × 3 matrices and
to a set of three-component vectors as follows,

ω ¼
�
Lb −AT

A Lc

�
; vT ¼ ðwT; rTÞ; uT ¼ ðsT; zTÞ;

ð124Þ

where LbðwÞ ¼ b × w, i.e. the linear operator Lb imple-
ments the cross product on three-component vectors. Using
the three-component column vectors b; c;w; z; r; s one can
form two extra 3 × 3 matrices

B ¼ ðb;w;−sÞ; CT ¼ ðc; z; rÞ: ð125Þ

Then one can show that [73]

IðqÞ ¼ DetAþ DetBþ DetC − TrðABCÞ: ð126Þ

From (54) it is clear that to the matrix −AT , having index
structure αβ̄ with α, β ¼ 1, 2, 3, one can associate nine
observables that can be arranged in a Mermin square.
Moreover, due to Eq. (55) the DetðAÞ part of I takes care of
the sign distribution of this Mermin square. It is easy now to
identify the remaining two Mermin squares. Indeed, refer-
ring to the corresponding observables in subset notation
these squares are of the form

0
B@

2356 1346 1245

1345 1256 2346

1246 2345 1356

1
CA;

0
B@

1 3456 13456

12456 2 1456

2456 23456 3

1
CA;

0
B@

4 1236 12346

12345 5 1234

1235 12356 6

1
CA: ð127Þ

Along the lines and columns of these matrices we have
commuting observables. The three lines plus three columns
comprise the six lines of a grid, i.e. aGQð2; 1Þ. The product
of the observables is plus or minus the identity along the
lines. Each square has an odd number of negative lines.
The remaining Mermin square decompositions can be
obtained in a straightforward manner via acting on (127)
with the transvections Tαj generating WðE6Þ.
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Let us also comment on the origin of the Hermiticity of
Ψ of Eq. (119) within the framework of magic super-
gravities. As is well known there is a relation for such
theories between the D ¼ 4 and D ¼ 5 dualities [77].
For N ¼ 8 supergravity the classic example of this is the
relationship between the classical E7ð7Þ symmetry [18,65]
in four dimensions and the E6ð6Þ one in five dimensions.
The former theory features the (111) quartic [65,68] and the
latter a cubic invariant for the semiclassical black hole
entropy formula. The cubic invariant is just our Cartan
invariant of Eq. (121). For the N ¼ 8 theory we have the
8 × 8matrix of the central charge ZAB where A;B ¼ 1;…8
of the supersymmetry algebra. It is a complex antisym-
metric matrix. This matrix is of the form

ZAB ¼ ðxMN þ iyMNÞðΓMNÞAB; ð128Þ

where summation is for 1 ≤ M < N ≤ 8 and the xMN; yMN

are antisymmetric 8 × 8 matrices. The ΓMN are Hermitian
antisymmetric matrices coming from the 28 combinations
ΓI8 ≡ ΓI and ΓIJ ≡ iΓIΓJ where 1 ≤ I < J ≤ 7, and they
can be regarded as matrix-valued basis vectors for the
expansion of Z. We see that inD ¼ 4we have 56 expansion
coefficients. These expansion coefficients are appearing
in the quartic invariant of the E7ð7Þ symmetric semiclassical
black hole entropy formula. Now the usual way of
obtaining the cubic invariant from the quartic one is via
expanding Z in a USpð8Þ basis, which is appropriate since
USpð8Þ is the automorphism group of the N ¼ 8, D ¼ 5
supersymmetry algebra. In order to do this one should
choose the matrix of the symplectic form defining USpð8Þ.
Let us choose J ¼ −iΓ7 as the matrix of this symplectic
form. In our conventions this matrix is real, antisymmetric
and has the form J ¼ ϵ ⊗ ϵ ⊗ ϵ, where ϵ ¼ iσ2. Now the
expansion of the N ¼ 8, D ¼ 5 central charge is obtained
by imposing the constraints [77]

TrðJZÞ ¼ 0; Z̄ ¼ JZJT: ð129Þ

The first of these constraints is reducing the number of
basis vectors in Eq. (128) from 28 to 27. The second
condition is a reality condition. It is easy to see that this
condition demands that

ya8 ¼ ya7 ¼ xab ¼ 0: ð130Þ

Hence in the expansion of Z only 27 expansion coefficients
are left. Renaming them as follows,

xa8 ≡ −ua; xa7 ¼ va; yab ≡ ωab; ð131Þ

one can show that

Ψ ¼ JZ: ð132Þ

In this language the reality condition means that Ψ is
Hermitian. Hence the origin of the Hermiticity of Ψ can be
traced back to the structure of the N ¼ 8 supersymmetry
algebra.

E. Klein’s quadric and the G2 Hitchin invariant

Let us now consider the hyperbolic quadric (Klein
quadric) part of our Veldkamp line. This part corresponds
to the green parallelogram of Fig. 4 and is labeled by the
subsets fIJKg, where 1 ≤ I < J < K ≤ 7, and is split into
two parts fabcg; fab7g corresponding to the green and
black triangles of Fig. 5. These triples can be used to label
the weights of the 35-dimensional irrep of A6 as follows.
The simple roots of A6 can be written as αa ¼ ea − eaþ1;
a ¼ 1;…6, where eI , I ¼ 1; 2;…7 are the canonical basis
vectors in R7. Using the Cartan matrix, its inverse and the
fact that the Dynkin labels of this representation are
encapsulated by the vector [45] (001000), the 35 weight
vectors can be calculated. They have the following form:

ΛðIJKÞ ¼ eI þ eJ þ eK −
3

7
n; n ¼ ð1; 1; 1; 1; 1; 1; 1ÞT;

1 ≤ I < J < K ≤ 7: ð133Þ

The A6 Dynkin diagram is just the A5 Dynkin diagram of
Fig. 6 with a consecutive extra node, labeled as α6 ↔ 67,
added. The weight diagram of the 35 of A6 is obtained by
gluing together the weight diagrams for the 15 and 20 of A5

using Figs. 7 and 10 as follows. Consider that part of the
weight diagram of Fig. 10 which is labeled by triples
fabcg. Consider the seven triples: (126,136,236,246,346,
356,456). Connect these weights to the weights (127,137,
237,247,347,357,457) on the left-hand side of Fig. 7 by α6.
Connect the remaining triples containing the letter 6 to the
corresponding weights of Fig. 7 by α6. This construction
corresponds to the fact that [45]

SUð7Þ → SUð6Þ ×Uð1Þ; 35 ¼ 15ð−4Þ ⊕ 20ð3Þ:
ð134Þ

Let us now consider seven tuples of weights with the
property

X7
I¼1

ΛðAIÞ ¼ 0; AI ∈ P3ðSÞ: ð135Þ

It is easy to see that such seven tuples of weights are labeled
by seven tuples of three-element sets with a triple occurrence
for all the numbers from S ¼ f1; 2; 3; 4; 5; 6; 7g. Two
examples of such seven tuples are

fð147Þ; ð257Þ; ð367Þ; ð123Þ; ð246Þ; ð356Þ; ð145Þg;
fð147Þ; ð257Þ; ð367Þ; ð123Þ; ð123Þ; ð456Þ; ð456Þg:
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A special subset of such seven tuples arises when, in addition
to the property of Eq. (135), the new one of

jAI ∩ AJj ¼ 1; I ≠ J ð136Þ

is satisfied. An example of such a seven tuple is

fð147Þ; ð257Þ; ð367Þ; ð123Þ; ð156Þ; ð246Þ; ð345Þg: ð137Þ

Seven tuples of the (137) form are called Steiner triples
and they give rise to Fano planes. The seven points of the
Fano plane are labeled by the triples, and its lines are
labeled by the common intersection of such triples i.e. the
elements of S ¼ f1; 2; 3; 4; 5; 6; 7g. One can prove that we
have 30 ¼ 7!=168 such seven tuples of triples, labeling
different Fano planes. The number 168 is the order of the
Klein group, i.e. PSLð2; 7Þ, which is the automorphism
group of the Fano plane. Fano planes are planes in
PGð5; 2Þ, i.e. in the five-dimensional projective space
overZ2. One can apply the Klein correspondence [78] and
map these 30 planes of PGð5; 2Þ into 30 heptads of
mutually intersecting lines of PGð3; 2Þ. It is well known
that there are two distinct sets of such heptads, each having
15 elements: a heptad of one set comprises seven lines
passing through a point, whereas a heptad of the other set

consists of seven lines on a plane. This 30 ¼ 15þ 15 split
corresponds to a split of our 30 Fano planes. Fano planes
belonging to the same class intersect in a point; on the
other hand Fano planes belonging to different classes
either have zero intersection or they intersect in a line.
In terms of three-qubit observables the meaning of

these properties is as follows. The 30 Fano planes corre-
spond to seven tuples of mutually commuting observables
represented by symmetric 8 × 8 matrices. They represent
30 from the 135 maximal totally isotropic subspaces
[Lagrange subspaces defined after Eq. (14)], lying on
the Klein quadric [i.e. the zero locus of the form defined
in Eq. (15)]. The 15þ 15 split means that we have two
different classes of such mutually commuting seven tuples
of observables. Seven tuples belonging to different classes
are either disjoint or intersect in a triple of mutually
commuting observables. On the other hand, seven tuples
from the same class are intersecting in a single common
observable. The Klein group, PSLð2; 7Þ≃ SLð3; 2Þ, as a
subgroup of Spð6; 2Þ acts transitively on this set of 30 Fano
planes. It is well-known that the Klein group has a
generator of order seven [9,21] corresponding to the cyclic
permutation (1234567). As a result one can easily provide a
list of all Fano planes lying on the Klein quadric [9],

f124; 235; 346; 457; 156; 267; 137g; f126; 237; 134; 245; 356; 467; 157g; ð138Þ

f147; 257; 367; 123; 156; 246; 345g; f127; 347; 567; 135; 146; 236; 245g; ð139Þ

f157; 247; 367; 456; 235; 134; 126g; f137; 257; 467; 124; 156; 236; 345g: ð140Þ

The two sets of Eq. (138) are invariant under the cyclic shift
(1234567). On the other hand, an application of this cyclic
shift to the remaining four seven tuples of Eqs. (139) and
(140) generates the remaining 24 seven tuples. Notice that
the first and second seven tuples from Eqs. (138)–(140)
correspond to representatives of the first and second class,
respectively. For example, the first element of (138) and the
second element of (140) intersect in the triple (124,156,137)
of commuting observables; hence they belong to different
classes of Fano planes.
In the following we present a finite geometric under-

standing of Hitchin’s G2 functional introduced in [34,46]
and extensively used in string theory; see for example [35].
Let us consider a three-form on a real seven-dimensional
orientable manifold M,

P ¼ 1

3!
PIJKdxI ∧ dxJ ∧ dxK ¼ 1

3!
Pabcdxa ∧ dxb ∧ dxc

þ 1

2!
ωabdxa ∧ dxb ∧ dx7: ð141Þ

We associate to this the observable

Δ≡ ΠþΩ; ð142Þ
where we used the definitions (45) and (80). Notice that
the Weyl group of A6, i.e. S7, acting on the weights lifts
naturally to an action on our observable Δ according to the
pattern as explained in Eq. (81). This action gives rise to the
one on the coefficients PIJK of our three form.
In addition to this discrete group action, there is the

action of the continuous group GLð7;RÞ at each point
x ∈ M as follows:

PIJK ↦ SII
0
SJJ

0
SKK0

PI0J0K0 ; S ∈ GLð7;RÞ: ð143Þ

The basic covariant under (143) is [34,35,79]

NIJ ¼
1

24
εA1A2A3A4A5A6A7PIA1A2

PJA3A4
PA5A6A7

ð144Þ

with transformation property

NIJ ↦ ðDetS0ÞS0II0S0JJ0NI0J0 ; ð145Þ
where S0 ¼ ðS−1ÞT .
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Let us look at the structure of this covariant for three
forms with seven nonvanishing coefficients labeled by the
triples giving rise to our 30 Fano planes of Eqs. (138)–
(140). It is easy to see that for these heptads NIJ is a
diagonal matrix. Indeed for I ≠ J, with I and J taken from
different triples from any of our heptads, the complements
of I and J with respect to their respective triples should
have a common element. Hence εA1A2A3A4A5A6A7 has
repeated indices giving 0. Let us take any of the diagonal
elements, e.g. calculate N11. Due to the Fano plane
structure the number 1 occurs in three triples. Let us
employ any two of them. Then in order to have a non-
vanishing term one has to employ the third one as well,
since for a nonvanishing value of εA1A2A3A4A5A6A7 all of the
numbers from 1 to 7 have to show up. Hence, the three
terms in this cubic monomial feature labels corresponding
to a line of our Fano plane. For example, in the special case
of Eq. (137) N11 ¼ P123P147P156. Hence, in this case, the
line is (123,147,156); its triples intersect in 1, which is the
label of the line and also the label of the diagonal element
of NIJ. The net result is that the diagonal elements of NIJ
feature an ordered list of all seven lines of the correspond-
ing Fano plane. An easy way to build up an invariant from
our covariant is just taking the determinant of NIJ.
However, this quantity is only a relative invariant, i.e.

DetN ↦ ðDetS0Þ9ðDetNÞ; ð146Þ
so DetN is invariant only under the SLð7;RÞ subgroup.
For the special case of 30 heptads corresponding to Fano

planes on the Klein quadric, DetN, which is a monomial of
order 21, can be written as a cube of a monomial of order 7.
Clearly this monomial of order seven is just coming from
the product of the seven nonvanishing coefficients of our
special three form. For example, for the Fano plane labels
of Eq. (137),

DetN ¼ ðP147P257P367P123P156P246P345Þ3: ð147Þ

Hence, we conclude that there should be a relative invariant
of order 7 in the 35 coefficients of P.
In order to write down explicitly this invariant we

introduce additional covariants [79],

ðMIÞJK ¼ 1

12
εIJA1A2A3A4A5ΨKA1A2

ΨA3A4A5
;

LIJ ¼ ðMIÞA1
A2
ðMJÞA2

A1
: ð148Þ

Under the (143) transformations these transform as follows,

ðMIÞJK ↦ ðDetS0ÞSII0SJJ0S0KK0 ðMI0 ÞJ0K0

LIJ ↦ ðDetS0Þ2SII0SJJ0LI0J0 ; ð149Þ
where S0 ¼ ðS−1ÞT . Notice that the 7 × 7 matrices NIJ and
LIJ are symmetric.

From our covariants one can form a unique algebraically
independent relative invariant

J ðPÞ ¼ 1

24 · 32 · 7
TrðNLÞ: ð150Þ

Under (143) J picks up the determinant factor,

J ðPÞ ↦ ðDetS0Þ3J ðPÞ; ð151Þ

hence it is invariant under SLð7;CÞ. Comparing with the
transformation rule (146) one conjectures that DetN ≃
ðJ ðPÞÞ3. Defining

BIJ ¼ −
1

6
NIJ ð152Þ

one can indeed prove that

ðJ ðPÞÞ3 ¼ DetB: ð153Þ

A three form with the property J ðPÞ ≠ 0 is called
nondegenerate [34]. In this case one can define the functional

VHG2½P� ¼
Z
M
ðJ ðPÞÞ1=3d7x: ð154Þ

We refer to this functional as the G2-Hitchin functional.
The reason for this name is coming from thewell-known fact
(for a summary on related issues see [80]) that the stabilizer
in GLð7;RÞ of three forms associated with our 30 heptads
gives rise to a particular real form of the exceptional group
GC

2 . For example, for the choice

P∓ ¼ dx123 ∓ dx156 � dx246 ∓ dx345 � dx147 � dx257

� dx367;

dxIJK ≡ dxI ∧ dxJ ∧ dxK; ð155Þ

the stabilizers are the compact real formG2 (P−),which is the
automorphism group of the octonions, and the noncompact
real form ~G2 (Pþ), which is the automorphism group of
the split octonions. For any fixed x ∈ M in the space of
real three forms the two orbits of P∓ under the (143) action
are dense [81].
For nondegenerate forms one can define a symmetric

tensor field, i.e. a metric on M, as

GPIJ ≡ ðJ ðPÞÞ−1=3BIJ: ð156Þ

Indeed, by virtue of Eqs. (145), (151) and (152) GIJ
transforms without determinant factors. For the nondegen-
erate orbit of P− the metric is a Riemannian one and the
G2-Hitchin functional can be written in the alternative
form [34,35]
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VHG2½P� ¼
Z
M

ffiffiffiffiffiffiffi
GP

p
d7x; GP ¼ DetGPIJ; ð157Þ

meaning that this functional is a volume form defined by P.
The critical points of this functional in a fixed cohomology
class give rise to metrics in M of G2 holonomy [34,46].
Such manifolds are of basic importance in obtaining
compactifications of M-theory with realistic phenomenol-
ogy [82]. In analogy with topological string theory related
to Calabi-Yau manifolds, one can consider topological M
theory [35,83] related to manifolds with G2 holonomy.
The classical effective description of topological M theory
is provided by VHG2½P�.
The expressions (147), (152) and (153) show that in

identifying the finite geometric structure of J ðPÞ the 30
Fano planes of our Klein quadric play a fundamental role.
In other words we have a seventh-order invariant with 30 of
its monomials directly associated with Lagrangian sub-
spaces (Fano planes) of a hyperbolic quadric in PGð5; 2Þ.
The Klein quadric has 35 points and 30 Fano planes on it,
with each Fano plane containing seven points. It can be
regarded as a combination of aGQð2; 2Þ and an EQGð2; 1Þ
(black and green triangles of Fig. 5). The former has 15
points and 15 lines, with each line containing three points,
and the latter has 20 points and 30 blocks with each block
containing four points. The former contains ten grids
[GQð2; 1Þs] as hyperplanes (see Fig. 3); the latter contains
20 grids as residues. Moreover, the former object is
associated with the cubic invariant of (44), and the latter
with a quartic one of (65). What we need is a finite
geometric method for entangling the finite geometric
structures of GQð2; 2Þ and EGQð2; 1Þ in a way which
also combines the cubic and quartic invariants to our (150)
seventh-order one.
We are not aware of any finite geometric method of the

above kind. However, we are convinced that this method of
entangling the structures of GQð2; 2Þ and EGQð2; 1Þ
should be based on grids, i.e. GQð2; 1Þs. Since at the level
of observables grids are associated with Mermin squares,
this idea stresses the relevance of Mermin squares as
universal building blocks for any of our invariants dis-
cussed in this paper. Let us share with the reader some solid
piece of evidence in favor of this conjecture.
In the case of the canonical grid related to the decom-

position of Eq. (54) we have the arrangements

i

0
B@

147 157 167

247 257 267

347 357 367

1
CA ¼ 123 ·

0
B@

156 −146 145

256 −246 245

356 −346 345

1
CA

¼ 456 ·

0
B@

234 −134 124

235 −135 125

236 −136 126

1
CA:

ð158Þ

Here the triples mean products of gamma matrices; hence,
for example, 123 · 156 ¼ 2356 ¼ i147. Writing formally
the determinant of the 3 × 3 matrix on the left-hand side,
the six monomials give rise to the lines of a grid of the
GQð2; 2Þ part labeled with observables, i.e. a Mermin
square. On the other hand, we see how the labels of the two
antipodal residues of Eqs. (61) and (62) of the EQGð2; 1Þ
part give rise to the same Mermin square of the GQð2; 2Þ
part. This construction relates the six lines of a grid in
GQð2; 2Þ with 12 blocks of the EGQð2; 1Þ. Moreover this
correspondence between lines of a grid [e.g. take the
diagonal entries of the matrix on the left: (147,257,367)]
and the blocks of a residue [e.g. take the diagonal entries of
the middle and right matrices together with the residue
labels: (123,156,246,345) and (456,234,135,126)] is based
on Fano heptads. Indeed the two heptads (147,257,367,
123,156,246,345) and (147,257,367,456,234,135,126) are
the ones belonging to the different classes of Fano planes
intersecting in the common line (147,257,367). One can
repeat this construction for any of the residues. Then we
can relate the ten pairs of antipodal residues of EGQð2; 1Þ
to the ten grids living inside GQð2; 2Þ. Clearly, this method
also establishes a correspondence between the 15 lines of
the doily to the 30 blocks of EGQð2; 1Þ.
Let us now connect these observations to the structure of

our seventh-order invariant of (150). We would like to see
how this invariant incorporates the cubic and quartic
invariants of Eqs. (44) and (70) associated with the
structures showing up in Eq. (158). We start with the 35
components of Eq. (141). We decompose the 15 compo-
nents of ωab to 3 × 3 matrices ωαβ;ωᾱ β̄;ωαβ̄, with the first
two of them being antisymmetric ones. The remaining 20
components enjoy the decomposition of Eqs. (67)–(69)
with two scalars η, ξ and the relevant 3 × 3matrices having
the index structure: Xα

β̄;Yᾱ
β. Notice that according to

the left and middle matrices of (158), the quantities
ðωαβ̄; η;Xα

β̄Þ correspond to a grid of GQð2; 2Þ and the
canonical residue associated to η of EGQð2; 1Þ. Our aim is
to use these quantities to arrive at a new form of (150).
Let us define

Qα
β̄ ¼ ðηX − Y♯Þαβ̄; Vαβ̄ ¼ ωαβ̄ −

1

η
ωαγYγ

β̄;

ωα ¼ 1

2
εαβγωβγ; ð159Þ

Uᾱ β̄ ¼ ωᾱ β̄ þ
2

η
Y½ᾱγVγjβ̄� −

1

η
εᾱ β̄ γ̄X

γ̄
δω

δ;

Gαβ ¼ Qðαγ̄V γ̄jβÞ; ð160Þ
where the notation ½ᾱγjβ̄�, (ðαγjβÞ) means antisymmetriza-
tion (symmetrization) only in the index pair ᾱ; β̄, (α, β).
Let us also rescale the (88) definition of Jη in terms of the
data of Eq. (71). Employing the results of [84] we obtain
the compact expression
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J ðPÞ ¼ −
1

η2
DetG −

η

8Jη
Det

�
QU þ 2Jη

η
V

�
: ð161Þ

Let us elaborate on this formula. For 3 × 3 matrices one
can use the identity

DetðAþ BÞ ¼ DetAþ TrðAB♯Þ þ TrðA♯BÞ þ DetB

ð162Þ
to rewrite in the second term the determinant of the sum.
Since DetðQUÞ ¼ 0 due toU being antisymmetric, no term
proportional to η=Jη arises. Only terms linear and quadratic
in Jη=η and terms not featuring Jη=η at all show up.
Moreover, we have U♯ ¼ uuT where u is the three-vector
associated to the antisymmeric matrix of U [see the third
formula of Eq. (159)]. After introducing the antisymmetric
part of the matrix QVT , i.e.

Hαβ ¼ Q½αγ̄V γ̄jβ�; hα ¼ 1

2
εαβγHβγ; ð163Þ

one obtains the alternative formula

J ðPÞ ¼ −
1

η2
ðJ2η þ DetQÞDetV þ 1

η2
hTGh

−
Jη
2η

TrðUV♯QÞ − 1

4
uTQ♯Vu: ð164Þ

Now it is well known from studies concerning the corre-
spondence between four-dimensional and five-dimensional
black hole solutions that [60,61]

DðPÞ ¼ 4

η2
ðJ2η þ DetQÞ ð165Þ

as can be checked using the definitions (70) and (88) and
the identity (162). Notice that this interpretation also
identifies the physical meaning of the quantities η, Q
and Jη as the NUT charge, the charge and angular
momentum of the five-dimensional spinning black hole
[59–61]. The first term in our final formula

J ðPÞ ¼ −
1

4
DðPÞ · DetV −

1

4
uTQ♯Vuþ 1

η2
hTGh

−
Jη
2η

TrðUV♯QÞ ð166Þ

shows the desired factorization of the seventh-order invari-
ant to quartic and cubic ones. The remaining terms are to be
considered as “interference terms."
We interpret the vanishing conditions of these interfer-

ence terms. Our decomposition of P can be interpreted as a
means to regarding the seventh dimension of our M as
special. If we consider compactifications of M theory of the
form M ¼ S1 ×M, where M is a six-manifold, one can
imagine M as a manifold also equipped with a symplectic

form ω for which only the off-diagonal blocks of its
ωab matrix are nonvanishing; i.e. only the ωαβ̄ terms are
nonzero. These are the terms corresponding to the matrix
on the left-hand side of Eq. (158) and used in Eq. (54).
In this case the physical meaning of the matrix V ≡ ωM is
clear: its components define the symplectic form on M.
On the other hand, U is just 2=η times the antisymmetric
part of the matrix YωM, and H and G are the antisymmetric
and symmetric parts of QωT

M. Hence, in this special case
our invariant is

J ðPÞ ¼ 1

4
DðPÞ · PfðωÞ − 1

4
uTQ♯ωMuþ 1

η2
hTGh

−
Jη
2η

TrðUω♯
MQÞ: ð167Þ

Clearly, if the extra conditions that the matrices YωM and
QωT

M are symmetric hold then the interference terms are
vanishing. It can be shown that these conditions are
equivalent to

ω ∧ P ¼ 0 ð168Þ
meaning that the P part of P is primitive with respect
to ω. This condition disentangles the seventh-order invari-
ant [35] as

J ðPÞ ¼ 1

4
PfðωÞDðPÞ: ð169Þ

It means that the invariants of the GQð2; 2Þ and EGQð2; 1Þ
parts factorize the seventh-order invariant. For a single
residue and its corresponding grid only the triple
ðωαβ̄; η; Xα

β̄Þ contributes. In this case

J ðPÞ ¼ −ηDetXDetωM þ 1

η2
hTGh ð170Þ

so factorization is achieved when XωT
M is symmetric.

It would be interesting to seewhether there is an analogue
of formula (86) in this G2-Hitchin invariant case. In order to
find this formula, as suggested by the pattern of (158), a
seventh-order polynomial defined for antipodal residues
and their corresponding grid is needed. However, in order
to find this interpretation of the seventh-order invariant a
deeper understanding of the entanglement between the
GQð2; 2Þ and EGQð2; 1Þ geometries is needed.

F. A note on extended generalized quadrangles
of type EGQ(2,2)

We have demonstrated that the structure of our magic
Veldkamp line is based on different combinations of
generalized quadrangles GQð2; 1Þ, GQð2; 2Þ, GQð2; 4Þ
and their extensions EGQð2; 1Þ and EGQð2; 2Þ. To these
geometric structures one can associate in a natural manner
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invariants of physical significance. These invariants are of
cubic type for the generalized quadrangles, i.e. the deter-
minant (55), the Pfaffian (46), and Cartans cubic invariant
(121). For the extended generalized quadrangles they are of
quartic type: Hitchin’s invariant (70) and the generalized
Hitchin invariant (100).
Here we point out that one can extend GQð2; 2Þ,

comprising the core configuration of our Veldkamp line,
in different ways; hence the EQð2; 2Þ structure underlying
the generalized Hitchin invariant is just one of other
possible extensions.
The different extensions are coming from a construction

based on affine polar spaces [85]. According to this result
there are EGQð2; tÞs (of necessity t ¼ 1, 2, 4) of ten
different types. For t ¼ 2we have three different extensions
conventionally denoted by the symbols A2, E

þ
2 ; E

−
2 . They

have points 32,36,28, respectively. Surprisingly, all of these
extensions of the doily can be accommodated in our
Veldkamp line in a natural manner. Indeed, as shown in
Fig. 14, the three different pairs of colored triangles
produce the right count for the number of points of these
extensions. Namely, the blue and green triangles produce
A2, and the red and green and red and blue ones give rise to
Eþ
2 and E−

2 , respectively. For the A2 part we have already
verified the EGQð2; 2Þ structure in connection with the
generalized Hitchin functional. Here we check the
EGQð2; 2Þ structure of type E−

2 .
In order to verify the E−

2 structure, we notice that
according to Fig. 5 the relevant red and blue triangles
are labeled as f7; ab; a; a7g. These labels can be mapped
to the 28 weights of the 28-dimensional irrep of SUð8Þ.
Indeed, one can label the corresponding A7 Dynkin dia-
gram by formally adjusting an extra label as follows:
f78; ab; a8; a7g. Then the seven nodes of the Dynkin
diagram are labeled by 12,23,34,45,56,67,78. The Dynkin
labels [45] of the 28 of A7 are (0100000) and the weights
can be constructed in the usual manner. The result is

ΛðÎ ĴÞ ¼ eÎ þ eĴ −
1

4
n; n ¼ ð1; 1; 1; 1; 1; 1; 1; 1ÞT;

1 ≤ Î < Ĵ ≤ 8: ð171Þ

Now, the 28 weights correspond to the points of our E−
2 and

the blocks are coming from quadruplets of different
weights with their sum giving the zero vector. Clearly,
these quadruplets are the ones whose labels partition the
set S ¼ f1; 2; 3; 4; 5; 6; 7; 8g into four two-element sets.
By example 9.8 of Ref. [40], the structure whose points are
unordered two sets of S and whose blocks are partitions
of S into four two sets is precisely E−

2 . This gives a
representation theoretic realization of the E−

2 structure. On
the other hand, after reinterpreting the labels as observables
fΓ7;Γa; iΓaΓb; iΓaΓ7g the blocks correspond to quadru-
plets of pairwise commuting observables with their prod-
ucts being the� identity. This gives a physically interesting
realization of the E−

2 structure in terms of three-qubit Pauli
observables. Note that an alternative interpretation can be
given in terms of the 28 of SOð8Þ. In this case the 8 × 8
matrices fΓ7;Γa;ΓaΓb;ΓaΓ7g are directly related to the
generators of SOð8Þ.
According to our basic philosophy now we can look after

an invariant whose structure is encapsulated in the E−
2

structure. Clearly, this invariant is just the (112) Pfaffian
of an8 × 8 antisymmetricmatrix. In theSOð8Þ basiswehave
already found the physical meaning of this invariant. Indeed,
in the black hole context, according toEq. (111) this invariant
appears as a substructure of the E7ð7Þ-symmetric entropy
formula [18,68]. We have already seen this phenomenon in
connection with the generalized Hitchin invariant, i.e. the A2

part. According to Eq. (114) this part lives naturally inside
the E7ð7Þ invariant via truncation to the RR sector. Now the
invariant of the E−

2 part produces another truncation of this
E7ð7Þ invariant. In order to see thiswe just have to recall that in
the case of toroidal (T6) compactifications one can use either
the full set of 28 components of the xÎ Ĵ, or the yÎ Ĵ matrix
corresponding to Eq. (110). In the first case we are content
with 15D2 branes, and aD6 brane (red triangle of Fig. 5), six
fundamental string windings and six wrapped KK5 monop-
oles [60] (blue triangle of Fig. 5). In the second case we
restrict our attention to subconfigurations of 15 D4 branes
and a D0 brane, six wrapped NS5 branes and six Kaluza-
Klein momenta [60]. The fact that only truncations of the
E7ð7Þ invariant can be accommodated into our Veldkamp line
and not the full formula indicates that for an implementation
of this invariant we should embed our Veldkamp line within
another one on four qubits. We postpone the discussion on
this interesting issue to our last and concluding section.
Let us also verify that the red and green triangle parts of

Fig. 14 indeed represent an Eþ
2 structure. For this we

merely have to verify that the structure of subsets of the
form f7; ab; abcg, equipped with the adjacency relation
given by the vanishing of the symplectic form of Eq. (37), is

FIG. 14. Different extensions EGQð2; 2Þ of the doily GQð2; 2Þ
living inside our magic Veldkamp line.
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just the point graph of Eþ
2 . This graph is a strongly regular

graph [40] with parameters (36,15,6,6). These parameters
are in order: the number of vertices, the valency, and the
number of common neighbors of adjacent and nonadjacent
pairs of vertices. First, using (30), instead of f7g we write
f123456g. We have then 36 residues belonging to three
types of cardinality 1,15,20. It is enough to examine one
from each type. The first type is trivial: it is just the residue
of f123456g, which consists of the 15 vertices of the form
fabg, a < b. For the representatives of the remaining types
we consider the residues of 56 and 456. We order them in a
way compatible with the duad labeling of the doily in
lexicographic order,

f12; 13; 14; 234; 156; 23; 24; 134; 256; 34; 124; 356;
123; 456; 123456g; ð172Þ

f12; 13; 234; 235; 236; 23; 134; 135; 136; 124; 125;
126; 45; 46; 56g: ð173Þ

One can check that the adjacent vertices labeled by 45 and
456 have six common neighbors, and the nonadjacent ones
123456 and 456 have six common neighbors as well. There
is an action of S6 on these subset labels. The number of
residues of the first type is 15 and of the second one 20.
These copies can be obtained by the action of elements
taken from S6 not stabilizing the labels 56, 456 and their
complements. Due to the permutational symmetry, the
point graph structure can be checked easily via looking
merely at representative cases. The blocks contain four
points, and the total number of blocks is 36 × 15=4 ¼ 135.
Hence the commutation properties of the observables
fΓ7; iΓaΓb; iΓaΓbΓcg give rise to a realization of the
geometry Eþ

2 . Again its blocks correspond to quadruplets
of pairwise commuting observables with products being �
the identity.
What about an invariant associated with this part? In

order to attempt finding an answer to this question we turn
to our last section.

G. Connecting the magic Veldkamp line to spinð14Þ
In our finite geometric investigations of the MVL we

managed to associate to its different parts incidence struc-
tures, representations and invariants with physical meaning.
Now a natural question to be asked is the following: What is
the finite geometric, representation theoretic and physical
meaning of our MVL as a whole?
As far as group representations are concerned, the answer

to this question is easy to find: our MVL encapsulates
information on the 64-dimensional spinor representation of
the group spinð14Þ (type D7) of odd chirality. Indeed,
including also the identity we have 64 three-qubit Pauli
operators, hence after associating to the odd chirality spinor
of spinð14Þ a polyform

σ ¼ uIdxI þ
1

3!
PIJKdxIJK þ 1

2!5!
vIJεIJKLMNRdxKLMNR

þ ζdx1234567 ð174Þ

there is a corresponding three-qubit observable of the form

Σ ¼ uIΓI þ
i
3!
PIJKΓIΓJΓK

þ 1

2!5!
vIJεIJKLMNRΓKΓLΓMΓNΓR þ ζ1; ð175Þ

where 1 ≤ I < J < � � � < R ≤ 7 and 1 is the identity real-
ized by the 8 × 8 identity matrix.
In order to show that we are on the right track let us

first give a special status to the Klein quadric part of our
MVL. This part is related to the 35 of A6, i.e. the green
parallelogram of Fig. 4. Under the decomposition soð14Þ ⊃
suð7Þ ⊕ uð1Þ we have

64 ¼ 7̄ð3Þ ⊕ 35ð1Þ ⊕ 21ð−3Þ ⊕ 1ð−7Þ ð176Þ

corresponding to the structures above. Using that under
suð7Þ ⊃ suð6Þ ⊕ uð1Þ we have

7̄ ¼ 6̄ð−5Þ ⊕ 1ð6Þ; 35 ¼ 20ð−3Þ ⊕ 15ð4Þ ð177Þ

and neglecting one of the uð1Þs, we obtain

64 ¼ 6̄ð−5Þ ⊕ 6ð−1Þ ⊕ 15ð4Þ ⊕ 20ð−3Þ ⊕ 15ð2Þ
⊕ 1ð6Þ ⊕ 1; ð178Þ

which after taking into account (30) reproduces our split
of Fig. 5.
Let us now give a special status to the 32 of the D6

part, a combination of the blue and green triangles of
Fig. 4. In this case the relevant decomposition is soð14Þ ⊃
soð12Þ ⊕ uð1Þ,

64 ¼ 32ð1Þ ⊕ 320ð−1Þ: ð179Þ

Under the decomposition soð12Þ ⊃ suð6Þ ⊕ uð1Þ one has

32 ¼ 6ð−2Þ ⊕ 20ð0Þ ⊕ 6̄ð2Þ;
320 ¼ 15ð−1Þ ⊕ 15ð1Þ ⊕ 1ð3Þ ⊕ 1ð−3Þ: ð180Þ

Combining these we obtain again the usual decomposition
of Eq. (178).
As far as finite geometry is concerned, our analysis

clearly demonstrated that the structure of the MVL nicely
encodes an entangled structure of generalized and extended
generalized quadrangles. The MVL naturally connects
information concerning incidence structures to the one
hidden in weight systems of certain subgroups appearing in
branching rules of spinð14Þ. Alternatively, this information
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on incidence geometry is revealed by the commutation
properties of special arrangements of three-qubit observ-
ables like Mermin squares and pentagrams.
Finally, the unified picture of the MVL combined with

the appearance of spinð14Þ naturally hints at an invariant
unifying all the invariants we came across in our inves-
tigations. As emphasized in [52], the invariants connected
to Hitchin functionals are associated to prehomogeneous
vector spaces [81]. These objects are triples ðV;G; ϱÞ of a
vector space V, a groupG and an irreducible representation
ϱ acting on the vector space, such that we have a dense orbit
of the group action in the Zariski topology. This property is
crucial for the stability property needed for the variational
problem of the corresponding Hitchin functional to make
sense [34,35,46,64]. In the black hole/qubit correspon-
dence [15,52] these invariants give rise to measures of
entanglement and the prehomogeneity property ensures the
existence of a special GHZ-like entanglement class playing
a crucial role in the subject. From the table of regular
prehomogeneous vector spaces [81] one can see that the
highest possible value of n such that the spinor irrep for the
group SpinðnÞ is a regular prehomogoneous vector space is
n ¼ 14. In this case, under the group C× ⊗ spinð14Þ, one
has a unique relative invariant J8 of order 8. According to
the general formula obtained in [86] it is of the form

J8ðσÞ ¼ J6ðzÞζ2 þ 4J7ðzÞζ; ð181Þ

where

z ¼ ev=ζ ⌞ σ ¼ zIdxI þ zIJKdxIJK þ ζdx1234567

v ¼ 1

2
vIJeIJ; dxIðeJÞ ¼ δIJ; ð182Þ

and for the explicit expressions of J6;7 we orient the reader
to [86].
Let us first consider the truncation of σ when only the 36

components corresponding to the pair ðζ;PIJKÞ are non-
zero. The ðPIJKÞ part corresponds to the Klein quadric part
of the MVL. The ζ part can be interpreted as an extra point.
At the level of observables this is just the term proportional
to the identity observable commuting with all observables.
Geometrically, the 63þ 1 structure of the MVL plus an
extra point arising in this way can be regarded as a one-
point extension [87] of the symplectic polar space Wð5; 2Þ
defined in the paragraph following Eq. (14). We write

σ1 ¼
�
1

2!
ωabdxab þ ζdx123456

�
∧ dx7 þ 1

3!
Pabcdxabc;

ð183Þ

where ωab ¼ Pab7. The six-dimensional interpretation of
this configuration is that of a D0D4 system combined with
a D3 one. In this case [88]

J8ðσ1Þ ¼ 16ζJ ðPÞ; ð184Þ

where J ðPÞ is the seventh-order invariant of Eqs. (150).
Notice that if, in addition, the constraint ω ∧ P ¼ 0 holds,
then according to (167) our formula simplifies to

J8ðσ1Þ ¼ 4ζPfðωÞDðPÞ; ω ∧ P ¼ 0: ð185Þ

Next we consider a truncation corresponding to the
unclarified case of Eþ

2 of the previous section. Now we
keep the 36þ 1 quantities: ðu7; Pabc; vab; ζÞ with the
ðu7; Pabc; vabÞ part labeling the Eþ

2 part and the ζ part
indicating the extra point. In this case one can write

σ2 ¼
�
u71þ

1

2!4!
vabεabcdefdxcdef þ ζdx123456

�
∧ dx7

þ 1

3!
Pabcdxabc ≡ φ ∧ dx7 þ ψ : ð186Þ

Clearly, this arrangement can be related to a D0D4D6-
brane system (φ) combined with a D3-brane one (ψ).
Suppose now that φ and ψ are nondegenerate, i.e.
DðφÞDðψÞ ≠ 0. Then, using the results of [88] a straight-
forward calculation shows that the special condition v ⌞
P ¼ 0 is a sufficient and necessary one for obtaining

J8ðσ2Þ ¼ ðζ2u72 þ 4u7PfðvÞÞDðPÞ ¼ DðφÞDðψÞ ð187Þ

provided that PfðvÞ ≠ 0. This result means that J8 in this
case is factorized to the quartic invariants of the even and
odd chirality spinor representations of spinð12Þ. These can
be regarded as two truncations of the generalized Hitchin
invariant of the Eq. (100) form, where the D3-brane part is
T-dualized to a D0D2D4D6 system using Eqs. (96) and
(97). For ζ ¼ 0

J8ðσ2Þ ¼ 4u7PfðvÞDðPÞ; v ⌞ P ¼ 0: ð188Þ

Let us now compare the case of σ1 with the one of σ2
constrained by ζ ¼ 0. Both cases have 36 components
related to incidence structures on 36 points. However, their
underlying finite geometries are different: the σ1 case has
the one-point extended Klein quadric, and the σ2 one the
extended generalized quadrangle Eþ

2 . In spite of their
different underlying geometries, their (185) and (188) J8
invariants are the same provided we make the substitutions

u7 ↔ ζ; v ↔ ω; v ⌞ P ¼ 0 ↔ ω ∧ P ¼ 0:

ð189Þ

This shows the duality of theD0D4 andD2D6 system well
known from string theory.
Our example of a duality shows that one can find the

quartic and cubic invariants of Eqs. (70) and (44) inside the
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eight-order one in many different ways. Obtaining the same
structure of J8 up to field redefinitions indicates that as
form theories of gravity [35] these truncations are the same,
though their geometric underpinnings are wildly different.
Finally, from Eq. (187) one can also see that PfðvÞ, as an

invariant, is associated to the residue of u7 familiar from the
Eþ
2 setup. Of course, relaxing the condition v ⌞ P ¼ 0 we

discover the 35 other residues embedded in the complicated
structure of J8. That a sum of terms with Pfaffians
corresponding to residues is showing up in this way is
also obvious form Eq. (5.2.) of Ref. [86]. Although the
detailed finite geometric understanding of J8 has yet to be
achieved, these observations at least indicate that even the
Eþ
2 part of our MVL is also featuring a natural invariant in

the form of a truncation of J8.

IV. CONCLUSIONS

In this paper we have investigated the structure of the
three-qubit MVL. We have shown that apart from being a
fascinating mathematical structure in its own right, this
object provides a unifying finite geometric underpinning
for understanding the structure of functionals used in form
theories of gravity and black hole entropy. We managed to
clarify the representation theoretic, finite geometric, and
invariant theoretic meaning of the different parts of our
MVL. The upshot of our considerations was that the basic
finite geometric objects underlying the MVL are the unique
generalized quadrangles GQð2;1Þ;GQð2;2Þ and GQð2; 4Þ,
and their nonunique extensions: of type EGQð2; 1Þ;
EQGð2; 2Þ and EGQð2; 4Þ.
In [27] we connected generalized quadrangles to struc-

tures already familiar from magic supergravities. They are
the cubic Jordan algebras defined over the complex numbers
quaternions and octonions. Their associated cubic invariants
are related to entropy formulas of black holes and strings in
five dimensions. In this paper we extended this analysis to
also provide a finite geometric understanding of four-
dimensional black hole entropy formulas and their under-
lying Hitchin functionals of form theories of gravity. From
the algebraic point of view, this extension is one of moving
from cubic Jordan algebras to the Freudenthal systems based
on such algebras [53].
Indeed, in this picture GQð2; 1Þ is associated with the

complex cubic Jordan algebra. The cubic invariant is the
determinant of a 3 × 3 matrix. The extension of GQð2; 1Þ
is an EGQð2; 1Þ which is denoted by Dþ

2 in [40] and
associated with the corresponding complex Freudenthal
system. The quartic invariant in this case is the one
underlying the Hitchin functional. Similarly, GQð2; 2Þ is
associated with the quaternionic cubic Jordan algebra. The
cubic invariant is the Pfaffian of a 6 × 6 antisymmetric
matrix. The extension of GQð2; 2Þ is an EGQð2; 2Þ which
is denoted by A2 in [40], corresponding to the quaternionic
Freudenthal system. The quartic invariant is the one
underlying the generalized Hitchin functional. The next

item in the line is GQð2; 4Þ which is associated with the
split octonionic cubic Jordan algebra. The cubic invariant in
this case is Cartan’s cubic one. However, in this case the
extension ofGQð2; 4Þ, which is an EGQð2; 4Þ and which is
denoted by D−

2 in [40], is not showing up in our MVL.
Although we have already made use of truncations of the
corresponding quartic invariant of Eq. (111), in our con-
siderations no part displaying the full structure of this
invariant has shown up yet. This quartic invariant is the one
underlying the E7ð7Þ-symmetric black hole entropy formula
[65,68]; the corresponding functional for form theories is
the one used in connection with generalized exceptional
geometry [89,90] and it has an interesting interpretation as
the tripartite entanglement of seven qubits [22,28,70].
Hence, it would be desirable to find a place for this
important invariant in our finite geometric picture.
Clearly our MVL on three qubits is not capable of

accommodating this structure. However, in closing this
paper we show that our MVL with its associated stuctures,
taken together with the missing D−

2 part, is naturally
embedded in a Veldkamp line for four qubits. In order to
achieve a similar level of understanding as for the MVL, we
have to employ an eight-dimensional Clifford algebra with
generators γ Î , where Î ¼ 1; 2;…8. This algebra can be given
a realization in terms of antisymmetric four-qubit Pauli
operators; see e.g. [42]. An alternative realization, more
convenient for our purposes, is obtained by modifying our
original seven-dimensional Clifford algebra of Eq. (28) as

γI ¼ ΓI ⊗ X; γ8 ¼ 1 ⊗ Y; I ¼ 1; 2;…7: ð190Þ

Let us now repeat the construction of a Veldkamp line
ðCp;Hq;HpþqÞ featuring a perp set, a hyperbolic and an
elliptic quadric. We choose p ↔ γ8 ¼ IIIY and q ↔ IIII.
Hence, Cp comprises the operators commuting with γ8,
Hq ¼ H0 consists of the 135 symmetric four-qubit observ-
ables not counting the identity, and finally,Hpþq consists of
the ones that are either symmetric and commuting, or skew
symmetric and anticommuting with γ8. The cardinalities of
the characteristic sets of this Veldkamp line are shown in
Fig. 15. We have 64þ 63 elements of Cp and the elements
ofHq and Hpþq split as 72þ 63 and 56þ 63, respectively,
with the core set having the geometry of aWð5; 2Þ with 63
points.
A subset of particular interest for us is the blue triangle of

Fig. 15. This subset of cardinality 56 has a 28þ 28 split,
which can be described by the following set of skew-
symmetric operators:

fγI; γIγJγKγLγMg ⊕ fγIγ8; γIγJγKγLγMγ8g;
1 ≤ I < J < K < L < M ≤ 7: ð191Þ

Notice that according to Eq. (28) the first of these two sets
comprises 28 Hermitian observables of the form A ⊗ X
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and the second 28 skew-Hermitian ones of the form
iA ⊗ Z, where the three-qubit ones are skew symmetric
i.e. AT ¼ −A. These can be used to label the weights of the
56-dimensional irrep of E7. In order to see this one has to
label the E7 Dynkin diagram as follows. Add an extra node
to the right of Fig. 12 labeled by the pair 67 and replace the
label 456 by 45678. Then, starting from the highest weight
78, and applying transvections corresponding to the simple
roots the weight diagram of the 56 of E7 is reproduced.

Note that γ8 is anticommuting with all elements in these
sets; hence, the lift of the corresponding transvection [see
Γ7 in a similar role in the first expression of (75)] acts as an
involution exchanging the two 28-element sets. It is easy to
see that this transformation implements the involution of
electric-magnetic duality we are already familiar with.
Let us now consider γ7 as a special operator. It is

commuting with the following set of 27 ¼ 6þ 6þ 15
operators

fγaγ8; γaγbγcγdγeγ8; γaγbγcγdγ7g
1 ≤ a < b < c < d < e ≤ 6: ð192Þ

Regarding this set of cardinality 27 as a residue of a point
represented by γ7 it can be shown that this set can be given
the structure of a GQð2; 4Þ. Moreover, this property
remains true for choosing an arbitrary point from our
56-element set. Continuing in this manner one can con-
vince oneself that the blue part of Fig. 15 is a copy of D−

2 ,
i.e. an EGQð2; 4Þ, our missing extended generalized
quadrangle. Now, it is natural to conjecture that the quartic
E7ð7Þ invariant, i.e. the one associated with the Freudenthal
system of the split octonionic case, can be given a form
similar to the quartic ones of Eqs. (86) and (105) related to
the complex and quaternionic Freudenthal ones. In this case
the relevant coset should beG=H whereG ¼ WðE7Þ=Z2 ≃
Spð6; 2Þ and H ¼ WðE6Þ. In order to prove this conjecture
one only has to find an appropriate labeling of this coset
whose identity element is leaving invariant the canonical
residue defined by Eq. (192). Notice also that the gener-
alization of the polynomials (84) and (104) in this case is
trivially dictated by the Freudenthal structure. It is also
clear that this invariant is the one encapsulating the
structure of the D−

2 part of a four-qubit Veldkamp line.
One can also show that the green triangle part of Fig. 15,

of cardinality 72, comprises the extension of the Klein
quadric familiar from the MVL. Indeed, a parametrization
of this part in terms of Clifford algebra elements is provided
by the sets

fγIγJγK; γ1γ2γ3γ4γ5γ6γ7g ⊕ fγIγJγKγ8; γ1γ2γ3γ4γ5γ6γ7γ8g:
ð193Þ

This part is decomposed into two subsets of cardinality
36 ¼ 1þ 35 exchanged by the lift of the transvections
generated by γ8. Any of these subsets can be regarded as a
one-point extension of the Klein quadricQþð5; 2Þ. Since to
the Klein quadric part one can naturally associate the
seventh-order invariant giving rise to Hitchin’s G2 func-
tional, it is an interesting question whether one can
associate to this part a natural invariant of order eight
based on the extension EQþð5; 2Þ. And, if the answer is
yes, what could be its physical meaning? Based on the
decomposition of Eq. (183) featuring 1þ 35 quantities and

FIG. 15. The characteristic numbers (top) and finite-geometric
structures (bottom) for the decomposition of the four-qubit MVL
(compare with Figs. 5 and 14). Both the extended generalized
quadrangle EGQð2; 4Þ [of type D−

2 ; see example 9.6(i) in [40]]
and the extended Klein quadric EQþð5; 2Þ [alias the extended
dual 2 design with residues isomorphic to the duals of PGð3; 2Þ;
see example 7.3(b) in [91]] have the property that for every point
there exists a unique antipodal point; hence, they both have
unique quotients isomorphic, respectively, to a one-point exten-
sion of GQð2; 4Þ (see, e. g., example 9.7 in [40]) and a one-point
extension of the Klein quadric Qþð5; 2Þ (see, e. g., [87]). For the
three extensions of symplectic polar space Wð5; 2Þ we use our
own symbols, reflecting whether the point set of the extension
lies in the complement of the hyperbolic quadric [EWðþÞð5; 2Þ] of
the elliptic quadric [EWð−Þð5; 2Þ] or of the quadratic cone
[EWð5; 2Þ] of Wð7; 2Þ. The symbol fWð5; 2Þg stands for the
projection of the core Wð5; 2Þ from the vertex of the cone.
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giving rise to the eight-order invariant of Eq. (184), it is
natural to conjecture that the underlying physics is some-
how connected to two copies of such decompositions and
two copies of the seventh-order G2 invariants.
Motivated by our success with the group spinð14Þ in the

MVL case, one can try to arrive at a group theoretical
understanding of the structure of Fig. 15 based on the group
spinð16Þ. Indeed it is known [63] that n qubits can be
naturally embedded into spinors of spinð2nÞ. For four
qubits spinð16Þ has two spinor representations of even or
odd chirality of dimension 128 and 1280 and also irreps of
dimension 135 and 120. Under the decomposition of
spinð16Þ ⊃ suð8Þ ⊕ uð1Þ we have for the even and odd
chirality spinor irreps

128 ¼ 1ð−4Þ ⊕ 28ð−2Þ ⊕ 70ð0Þ ⊕ 28ð2Þ ⊕ 1ð4Þ;
1280 ¼ 8ð−3Þ ⊕ 56ð−1Þ ⊕ 56ð1Þ ⊕ 8̄ð3Þ; ð194Þ

and for the last two ones

135 ¼ 36ð2Þ ⊕ 63ð0Þ ⊕ 36ð−2Þ;
120 ¼ 28ð2Þ ⊕ 63ð0Þ ⊕ 28ð−2Þ ⊕ 1ð0Þ: ð195Þ

The 135-dimensional representation can be related to the
hyperbolic quadric part (symmetric 16 × 16 matrices), and
the 120-dimensional one to the blue and red triangle parts
(skew-symmetric 16 × 16 matrices) of Fig. 15. However,
the naive identification of the blue and green triangle parts
with a spinor representation fails, since according to
Eq. (191) these parts are containing both an even and an
odd number of gamma matrices; hence they do not have a
definite chirality. This is to be contrasted with the situation
of the blue and green triangles of the MVL of Fig. 5.
Indeed, we could identify these parts as the 32-dimensional
spinor irrep of spinð12Þ of negative chirality. The reason
for our success in that case was that, by virtue of Eq. (30), it
was possible to convert the ΓaΓ7 part of Fig. 5 to the one
containing an odd number of gamma matrices. Notice also
that the one-point extended MVL corresponds to an irrep,
the spinor one of negative chirality, of spinð14Þ. A similar
identification of the four-qubit Veldkamp line of Fig. 15
with a single irrrep is not possible. Hence our Veldkamp
line of Fig. 5 is a magical one also in this respect, since it
incorporates very special representation theoretic struc-
tures. Of course this is as it should be, since our MVL is a
special collection of representation theoretic data related to
prehomogeneous vector spaces.
Finally let us comment on the possible physical role of

Mermin squares in our considerations. Throughout this
paper we emphasized that grids, labeled by Pauli observ-
ables, alias Mermin squares, are the basic building blocks
of our MVL. From the finite geometric point of view such
grids underly the extension procedure based on residues. For
example, when producing our simplest extended generalized

quadrangleEGQð2; 1Þwe used the residues of Eqs. (61) and
(62). Grids also define invariants with physical meaning
(Hitchin’s invariant) via the averaging trick of Eq. (85).
Moreover, from the discussion following Eq. (158) we see
that the grids underlying the structure of EGQð2; 1Þ are
related to the grids of the doily residing in the core of the
MVL. In particular, the two antipodal residues of Eqs. (61)
and (62) give rise to the same grid of the core doily. Via Fano
heptads, like the one of Eq. (138), this relationship also
connects the structure of the seventh-order invariant under-
lying Hitchin’sG2 functional to the one of the Klein quadric.
Continuing in thismannerwehave seen that, using the idea of
extended geometries, one can build up the whole MVL.
These considerations show the fundamental nature of the 10
grids, similar to the ones of Fig. 3, residing in the core doily.
Recall also that apart from incidence, the Mermin squares
also encode information on signs. These signs are imple-
mented into the structure of invariants via the (75) lifts of
the transvections, which represent the generators of the
automorphism groups of the finite geometric structures
[see e.g. Eq. (83)]. According to Fig. 3 there are ten
Mermin squares inside the doily. For a particular three-qubit
labeling they represent different embeddings of these objects
as geometric hyperplanes inside the embedding geometry.
Geometric hyperplanes (Mermin squares) in some sense act
like codewords embedded into the larger environment of the
mother geometry. What kind of information might grids,
when regarded as Mermin squares, encode?
Within the context of black hole solutions arising from

wrapped brane configurations one possible answer to this
question is as follows. In the type IIA duality frame the 15
lines of the doily correspond to the 15 possible two cycles
of a T6 2-branes can wrap. Hence, there are normally 15
different brane charges. However, when we are considering
merely supersymmetric configurations only nine from the
charges are nonvanishing [66]. These charges can be
assembled into a charge matrix which has the index
structure qαβ̄ with respect to a fixed complex structure of
the T6. This structure is similar to the index structure of
the expansion coefficient of the observable of Eq. (54). In
particular, this structure refers to an Uð3Þ ×Uð3Þ subgroup
of SOð6Þ which encapsulates the possible rotations in the
fixed complex structure of T6. In the quantum theory the
automorphism group of the grid should then correspond to
the relevant discrete subgroup of this group. The classical
supersymmetric black hole solution with the above features
has been constructed in [66]. It turns out that this solution is
characterized by an extra charge, the D6-brane charge;
hence we altogether have a ten-parameter seed solution.
Some discrete data of this solution possibly can be regarded
as a codeword, or in finite geometric terms a residue. The
remaining six parameters describe how the seed solution is
embedded into the full 15 parameter one. These remaining
six parameters arise from global SOð6Þ=Uð3Þ rotations
that deform the complex structure of the solution. At the
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quantum level these transformations should boil down to
the discrete set of transformations generated by the trans-
vections showing up in Eq. (85). According to [66] it is not
possible to add additional 2-branes that lie along these
additional six cycles consistently with supersymmetry. So
if we regard the discrete information (e.g. the distribution of
signs of the nine brane charges) embedded into the full 15
parameter solution, as some message, then this information
is in some sense protected from errors of a very particular
kind, namely global rotations of the complex structure.
These observations might lead to a further elaboration of
the analogy already noticed between error correcting codes
and the structure of BPS and non-BPS STU black hole
solutions [92]. We elaborate on these interesting ideas in a
subsequent publication.
Last but not least, it should be mentioned that we are well

aware of the fact that the physical consequences stemming
from a variety of novel finite geometrical constructions
introduced in this paper are far from being developed

completely. Indeed, instead of working out particular
details for each construction, in this paper we focused
on a proper laying out and justification of its conceptual
foundations. We believe that such conceptual groundwork
is sufficiently interesting in its own right. We hope that our
contribution provides the interested reader with the neces-
sary background to explore further this fascinating subject
on his or her own.
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