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We describe holographic thermal quenches that are inhomogeneous in space. The main characteristic of
the quench is to take the system far from its equilibrium configuration. Except in special extreme cases, the
problem has no analytic solution. Using the numerical holography methods, we study different observables
that measure thermalization such as the time evolution of the apparent horizon, two-point Wightman
function and entanglement entropy (EE). Having an extra nontrivial spacial direction allows us to study this
peculiar generalization since we categorize the problem based on whether we do the measurements along
this special direction or perpendicular to it. Exciting new features that are absent in the common
computations appear in the literature; the appearance of negative EE valleys surrounding the positive EE
hills and abrupt quenches that occupy the whole space at their universal limit are some of the results of this
paper. Physical explanation is given, and connections to Cardy’s idea of thermalization are discussed.
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L. INTRODUCTION AND MOTIVATION

Experiments of the heavy-ion collisions have provided a
magnificent opportunity to study strongly coupled systems
[1]. An important part of this study is to understand the
physics of the thermalization in which the fascinating state
of matter “quark-gluon plasma” has formed [2].

In the last decade, extensive studies of the hot plasmas
close to equilibrium using the weakly coupled field theories
have been performed. While the regime of the validity of
those results is limited, they have contributed a great deal to
our physical interpretation [3] and have been the motivation
for more complex computational tool boxes.

Gauge/gravity duality [4] together with spectral methods
have become a successful phenomenological framework
[5,6] to study the above-mentioned systems in the regime
where they can be arbitrarily far from equilibrium while the
theory is experiencing strongly coupled behaviors. This is
indeed the regime in which we are mostly interested to
study the physics of thermalization which allows us to
gather information about subtle and more realistic setups
that were seemingly out of reach. An example of such
scenarios often includes the breaking of symmetries to
incorporate the realistic features. This can be conformality,
supersymmetry or a simple time and spatial translational
invariance.

An easy way to construct such a setup that can have the
above attributions is deduced by simply making an abrupt
change in one or some of the couplings of a microscopic
theory, in our context a quantum field theory, that governs
the dynamics of the system. Then, the theory is said to
undergo a quantum quench [7-9]. The most common type
of quench which in part is also very simple to interpret is to
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change the mass of the Quantum Field Theory (QFT) i.e. to
produce a mass gap artificially. As the goal of studying
quenches is to observe thermalization, one can see that a
rapid change in the mass of the action or the corresponding
Hamiltonian will correspond to excess of energy that has to
be shared among new degrees of freedom in the new
system. The physics of how the quantum system will
manage to reach this new state which can or cannot be
accompanied by a thermal process will be of great
importance to us [7].

Of course, our primary interest is the non-Abelian QCD
plasma which has a strongly coupled dynamics. One hopes
that QCD’s long distance behavior at high temperature can
be more or less described by the pure N/ = 4 super Yang-
Mills. In light of this connection, attempts have been made
to mimic some aspects of the QCD which maybe enable us
to use the AdS/CFT duality. The maximally supersym-
metric content of the theory contains degrees of freedom
such as adjoint fields that are absent in QCD but still has a
good resemblance to the quark-gluon plasma that we are
interested in. It turns out that we can modify the V' =4
SYM further to overcome some of the physically unwanted
features of the theory. One example, in this regard, is
breaking the conformality in A" = 4 SYM by adding a bare
mass term [10]. The resulting theory is N = 2." with
massive hypermultiplets in the adjoint representation i.e.
N = 2* with a nontrivial RG flow [11]. Note again that at
high temperatures this mass deformation will become
irrelevant. The superpotential for the hypermultiplet mass

term then will consist of structures such as TrQ? + TrQ?

"This should not be confused by a closely related model of
N =1* SU(N) gauge theory which is another possibility of
softly breaking NV = 4 by a chiral multiplet mass term.
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and Tr([Q. Q]®) with Q and Q the N = 2 hypermultiplets
and where @ is an adjoint chiral superfield which is related
to a gauge field under A = 2. These superpotential terms
have been expanded in terms of their matter content simply
in the form [12]

58 = —2/d4x(mi(’)2 +m;03), (1.1)
with operators O, and O; defined according to
O =3THd P+ bl = 2gP). (12)
O3 = =Tr(iy 1y, — V2gvmds (41, fl””
+V2gymbs[}. ¢o] + Hee.)
Fam TP+ P+ D). (13)

3

and m;, and m are bosonic and fermionic masses that will
be determined below.

The holographic dual (supergravity) of the above theory
was studied elegantly by Pilch and Warner in Ref. [11]. In
their work, the supergravity scalar fields dual to the
operators defined in Eq. (1.2)-Eq. (1.3) named a and y
satisfy a potential and kinetic term given by

7 - 7

V=—Z¢" ?ezacosh (2x) +f2—6egasinh2(2)(),

) (1.4)

T = —3(0a)? — (0y)>. (1.5)
For more details of the construction and the RG flow, refer
to Refs. [13,14]. Having this dictionary for the AdS/CFT
duality made exploration of different aspects of the
theory that has great resemblance to QCD possible [10].
Particularly, at finite temperatures, thermodynamics of
N =2* SU(N) gauge theory at large ’t Hooft coupling
has been at the center of various works. Buchel, Deakin,
Kerner, and Liu showed that at temperatures that are near
the mass scale of the theory thermodynamics attributed to
the mass deformation is irrelevant and derived the finite
temperature version of the Pilch-Warner flows at the
boundaries [12]. This later study was then extended to
find the behavior of the thermal screening masses of the
Quark-Gluon Plasma (QGP) and beyond to lower temper-
atures [15]. Various aspects of the free energy of the N =
2* were reported in Ref. [16], and further on, corrections to
the transport coefficients were derived [17]. For a work on
finite baryon density in this context, refer to Ref. [18].

An enlightening simplicity appears in the regime where
my, ¢/T <1 since in this limit a black hole has formed
inside and the boundary of the bulk space will be
asymptotically an anti-de Sitter (AdS) space. This moti-
vates us [19] to expand the scalar fields in Eq. (1.4) to
obtain
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_ 1 5, /= HLYPYT
S5—16HG5/dx\/_g'(R+12 2 (09)

1
— oM+ 0(¢3>>, (1.6)

where in the above ¢ € {Zx/ga,Z\/i;(} with the corre-
sponding masses m*> € {—4,-3} and G5 = sn2- Note that
we have put the radius of AdS in Eq. (1.6) equal to 1. It
must be clear that in the above range of temperatures, we
are looking at large scale black holes and it is reasonable to
treat the amplitudes of the scalar fields perturbatively with
respect to the former length scales and the length [ ~ m /T
will be used to truncate the backreaction.

Now, we are in the position to make the connection to the
quench picture more concrete. As mentioned above, the
result of the mass deformation is to map our starting point
i.e. Sgym of N = 4 into Sgyy + 68 with 55 defined already
in Eq. (1.1). The operators O, and O that are dual to
the scalar field ¢, with different masses, have different
dimensions based on their structures in the superpotential.
If A is the dimension of each operator, then the corre-
sponding mass of the dual scalar field will satisfy [15]
A(A-4) = m?. In other words, in the boundary theory,
one of the operators, namely s, couples to a fermionic
mass my, and O, couples to a bosonic mass. Similar to
Ref. [20], we will concentrate only on the fermionic
operator in this paper and fix the dual mass of the scalar
field to m? = -3.

By fixing the parameters of the bulk theory, it was
remarkably suggested [19] to use a toy profile for my.
Among various choices, the profile that produces a mass
gap is particularly interesting. This evolution can be simply
written in terms of the step function, m,; = m0(z), as a
function of real time or a more smooth and articulated
variation of it,

my = %mo[l + tanh (7). (1.7)

Either way, the system can start from a massless (massive)
ground state and end up in a massive (massless) eventual
state after thermalization [20]. We refer to this setup as the
homogeneous scenario. Calabrese and Cardy came up
with an attractive idea to describe the effect of such an
evolution of a mass gap [7]. In their “horizon effect”
picture, semiclassical propagations (quasiparticles)2 at the
initial state, or in fact every imaginary Cauchy surface that
was satisfying causality, were responsible for the later
thermalization of the system. A key point that came up in

The concept of quasiparticles has an old history in thermal
QFT, and it has been used successfully in the perturbative and
close to equilibrium physics, but not at far from equilibrium and
strongly coupled systems.
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their discussion was to associate with each coherent set of
particles an effective temperature 7. Then, at later times,
interference of incoherent quasiparticles that sets off their
journey in an uncorrelated fashion derives the system to
thermalization. It was further speculated by the authors that
this can be a thermal process such as a thermal diffusion. To
clarify this idea further, in Ref. [8], they studied the
evolution of the mass deformation with an inhomogeneous
initial state in models such as conformal and free field
theory.

These ideas are worth a second look. We are curious to
know if the final stationary state of matter depends in any
way on the initial state to begin with. Having an extra toy
dimension that affects the dynamics will help us in this
direction. If the theory is very symmetric, motion of
trajectories will be confined to a specific section of the
phase space; this should be compared with a less symmetric
case in which trajectories will occupy the whole space of
solutions and therefore a more realistic situation to study in
the case of the thermalization. Reference [21] has looked
into this point with different settings.

We will not consider an inhomogeneous initial state but
rather extend Eq. (1.7) to include the following form:

1 2
my = 3 [1 —i—tanh(é)}e 2.

This is the inhomogeneous scenario that we will consider.
The response of the strongly coupled N = 4 supersym-
metric Yang-Mills thermal plasma will be studied while it is
quenched by tuning parameters a and o that play the role of
different scales for perturbations in time and space respec-
tively. Note that the natural scale of the problem is set by
the initial scale of the horizon, aT.?

We will consider a cherry picked range of @ and . In this
way, we can have more control and better insight into the
physics of thermalization. The chosen values for the
parameters in Eq. (1.8) in the text correspond to interesting
physics such as the limit of slow/fast quenches with various
sizes of spacial inhomogeneity.

To solve the problem, we will be using an ansatz with
four arbitrary” functions of space and time with x being the
coordinate in which profiles are inhomogeneous with
respect to it,

(1.8)

ds? = —A(z, p, x)dt* + Zy(t, p, x)2dx* + Zy(z, p, x)*dy*

d d
+ 28(z, p, x)drdx — 2 p ‘
p?

(1.9)

*For numerical purposes, we factor out scales of the coor-
dinates such as p., = % Xpew = 2 and 7,e, = 7T 704. And we
will be working with the “new” variables. This factorization also
affects components of the metric for instance Ao, = (7T)?Agq, - -

*Please refer to [22].
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and if for the brevity of argument, we neglect the
logarithmic corrections and higher-order terms here, the
boundary could be written as’

¢ = 1(ppo + p*0.po + P’ p2) + O(P, p*), (1.10)
1 2 2 1 2 2 4 2
A=p7—p +E( —gpotpiar | +O(pnp). (1.11)

! P
5= +12< 226 _ 3 Po0:Po ’p°+p4d>+0(z4,p4lnp),

12 9
(1.12)
1 z 9,
%, =[—)+l2 (—pz%—ﬁ%ﬂ)“b‘x) +O(1%.p*Inp),
(1.13)
- Oy
s e (B ) oy, e

where in the above pg, p,, a,, by, dy and f, depend on
(7.x). Note that from the AdS/CFT dictionary m, = p,.
These functions will satisfy Einstein equations that are
coupled second-order partial differential equations. To
solve them numerically, we will apply spectral methods
and techniques developed by Chesler and Yaffe [5] and use
the Dirichlet boundary condition for the longitudinal
direction. The accuracy of our physical results is certainly
limited to our computational resources. While we could
quantify the effect of the numerical artifacts to be of a few
percent, to our knowledge, none of physical conclusions
that are deduced is affected by them.

In this paper, we study various observables already
in the literature such as the apparent horizon, two-point
Wightman functions and entanglement entropy (EE). Our
goal is to study the thermalization under the quench in
Eq. (1.8) for various parameters with a special emphasis on
the study of EE. In Sec. II, we look into these different
nonlocal observables as a measure of the thermalization,
and different aspects of them will be studied in detail. In
Sec. III, we recap the conclusions and the physical picture
deduced from the simulations in previous sections.
Section IV is dedicated to a discussion on fast quenches,
and the Appendix gives a thorough derivation of the
equations of motion and numerics.

II. THERMALIZATION OBSERVABLES
A. Apparent horizon

One of the most important quantities in the description
of the thermodynamics of a black hole is its statistical
entropy as a measure of the number of quantum states.

The complete list is outlined in the appendix.
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. . A
Hawking’s famous area relation, S = ﬁ, makes a con-

nection between this entropy and the area of the black
hole’s horizon. The radius of the former area is determined
by the position of the horizon, and in our scenario as the
scalar field falls into the black hole and radiates, the black
hole expands, and its rate is directly related to the behavior
of the radius.

We consider the metric in Eq. (1.9) with a simplifying
feature of setting a cutoff in the backreaction at second
order, explicitly assuming6

1 N

Az, p,x) = e —p* + PA(z,p,x) + O(1*), (2.1)
| B

(7, p,x) = — et =m0 L O(14), (2.2)
p

E(r,p.x) = PE+ O(P), (2.3)

where X in the above notation can be either of X, and X,
and the expansion parameter is determined by [~ m/T.
Basically, the argument is that we look at the variations of ¢
at the order of / and neglect the backreaction on itself.
Implementing this assumption in the Einstein equations
allows us to truncate the series at O(I*) or O(I*) on
different metric components. For an interesting discussion
of the thermodynamics of the model, refer to Ref. [23]. In
the following, we use the above components to study the
behavior of the apparent horizon of the black hole deep in
the bulk.

In a much simpler case where X; =%, =X (the
homogeneous spacetime), the equation for the position
of the trapping surface follows from d,X = 0 with d, =

0, — AT”Z(?/,. In the general case [22], this equation is
modified to’
1, 1 _
d,2=--0 8"+ XV -E (2.4)
2 3
with £ now given by £ = (£,22)!/3. Applying the expan-

sions in Eq. (2.1)-Eq. (2.3) gives the position of the
trapping surface

Alt,p,x 3,2 T,0, X 8,51 T,0, X
Ph(T,x) _ |: ( 4:0 )_|_ d(6 14 ) b(3 14 )
D,E(, p, x)}
_ 2.5
5 - (25)

®Since the metric is invariant under the residual diffeomor-
phism r — r + f(r) with r=1/p, we use this property to fix
the expansion of A(z,p, x) not to have any linear term in r.

"The V and the dot product are defined according to g with

spatial components given by §;; = @_Z)M 3and gy = 33 = @—5)2/ 3,
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Knowing the position of the apparent horizon, p;, the
natural quantity to calculate is the volume of the horizon.

The volume density of the entropy given by & = 4‘%5

corresponds to the explicit expression for the perturbation
of the volume element

V), =352 =1+ 16V, (2.6)

where it has to be calculated at (z, 1 + [>pj,, x). This gives
the final expression for variation in the volume element of
the apparent horizon,

3. 0.2, 08
oV, =|—2A—
h 4 > T

—9,8,+32,+28,
p=1

(2.7)

From the above expression, we can see that the introduction
of the inhomogeneity directly changes the location of the
apparent horizon in comparison with the previous calcu-
lations in Refs. [20,24].

As a reference, Fig. 1(a) shows the plot for py(z,x),
read it my, as a function of real time 7 and inhomo-
geneous direction x. This is equivalent to the profile of
the scalar field that is falling into the black hole from the
boundary and the effect of this infall can be seen in the
fluctuations of the apparent horizon in Figs. 1(b)-1(f) in
x —7 coordinates. These plots that match those of
Ref. [20] have been specifically chosen as they show
different physics as we vary the tuning parameters. One
first clear point is that they all roughly imitate behaviors
of their sources. Choosing x = 0 in py(z, x) will reduce
our problem to Ref. [20]. As it is clear from Figs. 1(b)-v,
their behaviors along x =0 are very similar. They all
follow the profile of py(z, x = 0). But they follow differ-
ent patterns along the inhomogeneous direction. In
po(z,x), there are Gaussian profiles in the x direction
with amplitudes that are almost constant far away from
7 =0, either 7 > 0 or 7 < 0. Close to 7 = 0, the amplitude
of the Gaussian distribution increases linearly. This is
when the quench has been turned on and in the vacuum of
the QFT a mass gap has been formed. This is evident in
Figs. 1(b), 1(c) and 1(f) for z = 0. It is an interesting fact
that at this moment excitations occupy a length equal to
the width of the initial Gaussian profile and their
amplitudes seem to follow a universal behavior, occupy-
ing the whole available space.

As we reduce the value of a in py(z, x), excitations will
not only occupy the available space at the z = 0 but also
overrun the original profile of p((z,x) for all 7 > 0 as seen
in Figs. 1(b)-1(e). In fact, it is very hard to distinguish
between Figs. 1(d) and 1(e), although they physically
belong to different sizes of the mass gaps. This is the
universal behavior associated with the abrupt quenches that
have been discovered in Refs. [25,26].
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(a) (b)

(c) (d)

FIG. 1. Figure (a) is the profile of p, that is being sent into the black hole. The rest of the plots are time evolutions of variations in the
radial position of the horizon. In (b), (¢), (d) and (e), plots are drawn for a fixed value of 6 = /L, with L, = 10 the length of the domain
in the x direction. The varying parameters are correspondingly o € {I%ié} In (f), these parameters are « = 1 and ¢ = /1.5L,. The
interpolations are based on N, = N, = 20-30, the number of Chebyshev points along the inhomogeneous direction x and radial
direction p. The number of time steps used for the fourth-order Runge-Kutta varies between 7810 and 17,560.

An interesting feature is captured in Fig. 1(f). By Some of the features in the plots below should not be
increasing o, the tuning parameter corresponding to the  confused by physics. They are discretization artifacts, and
width of the Gaussian distribution, mass gap excitations  one can in principle factor them out by improving the
will fill up the available space. computational resources. For instance, the amplitude of
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FIG. 2. The disturbance drawn in red pen is that of a Gaussian
function, representing the inhomogeneity. We are interested in the
correlation of points off this plane, i.e. points A and B in case 1.
Similarly, in case II, the correlation between C and D will be
studied. Note the resemblance of the setup to the elliptic flow in
heavy-ion collisions.

the corrugations in the flat areas surrounding the
bump to the highest peak is at maximum 5%.
Similarly, the local peaks on top of the bumps at the
time of switching the quench are at maximum 9%. A short
discussion about the size of the numerical artifacts and
their effects on the thermalization is given in Secs. A1
and A 2.

B. Two-point correlator

Two-point Wightman functions are good candidates
of probing thermalization. For operators with large
masses, the correlation functions will have a simple
interpretation in term of spacelike geodesics that
connect two sample points on the boundary of the
conformal field theory (CFT) through the bulk space.
Since we have a special direction which is the direction
of the inhomogeneity, we can categorize our setup into
two groups. Case I will be the situation where this
special direction is orthogonal to the axis of observation,
and case II refers to the situation where the points chosen
are along the axis of the inhomogeneity. This is explained
in Fig. 2.

Similar categorization also applies to our discussion in
the next section where we extend this setup and study
thermalization of the quenches by the entanglement
entropy.

1. Case I: Plane A-B

To see the effect of the quenches, we are interested in
the length of a geodesic that stretches along one of the
spatial directions. The other simplifying assumption here
is that, similar to Ref. [20], we look into the correlator of
operators with large conformal dimensions.® Then,
the two-point Wightman function will be proportional
to the length of the boundary-to-boundary spacelike
geodesic [27].

$This limit omits the possibility of studying the correlator of
the quenching operator itself.
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For simplicity, our choice is the curve that satisfies
boundary conditions, 7, = 7,, y; = —V,;» X] = 21 = 0 and
Ty =T,y Yo = Ym» Xo = 2o = 0, in other words, not the
specific direction that the inhomogeneity will act on. In this
setup, the geodesic connects points A and B through their
extension in the bulk. The inhomogeneity appears at O(1?)
along the axis where points C and D are positioned. To see
how the quench affects the geodesic as we mentioned
before, we choose a cutoff for the backreaction at O(/?).
The effect of this backreaction on the coordinates will be
parametrized by

p=po+Lpn  x=0Px.  (2.8)

7 =1y + P17,
Our former boundary condition imposes 7y = 7,. It is
instructive to compute the geodesic first, to see explicitly
the effect of the inhomogeneity. Since the geodesic equa-
tions follow from %—H“ ’[w%‘fﬁ =0 in some general
affine parametrization 4 in cases I and 11, different equations
of motion will be derived. It is also interesting to see how
the inhomogeneity affects the geodesic beyond our
approximation for the backreaction. The equations of
motion in this case are cumbersome, and it suffices to
mention that the above parametrization will still work out to
solve the equations of motion.

Geodesic equation for T—At the zeroth order, the
equation is trivially satisfied; when / = 0, one can see
that

L1 .
to ——[1 = (7)*(1 + p5)] = 0, (2.9)
Po
and at the second order, we get
. ATt P2y . 2923
# + 22 (1 4 pf) + 5 [ — (1 = 3p()] - =2~
Po Po Po
1 n A

where in the above we have constrained the geodesic by
Xo = 2o = 0. Also note that the metric components depend
on (7g, po, Xg, ¥o) With 7o(yo) and py(yo). This means that
we are looking at constant intervals on the geodesic along
the x axis.

Geodesic equation for p.—At zeroth order, the geodesic
equation for p reads

Po+ " V3 — 7% — 2700 — 203)]
— Py (V5 + 2t0po — PiTE) = 0, (2.11)

and for O(1?),
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: 7 ’ . : 7 ’ : .
P2+ p2 <—2—0 - 4% - 2T0P(3)> + 17 <—2—0 - 2';—2 — 2popp + 270/’8)

Po 0 Po

ToPo

°2 22 -2
Vo T P . .. . A . .
+p (—p—2+—3+2—2+2—2—3y%p%—6Topop%+7fép8> + A(¥3po — Topo — T503)

o Po o Po

A

2555,

d,A . .. . PO 1. PN
+ 25 (505 + 2t0porh — TP5) + o (1= p3) + 350,25 (=1 + p}) + 5 T5P50:A + 350:2; = 0.

205

Inhomogeneous direction x,.—Simplifying the equation
will yield
; Poxa e . 1. P
% = 2? + poB[yG — (20)*(1 + pg)] + Efépéaxf‘

As we said before, we are looking at constant intervals
along the x axis and by varying the affine parameter that
causes the geodesic to go deeper in the bulk; a nonzero
value for x, will be produced. Note the 0, in Eq. (2.13),
which produce a distance of the order of /> between
constant intervals.

From the metric compatibility condition, e =—g,, 44,
and the condition on spacelike geodesics, € = —1, at zeroth
order in /, one obtains

—Hu %G + 2t0P0 — ToPy = =P (2.14)

in which we have to impose Xy =25 =0 and y, = 1.
After expanding to O(I?), the corresponding equation
simplifies to

1 o . P o . .2’\ o 2
; (ToTa + T2po + ToPa — YoZp) — ToT2pp

0

P2 (52 — 2 = 2igpy) — 2 Yei—o @is

+p3 ()’o 70 TOPO) Top0p2+270 . ( )
0

Similar expansion to the order of O(?) for the geodesic
equations in the direction of y and z will produce

-2 + p—ibo + P00,%p + 700,%, = 0. (2.16)
Po  Po
The Killing vector in the y direction satisfies X7y, = const,
expanding to zeroth order will yield y, = p3 x conts, and
this will fix the value of y, in Eq. (2.9)-Eq. (2.15).
After this short study of the behavior of the geodesics
under the quench, we can compute the length of geodesics
of interest. The length of the geodesic connecting operators
inserted at (7; = 7,,y; = =y, X = 21 = 0) and (7, = 7,,
Y2 = Y, X2 = 2o = 0) evaluates to

L:/y'” dyo\/zg+zdx2—A%2+2sxé—2p;, (2.17)
—Ym p

5 (2.12)

with all the metric components as a function of (z, p, x, y).
After expanding to the first order of /2, we get a correction
for the length of the geodesic that has the form of
L= Ly+ [>L,, with

vu . y/D(19. po, X.)
Ly = dyy——"1
Po

Vm

(2.18)

here, x, is the boundary coordinate in the inhomogeneous
direction. The second-order correction is given by

L, — /ym dye [ib —3p3A/2 o +to(l ) ;)
—Vm /]0\/5 pO\/B
D —2iop; T . }
- P2 P21 (2.19)
piVD poVD
with
D =1=2typy + 73(=1 + p}). (2.20)

Note that if we were assuming x, # O then there would be a
term proportional to x, in Eq. (2.19). It is convenient to use
the equations of motion for the geodesics for the last three
terms in Eq. (2.19) to show that the total contribution is
zero after a partial integration. This is a consequence of
perturbation around the extremal trajectory as it was
noticed in Ref. [20].

The constraint on the static geodesics comes from
Kﬂ% = const. In the absence of the quench, time is a
Killing vector. With K, = g,,, K, = g,, and K, = g,,, the
zeroth-order equation is given by

(p§ = 1)t9 — po = const (2.21)

Another way of seeing this is from the zeroth-order
geodesic equation for y. At the horizon p, =1 and
po = 0, this fixes the constant coefficient to zero. The
general solution is [20]
dTO o 1
dpo 1- Pg ’
70(pg) = 7, — tan~!(py) — tanh™! (py);

or

(2.22)

here, 7, is the time on the boundary as an observer in the
bulk reaches the boundary at p — 0. From the compatibility
condition of the metric, Eq. (2.14), we have
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(@)
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(b)

FIG. 3.

Time evolution of the two-point Wightman functions for operators with large conformal dimensions. Figures in (a), (b), (c) and

(d) are plotted for @ € {1,1,1 11 and ¢ = /I,. The interpolation of points are based on N, = N , = 20—30 along the inhomogeneity

727478

direction x and radial direction p. The number of time steps for 4 step Runge—Kutta methods (RK4) is 7810 — 17, 560.

— 220polp = Pins (2.23)

[1+ (pf — 1)

where the constant p,, is the maximum value for the radius
of the arc that attaches the two points on the boundary.
Thus, Eq. (2.19) reduces to

0

(2.24)

where, in the above, the metric components of 3, 3, and A
depend on (7, pg, x,) with 79(yg) and py(yy). This is
exactly the result in Ref. [20] with the exception that now
the profile of the geodesic is nonlinearly a function of the
x,.. To prepare the integral for numerics following Ref. [20],
after a change of variable such as py = p,,(1 — ¢?), the
former expression takes the following form,

1 2%
L, =2 [ (1=q¢%)d b
’ / = q[¢<2—q2><1—<1—q2>4p¢n>
2% 1 - (1 - (]2)2
e pmwz}

(2.25)

where again the components of the metric in the
above expression are functions of (zg, po, x,) with 74(q)
and po(q).

We can interpret the final Gaussian distribution that is
produced at late times as a signal of a successful thermal-
ization. Among the different simulations that have been
performed in this section for parameters in the range of
pm € {0.1p,.0.5p,.0.9p,,,0.999p,,}.° those that corre-
spond to p,, = 0.9p;, —0.999p, could be verified to have
reached the thermalization. Figures 3(a)-3(d) show the
correlation between two fixed points in the y axes for

%For the rest of the simulations in the paper, we fixed p;, = 1.
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different o € {1,2 4 8 while a scalar field that has a
Gaussian profile as a function of x is falling into the
black hole in the bulk space. In these figures, different
observers stationed on the x axis will measure the
correlation between the two specific points on the y axes
differently. The maximum correlation is measured on the
x =0 axis, and other measurements are symmetric
around this axis as the original profile for py(z,x) has
this symmetry. As the quench is triggered, there appears a
“phase transition” in a sense that the sign of the corre-
lation function changes sign; from zero in the ground
state, it goes to a minimum negative value and undoes
itself and reaches a final saturated maximum. The rather
simple form of Eq. (2.25) shows that this transition is due
to the interplay between 3, and the warp factor A. The
first term is always positive, while the sign of the second
term varies depending on the sign of A. Reduction of the
value of @ makes the late-time Gaussian-like distribution
disappear, signaling a fully thermalized equilibrium state
measured by the observable in the universal (abrupt
quench) limit.

PHYSICAL REVIEW D 96, 026012 (2017)
2. Case II: Plane C-D

In this section, we consider two-point correlations
again, while we measure the inhomogeneity in a plane
perpendicular to the one in the previous section. For an
illustration, refer to Fig. 2 and the comments at the begging
of that section. The relative geometry of the setup here is
more important as it resembles the setup of the elliptic flow
in heavy-ion collisions. In both cases, there are distribu-
tions that are localized in the transverse directions. Of
course, the physics of the two cases are not directly related.

The effect of the backreaction on the coordinates will be
parametrized by

x=xo+ x5 (2.26)

t=1+0P1, p=po+Lp,

In what follows, we will use x to parametrize the geodesic.
Expansion in terms of the above series will then yield:
the geodesic equation for 7,:

A

. . )y
12+2 (1 P8) = —+p—§(1—r§+3rgp;§)—2—d

Po Py Po

. . 1. A A A
.In Figs. 4(a) and 4(b), we compare the effect .Of changlqg - Ergp%(?pA + 70p%0,5; + 9,2, =0 (2.27)
o in the range /L, — /1.5L,. In the next section, we will
compare these results with those of case II. the geodesic equation for p,:
|
.. 562 4 . . ,D()
Pr+2—=(1=pj) = 2p, +2—+TOP0 —272 2+ 224 popd — 0P}
Po Po Po Po
1 734 2p3 + 270p .. . ) A
+ <—2+ U L 00 302 — 6t0popd + 72208 ) 2 + po(1 = 22(1 + pi))A
Po Po
. p— 2 4\ < . 28 28 = i'o[)% . . - 4 a ~
= 2popo= +,0_0 (1= pg) 2 + T0p0.A — pO.Ey + - (70 + 2po — T0P)9,A
.. . a - 1, n R
+ p5(=t0 = po + 70P0) 0,2 + (=1 + p) 0,2y + ET(Z)P%GTA +0.24 =0, (2.28)

(b)

FIG. 4. Changing the value of ¢ from /L, to \/1.5L, from left to right causes the distributions to rescale. This factor must be a
nontrivial function of the dynamics under study. On the left-hand side N, = N, =20 and on the right-hand side N, = N, = 30

Chebyshev points have been used.
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the geodesic equation for x,:

%y — 2x2Po _ 2/’2 + 2P0ﬂ2

ol = B(1+ s
po Po PR 0 0

1
+ 270,008 A + 6 Zd + Topopoa Hf + 2,008 Zd

and we can verify that the geodesics on the y and z axes are
not affected at O(/?). The metric compatibility condition
will subsequently change to

Xy = Topa + (=70 — po + T0Pg) T2

1
+Z‘2) (=1 + & + 2topo + #p8) = 5 73PRA + 20pfE
+3,=0. (2.30)

Note the appearance of the disturbances in Eq. (2.28) for
the bulk radius, and compare it to the previous case. This
completes the list of the required geodesics which could
have been driven otherwise from the action principle.

The length of the spacelike geodesic that connects
points C and D on (x; = —x,,,y; =0,z =0,7; = 7,)
and (x, = x,,,y, = 0,20 = 0,7, = 7,) is given by

L= /"’ a’xo\/—Aiz +Z5(1+12)* +28,7(1 + xy) — 2%,
(2.31)

where in the above 7 = 7, + [°7,, and we are assuming a
similar expression for p, too. In addition to p(x), the metric
components X,;, A and E are functions of (z,p, xy) with
7(xo) and p(xy). Expanding to O([?), at zeroth order, we
find Eq. (2.18), and to the second order, it simplifies to

x”l dxo A 1 A A
c :/ <z —~BA+1 25)
2 . po\/l_) d 2 0 0P0=f

+ /Xm dxo |:. . . + (
— |X2 — ToP2 -
—Xm pO D
-D + 2i2p}
+ 700p2 s
Po

o — Po + Top) T
(2.32)

with D defined in Eq. (2.20). Similar to case I, the
equations of motion at zeroth order will allow us to simplify
the above expression. The term proportional to 7, and the
combination of the coefficients that multiply p, and p, will
cancel out. The only nonzero contribution from the second
line of Eq. (2.32) comes from x,. The interpretation of this
term is the following; we have chosen x,, as a parameter that
covers the geodesic between the two fixed points on the
boundary, but this coordinate is also along the axis that the

PHYSICAL REVIEW D 96, 026012 (2017)

inhomogeneity is sourced accordingly by the profile of the
scalar field. Therefore, this term compensates for the fact
that we are constraining the geodesic in a fixed interval.

By partial integration and equations of motion, we can
reduce the contribution to

X d.xO 2, 1 A A ..
L _/ <Z ——%2A+%p25-+y2)
2= | /D \F T3 0Po=r + Yo

X

X2

+
Po\/l_)

Now, if we assume 2x,, > 1, this means x, = 0 at +x,,,. In
this case, there is no contribution from the second term in
Eq. (2.33). While this is an interesting scenario, we pursue
the general case and therefore do not impose this later
boundary condition. Notice that splitting the integral into
Jo™ would not help at all since in order to know the value of
X, at xo = 0 we have to solve the geodesic equations all the
way from the boundary down to the maximum value of the
bulk radius.

First, we have to solve the equations of motion for 7, and
po in terms of x,,. They are already mentioned in Eq. (2.22)
and Eq. (2.23). Choosing the positive root, the solution is
given by

(2.33)

—Xm

dpy _ /(L= p3) (i = Pd)
dxo Po ’

(2.34)

with the change of variable X, = x,, — xy. Solving the
above equation for X, in the limit of p, - 0, we find

po = \/2pui. From Eq. (2.23), we find D =42, and

therefore the denominator of the last term in Eq. (2.33)
behaves as

1 1
poVD  Pm
which has a finite value. This means that imposing the
boundary condition x, = 0 at +x, is safe and its contri-
bution vanishes as the profile is symmetric around x, = 0.

To write it in the final form, we use p, = p,,(1 — ¢*) and
solve for 7, from Eq. (2.21) to obtain

(2.35)

L, - / 7°)dq < %4
\/1 pml— V2-¢
_ 2“1 A
2(1 - q2)2(1 —pm(1=¢*)")
Pma(l=q%) :)
L.

1—ph(1=g*)?*

(2.36)

Similarly to the last section, plots for the above expression
are shown in Figs. 5(a)-5(e) for various tuning parameters
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(@)

FIG. 5. Time evolution of the two-point Wightman function for operators with large conformal dimension. In case II, the correlations are
measured by an observer along the plane of reactions. Plots in (a), (b), (c) and (d) are for a fixed value of ¢ = /L, while varying
ae{l, % , i , é} Instead, in (), @ = 1 withe = /1.5L . All these figures are deduced for geodesics with the deepest bulk penetration which
is given by the choice p,, = 0.999p,, in our setup. Other parameters of the simulations are similar to ones used in the previous sections.

a and ¢ in Eq. (1.8). In Figs. 5(a)-5(d), plots for Let us remind ourselves about the difference between case I
a €{1,3,5.4} are shown, and in Fig. 5(¢), 6 = \/I.5L,.  in Figs. 3(a)-4(b) and case II with the figures listed below.
An important observation is made by comparing our plots  In the first scenario, correlation between two points on the y
to those of the last section. In fact, they look very identical. axes is measured while a scalar field with a Gaussian profile
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falls into the black hole. The correlation between the points
is found by computing the geodesic connecting these pair
of points through the bulk. This means that as the scalar
field ¢ is falling into the bulk, the excitations that are
produced by the form of the profile will affect the length of
the geodesic. The plane of the flow of these excitations are
orthogonal to the plane where the geodesic is drawn. In
case II, both the excitations of the scalar field and the
geodesics are on the same plane. The resemblance of the
two scenarios is very nontrivial, although we also have to
remember that our results are valid for correlations of
operators with large mass dimensions. A rough explanation
is that in £, in both cases apart from the geometrical factors
that parametrize the geodesics, case I, the functional
dependence is given by £,(%,,A), while in case II, we
have £,(Z,. A, 2 #). From our simulations, it was clear that
ﬁld, » were roughly at the same order, while & + < 1. Notice

also that & ¢ 1s an odd function of x; this means that the plots
in Figs. 5(a)-5(e) are not completely symmetric along
x = 0 compared to those mentioned in Figs. 3(a)-4(b) of
case 1. For a similar conclusion on the connection between
inhomogeneity and the appearance of odd functionalities in
the correlation functions, refer to Ref. [28].

In the next section, we study entanglement entropies and
show that they are more distinctive when it comes to
different setups for thermalization.

C. Entanglement entropy

In this section, we generalize our previous arguments on
two-point functions. Among different options for the min-
imal surfaces that one can use, we restrict ourselves to the
strip geometry. Then, rather than probing the bulk by a single
geodesic, we will measure the thermalization by a minimal
surface that satisfies the boundary of a strip. We will follow
Ryu and Takayanagi’s [29] prescription for calculating the
EE for holographic theories, which is based on extremizing
bulk surfaces. For related works on EE, refer to Ref. [30].

1. Case I: Plane A-B

One natural way to parametrize the boundary is to use
the set of coordinates (x,y,z). Let us parametrize the
direction that forms an arc by going through the bulk to be
vo- Then, the geometry is extended indefinitely along the x
and z axes. The situation that these two coordinates are
cyclic has been considered recently in Ref. [20]. As before,
we assume that the inhomogeneity backreacts along the x
direction while leaving 0, as the Killing vector. The reader
who is familiar with the derivations can skip to the
discussion at the end of this subsection.

The surface area will be evaluated from the induced
metric using coordinates (x, y, z). The induced metric to the
hypersurface is conveniently derived by confining line
elements to displacements confined to the hypersurface.
Doing so, we find that

PHYSICAL REVIEW D 96, 026012 (2017)

[e] (o] Ym
52:/ dxo/ dzo/ dy()\/}’indzbv

Ym

(2.37)

with tangent vectors of the curves on the hypersurface

defined by e% = Z;‘Z and

A
Yina = —2 ;e@e;(e;eﬁ + esel) — 3A%(efer)?

2
- % (erelz} + e5efzd) + 33
7\2 P
e e
+28 <3Ae;(e;)2 ple)e yp)z =+ e;2§,>
eetelel
o

—Al(€5Zg)” + (e5Z)?).

+4 - 4(e§)252

(2.38)
The equations of motion follow by varying the action

Sy 9Sy 9 0S8y 08y

et B == 2.
907 or 90, ap (2.39)

with i € {x,y}. Expanding the coordinates to O(/?), the
EE similar to the two-point Wightman functions, will have
an expansion of the form Sy = Sy () + l2Sz(z> + 12552(0).
To zeroth order in the perturbation, one gets for the
hypersurface

.y”] \/5
dyo—=-

— 2
Sy = 2K | pe

(2.40)

where since the effect of the inhomogeneity comes from the
backreaction of the metric and hence it is a O([?) effect, it
will consequently be absent here and the integral over x will
be done trivially. The cutoff K has been introduced for
trivial integrations.

To second order, we have

o0 .vl)’l 1
Sx) = 2K/ deA dyom
—oo 3

x 2%, +2(%, +£,)D — 2p3A]; (2.41)

also note that in the above expression, the integral over the
coordinate x is now nontrivial as all the metric components
$,, 3, and A are the backreacted corrections. The next
contribution changes the boundary volume since it depends
on 7,, p, and x, according to
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8Sy(0) = 2K / " dx, A " dyy

P2— P2—
povVD poVD

to(1=pg) + po i
povD
(2.42)

It should be pointed out that if we assume x, # 0, then a
term proportional to x, will appear in the EE contribution.
Similar to the previous case, looking at the geodesics
will provide us the following equations for the profiles of

po(y) [20],

PHYSICAL REVIEW D 96, 026012 (2017)

doo_ ==
dy P%

Although a full analytic solution to the above equation will
be desirable, it suffices to find an asymptotic solution
which will be required in the subsequent section,

Pl

T (2.45)

(1=p3)to+po =0, Dp§ =pS, (2.43)  this is the boundary coordinate as seen from an observer
falling deep in the bulk. The straight substitution from
which reduce to Eq. (2.43) and Eq. (2.44) has shown that [20]
S0 = 2K? / "4 P (2.46)
(0 = Po .
e WA =pHh = r°)
8(1 = p)Ey, + 205, (1 —pH)(E, + £ 6 —pg)A
_ 2K/ d)CO/ dp0|: pO) b+ pm( pO)( b + d) (pm pO) :| (247)

From Eq. (2.42), it is evident that we can simplify the
expression using the equations of motion. The coefficients
of 7, cancel out. The derivative over p, can be rewritten
using the partial derivative in terms of p, which will be
again proportional to the equations of motion. The only
contribution emerging from the surface term is

885 = 2K? (2.48)

7o
\/>p 2
It is easiest first to evaluate the coefficient of p, because it is
at zeroth order in the backreaction rather than calculating
the whole expression. Since only the quantities such as 7,
and p, are required, we can expand around y = 0, which is
equivalent to the top of the arc in the bulk where it gets its
maximum value p,,. Perturbatively solving the equation of
motion in Eq. (2.44), we obtain the following solutions:

B 3/-1+pk 5 3y?
_pm+2< N >y ’ TO(y) 2pm

Po(y) (2.49)

There is also a nonphysical solution py(y) =p,, and

2 . . .
70(y) = %z—; this solution can be discarded as it takes an
infinite amount of time for the geodesic to satisfy the
boundary condition. Nonetheless, both solutions give a
vanishing contribution to the value of the expression in

which we are interested.

2050 (1= P>/ P = 1§

|

The value of the expression at y, = y,, requires more
work. Since the boundary time 7, will be the time at which
po — 0, we can solve the differential equation in Eq. (2.44)
to obtain py ~ (v,, — yo)'/*. Putting everything together
[20], we obtain the coefficient of p,(y),

1
2K
2\/20?”/453/4

where in the above ¢ is a regulator to avoid the singularity
of the upper limit of y = y,,,. As has been argued, one needs
to evaluate the behavior of p,(yy) to find the finite
contribution to the entanglement entropy. Following the
method described in Ref. [20], we vary the action in
Eq. (2.37) for 7,(yy) and p,(yy) as it is not clear from
the beginning whether or not there will be a modification
from terms that depend on the inhomogeneity in the action
of Eq. (2.37). From the Euler-Lagrange equations

(2.50)

d d
5 Sg)=0, &, Sy———o

P2

)

P2

Sy— (6:,55)=0, (2.51)

at O(?), naturally, we recover the equations of motion for
the unperturbed variables p, and 7,. Along the same line, at
O(1*), we find the equations of motion for 7, and p,. These
are ab initio nonlinear equations involving components of
metric A, X, ¥, and E on one hand and 7, pg, 7, and p, on
the other. As the singularity in Eq. (2.50) originates from
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the limit of p — 0, we can replace the components of the
metric with their leading values in Eq. (A18)-Eq. (A21)
from the Appendix. Using the asymptotic expansions for 7,
and p, as mentioned in the paragraph above Eq. (2.50), at
leading order, we find

9/2 2
pm pO(T*?x*) ~
+ O(1/%0),
24v2

where in the above ¥, = (y,, — ). In the limit of y, — 0,
assuming the derivatives of p, are suppressed by extra
factors of y,, the former degenerate equation [20] yields

Pr 1= (2.52)

w2534 (2.53)

V2
prt 1= —7170(7*,36 )Pm
Since there is no modification from the other components
of the metric, this is identical to the homogeneous case in

Ref. [20]. Finding the coefficient will result in

5
0S5(0) = 36 — p3(z..x,). (2.54)

PHYSICAL REVIEW D 96, 026012 (2017)

The integral in Eq. (2.47) is singular at py = 0, and we
have to regularize it. To do so, as before, we make use of the
asymptotic expansions of the metric components for
po — 0 in Eq. (A18)-Eq. (A20),

A 1

A= —EP% + poaz + O(pg Inpy), (2.55)
A 1
Za= lzﬂopo +poda + OlpgInpy),  (2.56)
~ 1

b= 12P0Po +pobs + OlpyInpg);  (2.57)

then, from the expansion around the singularity, a counter-
term can be formed,

(2.58)

S counter —

K? P dp

2 0
w4 (T*v X*) / )
6 0 € Po

where € is a regulator for the integral. Substituting from
Eq. (2.55)-Eq. (2.57), the finite part of Eq. (2.47) reads

sty = 2K/°° dx, //’m podpy [2,08(1 = po)ba +2p5 (1 = pg) (by + dy) —
(2
-0 0

El

(p5 = pg)az}

205, (1 = p8)*2\ /05, = P

with a,, by and d, functions of (zy, xg) with 7y(py). The corresponding divergent part evaluates to

B 2(/)21

sy ——21</ de/ P Opo To,xo) [2p8(1—pé)+4p21(1—pé)

—pg)}

2p0pi (1 = pg)> 27\ P = P§

Now, it is convenient to make the process of regularization scheme independent by adding

K2
Scor = —?P(Q)(T*,X*)logpm- (259)
Finally, the total entanglement entropy for the strip geometry, including the inhomogeneity implicitly, will be
SZ(Z = Sﬁr(l 2) + Sdiv) + Scounter + Scor + 552(0)
© 1-4¢*)7b by +d
—4K/ de/ qdq[ pn(1=q°)7by — Pl = q*)(bs + dy) _
S V= =g)H(1 =1 -¢%)°) \/(l—ﬂm(l—Q))(l—(]—Q))
(= )V1=(1-¢")°a (1= 4¢*)°p5(0. x0)
2(1-pp(l-q ))3/2 12,/ (1= pi(1 = ¢*)) (1 = (1= ¢°)°)
_ (70, Xo) Pi(70. %)/ 1 = (1= ¢°)°
6pn(1 =)V (1 =pn (1= (1= (1= %) 120u(1 = @) (1 =piu(1 = ¢*)*)*?
K? 1 2gdq 5
L Xy —logp,, +—|. 2.60
g Po(Tx )Uol—qz 0gpm + ¢ (2.60)
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Note the difference between pg(7g,x9) and py(z,,x,).
They will have some overlap in their values when they
cover the spacetime with 7y(g) but in general are inde-
pendent. The fact that the metric components a,(zg, Xg),
b4(70,x9) and dy(79,xo) are nonlinear functions of the
inhomogeneity makes Eq. (2.60) a nontrivial generalization
of the result in Ref. [20].

EE as a local observable provides more detailed infor-
mation for thermalization compared to other observables
that we have studied so far. First, we plan to study its
dependence on the cutoff p,, that we have chosen in our
analysis. Figure 6(a) is the profile of py(z,x), the non-
normalizable mode of the scalar field, which is falling into
the black hole. Figures 6(b)-6(e) are the corresponding
variations of the EE as a function of the coordinates x — 7
as we increase the value of the maximum depth of the
entangling surface into the bulk from 0.1p,, to 0.999p,,.
This has the effect of shifting the amplitudes toward more
positive values. It is easy to see from Eq. (2.60) that the
dynamics of EE for p,, <« 1 is dominated by the original
profile of py(z,x) in addition to a constant offset con-
tribution for 7 < 0. At p,, ~ 1, this dynamics will be
dominated by the backreacted components of the metric
instead. This also explains why in Fig. 6(e) the early
Gaussian peak that appears at 7 = 0 is wider than the same
Gaussian peak at late times due to the sudden appearance
of the mass gap and plethora of excitations that follow.
Figure 6(e) is the closest configuration to a realistic
thermalization.

Our EE expressions are complicated, and they do not
show the simple quasiparticle picture proposed by Cardy
et al. [7,8]. Nevertheless, we can still connect to this idea.
As it is shown in Figs. 7(a)-7(c), we vary the tuning
parameter a € {3.},1}. While we reduce the values of a,
the mass gap production will have a steep slope. This in
part causes more excitations per volume. These ‘“quasi-
particles” are constrained by causality and from a given
Cauchy surface at = 0; it will take them 7 = x/v,, to
reach to their “horizon.” This effect can be seen in Fig. 7(c)
in a very pronounced way as it makes a slight wiggle on the
surface at 7 ~ 5.

In Figs. 7(d), 7(e) and 7(f), we are gradually increasing
the width of the Gaussian profile for py(z,x). This causes
the blue region (in color), surrounding the bump, to shift
toward the negative values and to expand the width of the
peak at 7 = 0. Curiously, this latter effect does not exceed a
circular-shape region obeying radius 7 = x/v,,,. We want
to point out that this is not trivial.

2. Case II: Plane C-D

Similar to the case considered in Sec. II B 2, for the two-
point function, we reconsider a similar problem assuming
that the direction of the inhomogeneity is orthogonal to the
boundaries of the entangling region. Let us call this region
A. The geometry of A is that of a strip, and we parametrize
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it with (xo, v, 29). The extremal surface that bounds A
throughout the bulk is derived from

Sz:/ d)’O/ dZo/ " dxor/TinaZ}, (2.61)
with
.2 . - C e A TP
yind:_AT +27(1+X2)-5+(1+XZ) Ed—2—2, (262)
P

and the boundary for the hypersurface (strip) is from —x,, to
X, and it is indefinitely extended along the y and z
directions. Note that in writing Eq. (2.61), we relied on
the lessons learned from the geodesic equations mentioned
at the beginning such as Eq. (2.29). Expansion has the
general form Sy = Sy + 1282(2) + 12582(0). The first
term has already been calculated in Eq. (2.40). For Sy,
we get

X dX()
SZ(Z) = 2K2[)‘ 3 D

2p;
X (Zéfl:op(z) - f02p(2)A - 4Dib - 22d)’

(2.63)

with D =1 —7y? + 7)?p¢ — 273 pp. A similar expansion
for the dynamical variables such as 7,, p, and x, gives

8Ss0) = ZKZA \/_ [2poiy + (—6D + 413p3)p,

= 2po(t(1 = pg§) + p)2 = 2potopal- (2.64)

As was noticed in the last section, the coefficient of 7, is
zero if we use the equations of motion at zeroth order.
Again, the coefficient of the terms p, and p, group together
by partial integrations, yielding

T0P2
Po

Xm Xy Xm
PR (2.65)
piv/D

—Xm

5Ss(0) = 2K2P—22

where in the above we applied the equations of motion such
as Eq. (2.43). In addition, we have changed the lower
bound of the second term as we explained below Eq. (2.33).
They are both diverging with 6=3/* where § is the cutoff in
the x, direction when p, approaches the boundary. The first
term is identical to the contribution from the surface term in
case I, but the second term is new and is due to the effect of
the inhomogeneity. It is also challenging since if we want to
enforce the boundary condition of x, =0 at +x, the
coefficient must be finite. To find the exact value of the
coefficient, we have to solve for the equations of motion for
X, close to the boundary.

Using the fact that py ~ (x,, — x9)"/* and the boundary
expansions to leading order for the metric coefficients,
such as

1/4
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(b)

-10

FIG. 6. Plots of the time evolution of the variation of the entanglement entropy at O(/?). In case I, the correlating region is orthogonal
to the plane of reaction. (a) is the source on the boundary, and (b)—(e) are the corresponding plots for the EE as we vary p,, for fixed
a =1 and ¢ = L,. The numerical setup is identical to the previous sections.

A

P
P
2y = —I—SP%(TO,XO) + O(p§)-

2y = =22 pd(z0.x0) + O(p}).

& _ P
12

(2.66)

(2.67)

026012-16

2, Opo(7o, X
Hp = —@Po(fo,xo)ip()( 0: %0) + O(p3). (2.68)
9 3}60

o 1
A= _617(2)<70’x0) + O(p5)- (2.69)
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(@) : (b)

150

100 -

Sway

FIG.7. Corresponding plots for the EE as we reduce « in (a)—(c) for 6 = /L,. In (d)—(f), we increase ¢ with fixed a = 1. We are also
assuming p,, = 0.999p,, and L, = 10 in the above plots.

together with the equations of motion derived from the

d

Euler-Lagrange equations g (6;,8x) =0, (2.71)
d d

5p2S2 - a (6,0252) = 0, (270) a (5x2SZ) - 0, (272)
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we find the following geodesic equations around the
boundary surface'’:

1 pi PRz, x.)
pr+ % = ~ , (2.73)
24v2 Fi
4,-6-2_2\[4/4/,2_3\5 P 3 m :5p3/2p3(r*,x*)
3/4 0 P;Sn/4 5(1(1)/4 4\/5:)23/4 12 5(1(1)/2

(2.74)

Therefore, in this case, we recover the degenerate equations
of motion for j, and 7, and an extra equation of motion for
X,. The same coefficients that have been obtained in the
limit of long late times, that is py — const., should be valid
in this case and will allow us to determine X,. An easy
power counting shows that x, ~ xo/ If we insert the value
of p, given at the late-time approximation when the system
has reached thermalization [20], we find X, = 0. In either
case, this means that the contribution from x, in Eq. (2.65)

vanishes. Thus, the contribution from 65y reads
5K?
5SZ( 0) — 36 pO(T*’x*) (275)

The contribution form the lower bound of the first term
in Eq. (2.65) vanishes as the reader can easily check from
the zeroth-order equations of motion. Going back to

|

. Pm dpy
S5y = Kz/ [—36fzp4(—1 +00) (PG — i)
=@ o 18py(=1+ ) (o = ) ! o

~3poy/ (=1 + P (0§

and in the above, we are using the compact notation for

Py = 0,,po based on the chain rule. Since an infinitesimal

change in x; also varies 7, the derivative acts on both

arguments of pg(zg, Xg)-

Similarly, the divergent part reads
gliv g2 /p’" dp, Po(=1+2p5)pi,
= e Opo(=1+pd) 2 (pf = pi)*

(2.82)

with € to regulate the integral. To regularize the divergent
term, the following counterterm is added,

K? P dp
SEH =& Pz, x.) / -0, (2.83)

Po

'%We assume the branch in the solutions that satisfies x,, > x,.

— pS)[P3pg (=2 + p§) + 6ay(p§

PHYSICAL REVIEW D 96, 026012 (2017)

Eq. (2.63) and making a change of variable from x, to
po using Eq. (2.43) and Eq. (2.44) and renaming y, for x,
we obtain

D, 3 6 _ 0\ 1/2
P Podp 2 (Pm—p 2
SZ(Q):KZ/ ; 0406 < [p_<1_ 40> =
O phJ (=P} (e =) PO NP0
Pn=PS 5 . 4P
— O A S, 4 224 (2.76)
po(l —Po) Po

As is clear from the above expression, it suffers from
infrared divergences. To separate them from the finite part,
we use the asymptotic expansion around the boundary
using Eq. (A18)-Eq. (A21) in the Appendix,' i.e

2
p
A = =224 play + O(pgInpy),

. (2.77)
5= -2 s+ OiInpy).  (2.78)

072 Pod4 Po M Po :

P
2y = —p§ 13 + pobs + Olpg Inpy), (2.79)
- PoOxp
BE=—py 22 9 S+ pifa+ Opdinpy).  (2.80)
to find the finite contribution,
—4popo(1 = p)*(ph, = p§)*"?

= ) = 12(=1 + pt)(dap§ + 2bapS)] (2.81)

I
together with a finite contribution to make the regulariza-
tion scheme independent,

1
Seor = —=K?p3(z,,x,) logp,,. (2.84)

6

Preparing Eq. (2.81)-Eq. (2.84) for numerics with the
usual change of variable of py = p,,(1 — ¢?), the final
expression including all terms,

SZ(Z) = Sgl(lz) + Sdzl(vz) =+ Scounter =+ Scor + 5SZ(0)’ (285)

will take the form

""We have neglected the time derivatives over py.
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2/1 qdq
0 95 (1 =p (=142 (-1+ (1 -¢%)°)

Sz(z) =K

PHYSICAL REVIEW D 96, 026012 (2017)

=360 F2(=1 +ph(=1 + ) (=1 + (1 = ) (1 = )"

— aphpostu(1 = ph(1 = 2))2(1 = (1= )92 = 30 (1 = )\ (=1 + (1= @)O) (=1 + (1 = ¢?)p})

X [pgpm(1 = ) (=24 (1 = ¢*)*pp) + 6azpS (=1 + (1 — ¢*)°) = 1205,(=1 + pi (1 — ¢*)*) (ds(1 — ¢*)° + 2b4)]}

pi(=1+2(1—q%)*py)

! K? I gqdg 1 5
_K2 d + Zt*v * / —=lo m+7 s
[ st = =g 5 s ([ g e+

with p{ = 0, po.

Figures 8(a)-9(f) represent Sy,), the perturbation to the
total EE at O([?), in the x — 7 plane. They are parts of our
main results as they have not been reported in any form to
the best of our knowledge and perhaps represent the most
insightful aspects of EE.

The first thing to notice is the way profiles for EE
change when we vary p,,. This is apparent by comparing

FIG. 8.

(2.86)

I
Figs. 6(b)-6(e) in the last section against Figs. 8(a)-8(d).
A small dip appears at 7~ 0 in Figs. 8(a)-8(d) that its
magnitude grows as we reduce the value of a. As it is
shown in 8(a)-8(d), by gradually increasing values of p,,,
the maximum of the late-time saturated value for EE
reduces. In Figs. 9(a)-9(c), we vary the tuning parameter
a from % to % This causes the dip to get a pinching shape
along the 7 direction. Similarly, we can change o, which

(b)

(d)

-10

In the above figures, time evolutions of Sy ;) for case I, are depicted. From (a)—(d), we increase the value of p,, to reach the

maximum thermalization. Fixed tuning parameters such as « = 1 and ¢ = /L, together with N, = N,, = 20 Chebyshev points have
been used. The number of time steps for the fourth-order Runge-Kutta has been 7810.
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PHYSICAL REVIEW D 96, 026012 (2017)
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FIG. 9. Plots of the time evolution of the entanglement entropy in case II. In (a)—(c), the value of a has been reduced, while in (d)—(f),
we are increasing the tuning parameter o. The numerical setup is identical to the last figure.

increases the size of the dip sideways along the x axis.
These are shown in Figs. 9(d)-9(f).

Comparing these figures with those given in the last
section makes it easy to interpret the physics behind EE. In
the last section, we found an approximate length for the
correlation length. This will allow us to concentrate on the

pair of entangled quasiparticles from an arbitrary Cauchy
surface within this length. Our system has a strip geometry,
and in case I, the boundary is at [—y,,y,], and it is
extended to infinity in the x direction, whereas in case II,
boundaries are at [—x,,,x,,] and are extended to infinity
along the y axis. The direction of inhomogeneity is along
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the x axis in both cases. The EE originates from entangled
quasiparticles that have the chance to reach the boundaries
of the system. In case I, the quench produces the quasi-
particles out of the vacuum, and Figs. 7(a)-7(f) show that
pairs that are created at x = 0 have the highest chance to
reach the boundaries at [—y,,, y,,] assuming they dispatch in
opposite directions. Equivalently, as much as they are off
the symmetry axis, their chances are lower, and so is their
contribution to the EE. Note that what we are plotting are
the perturbations of EE at O(/?). This situation can be
compared with case II, where quasiparticles that are
produced at x =0 and want to reach the boundaries at
[—=X,, X,,] have to overcome the Gaussian disturbance. This
can be put in simple words using Cardy’s suggestion [8] to
define an entanglement entropy current. In case I, the
current induced by the quench is along the axis of the
produced quasiparticles. In contrast, the latter current is
perpendicular to the path of the quasiparticle pairs in case II
and explains the presence of the dip in Figs. 9(a)-9(f).

III. CONCLUSIONS

Throughout this article, we studied various observables
such as the apparent horizon, two-point Wightman func-
tions and entanglement entropy to study the physics of
thermalization. Our method to derive the system far from
equilibrium was the generalization of the setup described
by Butchel et al. in Ref. [20] for quenches, and we made it
inhomogeneous. We then solved the corresponding coupled
equations of motion using the spectral method outlined by
Chesler and Yaffe [5].

The study of the apparent horizon as a local observable
showed the presence of excitations out of the vacuum of
N =4 SYM, created by the mass gap that our quench
produces. Different behaviors of these excitations or
quasiparticles were observed by varying the quench tuning
parameters such as the width of the Gaussian profile, o, or
the time scale of the quench a. It was shown that profiles of
the apparent horizon for values of @ ~ 1 were very similar
to profiles of the quench but for a ~ 0 a universal behavior
was emerging. Increasing ¢ showed that the mass gap
excitations would fill up the available space.

Having an extra nontrivial spatial direction on the
boundary allowed us to consider different scenarios that
we depicted in Fig. 2. In both cases I and II, the correction
to the correlation function at O(1%), where [ is the order of
the backreaction, was considered. Corrections to the
Wightman function in case I were symmetric along the x =
0 axis unlike case II. The latter had a contribution from one
of the components of the metric that was an odd function in
x. In both cases, corrections underwent a phase transition
that is seen by a change of sign. Since the correlator
measures the interference of an infinite number of momen-
tum modes [8], by speculating about our figures, we could
parametrize the path of these modes departing from an
arbitrary initial time until their interference by 7 = x/vpax.
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Our plots suggest that our quenches belong to the class of
VUmax ~ 1. The study of the correlation functions in both
cases I and II also revealed that the physics of thermal-
ization is not diffusive (or at least it is very negligible) as far
as we could compare the amplitudes in the two sets of
figures.

Similar to the Wightman correlation functions, we used
the extra nontrivial spatial direction to study EE in various
strip boundary setups. These cases were the extensions of
the configurations mentioned in Fig. 2. As we increased the
depth in which the minimal surface could probe in the bulk,
the EE’s evolution followed the profile of the source on the
boundary more closely. In case I, the fingerprint of the
quasiparticles reaching their horizon could be seen as a
slight wiggle on the surface of the EE in the x-7 plane. The
setup in case II gives a completely different profile for the
EE. This later configuration was an interesting part of our
paper due to its novelty and a description in terms of the
entanglement current of Cardy et al. [8] and could
illuminate the underlying physics. We think this result
requires further investigation in different setups such as the
entangling hemisphere.

As we mentioned above, our study confirmed that the
underlying physics of thermalization is not of a diffusive
nature at strong couplings, although defining quantities
such as currents seem to be inevitable. In fact, physics of
thermalization after a quench in many ways is very similar
to the physics of far-from-equilibrium isotropization.
Consider the two priory different problems, where the first
one explains the equilibration of A/ =4 SYM in the
following holographic setup [5],

ds*> = 2drdr — A(z, r)de® + 2% (7, r)e 2B dx,.

+ X2(z, r)eBEN dx (3.1)
with r = 1/p the (inverse) radius of the bulk and where
A(z,r) and X(z, r) are the warp factors and B(z,r) is a
function that parametrizes the isotropization with respect to
the longitudinal and transverse planes. And the second one
is our quench problem with a more simplified background
considered in Ref. [20],

ds* = 2dvdr — A(z, r)de® + Z(r, r)?dx*>.  (3.2)
Upon insertion of Eq. (3.1) and Eq. (3.2) in Einstein
equations, the equations of motion will take a specific form
[5,20]. We list those of the isotropization problem on the
left-hand side and those of the quench on the right-hand
side,

=¥ 4 2%y — 232 = 0,

: . 1
=¥ 423y - 232 + ﬁm?qﬁ?z2 =0,
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3
EB’+2(2’B+B’) 0,
1
2+ (2’¢+¢’) FIm’p=0.  (34)
X))
A4 3BB - 1255 +4=0,
2> 1
A" p— 1275 +4——mp? =0,  (35)
b3 6
I
£45(BE-A%) =0,
s
S+-(E2-a2)=0. (36
+2(3 (3.6)
1 1
THSBPE=0, T4 (@)Pr=0. (37)

In the above, we used /' = d,h and h = d,h +40,h. To
make a connection between the two lists of equatlons on the
right- and left-hand sides we realize that by choosing a
symmetry factor B = \/-, apart from extra mass terms, - the

two sets of coupled differential equations are identical.

IV. FUTURE DIRECTION

Another important aspect of the study of the quantum
quenches is their universal scaling behavior [25,26]. It has
been shown that for relatively fast quenches, the expectation
value of the boundary operator scales according to its
original source. Explicitly, this means that from the expan-
sion of the scalar field in the Eddington-Finkelstein frame
P(z.p) =ppo(2) +p*0:po+p° po(1) + O(p*Inp),  (3.8)
if the coupling in Eq. (1.1) behaves according to 4 = Ay (£)",
the normalizable part of the scalar field in Eq. (3.8) will turn

out to be [25,26]
k=2
pa)~o(£)

with o7 being the characteristic time that is relevant for the
problem. To find Eq. (3.9), the limit of 6z — O has been
taken, and information regarding the four-dimensional fer-
mionic operator with A =3 has been used. Furthermore, the
origin of this behavior is a direct consequence of the
causality. Along the same line, we can ask if the above
universality is preserved or not analytically in the inhomo-
geneous case.

(3.9)

12Although the mass terms played a key role in our quenches,
we could argue that we start our simulation from a rather
nontrivial initial data and then study the evolution without
turning on any quenches.
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An easy way to partially answer the above question is the
following: for fast quenches, nonlinearities and higher-
order backreactions can be neglected since in a short time
perturbations cannot propagate through the whole bulk
space [25]. Therefore, one expects that an intuitive answer
in the neighborhood of the boundary should work.
Neglecting logarithmic corrections and higher-order terms
for simplicity, the boundary terms could be written as

¢ = l(ppo + P*0.po + P’ p2). (3.10)

1 1
A:;—p2+lz<—8p%+/}2a2>, (3.11)

12 9

| p)
s, —_+12( 2% _ 3 Po%Po Tp°+p4b> (3.13)

1 z 0
zd:;Hz(—pZ@ p3 2o:lo ’p°+p4d> (3.12)

12 9

+P2f2),

where in the above pg, p,, a», by, dy and f, depend on
(z,x). An identical argument that was mentioned to
reproduce Eq. (3.9) still implies to Eq. (3.10). This is
due to the absence of any spacial derivative in the right-
hand side at that specific order. While the scaling behaviors
in Eq. (3.11), Eq. (3.12) and Eq. (3.13) are suppressed, a
new feature appears in the field E. But E <« 1, so its
backreaction on the other components implies that the
universality breaks in a very naive way. A more convincing
answer to the above question requires an analytic
derivation.

E=10 (—ppoagxpo (3.14)
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APPENDIX: DERIVATIONS AND NUMERICAL
IMPLEMENTATIONS

1. Setup

As mentioned before, the problem at hand is a scalar
field on an AdS-black brane spacetime. Starting with the
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following ansatz for the metric in an infalling observer’s
picture (Eddington-Finkelstein coordinates), it reads

dsg = —A(t, r,x)de* + Zy(z, r, x)?dx> + 2, (2, r, x)2dy?
4 25(z, r,x)dedx + 2drdr. (A1)

Our five-dimensional Finstein-Hilbert action with a neg-
ative cosmological constant is given by

_ 1 Sy /= 1 2
S5_1671'G5/d Xy/ g(R—i—lZ 2(8¢)

1
—ym e+ O(¢3)>, (A2)

where we have neglected higher-order interactions. We may
also use the inverse of the bulk radius defined by p = 1/r,
and x is the special direction that we apply the inhomo-
geneity. As a wave packet ¢(z,p, x) is prepared on the
boundary, it will evolve according to the equations of
motion, and all other fields will be affected by the
inhomogeneity. In the following, we will suppress such
a functionality, (z,r, x), to simplify the notation.

Here is how the setup works. The scalar field is zero at

the beginning as we turn on the quench at 7 = —co0. At a
region around 7 = 0, the mass coupling of the fermionic
operator with m?> = —3 is switched on, and this change in

the boundary conditions alters the profiles of the fields in
the dual bulk space. Classical excitations of the scalar field
collapsing into the black hole will backreact on the metric.
Eventually, at the asymptotic future, all the bulk fields will
have a new equilibrium, thermalized or partially thermal-
ized configurations. If the final configuration is static and
globally thermalized, the black hole has a new temperature
and correspondingly a new size consistent with the initial
data at the asymptotic past and the boundary conditions.
We focus on m? = —3; the scalar field is then mapped to
a dual fermionic mass operator A = 3 in a mass-deformed
and thermal N/ = 2* gauge theory in d = 4 flat spacetime.
As argued in Ref. [20], high temperature quenches
m/T < 1 are dual to the perturbative scalar field in the
background geometry. At the leading order, the static
nonequilibrium equation for ¢ is given by

mZ

1
? ¢equil - a%Q’)equil + ; (3 + p4)8/)¢equil

- (1 _p4)a§¢equil =0. (A3)
The solution to the above equation is the profile for the
scalar field that corresponds to the equilibrium configura-
tion at the asymptotic future. Unless O equii = 0, there is
no analytic solution in terms of the hyperbolic functions
[20] for Eq. (A3),
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tequin(p) = I~ 1/°T 3 2F 33 10 (A4)
equil\P) = 4) 2"\ g0 PP

and information about the final general profile will be
available through numerics or through approximations
in extreme regimes [31]. For further applications of
Eq. (Al), refer to Ref. [32] where they study the physics
of anisotropy.

2. Backreaction
A simple study of the equations of motion shows that if
the fluctuations of the scalar field are at the scale of [, then
the effect from backreaction appears at /2. Therefore, for
simplicity, we consider an expansion of the form

P(z.p.x) = 1(z.p.x) + O(1), (A5)

Ale.pox) = /% — P+ PA(r.p.x) + O(*).  (A6)

1 -
2(r.p.x) =~ 1 O, (A7)
P

E(z.p,x) = PE+ O(P) (A8)
in the above; we mean X € {X,,%,}.

We can classify the equations into two categories:
evolution equations and constraints. Given some initial
state or profile for the field, constraints allow us to extract
the value of the dependent fields on the former initial
profiles throughout the domain of the computation. On the
other hand, evolution equations permit the evolution of the
initial state into later times. According to this distinction,
the following constraints and evolution equations are
obtained. The Klein-Gordon equation of motion for the
scalar field that gives the evolution of the scalar field is
given by

2 0
" -2 +32%2L 0, - R+ o030
p p

Y
P

+20,0,4 = 0. (A9)

Then, the constraint for the combination of X, 4 2%, will
be

knowing the profiles for £, and ¢ allows us to find = by the
constraint

E 0,2 0,00 9,0,%
PE-4=+ =4 ¢2”¢+4 et
p p p

0. (All)

AS)
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A similar description also holds for determining the
value of the warp factor A in the whole domain of the
computation,

—_—— = p—a [Zd + 221)] 2p6p [Xd + 22},]

0,00,9
2

)
+ 8/,8xz + ;6‘,[211 + 22;,] -

2
—;0x%md+zzjzo. (A12)

After determining the initial profiles for all the fields
according to the above constraints, the set of coupled
evolution equations for £, and X,

2 42 >
—2A—%¢—+pu+p58 d
—ﬁ@m—%m+ﬁﬁm
0%y _ 0.
— 5770 129,9,%, = 0, (A13)

p

together with

m¢? m? , 24 _P 4
F?_?pfp p(1+p* )5x~+ aA E(1—p)apA
1
—;8 [Za+22,) + 970, [Zd+22b]+%( P*)osA
3 1
_Epa’A+< )a zd+2< )8 Z,
1
—5(0:0)* +?0.0,5 - R[E,+2%,) = (A14)

permits solving for future profiles of the fields. Finally, the

constraint and evolution equation for E are given by
m (]52
24+ 2 —2p0,E+2p(1 +p )3x~+ 5 (0:9)?
2
+ 28)%217 - papA - ;8/, [22(1 + Eb} + 2,038/7217

2
+ P20, 0E + D%y = pr T, + ;ar[zzd + 2y

~9,0,2,=0 (A15)

to be solved with
= 0.A 0,2
—4—2+4p25+L+L—p38 - 0,0,A
4 P
0 8 0,2
+ ( )8/2,: _ 2 x¢ t¢ T )2c b
P P P
- 9,8,2=0 (Al6)
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Focusing on the fermionic operator as discussed in
Ref [19], throughout our computation, we will assume
m* = A(A — d) = -3, where A is the conformal dimen-
sion of the scalar field ¢(z, p, x). Now that we have both the
constraints and the evolution equations, it is important to
find the boundary expansion on the AdSs that follows from
the Einstein equations by successive iteration of the
solutions. The few interesting terms of the expansion of
each field are listed and will be used extensively throughout
the paper,13

R 1
¢ =ppo+p*0:po +p° [Pz —5Inp(%po - 331)0)}

1
+p* (37172 - gagpo)

4
L 0,020~ BEpa) + O, (A17)
- 1 Inp
A=—cpitp (az t1g L1(0:p0)” +3(0:p0)?
+ pol@po = 38po)]) + O(?), (AL8)

o 1 1
2= 12/’ Po _§P Poarpo

In
+ 0t (da + 52 [=4(0,p0)* + pol503po = 30%po)))

72
+0(p°), (A19)
. 1 1
X, = 12p i —5” ? pod:po
In
o <b4 + 7_2p [2(8,p0)* + po(20ipo — 383170)])
+ O(p%), (A20)

[

1
=—=ppo0spo+p (fz +—[ 00:0,po— 23xpoafpo])

9

+O(p?). (A21)
Note that in practice, we have worked out the above
expansion to O(p®). Further, we should draw the attention
of the reader to the normalizable terms such as
{P2,as, f2,ds,bs}. These coefficients are the response
of the fields to the alterations in the system.

3. 2D Chebyshev lattice

General overview.—In what follows, we do the compu-
tations as symbolically as possible. Our goal here has been
to achieve relatively very small rounding errors through
successive operations that have been carried out. The fact

PSimilar to Ref. [20], we make an implicit gauge choice in
writing the following boundary expansions since metric compo-
nents are invariant under residual diffeomorphism.
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that smooth functions can be approximated in a creative
way by polynomial interpolation in Chebyshev points and
the use of fast Fourier transform allow us to use a new sort
of polynomials called Chebyshev polynomials. To do the
numerics in a stable and effective way, accuracy to within
roughly machine precision can be achieved using spectral
methods.

In the interval of 0 < p < 1, a convenient basis of
expansion in terms of the Chebyshev polynomials 7', (z) =
cos (ncos™! z) will have the form

9(p) =D aT,(2p - 1),

n=0

(A22)

which is nothing other than rewriting the Fourier expansion
with a change of variable § = cos™(2p — 1). In a general
approach, pseudospectral or collocation method, one finds
the expansion coefficients «, by inserting the above
truncated series into the differential equation of interest
and turn the problem into an eigenvalue problem. We
should point out that, although in the conventional Fourier
transformation one is interested in equally spaced lattices,
in the spectral method, we avoid this primitive setup and
instead use basis function that are matched by the position
of the maximums/minimums and end points of the Mth
Chebyshev basis. In our case, for the interval [0, 1], these

are given by
1 | mrn
=—(1—-cos—);
Pm =73 M)

with the knowledge of a,, we reconstruct the whole
function {g,, = g(p,,)} from the collocation grid points.
The range x € [0, 1] is the most convenient one to use,
but sometimes the other option, z € [—1, 1], is required.
The map between the two sets is given by x = 3 (1 + 2),
and this leads to a shifted"* Chebyshev polynomial [33]

(A23)

Ti(x) = T,(:) = T,(2x=1).  (A24)
We will use this latter set for the spectral grid in the x direction
where we need the boundary in the range [-L,, L,].

The concept of Chebyshev points can be extended to
differential ~ operators and we will be working with
Chebyshev differential matrices later on. Meanwhile, there
are various interesting identities [34] for the Chebyshev
polynomials that will be useful throughout this Appendix.
They satisfy

V1 —x2dii(\/1 —x2) + 1T, (x) =0, (A25)

"*The map for the general case of x € [a, b] can be constructed
similarly using s = W for x € [-1,1].
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and their explicit integral evaluates to

1 2
/_1 dxT,(x) = o

while the value of the integral is zero for any odd n. At the
boundaries, they satisfy

for even n, (A26)

dr,

— — n — n+1,2
Th(x=1)= (D) = ()
a’T 1
L =—(£1)*(n—1)n? 1 A2
| =3 E -0+ (A27)

2D aspects.—The above one-dimensional boundary value
problem can be extended to higher dimensions. To be
specific, here, we use a 2D setup. For such a problem, we
naturally set up a grid based on Chebyshev points in each
direction independently. This is usually called a tensor
product grid. Tt is interesting to note that, in comparison
with an equally spaced grid, the Chebyshev grid is 2/x
times as dense in the middle, and in our current 2D setup,
this ratio becomes (2/7)%. Thus, the majority of the grid
points lies near the boundaries. As the enforcing boundary
condition is applied at p =0, this will enhance the
resolution. Therefore, the tensor product construction of
a spectral grid is the natural way to go. This can easily be
done by the tensor product in linear algebra; for instance,
for two matrices A and B, the Kronecker product is given
by A ® B. That is, if A and B are matrices of dimensions
p X q and r x s respectively, then A @ B is a matrix of
dimension pr x gs with p x g block forms, where each i
and j block has the value of a;;B.

With a data set represented symbolically as
(v1,5,...,v19)T, we can use the one-dimensional (1D)
representation of the differential operators to find a repre-
sentation of its counterpart in two dimensions in the
following way:

Ly, =1y ® Dy +Dy ®1Iy.  (A28)
Using the above representation, it is also possible to derive
D% of the Laplace operator on the above lattices. In
principle, we could have used the polar coordinates, but
we stick to the choice of the Cartesian one since we are
imposing the boundary condition exactly at p = 0, and we
cannot avoid any creative trick to avoid this point. One
extra complication with respect to the 1D setup is the issue
of corner compatibility, which states that

(X =Lpa) =P(p=0 and 1),

a:t(x = _Lmax) = :B—(p =0 and 1) (A29)

In the above, we assume that the boundary values for p = 0
and p = 1 are given by a,(x) and a_(x) respectively and
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the corresponding boundary values on vertical walls at
X = L. are equal to S (p). The effect of these corner
conditions becomes prominent when we calculate deriva-
tives of the fields.

After discretizing the problem in rectangular Cartesian
coordinates, we use the generalization of the pseudospec-
tral method in two dimensions. For instance, a function,
f(p,x), has an expansion as linear combinations of
Chebyshev polynomials,

L N
Z ZﬁlnTn(p)Tl(x)

=0 n=0

U (px (A30)

here, the p,,s are the 2D spectra of f(p, x). In addition, N
and L are the number of collocation points in p and x
coordinates. In vectorial notation, we rewrite the
Chebyshev polynomials in x and p directions:

(T.)y; = (=1 cos (A7)
(T,) = (=1)cos (nu%). (A31)

Based on Fig. 10, the representation for the general solution
can then be selected as

F= (f007f107 s fros fors firs oo
Sons fins oo
—_— ——

le’ R

(A32)

fin)"

These are (N + 1) blocks of (L + 1) quantities, and
each block corresponds to a position in the p coordinates.

1
P
6 7 8 9 10
1 2 3 4 5
0
—L max L max
X

FIG. 10. A tensor product grid; there are two spacial directions.
x is the direction of the inhomogeneity, and p is the bulk radius.
The numbers at each site represent the lexicographic representa-
tion of the grid points while doing the operation as a tensor grid.
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In this representation, Eq. (A30) will take the compact
form of

= (T, ® T,)F, (A33)

which is suitable for our notation throughout the rest of this
Appendix.

4. Coupled equations

Our first step in the numerical code is to make the
following definitions,

4
A -1 _ 4
7(.p.x) = 0:(e.p.x) + 50, d(px). (A34)
A pPr=1_ .
B(z.p.x) = 0 2y(7.p. x) + == 024z, p.x).  (A35)
- pt=1 «
7(7.p.%) = 02y (z.p.x) +=———0,2(z.p. ). (A36)
A p4 - A
x(z,p,x) = 0.E(7,p,x) + 0,8(z,p, x), (A37)

that transform Eq. (A9)-Eq. (A15) into more compact
forms,

3r
8[)77—5; = —J¢, (A38)
1
= 0 8 0, X
62:—4 +— 0909 | 4% =0, (A40)
P P P

1
3pﬁ—;[2ﬂ+y] =—Js,s (A41)

1
D,y —ZL/J+57/] =-Js,, (A42)

d,A 0,¢
92A - L +—a + 2y + 2y —ﬂLZ—Ja,
A= T 1B+ 2y] + 3[:5 ] e

(A43)

0 0 1
6,,){4—2%—4%—7: p)czqs+2p2<1 —p4>8p8x2b = _‘]Ev

(A44)

with the sources on the right-hand sides of the above
equations defined according to

1
LT

2 p? (1_p_> s

(A45)
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m? ¢p? 1 1
JEd =-A- 2 ¢2 +p8x'—‘ - Z (axd))z - a)zczb + _/)apA
i 1
-2 (1 _F> 0,025, + %, — = 20,05, (A46)
m? > 5
sz:— 22+ 3“——8Zb+ p@A
3
2 (1 —i>a 4+ 55,). (A47)
4 pt
m? ¢? 1
Jo = ??-FP(l ;)8/)[2%1 + 23]
2
P 1 2 =)
+7 l_p_4 (0,0)° + 0,0,E
1
1\ 0,A _
Jz = —4p? (1 —?>:. " 2p°0,2
2 1
+’)—<1 —) 40, + 0,0,A
2 p*
(- pEE (A49)

We point out a few comments about the above equations.
They are listed chronologically; that is, we start by solving
the coupled differential equations starting from Eq. (A38)
and ending in Eq. (A44). The equation of motion for the
scalar field is not coupled to the other metric components.
This is due to the choice of cutoff that we have imposed on
the backreaction. From the boundary expansion, it is clear
that the x dependence of X s does not factorize. Therefore,
x dependence of ¢ must not factorize according to
Eq. (A39). As is clear from Eq. (A39), knowing the value
of the scalar field ¢, everywhere in the bulk, only gives
information about the combination of X, 4 2X,. Moreover,
the x dependency of X, 4 2%, will be trivial since the
derivatives act on the p direction.

Extra identities.—In addition to the above differential
equations, in this subsection, we derive identities that are
useful when we are applying the boundary conditions on
the fields.

Summation of Eq. (A41) and Eq. (A42) gives f 4+ 2y asa
function of X, 4+ 2%, that is

0,1 +2/] —gmzﬂ (A50)

=—Js, 105,

with Jy o5, that reads
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m?* ¢p? 1
Iy, 05, = —3A - s 200,85 (0:)* = 2075,
3p3 1
+ p0,A -2 <1——)a[zd+2zh]
2 p*
1
- EPZaanE, (A51)

but the presence of 92X, requires some extra knowledge of
%;,. Furthermore, from Eq. (A40), we can solve for 0,0,Z,,
and insert it in Eq. (A44) to obtain

Oy 0
T— =

X N
Oy+28—a2t —J,.  (A52)
P p ﬂ2 ,02 Xb
with
1 5 1
J, =20 (1-=|2-2p*0,E+—0 E
& p( p4> 2P =T, %
0.A
_ G (A53)

and again in the above, extra knowledge of J,y will be
necessary to solve for y.
In addition to the above constraints, we also have

dy+2by +;1‘P0P2 + 312 Podipo + é (9:p0)?

- 3]—2 Podzpo = (A54)
and
20,12 - pz@po T 5xp037po +5 25 Lay + 1po&pz

11
+ 3x1903 O¢po + 7—21708 d2po

+ —3119033190 - 11705'2}’70 =0 (ASS)
12 3

which means that in order to extract the evolution of

a,(z,x), the coefficient in the warp factor, we have to

provide 0.f, in addition to the initial condition of

a>(7g,x). In the rest of this Appendix, we will solve

Eq. (A38)-Eq. (A44) and the above identities numerically.

5. Numerical implementation

As we mentioned before, in practice, we have a finite
number of points available in the inhomogeneous direction.
The cutoff should be chosen with respect to the value of the
other parameters such as the size of the system or the profile
of the source under consideration. We consider rather a
general profile for the source [20,31],
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(0,0) =+ |1+ tanh (£ [
LX) == anh( — ) |e 2,
PolT 3 p

and choose the cutoff for the coordinate x € [-L,, L ] with
= 10 and multiple values for ¢ € [\/L,,/1.5L,] and
aE [% 1]. Each of these parameters simulates a different
physical scenario. Parameter a is the scale of the time
variation of the quench, unlike ¢ which is the spacial scale
of the inhomogeneity applied to the system. The shape of
Do has been chosen so that at the asymptotic past the source
is zero. In principle, for doing the numerical analysis, we
considered the time interval 7 € [z;, 7] with 7; = —7.5 and
7y = 12, that works out for our goal similar to Ref. [20].
As it was pointed out in Sec. A 2, near the boundary, we
encounter logarithmic divergences that cause numerical
instabilities; to tackle them on the lattice, the standard
method is to isolate the finite contributions. Therefore, it is
advisable to make the following change of variables,

(A56)

B(2.p.X) = hiog(z.p.x) + ¢°(z.p, %), (AS57)
$(e.p.3) = Suglr.p.x) + X (r.p0x). (ASY)
Alepx) = Auglr.pox) + A(r.p.x).  (AS9)
E(c.p.x) = Bg(r.p.2) + E (69 ),  (AGO)

and follow these numerical algorithms that we label with
roman numerals below:
(1) Att = r;, we have to start with an initial profile for
the fields; our choice is

bn = ¢ (51 P12 X)

20, =25 (10 p10 X), (A61)
with ¢),, = 2, = 0. These two initial profiles at z;
are sufficient to solve Eq. (A39) and Eq. (A38) for
all points on the lattice at time z;. For X, with
definitions from Eq. (A57) and Eq. (A58) and
inserting them into Eq. (A39), we can see that

Rxy =1Us,, (A62)
with
= 5%, + 2003 + 20030
1
+ 5 (ap(l)c + 8p¢log)2' (A63)

Then, in the above, we will use the initial profiles of
7, and 2, toreplace the ¢, and X and solve the
above equation for the solution of X(#, p, x), with

the boundary conditions

(i)
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Teon(7,0,x) = 0,0,Z(7,0,x) =0 (A64)

that have been derived from Eq. (A19). The matrix
form of the differential equation is

(I: ® D)z = (Jx,),p0 (A65)
where we impose the boundary conditions in a
matrix form since X;, has a form similar to
Eq. (A32). As is clear in Eq. (A63), in addition to
the finite contributions of the fields X and ¢, on the
right-hand side, we also need their logarithmic
corrections. To subtract the logarithms, we make
an expansion over the bulk radius. From Eq. (A17)-
Eq. (A20), we have

¢10g logpz 1+p 1+, pO(T x)] (A66)

i

o p
Zlbg =p’ IOgPZWBLi[‘Uo(T, x), pa(7,x)]

i

5
+p*(logp) 22 ) B, i[po(7, x)],

(A67)

pl
log 21()ng Tk D .ilpo(z, x), pa(z, x)]

7 i
+ p*(logp) ZZ PE

i=

D,.i[po(z, x)].
(AGS)

with the coefficients of F;, B; ;, B,;, D;; and D,;
having a form that is rather complicated to mention
here. As has been mentioned in Ref. [20], the upper
bound for the series can go to infinity, but as is
apparent from the first terms of Eq. (A67) and
Eq. (A68), they are functions of p,, an expansion
parameter in the scalar field ¢ from Eq. (A17) (the
normalizable mode). Since we have no information
about this coefficient prior to solving the evolution
equation for the scalar field, instead we use

(A69)

1
pale.x) = cOp(z.p.x)

p=1

But the error in subtracting the coefficient in p, (7, x)
stops us from increasing the upper bounds in
Eq. (A67) and Eq. (A68).

Since we need time derivatives of p,(r,x) for
evaluating the coefficients in Eq. (A67)-Eq. (A68),
a time evolution of ¢(z; + Az, p, x) is necessary. To
do this, first, we solve Eq. (A38),
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3
(Ix ®D, - Z) m = (J¢)n,l’ (A70)
at 7; with the boundary condition that reads

_Po(Ti,x)

7°(7;,0,x) = 5

(A71)

Then, in order to translate it to ¢., we use

2 a/)d)c(ri’p’x)

(A72)

0. (z.p.) = 7°(z,.p.x) 41
+ Kiog (7i5 5 X),
with
1=t
Kiog (7is s X) = Mg (Tj5 p, X) +—5—

2'0 apd’log (Ti’ P, .X')
- ar,¢log(7iv P, X).

(A73)

The initial condition to solve Eq. (A72) is
¢.(—00,p,x) = 0. Note that the forms of ¢y, and
moe are related according to Eq. (A57) and
Eq. (A34). The latter is explicitly given by

f =lo2p Y- I Ppo(e ). (AT

The evaluation is done by completing the first
Runge-Kutta (RK) step,

o 1 -
ki 4=At (ﬂnl,l +§(1 —p4)8p¢n"l —i—klog), (A75)
that is accompanied by the following shifts,

_ . k
o= ¢+ =L, (AT6)

1
Ti—)Ti+§AT, 3

and with these new values for 7; and ¢,/ ,, we repeat
RK step 1 to find k, 4. This completes RK step 2. In
RK step 3, we have

1
7; > 1; + = Ar, b1 = b {/) (A77)

2

and we repeat steps in RK step 1 to find k3 4. At RK
step 4, finally, we make the last set of shifts,
T; = 7; + Ar, ¢Zi’l — ¢;’;1 + k3 4, (A78)

to obtain the value of the scalar field at 7 = 7; + Ar,

(iif)

(iv)
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1 1 1
AT — gt +—k1’¢+§k2’(/, +6k4_,/,.

AT9
n,l n,l 6 ( )

This finishes the procedure of evaluating time
derivatives of p, based on Eq. (A69). Knowing
all the variables in Eq. (A62) allows us to evalu-
ate Ty, = Xy(7, p, X).

In order to find A% = A(z;, p, x), we still need to
evaluate the value of /', = E(z;, p, x). The values of
¢, and X | are enough to do this as we describe in
this section. Eq. (A40) on the lattice will be given by

Q®D>%

, 4
1X®D/’_?+ p —nl —

(J¢r,- ‘ZZI' )n,l N
(A80)

where the current J groxi are all the terms that

include ¢% and X} and have been taken to the
right-hand side in Eq. (A40). We also need the
logarithmic part Z'°¢ subtracted by

El = logp Z

+ (logp)? (IJPFW

H,/C] ilPo(7, x), pa(7, %))

5

Ky s [Po(z, x)]. (A81)

Once again, the boundary condition at p = 0 for
solving Eq. (A80) is given by

25 (2,0,x) = 0,

1
0,89(7,0,x) = — 9 P00 Po- (A82)
As we mentioned before, knowing all the values of
the fields d)n I ZZ‘n ;and 2 > WE can evaluate A% in
principle from Eq. (A43) that has been deduced.
Since it is a second-order differential equation with
the two initial conditions that each will increase the
size of the arrays (cost of the computation) by a
factor of N, x N, we will rather replace for f and y
from Eq. (A41) and Eq. (A42) similarly to the
approach of Ref. [20] in favor of a more complicated
but linear equation for

9,A = —J3, (A83)
with
— 92 2
= A+ 0,4, (A84)
1 p .
JAzﬁpJa—i—;(?p[JEd—i—Zsz], (ASS)
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)

and in the above, J refers to terms that are propor-
tional to A in Js and have been taken to the left-hand
side of Eq. (A83). Our boundary condition that is
consistent with Eq. (A18) reads

5
A(t,0,x) =6
A(1,0,3) = 6ay + = |

+ po(83po

(9¢po)* +3(9.p0)?

where all the coefficients, p, and a,, are functions of
(z,x). It is possible to rewrite Eq. (A83) in a more
illuminating form,

9,A

A, = =0,A1, — ;. (A87)
with
~ 5 2
A, = BPAC + —GPAC,
Alog

a/)Alog + a Alog9 (A88)

and J; given in Eq. (A85) with Aj,,, having the form

A2 = logp Z
5
+ (logp ZZ

)T Ay ilpo(z,x), pa(7, x)]

i

) Ay ilpo(7, X)].
(A89)

The differential equation in Eq. (A87) will accord-
ingly take the simple matrix form
- (apATi)

(I ® D,)A,, = (A90)

(‘];\’i )n,l nl’
and it is an easy exercise to implement the boundary
condition Eq. (A86). Note that the boundary con-
dition of A; ;in Eq. (A86) depends on the coefficient
a, defined in Eq. (A18). This means that in order to
solve the set of the above equations, we need to
provide an initial profile,

(a3),; = as(7;.p. X). (A91)

Our choice is (a3'), ; = 0. Finally, we will transform

the value obtained from A,Tf,z to A/, according to
Eq. (A84) by integration.

At this point, we have access to the value of the
scalar field and all the components of the metric in
the whole plane of the lattice but only at the initial
time 7;. The goal is to extend our computation to
later times. This being said, on the other hand, we
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started the computation at the beginning of our
numerical algorithm by introducing the initial profile
for (X)), by hand. Clearly, this initial profile at
different times must evolve, too. This brings us to
the coupled equations of Eq. (A41)-Eq. (A42),

%ﬁ—%@ﬁ+r%=<&w (A92)

1
W =3, b +5r] = —Js,, (A93)

with the corresponding assignments in Eq. (A35)
and Eq. (A36),

4
N -1, &
Be.p.x) = 0.4(r.p.2) + 50— 0,8 (x.p. ).
(A94)
r(rp.x) = 0.5, (. p. x).
(A95)

and the sources Jy, and Jy, that are defined in

Eq. (A46) and Eq. (A47). Since they are functions of

the known fields at z;, we can solve the coupled

differential equations with the following boundary
conditions:

p(7,0,x) = y°(z,0,x) = 0. (A96)

Since on the lattice we deal with finite variables

occasionally, we will be sloppy about mentioning

the subindex c¢ for the scalar field and various metric

components.

Upon splitting the finite and logarithmic corrections in

Eq. (A92) and Eq. (A93), they take the form

1
()/c + 2ﬁc) - pﬁlog +-= (2ﬂlog + YIog)

(A97)

pﬂc -

1 1
8/J}/c - Z (ﬂc + 5}’L) = _JE,, - a/)}/log + Z (ﬁlog + Sylog)’
(A98)

where the logarithmic corrections to £ and y are calculated
from Eq. (A35),

W“hwz

6
+ (logp) Z
=5

p) Dy.ilpo(t, x), pa(7,x)]

i

2.ilPo (7, X)), (A99)
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FIG. 11. Plots of ¢(z, p, x) at two specific times. On the left-hand sides, the quench has not been switched on. Specifically, these plots
show the configuration at 7 = —3.75. At some time long after the quench, for instance, 7 = 12, the profiles for ¢(z, p, x) are shown on
the right-hand sides. Dimensions of lattices from the first to the last row are respectively given by 20 x 20, 30 x 30, 40 x 40 and
50 x 50. Fixed parameters are a = | and ¢ = /L,.
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(@)

PHYSICAL REVIEW D 96, 026012 (2017)

(b)

FIG. 12. The effect of the numerical instabilities coming from the RK method shown for the two-point function. Here,
in both diagrams, N, = N, =20. The time step for the left-hand diagram is Az and half of this value for the plot on

the right-hand side.

31 i[po(z,x), pa(7, x)]

log _ logpz
6 pi

+(logp? Y 0T

(A100)
t=5 ,0

BZt pO(T )C)]

In the matrix form, we can rewrite Eq. (A92)-Eq. (A93), in
the following way,

1 , 7

(2 o)), ()
—ﬁ I ®D -2 7/Ti n.l Jzzi il
(A101)

with J i and .72;,» that include terms such as fy,,, 710o and

their derivative as they appear on the right-hand side of
Eq. (A97) and Eq. (A98). This yields g, and y,’, at the
initial time 7 =7;. Now, similarly to the procedure
mentioned in detail for the scalar field (j);’; ;» We can perform
four steps of the RK method to evaluate Eq. (A94)—
Eq. (A95) for 7 = 7; + Ar. This is the last stage of our
simulation, and all the steps that we have done so far will
be repetitively performed until the desired final time 7 = 7
is reached.

Discretization.—In this section, we look at the effect of
the discretization and possible sources of numerical
artifacts. There are two main sources of numerical
artifacts: the chosen number of points on the lattice
and the chosen value for the time steps Az. One

advantage of having an observable as a function of
two coordinates is that numerical instabilities or artifacts,
if any, are hard to miss. Therefore, the best method is just
to change the number of lattice points and compare
them.

For simplicity, all of the lattices that we have considered
are square lattices with N, = N,. As an example, we
compared ¢(z,p,x) for lattices with 20 x 20, 30 x 30,
40 x 40 and 50 x 50 at two specific times, early before
(r = —3.75) and a long time after turning on the quench
(r = 12). The corresponding plots are shown in Fig. 11.

The other source of numerical instability is the value
chosen for the marching steps in the Runge-Kutta method.
Below, we compare one of the observables computed in the
paper, L,, the two-point function for case I, for two
different time steps, Az and 4%

Numerical instabilities that are produced this way are
specifically dominant for a region near p ~ 1. Observables
in our computation, such as entanglement entropies that
depend on Taylor expansions of the metric near p ~ 0, are
the least affected quantities by these instabilities. This is
mainly due to the fact that we have calculated their
expansions up to O(p®) analytically using the Einstein
equations. This in part allows us to use a lower number of
lattice points for simulating them.

This check is the most time-consuming part. For a
lattice of N, =N, =20 points, this takes roughly a
month. For a lattice of N, = N, = 30, this process takes
two months. Different observables for various parameters
have been executed on different nodes. It takes three
days to produce a single plot for a parallelized code on
a 16-core node. The corresponding plots are shown in
Fig. 12.
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b. Thermalization.—In the same category, we look at the
effects of the lattice artifacts on the thermalization. The
normalizable mode in the expansion of the bulk scalar
allows us to observe this since this is the response to the
mass gap. Practically, the numerical algorithm was
designed to stop when the standard deviation from the
mean value goes below 10~!! while in the trend toward
thermalization. We plot the dynamical evolution of this
component of the scalar field for various lattice sizes in
Fig. 13. The standard deviations from the mean values at
late times are given in the table below:

Measure of thermalization

N,orN, N, Standard deviation
20 7810 8.9 x 10712
30 17560 3.5x 10713
40 31210 1.7 x 10713
50 41272 2.1x 10713
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FIG. 13. Evolution of the normalizable mode of the scalar field
on various lattice sizes. Black color for N, = N, = 20, blue for
N,=N,=30, green for N,=N,=40 and red for N,=N,=50.

[1] K. Adcox et al. (PHENIX Collaboration), Formation of
dense partonic matter in relativistic nucleus nucleus colli-
sions at RHIC: Experimental evaluation by the PHENIX
collaboration, Nucl. Phys. A757, 184 (2005); B.B. Back
et al. (PHOBOS Collaboration), The PHOBOS perspective
on discoveries at RHIC, Nucl. Phys. A757, 28 (2005); 1.

Arsene et al. (BRAHMS Collaboration), Quark gluon

plasma and color glass condensate at RHIC? The perspec-

tive from the BRAHMS experiment, Nucl. Phys. A757, 1

(2005); J. Adams et al. (STAR Collaboration), Experimental

and theoretical challenges in the search for the quark gluon

plasma: The STAR collaboration’s critical assessment of the

evidence from RHIC collisions, Nucl. Phys. A757, 102

(2005).

D. Teaney, J. Lauret, and E. V. Shuryak, Flow at the SPS and

RHIC as a Quark Gluon Plasma Signature, Phys. Rev. Lett.

86, 4783 (2001); P. Huovinen, P. F. Kolb, U. W. Heinz, P. V.

Ruuskanen, and S. A. Voloshin, Radial and elliptic flow at

RHIC: Further predictions, Phys. Lett. B 503, 58 (2001);

P.F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola, and K.

Tuominen, Centrality dependence of multiplicity, transverse

energy, and elliptic flow from hydrodynamics, Nucl. Phys.

A696, 197 (2001); T. Hirano and K. Tsuda, Collective flow

and two pion correlations from a relativistic hydrodynamic

model with early chemical freeze out, Phys. Rev. C 66,

054905 (2002); P.F. Kolb and R. Rapp, Transverse flow

and hadro-chemistry in Au+Au collisions at s(NN) (1/2)=

200-GeV, Phys. Rev. C 67, 044903 (2003).

[3] P.B. Arnold, G.D. Moore, and L.G. Yaffe, Transport
coefficients in high temperature gauge theories. 1. Leading
log results, J. High Energy Phys. 11 (2000) 001; Photon
emission from ultrarelativistic plasmas, J. High Energy

[2

—

Phys. 11 (2001) 057; Photon emission from quark gluon
plasma: Complete leading order results, J. High Energy
Phys. 12 (2001) 009; Transport coefficients in high temper-
ature gauge theories. 2. Beyond leading log, J. High Energy
Phys. 05 (2003) 051.

[4] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Adv. Theor. Math. Phys. 2, 231 (1998); O. Aharony,
S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large
N field theories, string theory and gravity, Phys. Rep. 323,
183 (2000).

[5] P.M. Chesler and L.G. Yaffe, Horizon Formation and
Far-from-Equilibrium Isotropization in Supersymmetric
Yang-Mills Plasma, Phys. Rev. Lett. 102, 211601 (2009).

[6] M.P. Heller, D. Mateos, W. van der Schee, and D.
Trancanelli, Strong Coupling Isotropization of Non-Abelian
Plasmas Simplified, Phys. Rev. Lett. 108, 191601 (2012);
P.M. Chesler and L. G. Yaffe, Holography and Colliding
Gravitational Shock Waves in Asymptotically AdSs Space-
time, Phys. Rev. Lett. 106, 021601 (2011); F. Carrasco, L.
Lehner, R.C. Myers, O. Reula, and A. Singh, Turbulent
flows for relativistic conformal fluids in 2 + 1 dimensions,
Phys. Rev. D 86, 126006 (2012); M. P. Heller, R. A. Janik,
and P. Witaszczyk, A numerical relativity approach to the
initial value problem in asymptotically Anti-de Sitter
spacetime for plasma thermalization—An ADM formu-
lation, Phys. Rev. D 85, 126002 (2012); L. Lehner,
Numerical relativity: A Review, Classical Quantum Gravity
18, R25 (2001).

[7] P. Calabrese and J.L. Cardy, Evolution of entanglement
entropy in one-dimensional systems, J. Stat. Mech. 0504,
P04010 (2005).

026012-33


https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1016/j.nuclphysa.2005.03.084
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1103/PhysRevLett.86.4783
https://doi.org/10.1103/PhysRevLett.86.4783
https://doi.org/10.1016/S0370-2693(01)00219-2
https://doi.org/10.1016/S0375-9474(01)01114-9
https://doi.org/10.1016/S0375-9474(01)01114-9
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1103/PhysRevC.67.044903
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2001/11/057
https://doi.org/10.1088/1126-6708/2001/11/057
https://doi.org/10.1088/1126-6708/2001/12/009
https://doi.org/10.1088/1126-6708/2001/12/009
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.108.191601
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1103/PhysRevD.86.126006
https://doi.org/10.1103/PhysRevD.85.126002
https://doi.org/10.1088/0264-9381/18/17/202
https://doi.org/10.1088/0264-9381/18/17/202

KIYOUMARS A. SOHRABI

[8] S. Sotiriadis and J. Cardy, Inhomogeneous quantum
quenches, J. Stat. Mech. 11, P11003 (2008).

[9] P. Calabrese and J. L. Cardy, Time-Dependence of Corre-
lation Functions Following a Quantum Quench, Phys. Rev.
Lett. 96, 136801 (2006); P. Calabrese and J. Cardy,
Quantum quenches in extended systems, J. Stat. Mech.
0706, PO6008 (2007); P. Calabrese, C. Hagendorf, and P. Le
Doussal, Time evolution of 1D gapless models from a
domain-wall initial state: SLE continued? J. Stat. Mech.
2008, P07013 (2008); C. Kollath, A. Laeuchli, and E.
Altman, Quench Dynamics and Nonequilibrium Phase
Diagram of the Bose-Hubbard Model, Phys. Rev. Lett.
98, 080601 (2006); M. Cramer, C. M. Dawson, J. Eisert,
and T.J. Osborne, Exact Relaxation in a Class of Non-
Equilibrium Quantum Lattice Systems, Phys. Rev. Lett.
100, 030602 (2008); G. Roux, Quenches in quantum many-
body systems: One-dimensional Bose-Hubbard model
reexamined, Phys. Rev. A 79, 021608 (2009); S. Sotiriadis,
P. Calabrese, and J. Cardy, Quantum quench from a thermal
initial state, Europhys. Lett. 87, 20002 (2009); M. Rigol, V.
Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a
Completely Integrable Many-Body Quantum System: An
Ab Initio Study of the Dynamics of the Highly Excited
States of Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 4
(2006); S.R. Manmana, S. Wessel, R. M. Noack, and A.
Muramatsu, Strongly Correlated Fermions after a Quantum
Quench, Phys. Rev. Lett. 98, 4 (2006); P. Calabrese, F. H. L.
Essler, and M. Fagotti, Quantum Quench in the Transverse
Field Ising Chain, Phys. Rev. Lett. 106, 227203 (2011); S.
Sotiriadis and J. Cardy, Quantum quench in interacting field
theory: A Self-consistent approximation, Phys. Rev. B 81,
134305 (2010); S.R. Das and K. Sengupta, Non-
equilibrium dynamics of O(N) nonlinear sigma models:
A large-N approach, J. High Energy Phys. 09 (2012) 072;
L.-Y. Hung, M. Smolkin, and E. Sorkin, Modification of
Late Time Phase Structure by Quantum Quenches, Phys.
Rev. Lett. 109, 155702 (2012); Modification of late time
phase structure by quantum quenches, J. High Energy Phys.
09 (2012) 072; E. Caceres, A. Kundu, J. F. Pedraza, and
D.L. Yang, Weak field collapse in AdS: Introducing a
charge density, J. High Energy Phys. 06 (2015) 111.

[10] R. Donagi and E. Witten, Supersymmetric Yang-Mills
theory and integrable systems, Nucl. Phys. B460, 299
(1996).

[11] K. Pilch and N. P. Warner, N = 2 supersymmetric RG flows
and the IIB dilaton, Nucl. Phys. B594, 209 (2001).

[12] A. Buchel, S. Deakin, P. Kerner, and J.T. Liu,
Thermodynamics of the N=2* strongly coupled plasma,
Nucl. Phys. B784, 72 (2007).

[13] A. Khavaev, K. Pilch, and N.P. Warner, New vacua of
gauged N = 8 supergravity in five-dimensions, Phys. Lett.
B 487, 14 (2000).

[14] N.J. Evans, C. V. Johnson, and M. Petrini, The enhancon
and N = 2 gauge theory: Gravity RG flows, J. High Energy
Phys. 10 (2000) 022.

[15] C. Hoyos, S. Paik, and L. G. Yaffe, Screening in strongly
coupled N=2* supersymmetric Yang-Mills plasma, J. High
Energy Phys. 10 (2011) 062.

[16] A.Buchel and J. T. Liu, Thermodynamics of the N=2* flow,
J. High Energy Phys. 11 (2003) 031.

PHYSICAL REVIEW D 96, 026012 (2017)

[17] A. Buchel, N=2* hydrodynamics, Nucl. Phys. B708, 451
(2005).

[18] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers, and
R.M. Thomson, Holographic phase transitions at finite
baryon density, J. High Energy Phys. 02 (2007) 016.

[19] A. Buchel, L. Lehner, and R. C. Myers, Thermal quenches
in N=2* plasmas, J. High Energy Phys. 08 (2012) 049.

[20] A. Buchel, R.C. Myers, and A. van Niekerk, Nonlocal
probes of thermalization in holographic quenches with
spectral methods, J. High Energy Phys. 02 (2015) 017.

[21] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[22] P.M. Chesler and L.G. Yaffe, Numerical solution of
gravitational dynamics in asymptotically anti-de Sitter
spacetimes, J. High Energy Phys. 07 (2014) 086.

[23] A. Buchel, L. Lehner, R. C. Myers, and A. van Niekerk,
Quantum quenches of holographic plasmas, J. High Energy
Phys. 05 (2013) 067.

[24] R. Auzzi, S. Elitzur, S. B. Gudnason, and E. Rabinovici, On
periodically driven AdS/CFT, J. High Energy Phys. 11
(2013) 0O16.

[25] A.Buchel, R. C. Myers, and A. van Niekerk, Universality of
Abrupt Holographic Quenches, Phys. Rev. Lett. 111,
201602 (2013).

[26] S.R.Das, D. A. Galante, and R. C. Myers, Universal scaling
in fast quantum quenches in conformal field theories, Phys.
Rev. Lett. 112, 171601 (2014); Universality in fast quantum
quenches, J. High Energy Phys. 02 (2015) 167.

[27] V. Balasubramanian and S.F. Ross, Holographic particle
detection, Phys. Rev. D 61, 044007 (2000); J. Louko, D.
Marolf, and S. F. Ross, On geodesic propagators and black
hole holography, Phys. Rev. D 62, 044041 (2000).

[28] G. Aarts and J. Smit, Particle production and effective
thermalization in inhomogeneous mean field theory, Phys.
Rev. D 61, 025002 (1999).

[29] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from AdS/CFT, Phys. Rev. Lett.
96, 181602 (2006); Aspects of holographic entanglement
entropy, J. High Energy Phys. 08 (2006) 045.

[30] J. Abajo-Arrastia, J. Aparicio, and E. Lopez, Holographic
evolution of entanglement entropy, J. High Energy Phys. 11
(2010) 149; H. Liu and S.J. Suh, Entanglement growth
during thermalization in holographic systems, Phys. Rev. D
89, 066012 (2014); L.Y. Hung, R.C. Myers, and M.
Smolkin, Some calculable contributions to holographic
entanglement entropy, J. High Energy Phys. 08 (2011)
039; H. Liu and M. Mezei, A refinement of entanglement
entropy and the number of degrees of freedom, J. High
Energy Phys. 04 (2013) 162; R.C. Myers and A. Singh,
Comments on holographic entanglement entropy and RG
flows, J. High Energy Phys. 04 (2012) 122.

[31] V. Balasubramanian, A. Bernamonti, J. de Boer, B. Craps,
L. Franti, F. Galli, E. Keski-Vakkuri, B. Miiller, and A.
Schifer, Inhomogeneous Thermalization in Strongly
Coupled Field Theories, Phys. Rev. Lett. 111, 231602
(2013); V. Balasubramanian, A. Bernamonti, N. Copland,
B. Craps, and F. Galli, Thermalization of mutual and
tripartite information in strongly coupled two dimensional
conformal field theories, Phys. Rev. D 84, 105017 (2011).

026012-34


https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevA.79.021608
https://doi.org/10.1209/0295-5075/87/20002
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevB.81.134305
https://doi.org/10.1103/PhysRevB.81.134305
https://doi.org/10.1007/JHEP09(2012)072
https://doi.org/10.1103/PhysRevLett.109.155702
https://doi.org/10.1103/PhysRevLett.109.155702
https://doi.org/10.1007/JHEP06(2015)111
https://doi.org/10.1016/0550-3213(95)00609-5
https://doi.org/10.1016/0550-3213(95)00609-5
https://doi.org/10.1016/S0550-3213(00)00656-8
https://doi.org/10.1016/j.nuclphysb.2007.06.019
https://doi.org/10.1016/S0370-2693(00)00795-4
https://doi.org/10.1016/S0370-2693(00)00795-4
https://doi.org/10.1088/1126-6708/2000/10/022
https://doi.org/10.1088/1126-6708/2000/10/022
https://doi.org/10.1007/JHEP10(2011)062
https://doi.org/10.1007/JHEP10(2011)062
https://doi.org/10.1088/1126-6708/2003/11/031
https://doi.org/10.1016/j.nuclphysb.2004.11.039
https://doi.org/10.1016/j.nuclphysb.2004.11.039
https://doi.org/10.1088/1126-6708/2007/02/016
https://doi.org/10.1007/JHEP08(2012)049
https://doi.org/10.1007/JHEP02(2015)017
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.1007/JHEP05(2013)067
https://doi.org/10.1007/JHEP05(2013)067
https://doi.org/10.1007/JHEP11(2013)016
https://doi.org/10.1007/JHEP11(2013)016
https://doi.org/10.1103/PhysRevLett.111.201602
https://doi.org/10.1103/PhysRevLett.111.201602
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1007/JHEP02(2015)167
https://doi.org/10.1103/PhysRevD.61.044007
https://doi.org/10.1103/PhysRevD.62.044041
https://doi.org/10.1103/PhysRevD.61.025002
https://doi.org/10.1103/PhysRevD.61.025002
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1007/JHEP11(2010)149
https://doi.org/10.1007/JHEP11(2010)149
https://doi.org/10.1103/PhysRevD.89.066012
https://doi.org/10.1103/PhysRevD.89.066012
https://doi.org/10.1007/JHEP08(2011)039
https://doi.org/10.1007/JHEP08(2011)039
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1007/JHEP04(2012)122
https://doi.org/10.1103/PhysRevLett.111.231602
https://doi.org/10.1103/PhysRevLett.111.231602
https://doi.org/10.1103/PhysRevD.84.105017

INHOMOGENEOUS THERMAL QUENCHES PHYSICAL REVIEW D 96, 026012 (2017)
[32] D. Giataganas, Probing strongly coupled anisotropic [34] W. Guo, G. Labrosse, and R. Narayanan, The Application of

plasma, J. High Energy Phys. 07 (2012) 031. the Chebyshev-Spectral Method in Transport Phenomena,
[33] J.C. Mason and D. Hanscomb, Chebyshev Polynomials Lecture Notes in Applied and Computational Mechanics
(Chapman and Hall/CRC Press, Florida, 2003). (Springer-Verlag, Berlin, 2012), Vol. 68.

026012-35


https://doi.org/10.1007/JHEP07(2012)031

