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We describe holographic thermal quenches that are inhomogeneous in space. The main characteristic of
the quench is to take the system far from its equilibrium configuration. Except in special extreme cases, the
problem has no analytic solution. Using the numerical holography methods, we study different observables
that measure thermalization such as the time evolution of the apparent horizon, two-point Wightman
function and entanglement entropy (EE). Having an extra nontrivial spacial direction allows us to study this
peculiar generalization since we categorize the problem based on whether we do the measurements along
this special direction or perpendicular to it. Exciting new features that are absent in the common
computations appear in the literature; the appearance of negative EE valleys surrounding the positive EE
hills and abrupt quenches that occupy the whole space at their universal limit are some of the results of this
paper. Physical explanation is given, and connections to Cardy’s idea of thermalization are discussed.
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I. INTRODUCTION AND MOTIVATION

Experiments of the heavy-ion collisions have provided a
magnificent opportunity to study strongly coupled systems
[1]. An important part of this study is to understand the
physics of the thermalization in which the fascinating state
of matter “quark-gluon plasma” has formed [2].
In the last decade, extensive studies of the hot plasmas

close to equilibrium using the weakly coupled field theories
have been performed. While the regime of the validity of
those results is limited, they have contributed a great deal to
our physical interpretation [3] and have been the motivation
for more complex computational tool boxes.
Gauge/gravity duality [4] together with spectral methods

have become a successful phenomenological framework
[5,6] to study the above-mentioned systems in the regime
where they can be arbitrarily far from equilibrium while the
theory is experiencing strongly coupled behaviors. This is
indeed the regime in which we are mostly interested to
study the physics of thermalization which allows us to
gather information about subtle and more realistic setups
that were seemingly out of reach. An example of such
scenarios often includes the breaking of symmetries to
incorporate the realistic features. This can be conformality,
supersymmetry or a simple time and spatial translational
invariance.
An easy way to construct such a setup that can have the

above attributions is deduced by simply making an abrupt
change in one or some of the couplings of a microscopic
theory, in our context a quantum field theory, that governs
the dynamics of the system. Then, the theory is said to
undergo a quantum quench [7–9]. The most common type
of quench which in part is also very simple to interpret is to

change the mass of the Quantum Field Theory (QFT) i.e. to
produce a mass gap artificially. As the goal of studying
quenches is to observe thermalization, one can see that a
rapid change in the mass of the action or the corresponding
Hamiltonian will correspond to excess of energy that has to
be shared among new degrees of freedom in the new
system. The physics of how the quantum system will
manage to reach this new state which can or cannot be
accompanied by a thermal process will be of great
importance to us [7].
Of course, our primary interest is the non-Abelian QCD

plasma which has a strongly coupled dynamics. One hopes
that QCD’s long distance behavior at high temperature can
be more or less described by the pure N ¼ 4 super Yang-
Mills. In light of this connection, attempts have been made
to mimic some aspects of the QCD which maybe enable us
to use the AdS=CFT duality. The maximally supersym-
metric content of the theory contains degrees of freedom
such as adjoint fields that are absent in QCD but still has a
good resemblance to the quark-gluon plasma that we are
interested in. It turns out that we can modify the N ¼ 4
SYM further to overcome some of the physically unwanted
features of the theory. One example, in this regard, is
breaking the conformality inN ¼ 4 SYM by adding a bare
mass term [10]. The resulting theory is N ¼ 2.1 with
massive hypermultiplets in the adjoint representation i.e.
N ¼ 2� with a nontrivial RG flow [11]. Note again that at
high temperatures this mass deformation will become
irrelevant. The superpotential for the hypermultiplet mass
term then will consist of structures such as TrQ2 þ Tr ~Q2
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1This should not be confused by a closely related model of
N ¼ 1� SUðNÞ gauge theory which is another possibility of
softly breaking N ¼ 4 by a chiral multiplet mass term.
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and Trð½Q; ~Q�ΦÞ with Q and ~Q the N ¼ 2 hypermultiplets
and where Φ is an adjoint chiral superfield which is related
to a gauge field under N ¼ 2. These superpotential terms
have been expanded in terms of their matter content simply
in the form [12]

δS ¼ −2
Z

d4xðm2
bO2 þmfO3Þ; ð1:1Þ

with operators O2 and O3 defined according to

O2 ¼
1

3
Trðjϕ1j2 þ jϕ2j2 − 2jϕ3j2Þ; ð1:2Þ

O3 ¼ −Trðiψ1ψ2 −
ffiffiffi
2

p
gYMϕ3½ϕ1;ϕ

†
1�

þ
ffiffiffi
2

p
gYMϕ3½ϕ†

2;ϕ2� þ H:c:Þ

þ 2

3
mfTrðjϕ1j2 þ jϕ2j2 þ jϕ3j2Þ; ð1:3Þ

and mb and mf are bosonic and fermionic masses that will
be determined below.
The holographic dual (supergravity) of the above theory

was studied elegantly by Pilch and Warner in Ref. [11]. In
their work, the supergravity scalar fields dual to the
operators defined in Eq. (1.2)–Eq. (1.3) named α and χ
satisfy a potential and kinetic term given by

V¼−
g2

4
e−4α−

g2

2
e2α coshð2χÞþ g2

16
e8αsinh2ð2χÞ; ð1:4Þ

T ¼ −3ð∂αÞ2 − ð∂χÞ2: ð1:5Þ

For more details of the construction and the RG flow, refer
to Refs. [13,14]. Having this dictionary for the AdS/CFT
duality made exploration of different aspects of the
theory that has great resemblance to QCD possible [10].
Particularly, at finite temperatures, thermodynamics of
N ¼ 2� SUðNÞ gauge theory at large ’t Hooft coupling
has been at the center of various works. Buchel, Deakin,
Kerner, and Liu showed that at temperatures that are near
the mass scale of the theory thermodynamics attributed to
the mass deformation is irrelevant and derived the finite
temperature version of the Pilch-Warner flows at the
boundaries [12]. This later study was then extended to
find the behavior of the thermal screening masses of the
Quark-Gluon Plasma (QGP) and beyond to lower temper-
atures [15]. Various aspects of the free energy of the N ¼
2� were reported in Ref. [16], and further on, corrections to
the transport coefficients were derived [17]. For a work on
finite baryon density in this context, refer to Ref. [18].
An enlightening simplicity appears in the regime where

mb;f=T ≪ 1 since in this limit a black hole has formed
inside and the boundary of the bulk space will be
asymptotically an anti-de Sitter (AdS) space. This moti-
vates us [19] to expand the scalar fields in Eq. (1.4) to
obtain

S5 ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12 −

1

2
ð∂ϕÞ2

−
1

2
m2ϕ2 þOðϕ3Þ

�
; ð1:6Þ

where in the above ϕ ∈ f2 ffiffiffi
6

p
α; 2

ffiffiffi
2

p
χg with the corre-

sponding masses m2 ∈ f−4;−3g and G5 ≡ π
2N2

c
. Note that

we have put the radius of AdS in Eq. (1.6) equal to 1. It
must be clear that in the above range of temperatures, we
are looking at large scale black holes and it is reasonable to
treat the amplitudes of the scalar fields perturbatively with
respect to the former length scales and the length l ∼mf=T
will be used to truncate the backreaction.
Now, we are in the position to make the connection to the

quench picture more concrete. As mentioned above, the
result of the mass deformation is to map our starting point
i.e. SSYM ofN ¼ 4 into SSYM þ δSwith δS defined already
in Eq. (1.1). The operators O2 and O3 that are dual to
the scalar field ϕ, with different masses, have different
dimensions based on their structures in the superpotential.
If Δ is the dimension of each operator, then the corre-
sponding mass of the dual scalar field will satisfy [15]
ΔðΔ − 4Þ ¼ m2. In other words, in the boundary theory,
one of the operators, namely O3, couples to a fermionic
mass mf, and O2 couples to a bosonic mass. Similar to
Ref. [20], we will concentrate only on the fermionic
operator in this paper and fix the dual mass of the scalar
field to m2 ¼ −3.
By fixing the parameters of the bulk theory, it was

remarkably suggested [19] to use a toy profile for mf.
Among various choices, the profile that produces a mass
gap is particularly interesting. This evolution can be simply
written in terms of the step function, mf ¼ m0θðτÞ, as a
function of real time or a more smooth and articulated
variation of it,

mf ¼ 1

2
m0½1� tanhðτÞ�: ð1:7Þ

Either way, the system can start from a massless (massive)
ground state and end up in a massive (massless) eventual
state after thermalization [20]. We refer to this setup as the
homogeneous scenario. Calabrese and Cardy came up
with an attractive idea to describe the effect of such an
evolution of a mass gap [7]. In their “horizon effect”
picture, semiclassical propagations (quasiparticles)2 at the
initial state, or in fact every imaginary Cauchy surface that
was satisfying causality, were responsible for the later
thermalization of the system. A key point that came up in

2The concept of quasiparticles has an old history in thermal
QFT, and it has been used successfully in the perturbative and
close to equilibrium physics, but not at far from equilibrium and
strongly coupled systems.
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their discussion was to associate with each coherent set of
particles an effective temperature Teff . Then, at later times,
interference of incoherent quasiparticles that sets off their
journey in an uncorrelated fashion derives the system to
thermalization. It was further speculated by the authors that
this can be a thermal process such as a thermal diffusion. To
clarify this idea further, in Ref. [8], they studied the
evolution of the mass deformation with an inhomogeneous
initial state in models such as conformal and free field
theory.
These ideas are worth a second look. We are curious to

know if the final stationary state of matter depends in any
way on the initial state to begin with. Having an extra toy
dimension that affects the dynamics will help us in this
direction. If the theory is very symmetric, motion of
trajectories will be confined to a specific section of the
phase space; this should be compared with a less symmetric
case in which trajectories will occupy the whole space of
solutions and therefore a more realistic situation to study in
the case of the thermalization. Reference [21] has looked
into this point with different settings.
We will not consider an inhomogeneous initial state but

rather extend Eq. (1.7) to include the following form:

mf ¼ 1

2

�
1þ tanh

�
τ

α

��
e−

x2

σ2 : ð1:8Þ

This is the inhomogeneous scenario that we will consider.
The response of the strongly coupled N ¼ 4 supersym-
metric Yang-Mills thermal plasma will be studied while it is
quenched by tuning parameters α and σ that play the role of
different scales for perturbations in time and space respec-
tively. Note that the natural scale of the problem is set by
the initial scale of the horizon, πT.3

We will consider a cherry picked range of α and σ. In this
way, we can have more control and better insight into the
physics of thermalization. The chosen values for the
parameters in Eq. (1.8) in the text correspond to interesting
physics such as the limit of slow/fast quenches with various
sizes of spacial inhomogeneity.
To solve the problem, we will be using an ansatz with

four arbitrary4 functions of space and time with x being the
coordinate in which profiles are inhomogeneous with
respect to it,

ds25 ¼ −Aðτ; ρ; xÞdτ2 þ Σdðτ; ρ; xÞ2dx2 þ Σbðτ; ρ; xÞ2dy⃗2

þ 2Ξðτ; ρ; xÞdτdx − 2
dρdτ
ρ2

; ð1:9Þ

and if for the brevity of argument, we neglect the
logarithmic corrections and higher-order terms here, the
boundary could be written as5

ϕ ¼ lðρp0 þ ρ2∂τp0 þ ρ3p2Þ þOðl3; ρ4Þ; ð1:10Þ

A¼ 1

ρ2
−ρ2þ l2

�
−
1

6
p2
0þρ2a2

�
þOðl4;ρ2 lnρÞ; ð1:11Þ

Σd ¼
1

ρ
þ l2

�
−ρ2

p2
0

12
−ρ3

p0∂τp0

9
þρ4d4

�
þOðl4;ρ4 lnρÞ;

ð1:12Þ

Σb ¼
1

ρ
þ l2

�
−ρ2

p2
0

12
−ρ3

p0∂τp0

9
þρ4b4

�
þOðl4;ρ4 lnρÞ;

ð1:13Þ

Ξ ¼ l2
�
−ρ

p0∂xp0

9
þ ρ2f2

�
þOðl3; ρ2 ln ρÞ; ð1:14Þ

where in the above p0, p2, a2, b4, d4 and f2 depend on
ðτ; xÞ. Note that from the AdS=CFT dictionary mf ¼ p0.
These functions will satisfy Einstein equations that are
coupled second-order partial differential equations. To
solve them numerically, we will apply spectral methods
and techniques developed by Chesler and Yaffe [5] and use
the Dirichlet boundary condition for the longitudinal
direction. The accuracy of our physical results is certainly
limited to our computational resources. While we could
quantify the effect of the numerical artifacts to be of a few
percent, to our knowledge, none of physical conclusions
that are deduced is affected by them.
In this paper, we study various observables already

in the literature such as the apparent horizon, two-point
Wightman functions and entanglement entropy (EE). Our
goal is to study the thermalization under the quench in
Eq. (1.8) for various parameters with a special emphasis on
the study of EE. In Sec. II, we look into these different
nonlocal observables as a measure of the thermalization,
and different aspects of them will be studied in detail. In
Sec. III, we recap the conclusions and the physical picture
deduced from the simulations in previous sections.
Section IV is dedicated to a discussion on fast quenches,
and the Appendix gives a thorough derivation of the
equations of motion and numerics.

II. THERMALIZATION OBSERVABLES

A. Apparent horizon

One of the most important quantities in the description
of the thermodynamics of a black hole is its statistical
entropy as a measure of the number of quantum states.

3For numerical purposes, we factor out scales of the coor-
dinates such as ρnew ¼ πT

rold
, xnew ¼ xold

πT and τnew ¼ πTτold. And we
will be working with the “new” variables. This factorization also
affects components of the metric for instance Anew¼ðπTÞ2Aold;…

4Please refer to [22]. 5The complete list is outlined in the appendix.
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Hawking’s famous area relation, S ¼ Ah
4G5

, makes a con-
nection between this entropy and the area of the black
hole’s horizon. The radius of the former area is determined
by the position of the horizon, and in our scenario as the
scalar field falls into the black hole and radiates, the black
hole expands, and its rate is directly related to the behavior
of the radius.
We consider the metric in Eq. (1.9) with a simplifying

feature of setting a cutoff in the backreaction at second
order, explicitly assuming6

Aðτ; ρ; xÞ ¼ 1

ρ2
− ρ2 þ l2Âðτ; ρ; xÞ þOðl4Þ; ð2:1Þ

Σðτ; ρ; xÞ ¼ 1

ρ
el

2Σ̂ðτ;ρ;xÞ þOðl4Þ; ð2:2Þ

Ξðτ; ρ; xÞ ¼ l2Ξ̂þOðl3Þ; ð2:3Þ

where Σ in the above notation can be either of Σb and Σd
and the expansion parameter is determined by l ∼mf=T.
Basically, the argument is that we look at the variations of ϕ
at the order of l and neglect the backreaction on itself.
Implementing this assumption in the Einstein equations
allows us to truncate the series at Oðl3Þ or Oðl4Þ on
different metric components. For an interesting discussion
of the thermodynamics of the model, refer to Ref. [23]. In
the following, we use the above components to study the
behavior of the apparent horizon of the black hole deep in
the bulk.
In a much simpler case where Σd ¼ Σb ≡ Σ (the

homogeneous spacetime), the equation for the position
of the trapping surface follows from dþΣ ¼ 0 with dþ≡
∂τ −

Aρ2

2
∂ρ. In the general case [22], this equation is

modified to7

dþΣ ¼ −
1

2
∂ρΣΞ2 þ 1

3
Σ∇ · Ξ ð2:4Þ

with Σ now given by Σ≡ ðΣdΣ2
bÞ1=3. Applying the expan-

sions in Eq. (2.1)–Eq. (2.3) gives the position of the
trapping surface

ρhðτ; xÞ ¼
�
Âðτ; ρ; xÞ

4
þ ∂τΣ̂dðτ; ρ; xÞ

6
þ ∂τΣ̂bðτ; ρ; xÞ

3

−
∂xΞ̂ðτ; ρ; xÞ

6

�
ρ¼1

: ð2:5Þ

Knowing the position of the apparent horizon, ρh, the
natural quantity to calculate is the volume of the horizon.
The volume density of the entropy given by S ¼ Vh

4G5

corresponds to the explicit expression for the perturbation
of the volume element

Vh ¼ ΣdΣ2
b ≡ 1þ l2δVh; ð2:6Þ

where it has to be calculated at ðτ; 1þ l2ρh; xÞ. This gives
the final expression for variation in the volume element of
the apparent horizon,

δVh¼
�
−
3

4
Â−

∂τΣ̂d

2
þ∂xΞ̂

2
−∂τΣ̂bþ Σ̂dþ2Σ̂b

�
ρ¼1

: ð2:7Þ

From the above expression, we can see that the introduction
of the inhomogeneity directly changes the location of the
apparent horizon in comparison with the previous calcu-
lations in Refs. [20,24].
As a reference, Fig. 1(a) shows the plot for p0ðτ; xÞ,

read it mf, as a function of real time τ and inhomo-
geneous direction x. This is equivalent to the profile of
the scalar field that is falling into the black hole from the
boundary and the effect of this infall can be seen in the
fluctuations of the apparent horizon in Figs. 1(b)–1(f) in
x − τ coordinates. These plots that match those of
Ref. [20] have been specifically chosen as they show
different physics as we vary the tuning parameters. One
first clear point is that they all roughly imitate behaviors
of their sources. Choosing x ¼ 0 in p0ðτ; xÞ will reduce
our problem to Ref. [20]. As it is clear from Figs. 1(b)–v,
their behaviors along x ¼ 0 are very similar. They all
follow the profile of p0ðτ; x ¼ 0Þ. But they follow differ-
ent patterns along the inhomogeneous direction. In
p0ðτ; xÞ, there are Gaussian profiles in the x direction
with amplitudes that are almost constant far away from
τ ¼ 0, either τ > 0 or τ < 0. Close to τ ¼ 0, the amplitude
of the Gaussian distribution increases linearly. This is
when the quench has been turned on and in the vacuum of
the QFT a mass gap has been formed. This is evident in
Figs. 1(b), 1(c) and 1(f) for τ ¼ 0. It is an interesting fact
that at this moment excitations occupy a length equal to
the width of the initial Gaussian profile and their
amplitudes seem to follow a universal behavior, occupy-
ing the whole available space.
As we reduce the value of α in p0ðτ; xÞ, excitations will

not only occupy the available space at the τ ¼ 0 but also
overrun the original profile of p0ðτ; xÞ for all τ > 0 as seen
in Figs. 1(b)–1(e). In fact, it is very hard to distinguish
between Figs. 1(d) and 1(e), although they physically
belong to different sizes of the mass gaps. This is the
universal behavior associated with the abrupt quenches that
have been discovered in Refs. [25,26].

6Since the metric is invariant under the residual diffeomor-
phism r → rþ fðτÞ with r≡ 1=ρ, we use this property to fix
the expansion of Aðτ; ρ; xÞ not to have any linear term in r.

7The ∇ and the dot product are defined according to ĝ with
spatial components given by ĝ11 ¼ðΣd

Σb
Þ4=3 and ĝ22 ¼ ĝ33 ¼ðΣb

Σd
Þ2=3.
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An interesting feature is captured in Fig. 1(f). By
increasing σ, the tuning parameter corresponding to the
width of the Gaussian distribution, mass gap excitations
will fill up the available space.

Some of the features in the plots below should not be
confused by physics. They are discretization artifacts, and
one can in principle factor them out by improving the
computational resources. For instance, the amplitude of

FIG. 1. Figure (a) is the profile of p0 that is being sent into the black hole. The rest of the plots are time evolutions of variations in the
radial position of the horizon. In (b), (c), (d) and (e), plots are drawn for a fixed value of σ ¼ ffiffiffiffiffi

Lx
p

with Lx ¼ 10 the length of the domain
in the x direction. The varying parameters are correspondingly α ∈ f1; 1

2
; 1
4
; 1
8
g. In (f), these parameters are α ¼ 1 and σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1.5Lx
p

. The
interpolations are based on Nx ¼ Nρ ¼ 20–30, the number of Chebyshev points along the inhomogeneous direction x and radial
direction ρ. The number of time steps used for the fourth-order Runge-Kutta varies between 7810 and 17,560.
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the corrugations in the flat areas surrounding the
bump to the highest peak is at maximum 5%.
Similarly, the local peaks on top of the bumps at the
time of switching the quench are at maximum 9%. A short
discussion about the size of the numerical artifacts and
their effects on the thermalization is given in Secs. A 1
and A 2.

B. Two-point correlator

Two-point Wightman functions are good candidates
of probing thermalization. For operators with large
masses, the correlation functions will have a simple
interpretation in term of spacelike geodesics that
connect two sample points on the boundary of the
conformal field theory (CFT) through the bulk space.
Since we have a special direction which is the direction
of the inhomogeneity, we can categorize our setup into
two groups. Case I will be the situation where this
special direction is orthogonal to the axis of observation,
and case II refers to the situation where the points chosen
are along the axis of the inhomogeneity. This is explained
in Fig. 2.
Similar categorization also applies to our discussion in

the next section where we extend this setup and study
thermalization of the quenches by the entanglement
entropy.

1. Case I: Plane A–B
To see the effect of the quenches, we are interested in

the length of a geodesic that stretches along one of the
spatial directions. The other simplifying assumption here
is that, similar to Ref. [20], we look into the correlator of
operators with large conformal dimensions.8 Then,
the two-point Wightman function will be proportional
to the length of the boundary-to-boundary spacelike
geodesic [27].

For simplicity, our choice is the curve that satisfies
boundary conditions, τ1 ¼ τ�, y1 ¼ −ym, x1 ¼ z1 ¼ 0 and
τ2 ¼ τ�, y2 ¼ ym, x2 ¼ z2 ¼ 0, in other words, not the
specific direction that the inhomogeneity will act on. In this
setup, the geodesic connects points A and B through their
extension in the bulk. The inhomogeneity appears at Oðl2Þ
along the axis where points C and D are positioned. To see
how the quench affects the geodesic as we mentioned
before, we choose a cutoff for the backreaction at Oðl2Þ.
The effect of this backreaction on the coordinates will be
parametrized by

τ ¼ τ0 þ l2τ2; ρ ¼ ρ0 þ l2ρ2; x ¼ l2x2: ð2:8Þ

Our former boundary condition imposes τ0 ¼ τ�. It is
instructive to compute the geodesic first, to see explicitly
the effect of the inhomogeneity. Since the geodesic equa-
tions follow from d2xκ

dλ2 þ Γκ
μν

dxμ
dλ

dxν
dλ ¼ 0 in some general

affine parametrization λ in cases I and II, different equations
of motion will be derived. It is also interesting to see how
the inhomogeneity affects the geodesic beyond our
approximation for the backreaction. The equations of
motion in this case are cumbersome, and it suffices to
mention that the above parametrization will still work out to
solve the equations of motion.
Geodesic equation for τ.—At the zeroth order, the

equation is trivially satisfied; when l ¼ 0, one can see
that

̈τ0 −
1

ρ0
½1 − ð_τ0Þ2ð1þ ρ40Þ� ¼ 0; ð2:9Þ

and at the second order, we get

τ̈2 þ 2
_τ0_τ2
ρ0

ð1þ ρ40Þ þ
ρ2
ρ20

½_y20 − _τ20ð1 − 3ρ40Þ� −
2_y20Σ̂b

ρ0

−
1

2
_τ20ρ

2
0∂ρÂþ ∂ρΣ̂b ¼ 0; ð2:10Þ

where in the above we have constrained the geodesic by
_x0 ¼ _z0 ¼ 0. Also note that the metric components depend
on ðτ0; ρ0; x0; y0Þ with τ0ðy0Þ and ρ0ðy0Þ. This means that
we are looking at constant intervals on the geodesic along
the x axis.
Geodesic equation for ρ.—At zeroth order, the geodesic

equation for ρ reads

ρ̈0 þ
1

ρ0
½_y20 − _τ20 − 2_τ0 _ρ0 − 2_ρ20�

− ρ30ð_y20 þ 2_τ0 _ρ0 − ρ40_τ
2
0Þ ¼ 0; ð2:11Þ

and for Oðl2Þ,

FIG. 2. The disturbance drawn in red pen is that of a Gaussian
function, representing the inhomogeneity. We are interested in the
correlation of points off this plane, i.e. points A and B in case I.
Similarly, in case II, the correlation between C and D will be
studied. Note the resemblance of the setup to the elliptic flow in
heavy-ion collisions.

8This limit omits the possibility of studying the correlator of
the quenching operator itself.
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ρ̈2 þ _ρ2

�
−2

_τ0
ρ0

− 4
_ρ0
ρ0

− 2_τ0ρ
3
0

�
þ _τ2

�
−2

_τ0
ρ0

− 2
_ρ0
ρ0

− 2_ρ0ρ
3
0 þ 2_τ0ρ

7
0

�

þ ρ2

�
−
_y20
ρ20

þ _τ20
ρ20

þ 2
_τ0 _ρ0
ρ20

þ 2
_ρ20
ρ20

− 3_y20ρ
2
0 − 6_τ0 _ρ0ρ

2
0 þ 7_τ20ρ

6
0

�
þ Âð_y20ρ0 − _τ20ρ0 − _τ20ρ

5
0Þ

þ ∂ρÂ

2ρ20
ð_τ20ρ20 þ 2_τ0 _ρ0ρ

2
0 − _τ20ρ

6
0Þ þ

2_y20Σ̂b

ρ0
ð1 − ρ40Þ þ _y20∂ρΣ̂bð−1þ ρ40Þ þ

1

2
_τ20ρ

2
0∂τÂþ _y20∂τΣ̂b ¼ 0: ð2:12Þ

Inhomogeneous direction x2.—Simplifying the equation
will yield

ẍ2 − 2
_ρ0 _x2
ρ0

þ ρ0Ξ½_y20 − ð_τ0Þ2ð1þ ρ40Þ� þ
1

2
_τ20ρ

2
0∂xÂ

− _y20∂xΣ̂b þ ρ20_τ0ð_ρ0∂ρΞ̂f þ _τ0∂τΞ̂fÞ ¼ 0: ð2:13Þ
As we said before, we are looking at constant intervals
along the x axis and by varying the affine parameter that
causes the geodesic to go deeper in the bulk; a nonzero
value for x2 will be produced. Note the ∂x in Eq. (2.13),
which produce a distance of the order of l2 between
constant intervals.
From the metric compatibility condition, ϵ¼−gμνdx

μ

dλ
dxν
dλ ,

and the condition on spacelike geodesics, ϵ ¼ −1, at zeroth
order in l, one obtains

−ημν _x
μ
0 _x

ν
0 þ 2_τ0 _ρ0 − _τ20ρ

4
0 ¼ −ρ20; ð2:14Þ

in which we have to impose _x0 ¼ _z0 ¼ 0 and _y0 ¼ 1.
After expanding to Oðl2Þ, the corresponding equation
simplifies to

1

ρ20
ð_τ0_τ2 þ _τ2 _ρ0 þ _τ0 _ρ2 − _y20Σ̂bÞ − _τ0_τ2ρ

2
0

þ ρ2
ρ30

ð_y20 − _τ20 − 2_τ0 _ρ0Þ − _τ20ρ0ρ2 þ
1

2
_τ20Â ¼ 0: ð2:15Þ

Similar expansion to the order of Oðl2Þ for the geodesic
equations in the direction of y and z will produce

−
_ρ2
ρ0

þ ρ2
ρ20

_ρ0 þ _ρ0∂ρΣb þ _τ0∂τΣb ¼ 0: ð2:16Þ

The Killing vector in the y direction satisfies Σ2
b _y0 ¼ const,

expanding to zeroth order will yield _y0 ¼ ρ20 × conts, and
this will fix the value of _y0 in Eq. (2.9)–Eq. (2.15).
After this short study of the behavior of the geodesics

under the quench, we can compute the length of geodesics
of interest. The length of the geodesic connecting operators
inserted at ðτ1 ¼ τ�; y1 ¼ −ym; x1 ¼ z1 ¼ 0Þ and ðτ2 ¼ τ�;
y2 ¼ ym; x2 ¼ z2 ¼ 0Þ evaluates to

L ¼
Z

ym

−ym
dy0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2
b þ Σd _x2 − A_τ2 þ 2Ξ_x _τ−2

_ρ _τ

ρ2

s
; ð2:17Þ

with all the metric components as a function of ðτ; ρ; x; yÞ.
After expanding to the first order of l2, we get a correction
for the length of the geodesic that has the form of
L ¼ L0 þ l2L2, with

L0 ¼
Z

ym

−ym
dy0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðτ0; ρ0; x�Þ

p
ρ0

; ð2:18Þ

here, x� is the boundary coordinate in the inhomogeneous
direction. The second-order correction is given by

L2 ¼
Z

ym

−ym
dy0

�
Σ̂b − _τ20ρ

2
0Â=2

ρ0
ffiffiffiffi
D

p −
_ρ0 þ _τ0ð1 − ρ40Þ

ρ0
ffiffiffiffi
D

p _τ2

−
D − 2_τ0ρ

4
0

ρ20
ffiffiffiffi
D

p ρ2 −
_τ0

ρ0
ffiffiffiffi
D

p _ρ2

�
; ð2:19Þ

with

D ¼ 1 − 2_τ0 _ρ0 þ _τ20ð−1þ ρ40Þ: ð2:20Þ

Note that if we were assuming _x0 ≠ 0 then there would be a
term proportional to x2 in Eq. (2.19). It is convenient to use
the equations of motion for the geodesics for the last three
terms in Eq. (2.19) to show that the total contribution is
zero after a partial integration. This is a consequence of
perturbation around the extremal trajectory as it was
noticed in Ref. [20].
The constraint on the static geodesics comes from

Kμ
dxμ
dλ ¼ const. In the absence of the quench, time is a

Killing vector. With Kτ ¼ gττ, Kρ ¼ gρτ and Kx ¼ gxτ, the
zeroth-order equation is given by

ðρ40 − 1Þ_τ0 − _ρ0 ¼ const ð2:21Þ
Another way of seeing this is from the zeroth-order
geodesic equation for y. At the horizon ρ0 ¼ 1 and
_ρ0 ¼ 0, this fixes the constant coefficient to zero. The
general solution is [20]

dτ0
dρ0

¼ −
1

1 − ρ40
; or

τ0ðρ0Þ ¼ τ� − tan−1ðρ0Þ − tanh−1ðρ0Þ; ð2:22Þ
here, τ� is the time on the boundary as an observer in the
bulk reaches the boundary at ρ → 0. From the compatibility
condition of the metric, Eq. (2.14), we have
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½1þ ðρ40 − 1Þ_τ20 − 2_τ0 _ρ0�ρ20 ¼ ρ2m; ð2:23Þ

where the constant ρm is the maximum value for the radius
of the arc that attaches the two points on the boundary.
Thus, Eq. (2.19) reduces to

L2 ¼ −
2

ρm

Z
ρm

0

dρ0
Σ̂b − _τ20ρ

2
0Â=2

_ρ0
; ð2:24Þ

where, in the above, the metric components of Σ̂b, Σ̂d and Â
depend on ðτ0; ρ0; x�Þ with τ0ðy0Þ and ρ0ðy0Þ. This is
exactly the result in Ref. [20] with the exception that now
the profile of the geodesic is nonlinearly a function of the
x�. To prepare the integral for numerics following Ref. [20],
after a change of variable such as ρ0 ¼ ρmð1 − q2Þ, the
former expression takes the following form,

L2 ¼ 2

Z
1

0

ð1 − q2Þdq
�

2Σ̂bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − q2Þð1 − ð1 − q2Þ4ρ4mÞ

p
− qρ2mÂ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − q2Þ2

p
ð1 − ð1 − q2Þ4ρ4mÞ3=2

�
; ð2:25Þ

where again the components of the metric in the
above expression are functions of ðτ0; ρ0; x�Þ with τ0ðqÞ
and ρ0ðqÞ.
We can interpret the final Gaussian distribution that is

produced at late times as a signal of a successful thermal-
ization. Among the different simulations that have been
performed in this section for parameters in the range of
ρm ∈ f0.1ρh; 0.5ρh; 0.9ρh; 0.999ρhg,9 those that corre-
spond to ρm ¼ 0.9ρh − 0.999ρh could be verified to have
reached the thermalization. Figures 3(a)–3(d) show the
correlation between two fixed points in the y axes for

FIG. 3. Time evolution of the two-point Wightman functions for operators with large conformal dimensions. Figures in (a), (b), (c) and
(d) are plotted for α ∈ f1; 1

2
; 1
4
; 1
8
g and σ ¼ ffiffiffiffiffi

Lx
p

. The interpolation of points are based on Nx ¼ Nρ ¼ 20�30 along the inhomogeneity
direction x and radial direction ρ. The number of time steps for 4 step Runge–Kutta methods (RK4) is 7810 − 17, 560.

9For the rest of the simulations in the paper, we fixed ρh ¼ 1.
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different α ∈ f1; 1
2
; 1
4
; 1
8
g while a scalar field that has a

Gaussian profile as a function of x is falling into the
black hole in the bulk space. In these figures, different
observers stationed on the x axis will measure the
correlation between the two specific points on the y axes
differently. The maximum correlation is measured on the
x ¼ 0 axis, and other measurements are symmetric
around this axis as the original profile for p0ðτ; xÞ has
this symmetry. As the quench is triggered, there appears a
“phase transition” in a sense that the sign of the corre-
lation function changes sign; from zero in the ground
state, it goes to a minimum negative value and undoes
itself and reaches a final saturated maximum. The rather
simple form of Eq. (2.25) shows that this transition is due
to the interplay between Σ̂b and the warp factor Â. The
first term is always positive, while the sign of the second
term varies depending on the sign of Â. Reduction of the
value of α makes the late-time Gaussian-like distribution
disappear, signaling a fully thermalized equilibrium state
measured by the observable in the universal (abrupt
quench) limit.
In Figs. 4(a) and 4(b), we compare the effect of changing

σ in the range
ffiffiffiffiffi
Lx

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1.5Lx

p
. In the next section, we will

compare these results with those of case II.

2. Case II: Plane C–D
In this section, we consider two-point correlations

again, while we measure the inhomogeneity in a plane
perpendicular to the one in the previous section. For an
illustration, refer to Fig. 2 and the comments at the begging
of that section. The relative geometry of the setup here is
more important as it resembles the setup of the elliptic flow
in heavy-ion collisions. In both cases, there are distribu-
tions that are localized in the transverse directions. Of
course, the physics of the two cases are not directly related.
The effect of the backreaction on the coordinates will be

parametrized by

τ¼ τ0þ l2τ2; ρ¼ ρ0þ l2ρ2; x¼ x0þ l2x2: ð2:26Þ
In what follows, we will use x0 to parametrize the geodesic.
Expansion in terms of the above series will then yield:
the geodesic equation for τ2:

̈τ2 þ 2
_τ0_τ2
ρ0

ð1þ ρ40Þ − 2
_x2
ρ0

þ ρ2
ρ20

ð1 − _τ20 þ 3_τ20ρ
4
0Þ − 2

Σ̂d

ρ0

−
1

2
_τ20ρ

2
0∂ρÂþ _τ0ρ

2
0∂ρΞ̂f þ ∂ρΣ̂d ¼ 0; ð2:27Þ

the geodesic equation for ρ2:

ρ̈2 þ 2
_x2
ρ0

ð1 − ρ40Þ − 2_ρ2

�
_τ0
ρ0

þ 2
_ρ0
ρ0

þ _τ0ρ
3
0

�
− 2_τ2

�
_τ0
ρ0

þ _ρ0
ρ0

þ _ρ0ρ
3
0 − _τ0ρ

7
0

�

þ
�
−

1

ρ20
þ _τ20 þ 2_ρ20 þ 2_τ0 _ρ0

ρ20
− 3ρ20 − 6_τ0 _ρ0ρ

2
0 þ 7_τ20ρ

6
0

�
ρ2 þ ρ0ð1 − _τ20ð1þ ρ40ÞÞÂ

− 2_ρ0ρ0Ξþ 2

ρ0
ð1 − ρ40ÞΣ̂d þ _τ0ρ

2
0∂xA − ρ20∂xΞ̂f þ

_τ0ρ
2
0

2
ð_τ0 þ 2_ρ0 − _τ0ρ

4
0Þ∂ρÂ

þ ρ20ð−_τ0 − _ρ0 þ _τ0ρ
4
0Þ∂ρΞ̂f þ ð−1þ ρ40Þ∂ρΣ̂d þ

1

2
_τ20ρ

2
0∂τÂþ ∂τΣ̂d ¼ 0; ð2:28Þ

FIG. 4. Changing the value of σ from
ffiffiffiffiffi
Lx

p
to

ffiffiffiffiffiffiffiffiffiffiffi
1.5Lx

p
from left to right causes the distributions to rescale. This factor must be a

nontrivial function of the dynamics under study. On the left-hand side Nx ¼ Nρ ¼ 20 and on the right-hand side Nx ¼ Nρ ¼ 30

Chebyshev points have been used.
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the geodesic equation for x2:

ẍ2 − 2
_x2 _ρ0
ρ0

− 2
_ρ2
ρ0

þ 2
_ρ0ρ2
ρ20

þ ρ0ð1 − _τ20ð1þ ρ40ÞÞΞ̂f

þ 1

2
_τ20ρ

2
0∂xÂþ ∂xΣ̂d þ _τ0 _ρ0ρ

2
0∂ρΞ̂f þ 2_ρ0∂ρΣ̂d

þ _τ20ρ
2
0∂τΞ̂f þ 2_τ0∂τΣ̂d ¼ 0; ð2:29Þ

and we can verify that the geodesics on the y and z axes are
not affected at Oðl2Þ. The metric compatibility condition
will subsequently change to

_x2 − _τ0 _ρ2 þ ð−_τ0 − _ρ0 þ _τ0ρ
4
0Þ_τ2

þ ρ0
ρ2

ð−1þ _τ20 þ 2_τ0 _ρ0 þ _τ20ρ
4
0Þ −

1

2
_τ20ρ

2
0Aþ _τ0ρ

2
0Ξ

þ Σd ¼ 0: ð2:30Þ

Note the appearance of the disturbances in Eq. (2.28) for
the bulk radius, and compare it to the previous case. This
completes the list of the required geodesics which could
have been driven otherwise from the action principle.
The length of the spacelike geodesic that connects

points C and D on ðx1 ¼ −xm; y1 ¼ 0; z1 ¼ 0; τ1 ¼ τ�Þ
and ðx2 ¼ xm; y2 ¼ 0; z2 ¼ 0; τ2 ¼ τ�Þ is given by

L¼
Z

xm

−xm
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A_τ2þΣ2

dð1þ _x2Þ2þ 2Ξf _τð1þ _x2Þ− 2
_ρ _τ

ρ2

s
;

ð2:31Þ

where in the above _τ ¼ _τ0 þ l2_τ2, and we are assuming a
similar expression for _ρ, too. In addition to ρðx0Þ, the metric
components Σd, A and Ξ are functions of ðτ; ρ; x0Þ with
τðx0Þ and ρðx0Þ. Expanding to Oðl2Þ, at zeroth order, we
find Eq. (2.18), and to the second order, it simplifies to

L2 ¼
Z

xm

−xm

dx0
ρ0

ffiffiffiffi
D

p
�
Σ̂d −

1

2
_τ20Âþ _τ0ρ

2
0Ξ̂f

�

þ
Z

xm

−xm

dx0
ρ0

ffiffiffiffi
D

p
�
_x2 − _τ0 _ρ2 þ ð−_τ0 − _ρ0 þ _τ0ρ

4
0Þ_τ2

þ −Dþ 2_τ20ρ
4
0

ρ0
ρ2

�
; ð2:32Þ

with D defined in Eq. (2.20). Similar to case I, the
equations of motion at zeroth order will allow us to simplify
the above expression. The term proportional to _τ2 and the
combination of the coefficients that multiply ρ2 and _ρ2 will
cancel out. The only nonzero contribution from the second
line of Eq. (2.32) comes from _x2. The interpretation of this
term is the following; we have chosen x0 as a parameter that
covers the geodesic between the two fixed points on the
boundary, but this coordinate is also along the axis that the

inhomogeneity is sourced accordingly by the profile of the
scalar field. Therefore, this term compensates for the fact
that we are constraining the geodesic in a fixed interval.
By partial integration and equations of motion, we can

reduce the contribution to

L2 ¼
Z

xm

−xm

dx0
ρ0

ffiffiffiffi
D

p
�
Σ̂d −

1

2
_τ20Âþ _τ0ρ

2
0Ξ̂f þ _y0Σ̂b

�

þ x2
ρ0

ffiffiffiffi
D

p
����xm
−xm

: ð2:33Þ

Now, if we assume 2xm ≫ 1, this means x2 ¼ 0 at �xm. In
this case, there is no contribution from the second term in
Eq. (2.33). While this is an interesting scenario, we pursue
the general case and therefore do not impose this later
boundary condition. Notice that splitting the integral intoR xm
0 would not help at all since in order to know the value of
x2 at x0 ¼ 0 we have to solve the geodesic equations all the
way from the boundary down to the maximum value of the
bulk radius.
First, we have to solve the equations of motion for τ0 and

ρ0 in terms of x0. They are already mentioned in Eq. (2.22)
and Eq. (2.23). Choosing the positive root, the solution is
given by

dρ0
d~x0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ40Þðρ2m − ρ20Þ

p
ρ0

; ð2:34Þ

with the change of variable ~x0 ≡ xm − x0. Solving the
above equation for ~x0, in the limit of ρ0 → 0, we find
ρ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ρm ~x0

p
. From Eq. (2.23), we find D ¼ ρm

2~x0
, and

therefore the denominator of the last term in Eq. (2.33)
behaves as

1

ρ0
ffiffiffiffi
D

p ∼
1

ρm
; ð2:35Þ

which has a finite value. This means that imposing the
boundary condition x2 ¼ 0 at �xm is safe and its contri-
bution vanishes as the profile is symmetric around x0 ¼ 0.
To write it in the final form, we use ρ0 ¼ ρmð1 − q2Þ and
solve for _τ0 from Eq. (2.21) to obtain

L2 ¼
Z

1

0

4ð1 − q2Þdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ4mð1 − q2Þ4

p �
Σ̂dffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − q2

p
−

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − q2

p
2ð1 − q2Þ2ð1 − ρ4mð1 − q2Þ4Þ Â

þ ρ2mqð1 − q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ4mð1 − q2Þ4

p Ξ̂f

�
: ð2:36Þ

Similarly to the last section, plots for the above expression
are shown in Figs. 5(a)–5(e) for various tuning parameters
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α and σ in Eq. (1.8). In Figs. 5(a)–5(d), plots for
α ∈ f1; 1

2
; 1
4
; 1
8
g are shown, and in Fig. 5(e), σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1.5Lx
p

.
An important observation is made by comparing our plots
to those of the last section. In fact, they look very identical.

Let us remind ourselves about the difference between case I
in Figs. 3(a)–4(b) and case II with the figures listed below.
In the first scenario, correlation between two points on the y
axes is measured while a scalar field with a Gaussian profile

FIG. 5. Time evolution of the two-pointWightman function for operators with large conformal dimension. In case II, the correlations are
measured by an observer along the plane of reactions. Plots in (a), (b), (c) and (d) are for a fixed value of σ ¼ ffiffiffiffiffi

Lx
p

while varying
α ∈ f1; 1

2
; 1
4
; 1
8
g. Instead, in (e),α ¼ 1with σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1.5Lx
p

. All these figures are deduced for geodesicswith the deepest bulk penetrationwhich
is given by the choice ρm ¼ 0.999ρh in our setup. Other parameters of the simulations are similar to ones used in the previous sections.
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falls into the black hole. The correlation between the points
is found by computing the geodesic connecting these pair
of points through the bulk. This means that as the scalar
field ϕ is falling into the bulk, the excitations that are
produced by the form of the profile will affect the length of
the geodesic. The plane of the flow of these excitations are
orthogonal to the plane where the geodesic is drawn. In
case II, both the excitations of the scalar field and the
geodesics are on the same plane. The resemblance of the
two scenarios is very nontrivial, although we also have to
remember that our results are valid for correlations of
operators with large mass dimensions. A rough explanation
is that in L2 in both cases apart from the geometrical factors
that parametrize the geodesics, case I, the functional
dependence is given by L2ðΣ̂b; ÂÞ, while in case II, we
have L2ðΣ̂d; Â; Ξ̂fÞ. From our simulations, it was clear that
Σ̂d;b were roughly at the same order, while Ξ̂f ≪ 1. Notice
also that Ξ̂f is an odd function of x; this means that the plots
in Figs. 5(a)–5(e) are not completely symmetric along
x ¼ 0 compared to those mentioned in Figs. 3(a)–4(b) of
case I. For a similar conclusion on the connection between
inhomogeneity and the appearance of odd functionalities in
the correlation functions, refer to Ref. [28].
In the next section, we study entanglement entropies and

show that they are more distinctive when it comes to
different setups for thermalization.

C. Entanglement entropy

In this section, we generalize our previous arguments on
two-point functions. Among different options for the min-
imal surfaces that one can use, we restrict ourselves to the
strip geometry. Then, rather than probing the bulk by a single
geodesic, we will measure the thermalization by a minimal
surface that satisfies the boundary of a strip. We will follow
Ryu and Takayanagi’s [29] prescription for calculating the
EE for holographic theories, which is based on extremizing
bulk surfaces. For related works on EE, refer to Ref. [30].

1. Case I: Plane A–B
One natural way to parametrize the boundary is to use

the set of coordinates ðx; y; zÞ. Let us parametrize the
direction that forms an arc by going through the bulk to be
y0. Then, the geometry is extended indefinitely along the x
and z axes. The situation that these two coordinates are
cyclic has been considered recently in Ref. [20]. As before,
we assume that the inhomogeneity backreacts along the x
direction while leaving ∂z as the Killing vector. The reader
who is familiar with the derivations can skip to the
discussion at the end of this subsection.
The surface area will be evaluated from the induced

metric using coordinates ðx; y; zÞ. The induced metric to the
hypersurface is conveniently derived by confining line
elements to displacements confined to the hypersurface.
Doing so, we find that

SΣ ¼
Z

∞

−∞
dx0

Z
∞

−∞
dz0

Z
ym

−ym
dy0

ffiffiffiffiffiffiffi
γind

p
Σb; ð2:37Þ

with tangent vectors of the curves on the hypersurface
defined by eαa ≡ dxα

dya and

γind ¼ −2
A
ρ2

eτxeτyðeτyeρx þ eτxe
ρ
yÞ − 3A2ðeτxeτyÞ2

−
2

ρ2
ðeτxeρxΣ2

b þ eτye
ρ
yΣ2

dÞ þ Σ2
bΣ2

d

þ 2Ξ
�
3AeτxðeτyÞ2 þ 2

ðeτyÞ2eρx
ρ2

þ eτxΣ2
b

�

þ 4
eτxeτye

ρ
xe

ρ
y

ρ4
− 4ðeτyÞ2Ξ2

− A½ðeτyΣdÞ2 þ ðeτxΣbÞ2�: ð2:38Þ

The equations of motion follow by varying the action

∂i
∂SΣ

∂ð∂iτÞ
−
∂SΣ
∂τ ¼ 0; ∂i

∂SΣ
∂ð∂iρÞ

−
∂SΣ
∂ρ ¼ 0; ð2:39Þ

with i ∈ fx; yg. Expanding the coordinates to Oðl2Þ, the
EE similar to the two-point Wightman functions, will have
an expansion of the form SΣ ¼ SΣð0Þ þ l2SΣð2Þ þ l2δSΣð0Þ.
To zeroth order in the perturbation, one gets for the
hypersurface

SΣð0Þ ¼ 2K2

Z
ym

0

dy0

ffiffiffiffi
D

p

ρ30
; ð2:40Þ

where since the effect of the inhomogeneity comes from the
backreaction of the metric and hence it is a Oðl2Þ effect, it
will consequently be absent here and the integral over xwill
be done trivially. The cutoff K has been introduced for
trivial integrations.
To second order, we have

SΣð2Þ ¼ 2K
Z

∞

−∞
dx0

Z
ym

0

dy0
1

2ρ30
ffiffiffiffi
D

p

× ½2Σ̂b þ 2ðΣ̂b þ Σ̂dÞD − _τ20ρ
2
0Â�; ð2:41Þ

also note that in the above expression, the integral over the
coordinate x is now nontrivial as all the metric components
Σ̂b, Σ̂d and Â are the backreacted corrections. The next
contribution changes the boundary volume since it depends
on τ2, ρ2 and x2 according to
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δSΣð0Þ ¼ 2K
Z

∞

−∞
dx0

Z
ym

0

dy0

×

�
2_τ20ρ

4
0 − 3D

ρ40
ffiffiffiffi
D

p ρ2 −
_τ0

ρ30
ffiffiffiffi
D

p _ρ2 −
_τ0ð1− ρ40Þþ _ρ0

ρ30
ffiffiffiffi
D

p _τ2

�
:

ð2:42Þ

It should be pointed out that if we assume _x0 ≠ 0, then a
term proportional to x2 will appear in the EE contribution.
Similar to the previous case, looking at the geodesics
will provide us the following equations for the profiles of
ρ0ðyÞ [20],

ð1 − ρ40Þ_τ0 þ _ρ0 ¼ 0; Dρ60 ¼ ρ6m; ð2:43Þ

which reduce to

dρ0
dy

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ40Þðρ6m − ρ60Þ

q
ρ30

: ð2:44Þ

Although a full analytic solution to the above equation will
be desirable, it suffices to find an asymptotic solution
which will be required in the subsequent section,

y0 ¼ y� −
ρ40
4ρ3m

þOðρ80Þ; ð2:45Þ

this is the boundary coordinate as seen from an observer
falling deep in the bulk. The straight substitution from
Eq. (2.43) and Eq. (2.44) has shown that [20]

SΣð0Þ ¼ 2K2

Z
ρm

ϵ
dρ0

ρ3m

ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ4Þðρ6m − ρ6Þ

p ; ð2:46Þ

SΣð2Þ ¼ 2K
Z

∞

−∞
dx0

Z
ρm

0

dρ0

�
2ρ60ð1 − ρ40ÞΣ̂b þ 2ρ6mð1 − ρ40ÞðΣ̂b þ Σ̂dÞ − ρ20ðρ6m − ρ60ÞÂ

2ρ30ρ
3
mð1 − ρ40Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ6m − ρ60

q �
: ð2:47Þ

From Eq. (2.42), it is evident that we can simplify the
expression using the equations of motion. The coefficients
of _τ0 cancel out. The derivative over _ρ2 can be rewritten
using the partial derivative in terms of ρ2 which will be
again proportional to the equations of motion. The only
contribution emerging from the surface term is

δSΣð0Þ ¼ 2K2
_τ0

ρ30
ffiffiffiffi
D

p ρ2

����ym
0

: ð2:48Þ

It is easiest first to evaluate the coefficient of ρ2 because it is
at zeroth order in the backreaction rather than calculating
the whole expression. Since only the quantities such as _τ0
and _ρ0 are required, we can expand around y ¼ 0, which is
equivalent to the top of the arc in the bulk where it gets its
maximum value ρm. Perturbatively solving the equation of
motion in Eq. (2.44), we obtain the following solutions:

ρ0ðyÞ¼ ρmþ3

2

�
−1þρ4m

ρm

�
y2; τ0ðyÞ¼

3

2

y2

ρm
: ð2:49Þ

There is also a nonphysical solution ρ0ðyÞ ¼ ρm and

τ0ðyÞ ¼ 3
2
y2

ρm
; this solution can be discarded as it takes an

infinite amount of time for the geodesic to satisfy the
boundary condition. Nonetheless, both solutions give a
vanishing contribution to the value of the expression in
which we are interested.

The value of the expression at y0 ¼ ym requires more
work. Since the boundary time τ� will be the time at which
ρ0 → 0, we can solve the differential equation in Eq. (2.44)
to obtain ρ0 ∼ ðym − y0Þ1=4. Putting everything together
[20], we obtain the coefficient of ρ2ðy0Þ,

−2K
1

2
ffiffiffi
2

p
ρ9=4m δ3=4

; ð2:50Þ

where in the above δ is a regulator to avoid the singularity
of the upper limit of y ¼ ym. As has been argued, one needs
to evaluate the behavior of ρ2ðy0Þ to find the finite
contribution to the entanglement entropy. Following the
method described in Ref. [20], we vary the action in
Eq. (2.37) for τ2ðy0Þ and ρ2ðy0Þ as it is not clear from
the beginning whether or not there will be a modification
from terms that depend on the inhomogeneity in the action
of Eq. (2.37). From the Euler-Lagrange equations

δρ2SΣ−
d
dy0

ðδ_ρ2SΣÞ¼0; δτ2SΣ−
d
dy0

ðδ_τ2SΣÞ¼0; ð2:51Þ

at Oðl2Þ, naturally, we recover the equations of motion for
the unperturbed variables ρ0 and τ0. Along the same line, at
Oðl4Þ, we find the equations of motion for τ2 and ρ2. These
are ab initio nonlinear equations involving components of
metric A, Σb, Σd and Ξ on one hand and τ0, ρ0, τ2 and ρ2 on
the other. As the singularity in Eq. (2.50) originates from
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the limit of ρ → 0, we can replace the components of the
metric with their leading values in Eq. (A18)–Eq. (A21)
from the Appendix. Using the asymptotic expansions for τ0
and ρ0 as mentioned in the paragraph above Eq. (2.50), at
leading order, we find

ρ̈2 þ ̈τ2 ¼
1

24
ffiffiffi
2

p ρ9=2m p2
0ðτ�; x�Þ
~y5=40

þOð1=~y0Þ; ð2:52Þ

where in the above ~y0 ¼ ðym − yÞ. In the limit of ~y0 → 0,
assuming the derivatives of p0 are suppressed by extra
factors of ~y0, the former degenerate equation [20] yields

ρ2 þ τ2 ¼ −
ffiffiffi
2

p

9
p2
0ðτ�; x�Þρ9=2m δ3=4: ð2:53Þ

Since there is no modification from the other components
of the metric, this is identical to the homogeneous case in
Ref. [20]. Finding the coefficient will result in

δSΣð0Þ ¼ K2
5

36
p2
0ðτ�; x�Þ: ð2:54Þ

The integral in Eq. (2.47) is singular at ρ0 ¼ 0, and we
have to regularize it. To do so, as before, we make use of the
asymptotic expansions of the metric components for
ρ0 → 0 in Eq. (A18)–Eq. (A20),

Â ¼ −
1

6
p2
0 þ ρ20a2 þOðρ20 ln ρ0Þ; ð2:55Þ

Σ̂d ¼ −
1

12
ρ20p

2
0 þ ρ40d4 þOðρ40 ln ρ0Þ; ð2:56Þ

Σ̂b ¼ −
1

12
ρ20p

2
0 þ ρ40b4 þOðρ40 ln ρ0Þ; ð2:57Þ

then, from the expansion around the singularity, a counter-
term can be formed,

Scounter ¼
K2

6
p2
0ðτ�; x�Þ

Z
ρm

ϵ

dρ0
ρ0

; ð2:58Þ

where ϵ is a regulator for the integral. Substituting from
Eq. (2.55)–Eq. (2.57), the finite part of Eq. (2.47) reads

SfinΣð2Þ ¼ 2K
Z

∞

−∞
dx0

Z
ρm

0

ρ0dρ0

�
2ρ60ð1 − ρ40Þb4 þ 2ρ6mð1 − ρ40Þðb4 þ d4Þ − ðρ6m − ρ60Þa2

2ρ3mð1 − ρ40Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ6m − ρ60

q �
;

with a2, b4 and d4 functions of ðτ0; x0Þ with τ0ðρ0Þ. The corresponding divergent part evaluates to

SdivΣð2Þ ¼ −2K
Z

∞

−∞
dx0

Z
ρm

ϵ
dρ0

p2
0ðτ0; x0Þ
12

�
2ρ60ð1 − ρ40Þ þ 4ρ6mð1 − ρ40Þ − 2ðρ6m − ρ60Þ

2ρ0ρ
3
mð1 − ρ40Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ6m − ρ60

q �
:

Now, it is convenient to make the process of regularization scheme independent by adding

Scor ¼ −
K2

6
p2
0ðτ�; x�Þ log ρm: ð2:59Þ

Finally, the total entanglement entropy for the strip geometry, including the inhomogeneity implicitly, will be

SΣð2Þ ¼ SfinΣð2Þ þ SdivΣð2Þ þ Scounter þ Scor þ δSΣð0Þ

¼ 4K
Z

∞

−∞
dx0

Z
1

0

qdq
�

ρ2mð1 − q2Þ7b4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ4mð1 − q2Þ4Þð1 − ð1 − q2Þ6Þ

p þ ρ2mð1 − q2Þðb4 þ d4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ4mð1 − q2Þ4Þð1 − ð1 − q2Þ6Þ

p
−
ρ2mð1 − q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − q2Þ6

p
a2

2ð1 − ρ4mð1 − q2Þ4Þ3=2 −
ð1 − q2Þ5p2

0ðτ0; x0Þ
12ρm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ4mð1 − q2Þ4Þð1 − ð1 − q2Þ6Þ

p
−

p2
0ðτ0; x0Þ

6ρmð1 − q2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ4mð1 − q2Þ4Þð1 − ð1 − q2Þ6Þ

p þ p2
0ðτ0; x0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − q2Þ6

p
12ρmð1 − q2Þð1 − ρ4mð1 − q2Þ4Þ3=2

�

þ K2

6
p2
0ðτ�; x�Þ

�Z
1

0

2qdq
1 − q2

− log ρm þ 5

6

�
: ð2:60Þ
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Note the difference between p0ðτ0; x0Þ and p0ðτ�; x�Þ.
They will have some overlap in their values when they
cover the spacetime with τ0ðqÞ but in general are inde-
pendent. The fact that the metric components a2ðτ0; x0Þ,
b4ðτ0; x0Þ and d4ðτ0; x0Þ are nonlinear functions of the
inhomogeneity makes Eq. (2.60) a nontrivial generalization
of the result in Ref. [20].
EE as a local observable provides more detailed infor-

mation for thermalization compared to other observables
that we have studied so far. First, we plan to study its
dependence on the cutoff ρm that we have chosen in our
analysis. Figure 6(a) is the profile of p0ðτ; xÞ, the non-
normalizable mode of the scalar field, which is falling into
the black hole. Figures 6(b)–6(e) are the corresponding
variations of the EE as a function of the coordinates x − τ
as we increase the value of the maximum depth of the
entangling surface into the bulk from 0.1ρm to 0.999ρm.
This has the effect of shifting the amplitudes toward more
positive values. It is easy to see from Eq. (2.60) that the
dynamics of EE for ρm ≪ 1 is dominated by the original
profile of p0ðτ; xÞ in addition to a constant offset con-
tribution for τ < 0. At ρm ∼ 1, this dynamics will be
dominated by the backreacted components of the metric
instead. This also explains why in Fig. 6(e) the early
Gaussian peak that appears at τ≃ 0 is wider than the same
Gaussian peak at late times due to the sudden appearance
of the mass gap and plethora of excitations that follow.
Figure 6(e) is the closest configuration to a realistic
thermalization.
Our EE expressions are complicated, and they do not

show the simple quasiparticle picture proposed by Cardy
et al. [7,8]. Nevertheless, we can still connect to this idea.
As it is shown in Figs. 7(a)–7(c), we vary the tuning
parameter α ∈ f1

2
; 1
4
; 1
8
g. While we reduce the values of α,

the mass gap production will have a steep slope. This in
part causes more excitations per volume. These “quasi-
particles” are constrained by causality and from a given
Cauchy surface at τ ¼ 0; it will take them τ ¼ x=vmax to
reach to their “horizon.” This effect can be seen in Fig. 7(c)
in a very pronounced way as it makes a slight wiggle on the
surface at τ ∼ 5.
In Figs. 7(d), 7(e) and 7(f), we are gradually increasing

the width of the Gaussian profile for p0ðτ; xÞ. This causes
the blue region (in color), surrounding the bump, to shift
toward the negative values and to expand the width of the
peak at τ ¼ 0. Curiously, this latter effect does not exceed a
circular-shape region obeying radius τ ¼ x=vmax. We want
to point out that this is not trivial.

2. Case II: Plane C–D
Similar to the case considered in Sec. II B 2, for the two-

point function, we reconsider a similar problem assuming
that the direction of the inhomogeneity is orthogonal to the
boundaries of the entangling region. Let us call this region
A. The geometry of A is that of a strip, and we parametrize

it with ðx0; y0; z0Þ. The extremal surface that bounds A
throughout the bulk is derived from

SΣ ¼
Z

∞

−∞
dy0

Z
∞

−∞
dz0

Z
xm

−xm
dx0

ffiffiffiffiffiffiffi
γind

p
Σ2
b; ð2:61Þ

with

γind¼−A_τ2þ2_τð1þ _x2ÞΞþð1þ _x2Þ2Σ2
d−2

_τ _ρ

ρ2
; ð2:62Þ

and the boundary for the hypersurface (strip) is from−xm to
xm, and it is indefinitely extended along the y and z
directions. Note that in writing Eq. (2.61), we relied on
the lessons learned from the geodesic equations mentioned
at the beginning such as Eq. (2.29). Expansion has the
general form SΣ ¼ SΣð0Þ þ l2SΣð2Þ þ l2δSΣð0Þ. The first
term has already been calculated in Eq. (2.40). For SΣð2Þ,
we get

SΣð2Þ ¼ 2K2

Z
xm

0

dx0
2ρ30

ffiffiffiffi
D

p

× ð2Ξ̂f _τ0ρ
2
0 − _τ0

2ρ20Âþ 4DΣ̂b þ 2Σ̂dÞ; ð2:63Þ

with D ¼ 1 − _τ0
2 þ _τ0

2ρ40 − 2 _τ0 _ρ0. A similar expansion
for the dynamical variables such as τ2, ρ2 and x2 gives

δSΣð0Þ ¼ 2K2

Z
xm

0

dx0
2ρ40

ffiffiffiffi
D

p ½2ρ0 _x2 þ ð−6Dþ 4_τ20ρ
4
0Þρ2

− 2ρ0ð_τð1 − ρ40Þ þ _ρÞ_τ2 − 2ρ0_τ0 _ρ2�: ð2:64Þ

As was noticed in the last section, the coefficient of _τ2 is
zero if we use the equations of motion at zeroth order.
Again, the coefficient of the terms ρ2 and _ρ2 group together
by partial integrations, yielding

δSΣð0Þ ¼ 2K2l2
_τ0ρ2
ρ30

ffiffiffiffi
D

p
����xm
0

þ K2l2
x2

ρ30
ffiffiffiffi
D

p
����xm
−xm

; ð2:65Þ

where in the above we applied the equations of motion such
as Eq. (2.43). In addition, we have changed the lower
bound of the second term as we explained below Eq. (2.33).
They are both diverging with δ−3=4 where δ is the cutoff in
the x0 direction when ρ0 approaches the boundary. The first
term is identical to the contribution from the surface term in
case I, but the second term is new and is due to the effect of
the inhomogeneity. It is also challenging since if we want to
enforce the boundary condition of x2 ¼ 0 at �xm the
coefficient must be finite. To find the exact value of the
coefficient, we have to solve for the equations of motion for
x2 close to the boundary.
Using the fact that ρ0 ∼ ðxm − x0Þ1=4 and the boundary

expansions to leading order for the metric coefficients,
such as
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Σ̂b ¼ −
ρ20
12

p2
0ðτ0; x0Þ þOðρ40Þ; ð2:66Þ

Σ̂d ¼ −
ρ20
12

p2
0ðτ0; x0Þ þOðρ40Þ; ð2:67Þ

Ξ̂f ¼ −
ρ0
9
p0ðτ0; x0Þ

∂p0ðτ0; x0Þ
∂x0 þOðρ20Þ; ð2:68Þ

Â ¼ −
1

6
p2
0ðτ0; x0Þ þOðρ20Þ; ð2:69Þ

FIG. 6. Plots of the time evolution of the variation of the entanglement entropy atOðl2Þ. In case I, the correlating region is orthogonal
to the plane of reaction. (a) is the source on the boundary, and (b)–(e) are the corresponding plots for the EE as we vary ρm for fixed
α ¼ 1 and σ ¼ Lx. The numerical setup is identical to the previous sections.
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together with the equations of motion derived from the
Euler-Lagrange equations

δρ2SΣ −
d
dx

ðδ_ρ2SΣÞ ¼ 0; ð2:70Þ

d
dx

ðδ_τ2SΣÞ ¼ 0; ð2:71Þ

d
dx

ðδ_x2SΣÞ ¼ 0; ð2:72Þ

FIG. 7. Corresponding plots for the EE as we reduce α in (a)–(c) for σ ¼ ffiffiffiffiffi
Lx

p
. In (d)–(f), we increase σ with fixed α ¼ 1. We are also

assuming ρm ¼ 0.999ρh and Lx ¼ 10 in the above plots.
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we find the following geodesic equations around the
boundary surface10:

ρ̈2 þ ̈τ2 ¼
1

24
ffiffiffi
2

p ρ9=2m p2
0ðτ�; x�Þ
~y5=40

; ð2:73Þ

4ẍ2−
2
ffiffiffi
2

p

ρ3=4m

~x3=40 ρ̈2−
3
ffiffiffi
2

p

ρ3=4m

_ρ2

~x1=40

þ 3

4
ffiffiffi
2

p ρ2

~x5=40

¼ 5ρ3=2m

12

p2
0ðτ�;x�Þ
~x1=20

:

ð2:74Þ

Therefore, in this case, we recover the degenerate equations
of motion for ρ̈2 and ̈τ2 and an extra equation of motion for
ẍ2. The same coefficients that have been obtained in the
limit of long late times, that is p0 → const., should be valid
in this case and will allow us to determine ẍ2. An easy
power counting shows that x2 ∼ ~x3=20 . If we insert the value
of ρ2 given at the late-time approximation when the system
has reached thermalization [20], we find ẍ2 ¼ 0. In either
case, this means that the contribution from x2 in Eq. (2.65)
vanishes. Thus, the contribution from δSΣð0Þ reads

δSΣð0Þ ¼
5K2

36
p2
0ðτ�; x�Þ: ð2:75Þ

The contribution form the lower bound of the first term
in Eq. (2.65) vanishes as the reader can easily check from
the zeroth-order equations of motion. Going back to

Eq. (2.63) and making a change of variable from x0 to
ρ0 using Eq. (2.43) and Eq. (2.44) and renaming y0 for x0,
we obtain

SΣð2Þ ¼K2

Z
ρm

0

ρ30dρ0

ρ3m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ρ40Þðρ6m−ρ60Þ

q �
2

ρ0

�
ρ6m−ρ60
1−ρ40

�
1=2

Ξ̂f

−
ρ6m−ρ60

ρ40ð1−ρ40Þ
Âþ4ρ6m

ρ60
Σ̂bþ2Σ̂d

�
: ð2:76Þ

As is clear from the above expression, it suffers from
infrared divergences. To separate them from the finite part,
we use the asymptotic expansion around the boundary
using Eq. (A18)–Eq. (A21) in the Appendix,11 i.e.

A ¼ −
p2
0

6
þ ρ20a2 þOðρ20 ln ρ0Þ; ð2:77Þ

Σd ¼ −ρ20
p2
0

12
þ ρ40d4 þOðρ40 ln ρ0Þ; ð2:78Þ

Σb ¼ −ρ20
p2
0

12
þ ρ40b4 þOðρ40 ln ρ0Þ; ð2:79Þ

Ξ ¼ −ρ0
p0∂xp0

9
þ ρ20f2 þOðρ20 ln ρ0Þ; ð2:80Þ

to find the finite contribution,

SfinΣð2Þ ¼ K2

Z
ρm

0

dρ0
18ρ3mð−1þ ρ40Þ2ðρ60 − ρ6mÞ

h
−36f2ρ40ð−1þ ρ40Þðρ60 − ρ6mÞ − 4p0

0p0ð1 − ρ40Þ3=2ðρ6m − ρ60Þ3=2

− 3ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1þ ρ40Þðρ60 − ρ6mÞ

q
½p2

0ρ
4
0ð−2þ ρ40Þ þ 6a2ðρ60 − ρ6mÞ − 12ð−1þ ρ40Þðd4ρ60 þ 2b4ρ6mÞ�

i
; ð2:81Þ

and in the above, we are using the compact notation for
p0
0 ≡ ∂ρ0p0 based on the chain rule. Since an infinitesimal

change in x0 also varies τ0, the derivative acts on both
arguments of p0ðτ0; x0Þ.
Similarly, the divergent part reads

SdivΣð2Þ ¼ −K2

Z
ρm

ϵ
dρ0

p2
0ð−1þ 2ρ40Þρ3m

6ρ0ð−1þ ρ40Þ3=2ðρ60 − ρ6mÞ1=2
;

ð2:82Þ

with ϵ to regulate the integral. To regularize the divergent
term, the following counterterm is added,

ScounterΣð2Þ ¼ K2

6
p2
0ðτ�; x�Þ

Z
ρm

ϵ

dρ0
ρ0

; ð2:83Þ

together with a finite contribution to make the regulariza-
tion scheme independent,

Scor ¼ −
1

6
K2p2

0ðτ�; x�Þ log ρm: ð2:84Þ

Preparing Eq. (2.81)–Eq. (2.84) for numerics with the
usual change of variable of ρ0 ¼ ρmð1 − q2Þ, the final
expression including all terms,

SΣð2Þ ¼ SfinΣð2Þ þ SdivΣð2Þ þ Scounter þ Scor þ δSΣð0Þ; ð2:85Þ

will take the form

10We assume the branch in the solutions that satisfies xm > x0.
11We have neglected the time derivatives over p0.
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SΣð2Þ ¼ K2

Z
1

0

qdq
9ρ8mð1 − ρ4mð−1þ q2Þ4Þ2ð−1þ ð1 − q2Þ6Þ

h
−36ρ10m f2ð−1þ ρ4mð−1þ q2Þ4Þð−1þ ð1 − q2Þ6Þð1 − q2Þ4

− 4p0
0p0ρ

9
mð1 − ρ4mð1 − q2Þ4Þ3=2ð1 − ð1 − q2Þ6Þ3=2 − 3ρ4mð1 − q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1þ ð1 − q2Þ6Þð−1þ ð1 − q2Þ4ρ4mÞ

q
× ½p2

0ρ
4
mð1 − q2Þ4ð−2þ ð1 − q2Þ4ρ4mÞ þ 6a2ρ6mð−1þ ð1 − q2Þ6Þ − 12ρ6mð−1þ ρ4mð1 − q2Þ4Þðd4ð1 − q2Þ6 þ 2b4Þ�

i
− K2

Z
1

0

qdq
p2
0ð−1þ 2ð1 − q2Þ4ρ4mÞ

3ð1 − q2Þð−1þ ρ4mð1 − q2Þ4Þ3=2ð−1þ ð1 − q2Þ6Þ1=2 þ
K2

3
p2
0ðt�; x�Þ

�Z
1

0

qdq
1 − q2

−
1

2
log ρm þ 5

12

�
;

ð2:86Þ

with p0
0 ≡ ∂ρ0p0.

Figures 8(a)–9(f) represent SΣð2Þ, the perturbation to the
total EE at Oðl2Þ, in the x − τ plane. They are parts of our
main results as they have not been reported in any form to
the best of our knowledge and perhaps represent the most
insightful aspects of EE.
The first thing to notice is the way profiles for EE

change when we vary ρm. This is apparent by comparing

Figs. 6(b)–6(e) in the last section against Figs. 8(a)–8(d).
A small dip appears at τ ∼ 0 in Figs. 8(a)–8(d) that its
magnitude grows as we reduce the value of α. As it is
shown in 8(a)–8(d), by gradually increasing values of ρm,
the maximum of the late-time saturated value for EE
reduces. In Figs. 9(a)–9(c), we vary the tuning parameter
α from 1

2
to 1

8
. This causes the dip to get a pinching shape

along the τ direction. Similarly, we can change σ, which

FIG. 8. In the above figures, time evolutions of SΣð2Þ for case II, are depicted. From (a)–(d), we increase the value of ρm to reach the
maximum thermalization. Fixed tuning parameters such as α ¼ 1 and σ ¼ ffiffiffiffiffi

Lx
p

together with Nx ¼ Nρ ¼ 20 Chebyshev points have
been used. The number of time steps for the fourth-order Runge-Kutta has been 7810.
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increases the size of the dip sideways along the x axis.
These are shown in Figs. 9(d)–9(f).
Comparing these figures with those given in the last

section makes it easy to interpret the physics behind EE. In
the last section, we found an approximate length for the
correlation length. This will allow us to concentrate on the

pair of entangled quasiparticles from an arbitrary Cauchy
surface within this length. Our system has a strip geometry,
and in case I, the boundary is at ½−ym; ym�, and it is
extended to infinity in the x direction, whereas in case II,
boundaries are at ½−xm; xm� and are extended to infinity
along the y axis. The direction of inhomogeneity is along

FIG. 9. Plots of the time evolution of the entanglement entropy in case II. In (a)–(c), the value of α has been reduced, while in (d)–(f),
we are increasing the tuning parameter σ. The numerical setup is identical to the last figure.
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the x axis in both cases. The EE originates from entangled
quasiparticles that have the chance to reach the boundaries
of the system. In case I, the quench produces the quasi-
particles out of the vacuum, and Figs. 7(a)–7(f) show that
pairs that are created at x ¼ 0 have the highest chance to
reach the boundaries at ½−ym; ym� assuming they dispatch in
opposite directions. Equivalently, as much as they are off
the symmetry axis, their chances are lower, and so is their
contribution to the EE. Note that what we are plotting are
the perturbations of EE at Oðl2Þ. This situation can be
compared with case II, where quasiparticles that are
produced at x ¼ 0 and want to reach the boundaries at
½−xm; xm� have to overcome the Gaussian disturbance. This
can be put in simple words using Cardy’s suggestion [8] to
define an entanglement entropy current. In case I, the
current induced by the quench is along the axis of the
produced quasiparticles. In contrast, the latter current is
perpendicular to the path of the quasiparticle pairs in case II
and explains the presence of the dip in Figs. 9(a)–9(f).

III. CONCLUSIONS

Throughout this article, we studied various observables
such as the apparent horizon, two-point Wightman func-
tions and entanglement entropy to study the physics of
thermalization. Our method to derive the system far from
equilibrium was the generalization of the setup described
by Butchel et al. in Ref. [20] for quenches, and we made it
inhomogeneous. We then solved the corresponding coupled
equations of motion using the spectral method outlined by
Chesler and Yaffe [5].
The study of the apparent horizon as a local observable

showed the presence of excitations out of the vacuum of
N ¼ 4 SYM, created by the mass gap that our quench
produces. Different behaviors of these excitations or
quasiparticles were observed by varying the quench tuning
parameters such as the width of the Gaussian profile, σ, or
the time scale of the quench α. It was shown that profiles of
the apparent horizon for values of α ∼ 1 were very similar
to profiles of the quench but for α ∼ 0 a universal behavior
was emerging. Increasing σ showed that the mass gap
excitations would fill up the available space.
Having an extra nontrivial spatial direction on the

boundary allowed us to consider different scenarios that
we depicted in Fig. 2. In both cases I and II, the correction
to the correlation function at Oðl2Þ, where l is the order of
the backreaction, was considered. Corrections to the
Wightman function in case I were symmetric along the x ¼
0 axis unlike case II. The latter had a contribution from one
of the components of the metric that was an odd function in
x. In both cases, corrections underwent a phase transition
that is seen by a change of sign. Since the correlator
measures the interference of an infinite number of momen-
tum modes [8], by speculating about our figures, we could
parametrize the path of these modes departing from an
arbitrary initial time until their interference by τ ¼ x=vmax.

Our plots suggest that our quenches belong to the class of
vmax ∼ 1. The study of the correlation functions in both
cases I and II also revealed that the physics of thermal-
ization is not diffusive (or at least it is very negligible) as far
as we could compare the amplitudes in the two sets of
figures.
Similar to the Wightman correlation functions, we used

the extra nontrivial spatial direction to study EE in various
strip boundary setups. These cases were the extensions of
the configurations mentioned in Fig. 2. As we increased the
depth in which the minimal surface could probe in the bulk,
the EE’s evolution followed the profile of the source on the
boundary more closely. In case I, the fingerprint of the
quasiparticles reaching their horizon could be seen as a
slight wiggle on the surface of the EE in the x-τ plane. The
setup in case II gives a completely different profile for the
EE. This later configuration was an interesting part of our
paper due to its novelty and a description in terms of the
entanglement current of Cardy et al. [8] and could
illuminate the underlying physics. We think this result
requires further investigation in different setups such as the
entangling hemisphere.
As we mentioned above, our study confirmed that the

underlying physics of thermalization is not of a diffusive
nature at strong couplings, although defining quantities
such as currents seem to be inevitable. In fact, physics of
thermalization after a quench in many ways is very similar
to the physics of far-from-equilibrium isotropization.
Consider the two priory different problems, where the first
one explains the equilibration of N ¼ 4 SYM in the
following holographic setup [5],

ds2 ¼ 2dτdr − Aðτ; rÞdτ2 þ Σ2ðτ; rÞe−2Bðτ;rÞdxL
þ Σ2ðτ; rÞeBðτ;rÞdxT; ð3:1Þ

with r≡ 1=ρ the (inverse) radius of the bulk and where
Aðτ; rÞ and Σðτ; rÞ are the warp factors and Bðτ; rÞ is a
function that parametrizes the isotropization with respect to
the longitudinal and transverse planes. And the second one
is our quench problem with a more simplified background
considered in Ref. [20],

ds2 ¼ 2dτdr − Aðτ; rÞdτ2 þ Σðτ; rÞ2dx2: ð3:2Þ

Upon insertion of Eq. (3.1) and Eq. (3.2) in Einstein
equations, the equations of motion will take a specific form
[5,20]. We list those of the isotropization problem on the
left-hand side and those of the quench on the right-hand
side,

Σ _Σ0 þ 2Σ0 _Σ − 2Σ2 ¼ 0;

Σ _Σ0 þ 2Σ0 _Σ − 2Σ2 þ 1

12
m2ϕ2Σ2 ¼ 0; ð3:3Þ
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Σ _B0 þ 3

2
ðΣ0 _Bþ B0 _ΣÞ ¼ 0;

Σ _ϕ0 þ 3

2
ðΣ0 _ϕþ ϕ0 _ΣÞ − 1

2
Σm2ϕ ¼ 0; ð3:4Þ

A00 þ 3B0 _B − 12
Σ0 _Σ
Σ2

þ 4 ¼ 0;

A00 þ ϕ0 _ϕ − 12
Σ0 _Σ
Σ2

þ 4 −
1

6
m2ϕ2 ¼ 0; ð3:5Þ

Σ̈þ 1

2
ð _B2Σ − A0 _ΣÞ ¼ 0;

Σ̈þ 1

2

�
_ϕ2Σ
3

− A0 _Σ
�

¼ 0; ð3:6Þ

Σ00 þ 1

2
ðB0Þ2Σ ¼ 0; Σ00 þ 1

6
ðϕ0Þ2Σ ¼ 0: ð3:7Þ

In the above, we used h0 ≡ ∂rh and _h≡ ∂τhþ 1
2
∂rh. To

make a connection between the two lists of equations on the
right- and left-hand sides, we realize that by choosing a
symmetry factor B≡ ϕffiffi

3
p , apart from extra mass terms,12 the

two sets of coupled differential equations are identical.

IV. FUTURE DIRECTION

Another important aspect of the study of the quantum
quenches is their universal scaling behavior [25,26]. It has
been shown that for relatively fast quenches, the expectation
value of the boundary operator scales according to its
original source. Explicitly, this means that from the expan-
sion of the scalar field in the Eddington-Finkelstein frame

ϕðτ;ρÞ¼ρp0ðτÞþρ2∂τp0þρ3p2ðτÞþOðρ2 lnρÞ; ð3:8Þ

if the coupling in Eq. (1.1) behaves according to λ ¼ λ0ð τδτÞκ,
the normalizable part of the scalar field in Eq. (3.8) will turn
out to be [25,26]

p2ðτÞ ∼ δτ−2
�
τ

δτ

�
κ−2

; ð3:9Þ

with δτ being the characteristic time that is relevant for the
problem. To find Eq. (3.9), the limit of δτ → 0 has been
taken, and information regarding the four-dimensional fer-
mionic operator with Δ¼3 has been used. Furthermore, the
origin of this behavior is a direct consequence of the
causality. Along the same line, we can ask if the above
universality is preserved or not analytically in the inhomo-
geneous case.

An easy way to partially answer the above question is the
following: for fast quenches, nonlinearities and higher-
order backreactions can be neglected since in a short time
perturbations cannot propagate through the whole bulk
space [25]. Therefore, one expects that an intuitive answer
in the neighborhood of the boundary should work.
Neglecting logarithmic corrections and higher-order terms
for simplicity, the boundary terms could be written as

ϕ ¼ lðρp0 þ ρ2∂τp0 þ ρ3p2Þ; ð3:10Þ

A ¼ 1

ρ2
− ρ2 þ l2

�
−
1

6
p2
0 þ ρ2a2

�
; ð3:11Þ

Σd ¼
1

ρ
þ l2

�
−ρ2

p2
0

12
− ρ3

p0∂τp0

9
þ ρ4d4

�
; ð3:12Þ

Σb ¼
1

ρ
þ l2

�
−ρ2

p2
0

12
− ρ3

p0∂τp0

9
þ ρ4b4

�
; ð3:13Þ

Ξ ¼ l2
�
−ρ

p0∂xp0

9
þ ρ2f2

�
; ð3:14Þ

where in the above p0, p2, a2, b4, d4 and f2 depend on
ðτ; xÞ. An identical argument that was mentioned to
reproduce Eq. (3.9) still implies to Eq. (3.10). This is
due to the absence of any spacial derivative in the right-
hand side at that specific order. While the scaling behaviors
in Eq. (3.11), Eq. (3.12) and Eq. (3.13) are suppressed, a
new feature appears in the field Ξ. But Ξ ≪ 1, so its
backreaction on the other components implies that the
universality breaks in a very naive way. A more convincing
answer to the above question requires an analytic
derivation.
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APPENDIX: DERIVATIONS AND NUMERICAL
IMPLEMENTATIONS

1. Setup

As mentioned before, the problem at hand is a scalar
field on an AdS-black brane spacetime. Starting with the

12Although the mass terms played a key role in our quenches,
we could argue that we start our simulation from a rather
nontrivial initial data and then study the evolution without
turning on any quenches.
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following ansatz for the metric in an infalling observer’s
picture (Eddington-Finkelstein coordinates), it reads

ds25 ¼ −Aðτ; r; xÞdτ2 þ Σdðτ; r; xÞ2dx2 þ Σbðτ; r; xÞ2dy⃗ 2

þ 2Ξðτ; r; xÞdτdxþ 2drdτ: ðA1Þ

Our five-dimensional Einstein-Hilbert action with a neg-
ative cosmological constant is given by

S5 ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12 −

1

2
ð∂ϕÞ2

−
1

2
m2ϕ2 þOðϕ3Þ

�
; ðA2Þ

where we have neglected higher-order interactions. We may
also use the inverse of the bulk radius defined by ρ ¼ 1=r,
and x is the special direction that we apply the inhomo-
geneity. As a wave packet ϕðτ; ρ; xÞ is prepared on the
boundary, it will evolve according to the equations of
motion, and all other fields will be affected by the
inhomogeneity. In the following, we will suppress such
a functionality, ðτ; r; xÞ, to simplify the notation.
Here is how the setup works. The scalar field is zero at

the beginning as we turn on the quench at τ ¼ −∞. At a
region around τ ¼ 0, the mass coupling of the fermionic
operator with m2 ¼ −3 is switched on, and this change in
the boundary conditions alters the profiles of the fields in
the dual bulk space. Classical excitations of the scalar field
collapsing into the black hole will backreact on the metric.
Eventually, at the asymptotic future, all the bulk fields will
have a new equilibrium, thermalized or partially thermal-
ized configurations. If the final configuration is static and
globally thermalized, the black hole has a new temperature
and correspondingly a new size consistent with the initial
data at the asymptotic past and the boundary conditions.
We focus on m2 ¼ −3; the scalar field is then mapped to

a dual fermionic mass operator Δ ¼ 3 in a mass-deformed
and thermal N ¼ 2� gauge theory in d ¼ 4 flat spacetime.
As argued in Ref. [20], high temperature quenches
m=T ≪ 1 are dual to the perturbative scalar field in the
background geometry. At the leading order, the static
nonequilibrium equation for ϕ is given by

m2

ρ2
ϕequil − ∂2

xϕequil þ
1

ρ
ð3þ ρ4Þ∂ρϕequil

− ð1 − ρ4Þ∂2
ρϕequil ¼ 0: ðA3Þ

The solution to the above equation is the profile for the
scalar field that corresponds to the equilibrium configura-
tion at the asymptotic future. Unless ∂xϕequil ¼ 0, there is
no analytic solution in terms of the hyperbolic functions
[20] for Eq. (A3),

ϕequilðρÞ ¼ lπ−1=2Γ
�
3

4

�
2

2F1

�
3

4
;
3

4
; 1; 1 − ρ4

�
ρ3; ðA4Þ

and information about the final general profile will be
available through numerics or through approximations
in extreme regimes [31]. For further applications of
Eq. (A1), refer to Ref. [32] where they study the physics
of anisotropy.

2. Backreaction

A simple study of the equations of motion shows that if
the fluctuations of the scalar field are at the scale of l, then
the effect from backreaction appears at l2. Therefore, for
simplicity, we consider an expansion of the form

ϕðτ; ρ; xÞ ¼ lϕ̂ðτ; ρ; xÞ þOðl3Þ; ðA5Þ

Aðτ; ρ; xÞ ¼ 1

ρ2
− ρ2 þ l2Âðτ; ρ; xÞ þOðl4Þ; ðA6Þ

Σðτ; ρ; xÞ ¼ 1

ρ
el

2Σ̂ðτ;ρ;xÞ þOðl4Þ; ðA7Þ

Ξðτ; ρ; xÞ ¼ l2Ξ̂þOðl3Þ ðA8Þ

in the above; we mean Σ ∈ fΣd;Σbg.
We can classify the equations into two categories:

evolution equations and constraints. Given some initial
state or profile for the field, constraints allow us to extract
the value of the dependent fields on the former initial
profiles throughout the domain of the computation. On the
other hand, evolution equations permit the evolution of the
initial state into later times. According to this distinction,
the following constraints and evolution equations are
obtained. The Klein-Gordon equation of motion for the
scalar field that gives the evolution of the scalar field is
given by

m2

ρ2
ϕ − ∂2

xϕþ 3
∂ρϕ

ρ
þ ρ3∂ρϕ − ∂2

ρϕþ ρ4∂2
ρϕ

− 3
∂τϕ

ρ
þ 2∂τ∂ρϕ ¼ 0. ðA9Þ

Then, the constraint for the combination of Σd þ 2Σb will
be

∂2
ρðΣd þ 2ΣbÞ þ

1

2
ð∂ρϕÞ2 ¼ 0; ðA10Þ

knowing the profiles for Σb and ϕ allows us to find Ξ by the
constraint

∂2
ρΞ − 4

Ξ
ρ2

þ ∂ρΞ
ρ

þ ∂xϕ∂ρϕ

ρ2
þ 4

∂ρ∂xΣb

ρ2
¼ 0: ðA11Þ
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A similar description also holds for determining the
value of the warp factor A in the whole domain of the
computation,

∂2
ρAþm2ϕ2

3ρ4
−
∂ρA

ρ
−

2

ρ3
∂ρ½Σd þ 2Σb� − 2ρ∂ρ½Σd þ 2Σb�

þ ∂ρ∂xΞþ 2

ρ3
∂τ½Σd þ 2Σb� −

∂ρϕ∂tϕ

ρ2

−
2

ρ2
∂τ∂ρ½Σd þ 2Σb� ¼ 0: ðA12Þ

After determining the initial profiles for all the fields
according to the above constraints, the set of coupled
evolution equations for Σd and Σb,

− 2A −
m2

6

ϕ2

ρ2
þ ρΞþ ρ5∂xΞ − ∂2

xΣb þ ρ∂ρAþ ∂ρΣd

ρ

− ρ3∂ρΣd þ 5
∂ρΣb

ρ
− ρ3∂ρΣb − ∂2

ρΣb þ ρ4∂2
ρΣb

−
∂τΣd

ρ
− 5

∂τΣb

ρ
þ 2∂τ∂ρΣb ¼ 0; ðA13Þ

together with

m2

6

ϕ2

ρ2
−
m2

6
ρ2ϕ2 − ρð1þ ρ4Þ∂xΞþ ρ2

2
∂2
xA−

ρ

2
ð1− ρ4Þ∂ρA

−
1

ρ
∂ρ½Σd þ 2Σb� þ ρ7∂ρ½Σd þ 2Σb� þ

ρ2

2
ð1− ρ4Þ∂2

ρA

−
3

2
ρ∂tAþ

�
1

ρ
þ ρ3

�
∂τΣd þ 2

�
1

ρ
þ ρ3

�
∂τΣb

−
1

2
ð∂τϕÞ2 þ ρ2∂τ∂xΞ− ∂2

τ ½Σd þ 2Σb� ¼ 0; ðA14Þ

permits solving for future profiles of the fields. Finally, the
constraint and evolution equation for Ξ are given by

2Aþm2

6

ϕ2

ρ2
− 2ρ∂xΞþ 2ρð1þ ρ4Þ∂xΞþ 1

2
ð∂xϕÞ2

þ 2∂2
xΣb − ρ∂ρA −

2

ρ
∂ρ½2Σd þ Σb� þ 2ρ3∂ρΣb

þ ρ2∂ρ∂xΞþ ∂2
ρΣd − ρ4∂2

ρΣd þ
2

ρ
∂τ½2Σd þ Σb�

− ∂τ∂ρΣd ¼ 0; ðA15Þ
to be solved with

− 4
Ξ
ρ2

þ 4ρ2Ξþ ∂xA
ρ

þ ∂ρΞ
ρ

− ρ3∂ρΞ − ∂ρ∂xA

þ ð1 − ρ4Þ∂2
ρΞ − 2

∂τΞ
ρ

þ ∂xϕ∂tϕ

ρ2
þ 4

∂τ∂xΣb

ρ2

− ∂τ∂ρΞ ¼ 0: ðA16Þ

Focusing on the fermionic operator as discussed in
Ref. [19], throughout our computation, we will assume
m2 ¼ ΔðΔ − dÞ ¼ −3, where Δ is the conformal dimen-
sion of the scalar field ϕðτ; ρ; xÞ. Now that we have both the
constraints and the evolution equations, it is important to
find the boundary expansion on the AdS5 that follows from
the Einstein equations by successive iteration of the
solutions. The few interesting terms of the expansion of
each field are listed and will be used extensively throughout
the paper,13

ϕ̂ ¼ ρp0 þ ρ2∂τp0 þ ρ3
h
p2 −

1

2
ln ρð∂2

xp0 − ∂2
τp0Þ

i
þ ρ4

�
∂τp2 −

1

3
∂3
τp0

	
−
ρ4 ln ρ
2

ð∂τ∂2
xp0 − ∂3

τp0Þ þOðρ5Þ; ðA17Þ

Â ¼ −
1

6
p2
0 þ ρ2

�
a2 þ

ln ρ
18

½ð∂xp0Þ2 þ 3ð∂τp0Þ2

þ p0ð∂2
xp0 − 3∂2

τp0Þ�
	
þOðρ3Þ; ðA18Þ

Σ̂d ¼ −
1

12
ρ2p2

0 −
1

9
ρ3p0∂τp0

þ ρ4
�
d4 þ

ln ρ
72

½−4ð∂xp0Þ2 þ p0ð5∂2
xp0 − 3∂2

τp0Þ�
	

þOðρ5Þ; ðA19Þ

Σ̂b ¼ −
1

12
ρ2p2

0 −
1

9
ρ3p0∂τp0

þ ρ4
�
b4 þ

ln ρ
72

½2ð∂xp0Þ2 þ p0ð2∂2
xp0 − 3∂2

τp0Þ�
	

þOðρ5Þ; ðA20Þ

Ξ̂¼−
1

9
ρp0∂xp0þρ2

�
f2þ

lnρ
12

½p0∂τ∂xp0−2∂xp0∂τp0�
	

þOðρ3Þ: ðA21Þ

Note that in practice, we have worked out the above
expansion to Oðρ8Þ. Further, we should draw the attention
of the reader to the normalizable terms such as
fp2; a2; f2; d4; b4g. These coefficients are the response
of the fields to the alterations in the system.

3. 2D Chebyshev lattice

General overview.—In what follows, we do the compu-
tations as symbolically as possible. Our goal here has been
to achieve relatively very small rounding errors through
successive operations that have been carried out. The fact

13Similar to Ref. [20], we make an implicit gauge choice in
writing the following boundary expansions since metric compo-
nents are invariant under residual diffeomorphism.
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that smooth functions can be approximated in a creative
way by polynomial interpolation in Chebyshev points and
the use of fast Fourier transform allow us to use a new sort
of polynomials called Chebyshev polynomials. To do the
numerics in a stable and effective way, accuracy to within
roughly machine precision can be achieved using spectral
methods.
In the interval of 0 < ρ < 1, a convenient basis of

expansion in terms of the Chebyshev polynomials TnðzÞ≡
cos ðn cos−1 zÞ will have the form

gðρÞ ¼
XM
n¼0

αnTnð2ρ − 1Þ; ðA22Þ

which is nothing other than rewriting the Fourier expansion
with a change of variable θ≡ cos−1ð2ρ − 1Þ. In a general
approach, pseudospectral or collocation method, one finds
the expansion coefficients αn by inserting the above
truncated series into the differential equation of interest
and turn the problem into an eigenvalue problem. We
should point out that, although in the conventional Fourier
transformation one is interested in equally spaced lattices,
in the spectral method, we avoid this primitive setup and
instead use basis function that are matched by the position
of the maximums/minimums and end points of the Mth
Chebyshev basis. In our case, for the interval [0, 1], these
are given by

ρm ¼ 1

2

�
1 − cos

mπ

M

�
; ðA23Þ

with the knowledge of αn, we reconstruct the whole
function fgm ≡ gðρmÞg from the collocation grid points.
The range x ∈ ½0; 1� is the most convenient one to use,

but sometimes the other option, z ∈ ½−1; 1�, is required.
The map between the two sets is given by x ¼ 1

2
ð1þ zÞ,

and this leads to a shifted14 Chebyshev polynomial [33]

T�
nðxÞ ¼ TnðzÞ ¼ Tnð2x − 1Þ: ðA24Þ

Wewill use this latter set for the spectral grid in thex direction
where we need the boundary in the range ½−Lx; Lx�.
The concept of Chebyshev points can be extended to

differential operators and we will be working with
Chebyshev differential matrices later on. Meanwhile, there
are various interesting identities [34] for the Chebyshev
polynomials that will be useful throughout this Appendix.
They satisfy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p d
dx

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ þ n2TnðxÞ ¼ 0; ðA25Þ

and their explicit integral evaluates toZ
1

−1
dxTnðxÞ ¼ −

2

n2 − 1
for even n; ðA26Þ

while the value of the integral is zero for any odd n. At the
boundaries, they satisfy

Tnðx ¼ �1Þ ¼ ð�1Þn; dTn

dx

���
x¼�1

¼ ð�1Þnþ1n2;

d2Tn

dx2

���
x¼�1

¼ 1

3
ð�1Þnðn − 1Þn2ðnþ 1Þ: ðA27Þ

2D aspects.—The above one-dimensional boundary value
problem can be extended to higher dimensions. To be
specific, here, we use a 2D setup. For such a problem, we
naturally set up a grid based on Chebyshev points in each
direction independently. This is usually called a tensor
product grid. It is interesting to note that, in comparison
with an equally spaced grid, the Chebyshev grid is 2=π
times as dense in the middle, and in our current 2D setup,
this ratio becomes ð2=πÞ2. Thus, the majority of the grid
points lies near the boundaries. As the enforcing boundary
condition is applied at ρ ¼ 0, this will enhance the
resolution. Therefore, the tensor product construction of
a spectral grid is the natural way to go. This can easily be
done by the tensor product in linear algebra; for instance,
for two matrices A and B, the Kronecker product is given
by A ⊗ B. That is, if A and B are matrices of dimensions
p × q and r × s respectively, then A ⊗ B is a matrix of
dimension pr × qs with p × q block forms, where each i
and j block has the value of aijB.
With a data set represented symbolically as

ðv1; v2;…; v10ÞT , we can use the one-dimensional (1D)
representation of the differential operators to find a repre-
sentation of its counterpart in two dimensions in the
following way:

LNρ×Nx
¼ INρ

⊗ DNx
þDNρ

⊗ INx
: ðA28Þ

Using the above representation, it is also possible to derive
D2

N of the Laplace operator on the above lattices. In
principle, we could have used the polar coordinates, but
we stick to the choice of the Cartesian one since we are
imposing the boundary condition exactly at ρ ¼ 0, and we
cannot avoid any creative trick to avoid this point. One
extra complication with respect to the 1D setup is the issue
of corner compatibility, which states that

α�ðx ¼ LmaxÞ ¼ βþðρ ¼ 0 and 1Þ;
α�ðx ¼ −LmaxÞ ¼ β−ðρ ¼ 0 and 1Þ: ðA29Þ

In the above, we assume that the boundary values for ρ ¼ 0
and ρ ¼ 1 are given by αþðxÞ and α−ðxÞ respectively and

14The map for the general case of x ∈ ½a; b� can be constructed
similarly using s ¼ 2x−ðaþbÞ

b−a for x ∈ ½−1; 1�.
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the corresponding boundary values on vertical walls at
x ¼ �Lmax are equal to β�ðρÞ. The effect of these corner
conditions becomes prominent when we calculate deriva-
tives of the fields.
After discretizing the problem in rectangular Cartesian

coordinates, we use the generalization of the pseudospec-
tral method in two dimensions. For instance, a function,
fðρ; xÞ, has an expansion as linear combinations of
Chebyshev polynomials,

fN;Lðρ; xÞ ¼
XL
l¼0

XN
n¼0

ρ̂lnTnðρÞTlðxÞ; ðA30Þ

here, the ρ̂lns are the 2D spectra of fðρ; xÞ. In addition, N
and L are the number of collocation points in ρ and x
coordinates. In vectorial notation, we rewrite the
Chebyshev polynomials in x and ρ directions:

ðTxÞlλ ¼ ð−1Þλ cos
�
lλ
π

L

	
;

ðTρÞnν ¼ ð−1Þν cos
�
nν

π

N

	
: ðA31Þ

Based on Fig. 10, the representation for the general solution
can then be selected as

F ¼ ðf00; f10;…; fL0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}; f01; f11;…; fL1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}; � � �|{z}; � � �|{z};
f0N; f1N;…; fLN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}ÞT: ðA32Þ

These are (N þ 1) blocks of (Lþ 1) quantities, and
each block corresponds to a position in the ρ coordinates.

In this representation, Eq. (A30) will take the compact
form of

F ¼ ðTρ ⊗ TxÞF̂; ðA33Þ
which is suitable for our notation throughout the rest of this
Appendix.

4. Coupled equations

Our first step in the numerical code is to make the
following definitions,

πðτ; ρ; xÞ ¼ ∂τϕ̂ðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρϕ̂ðτ; ρ; xÞ; ðA34Þ

βðτ; ρ; xÞ ¼ ∂τΣ̂dðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρΣ̂dðτ; ρ; xÞ; ðA35Þ

γðτ; ρ; xÞ ¼ ∂τΣ̂bðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρΣ̂bðτ; ρ; xÞ; ðA36Þ

χðτ; ρ; xÞ ¼ ∂τΞ̂ðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρΞ̂ðτ; ρ; xÞ; ðA37Þ

that transform Eq. (A9)–Eq. (A15) into more compact
forms,

∂ρπ −
3

2

π

ρ
¼ −Jϕ; ðA38Þ

∂2
ρðΣd þ 2ΣbÞ þ

1

2
ð∂ρϕÞ2 ¼ 0; ðA39Þ

∂2
ρΞ − 4

Ξ
ρ2

þ ∂ρΞ
ρ

þ ∂xϕ∂ρϕ

ρ2
þ 4

∂ρ∂xΣb

ρ2
¼ 0; ðA40Þ

∂ρβ −
1

ρ
½2β þ γ� ¼ −JΣd

; ðA41Þ

∂ργ −
1

2ρ
½β þ 5γ� ¼ −JΣb

; ðA42Þ

∂2
ρA −

∂ρA

ρ
þ −2

ρ2
∂ρ½β þ 2γ� þ 2

ρ3
½β þ 2γ� − π

∂ρϕ

ρ2
¼ −Ja;

ðA43Þ

∂ρχ þ 2
χ

ρ
− 4

∂xγ

ρ2
− π

∂xϕ

ρ2
þ 2ρ2

�
1 −

1

ρ4

�
∂ρ∂xΣb ¼ −JΞ;

ðA44Þ

with the sources on the right-hand sides of the above
equations defined according to

Jϕ ¼ m2

2

ϕ

ρ2
−
1

2
∂2
xϕ −

3

4
ρ3
�
1 −

1

ρ4

�
∂ρϕ; ðA45Þ

1 2 3 4 5

6 7 8 9 10

1

max

ρ

x
LL max

0

−

FIG. 10. A tensor product grid; there are two spacial directions.
x is the direction of the inhomogeneity, and ρ is the bulk radius.
The numbers at each site represent the lexicographic representa-
tion of the grid points while doing the operation as a tensor grid.
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JΣd
¼ −A −

m2

12

ϕ2

ρ2
þ ρ∂xΞ −

1

4
ð∂xϕÞ2 − ∂2

xΣb þ
1

2
ρ∂ρA

−
ρ3

2

�
1 −

1

ρ4

�
∂ρ½2Σd þ Σb� −

1

2
ρ2∂ρ∂xΞ; ðA46Þ

JΣb
¼ −A −

m2

12

ϕ2

ρ2
þ 1

2
ρ∂xΞ −

1

2
∂2
xΣb þ

1

2
ρ∂ρA

−
ρ3

4

�
1 −

1

ρ4

�
∂ρ½Σd þ 5Σb�; ðA47Þ

Ja ¼
m2

3

ϕ2

ρ4
þ ρ

�
1 −

1

ρ4

�
∂ρ½Σd þ 2Σb�

þ ρ2

2

�
1 −

1

ρ4

�
ð∂ρϕÞ2 þ ∂ρ∂xΞ

þ ρ2
�
1 −

1

ρ4

�
∂2
ρ½Σd þ 2Σb�; ðA48Þ

JΞ ¼ −4ρ2
�
1 −

1

ρ4

�
Ξ −

∂xA
ρ

− 2ρ3∂ρΞ

þ ρ2

2

�
1 −

1

ρ4

�
∂xϕ∂ρϕþ ∂ρ∂xA

−
1

2
ð1 − ρ4Þ∂2

ρΞ: ðA49Þ

We point out a few comments about the above equations.
They are listed chronologically; that is, we start by solving
the coupled differential equations starting from Eq. (A38)
and ending in Eq. (A44). The equation of motion for the
scalar field is not coupled to the other metric components.
This is due to the choice of cutoff that we have imposed on
the backreaction. From the boundary expansion, it is clear
that the x dependence of Σ s does not factorize. Therefore,
x dependence of ϕ must not factorize according to
Eq. (A39). As is clear from Eq. (A39), knowing the value
of the scalar field ϕ0, everywhere in the bulk, only gives
information about the combination of Σd þ 2Σb. Moreover,
the x dependency of Σd þ 2Σb will be trivial since the
derivatives act on the ρ direction.

Extra identities.—In addition to the above differential
equations, in this subsection, we derive identities that are
useful when we are applying the boundary conditions on
the fields.
Summation of Eq. (A41) and Eq. (A42) gives β þ 2γ as a

function of Σd þ 2Σb, that is

∂ρ½β þ 2γ� − 3

ρ
½β þ 2γ� ¼ −JΣdþ2Σb

; ðA50Þ

with JΣdþ2Σb
that reads

JΣdþ2Σb
¼ −3A −

m2

4

ϕ2

ρ2
þ 2ρ∂xΞ −

1

4
ð∂xϕÞ2 − 2∂2

xΣb

þ 3

2
ρ∂ρA −

3ρ3

2

�
1 −

1

ρ4

�
∂ρ½Σd þ 2Σb�

−
1

2
ρ2∂ρ∂xΞ; ðA51Þ

but the presence of ∂2
xΣb requires some extra knowledge of

Σb. Furthermore, from Eq. (A40), we can solve for ∂ρ∂xΣb

and insert it in Eq. (A44) to obtain

∂ρχ þ 2
χ

ρ
− 4

∂xγ

ρ2
− π

∂xϕ

ρ2
¼ −Jχb ; ðA52Þ

with

Jχb ¼ −2ρ2
�
1 −

1

ρ4

�
Ξ −

5

2
ρ3∂ρΞþ 1

2ρ
∂ρΞ

−
∂xA
ρ

þ ∂ρ∂xA; ðA53Þ

and again in the above, extra knowledge of ∂xγ will be
necessary to solve for χ.
In addition to the above constraints, we also have

d4 þ 2b4 þ
1

4
p0p2 þ

1

32
p0∂2

xp0 þ
1

6
ð∂τp0Þ2

−
1

32
p0∂2

τp0 ¼ 0; ðA54Þ

and

2∂xf2 −
1

2
p2∂τp0 þ

5

18
∂2
xp0∂τp0 þ

3

2
∂τa2 þ

1

2
p0∂τp2

þ 13

72
∂xp0∂τ∂xp0 þ

11

72
p0∂τ∂2

xp0

þ 1

12
∂τp0∂2

τp0 −
1

3
p0∂3

τp0 ¼ 0; ðA55Þ

which means that in order to extract the evolution of
a2ðτ; xÞ, the coefficient in the warp factor, we have to
provide ∂xf2 in addition to the initial condition of
a2ðτ0; xÞ. In the rest of this Appendix, we will solve
Eq. (A38)–Eq. (A44) and the above identities numerically.

5. Numerical implementation

As we mentioned before, in practice, we have a finite
number of points available in the inhomogeneous direction.
The cutoff should be chosen with respect to the value of the
other parameters such as the size of the system or the profile
of the source under consideration. We consider rather a
general profile for the source [20,31],
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p0ðτ; xÞ ¼
1

2

�
1þ tanh

�
τ

α

��
e−

x2

σ2 ; ðA56Þ

and choose the cutoff for the coordinate x ∈ ½−Lx; Lx� with
Lx ¼ 10 and multiple values for σ ∈ ½ ffiffiffiffiffiLx

p
;
ffiffiffiffiffiffiffiffiffiffiffi
1.5Lx

p � and
α ∈ ½1

8
; 1�. Each of these parameters simulates a different

physical scenario. Parameter α is the scale of the time
variation of the quench, unlike σ which is the spacial scale
of the inhomogeneity applied to the system. The shape of
p0 has been chosen so that at the asymptotic past the source
is zero. In principle, for doing the numerical analysis, we
considered the time interval τ ∈ ½τi; τf� with τi ¼ −7.5 and
τf ¼ 12, that works out for our goal similar to Ref. [20].
As it was pointed out in Sec. A 2, near the boundary, we

encounter logarithmic divergences that cause numerical
instabilities; to tackle them on the lattice, the standard
method is to isolate the finite contributions. Therefore, it is
advisable to make the following change of variables,

ϕ̂ðτ; ρ; xÞ ¼ ϕ̂logðτ; ρ; xÞ þ ϕcðτ; ρ; xÞ; ðA57Þ

Σ̂ðτ; ρ; xÞ ¼ Σ̂logðτ; ρ; xÞ þ Σcðτ; ρ; xÞ; ðA58Þ

Âðτ; ρ; xÞ ¼ Âlogðτ; ρ; xÞ þ Acðτ; ρ; xÞ; ðA59Þ

Ξ̂ðτ; ρ; xÞ ¼ Ξ̂logðτ; ρ; xÞ þ Ξcðτ; ρ; xÞ; ðA60Þ

and follow these numerical algorithms that we label with
roman numerals below:

(i) At τ ¼ τi, we have to start with an initial profile for
the fields; our choice is

ϕ0
l;n ≡ ϕcðτi; ρl; xnÞ;

Σ0
bl;n ≡ Σc

bðτi; ρl; xnÞ; ðA61Þ

with ϕ0
l;n ¼ Σ0

bl;n ¼ 0. These two initial profiles at τi
are sufficient to solve Eq. (A39) and Eq. (A38) for
all points on the lattice at time τi. For Σd, with
definitions from Eq. (A57) and Eq. (A58) and
inserting them into Eq. (A39), we can see that

∂2
ρΣc

d ¼ ~JΣd
; ðA62Þ

with

~JΣd
¼ ∂2

ρΣd
log þ 2∂2

ρΣc
b þ 2∂2

ρΣb
log

þ 1

2
ð∂ρϕc þ ∂ρϕlogÞ2: ðA63Þ

Then, in the above, we will use the initial profiles of
ϕ0
l;n and Σ0

bl;n to replace the ϕc and Σb
log and solve the

above equation for the solution of Σc
dðt0; ρ; xÞ, with

the boundary conditions

Σconðτ; 0; xÞ ¼ 0; ∂ρΣconðτ; 0; xÞ ¼ 0 ðA64Þ

that have been derived from Eq. (A19). The matrix
form of the differential equation is

ðIx ⊗ D2
ρÞΣdl;n ¼ ð ~JΣd

Þn;l; ðA65Þ

where we impose the boundary conditions in a
matrix form since Σdl;n has a form similar to
Eq. (A32). As is clear in Eq. (A63), in addition to
the finite contributions of the fields Σc

b and ϕc on the
right-hand side, we also need their logarithmic
corrections. To subtract the logarithms, we make
an expansion over the bulk radius. From Eq. (A17)–
Eq. (A20), we have

ϕlog ¼ log ρ
X8
i¼3

ρi

ð1þ ρÞ1þiF i½p0ðτ; xÞ�; ðA66Þ

Σlog
b ¼ ρ2 log ρ

X5
i¼2

ρi

ð1þ ρÞ1þi B1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ρ2ðlog ρÞ2
X5
i¼4

ρi

ð1þ ρÞ1þi B2;i½p0ðτ; xÞ�;

ðA67Þ

Σlog
d ¼ ρ2 log ρ

X7
i¼2

ρi

ð1þ ρÞ1þiD1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ρ2ðlog ρÞ2
X7
i¼4

ρi

ð1þ ρÞ1þiD2;i½p0ðτ; xÞ�;

ðA68Þ

with the coefficients of F i, B1;i, B2;i, D1;i and D2;i

having a form that is rather complicated to mention
here. As has been mentioned in Ref. [20], the upper
bound for the series can go to infinity, but as is
apparent from the first terms of Eq. (A67) and
Eq. (A68), they are functions of p2, an expansion
parameter in the scalar field ϕ from Eq. (A17) (the
normalizable mode). Since we have no information
about this coefficient prior to solving the evolution
equation for the scalar field, instead we use

p2ðτ; xÞ ¼
1

6
∂3
ρϕðτ; ρ; xÞj

ρ¼1
: ðA69Þ

But the error in subtracting the coefficient in p2ðτ; xÞ
stops us from increasing the upper bounds in
Eq. (A67) and Eq. (A68).

(ii) Since we need time derivatives of p2ðτ; xÞ for
evaluating the coefficients in Eq. (A67)–Eq. (A68),
a time evolution of ϕðτi þ Δτ; ρ; xÞ is necessary. To
do this, first, we solve Eq. (A38),
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�
Ix ⊗ Dρ −

3

2ρ

�
πτin;l ¼ −ðJϕÞn;l; ðA70Þ

at τi with the boundary condition that reads

πcðτi; 0; xÞ ¼ −
p0ðτi; xÞ

2
: ðA71Þ

Then, in order to translate it to ϕc, we use

∂τϕ
cðτ; ρ; xÞ ¼ πcðτi; ρ; xÞ þ

1 − ρ4

2
∂ρϕ

cðτi; ρ; xÞ
þ klogðτi; ρ; xÞ; ðA72Þ

with

klogðτi; ρ; xÞ ¼ πlogðτi; ρ; xÞ þ
1 − ρ4

2
∂ρϕlogðτi; ρ; xÞ

− ∂τiϕlogðτi; ρ; xÞ: ðA73Þ

The initial condition to solve Eq. (A72) is
ϕcð−∞; ρ; xÞ ¼ 0. Note that the forms of ϕlog and
πlog are related according to Eq. (A57) and
Eq. (A34). The latter is explicitly given by

πlog ¼ log ρ
X7
i¼2

ρi

ð1þ ρÞi Pi½p0ðτ; xÞ�: ðA74Þ

The evaluation is done by completing the first
Runge-Kutta (RK) step,

k1;ϕ ¼Δτ
�
πτin;lþ

1

2
ð1−ρ4Þ∂ρϕ

τi
n;lþklog

�
; ðA75Þ

that is accompanied by the following shifts,

τi → τi þ
1

2
Δτ; ϕτi

n;l → ϕτi
n;l þ

k1;ϕ
2

; ðA76Þ

and with these new values for τi and ϕτi
n;l, we repeat

RK step 1 to find k2;ϕ. This completes RK step 2. In
RK step 3, we have

τi → τi þ
1

2
Δτ; ϕτi

n;l → ϕτi
n;l þ

k2;ϕ
2

; ðA77Þ

and we repeat steps in RK step 1 to find k3;ϕ. At RK
step 4, finally, we make the last set of shifts,

τi → τi þ Δτ; ϕτi
n;l → ϕτi

n;l þ k3;ϕ; ðA78Þ

to obtain the value of the scalar field at τ ¼ τi þ Δτ,

ϕτþΔτ
n;l ¼ ϕτ

n;l þ
1

6
k1;ϕ þ

1

3
k2;ϕ þ

1

6
k4;ϕ: ðA79Þ

This finishes the procedure of evaluating time
derivatives of p2 based on Eq. (A69). Knowing
all the variables in Eq. (A62) allows us to evalu-
ate Στi

dn;l ≡ Σdðτi; ρ; xÞ.
(iii) In order to find Aτi ≡ Aðτi; ρ; xÞ, we still need to

evaluate the value of Ξτi
n;l ≡ Ξðτi; ρ; xÞ. The values of

ϕτi
n;l and Σ

τi
bn;l are enough to do this as we describe in

this section. Eq. (A40) on the lattice will be given by�
Ix ⊗ D2

ρ −
4

ρ2
þ Ix ⊗ Dρ

ρ

�
Ξτi
n;l ¼ −ðJϕτi ;Στi

b
Þ
n;l
;

ðA80Þ

where the current Jϕτi ;Στi
b

are all the terms that

include ϕτi and Στi
b and have been taken to the

right-hand side in Eq. (A40). We also need the
logarithmic part Ξlog subtracted by

Ξlog ¼ log ρ
X5
i¼2

ρi

ð1þ ρÞ1þiK1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ðlog ρÞ2 ρ5

ð1þ ρÞ6K2;5½p0ðτ; xÞ�: ðA81Þ

Once again, the boundary condition at ρ ¼ 0 for
solving Eq. (A80) is given by

Ξcon
f ðτ; 0; xÞ ¼ 0;

∂ρΞcon
f ðτ; 0; xÞ ¼ −

1

9
p0∂xp0: ðA82Þ

(iv) As we mentioned before, knowing all the values of
the fields ϕτi

n;l, Σ
τi
bn;l and Ξτi

n;l, we can evaluate Aτi in
principle from Eq. (A43) that has been deduced.
Since it is a second-order differential equation with
the two initial conditions that each will increase the
size of the arrays (cost of the computation) by a
factor of Nx × Nρ, we will rather replace for β and γ
from Eq. (A41) and Eq. (A42) similarly to the
approach of Ref. [20] in favor of a more complicated
but linear equation for

∂ρ
~A ¼ −J ~A; ðA83Þ

with

~A≡ ∂2
ρAþ 2

ρ
∂ρA; ðA84Þ

J ~A ≡ ∂ρJa þ
1

ρ2
∂ρ½J́Σd

þ 2J́Σb
�; ðA85Þ

INHOMOGENEOUS THERMAL QUENCHES PHYSICAL REVIEW D 96, 026012 (2017)

026012-29



and in the above, J́ refers to terms that are propor-
tional to A in Js and have been taken to the left-hand
side of Eq. (A83). Our boundary condition that is
consistent with Eq. (A18) reads

~Aðt; 0; xÞ ¼ 6a2 þ
5

18
½ð∂xp0Þ2 þ 3ð∂τp0Þ2

þ p0ð∂2
xp0 − 3∂2

τp0Þ�; ðA86Þ

where all the coefficients, p0 and a2, are functions of
ðτ; xÞ. It is possible to rewrite Eq. (A83) in a more
illuminating form,

∂ρ
~Ac ¼ −∂ρ

~Alog − J ~A; ðA87Þ

with

~Ac ¼ ∂2
ρAc þ

2

ρ
∂ρAc;

~Alog ¼ ∂2
ρAlog þ

2

ρ
∂ρAlog; ðA88Þ

and J ~A given in Eq. (A85) with Alog, having the form

Alog ¼ log ρ
X5
i¼2

ρi

ð1þ ρÞ1þiA1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ðlog ρÞ2
X5
i¼4

ρi

ð1þ ρÞ1þiA2;i½p0ðτ; xÞ�:

ðA89Þ

The differential equation in Eq. (A87) will accord-
ingly take the simple matrix form

ðIx ⊗ DρÞ ~Aτi
n;l ¼ −ðJ ~Aτi Þn;l − ð∂ρ

~AτiÞn;l; ðA90Þ

and it is an easy exercise to implement the boundary
condition Eq. (A86). Note that the boundary con-
dition of ~Aτi

n;l in Eq. (A86) depends on the coefficient
a2 defined in Eq. (A18). This means that in order to
solve the set of the above equations, we need to
provide an initial profile,

ðaτi2 Þn;l ≡ a2ðτi; ρ; xÞ: ðA91Þ

Our choice is ðaτi2 Þn;l ¼ 0. Finally, we will transform

the value obtained from ~Aτi
n;l to Aτi

n;l according to
Eq. (A84) by integration.

(v) At this point, we have access to the value of the
scalar field and all the components of the metric in
the whole plane of the lattice but only at the initial
time τi. The goal is to extend our computation to
later times. This being said, on the other hand, we

started the computation at the beginning of our
numerical algorithm by introducing the initial profile
for ðΣτi

b Þn;l by hand. Clearly, this initial profile at
different times must evolve, too. This brings us to
the coupled equations of Eq. (A41)–Eq. (A42),

∂ρβ −
1

ρ
½2β þ γ� ¼ −JΣd

; ðA92Þ

∂ργ −
1

2ρ
½β þ 5γ� ¼ −JΣb

; ðA93Þ

with the corresponding assignments in Eq. (A35)
and Eq. (A36),

βðτ; ρ; xÞ ¼ ∂τΣ̂dðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρΣ̂dðτ; ρ; xÞ;

ðA94Þ

γðτ; ρ; xÞ ¼ ∂τΣ̂bðτ; ρ; xÞ þ
ρ4 − 1

2
∂ρΣ̂bðτ; ρ; xÞ;

ðA95Þ

and the sources JΣd
and JΣb

that are defined in
Eq. (A46) and Eq. (A47). Since they are functions of
the known fields at τi, we can solve the coupled
differential equations with the following boundary
conditions:

βcðτ; 0; xÞ ¼ γcðτ; 0; xÞ ¼ 0: ðA96Þ

Since on the lattice we deal with finite variables
occasionally, we will be sloppy about mentioning
the subindex c for the scalar field and various metric
components.

Upon splitting the finite and logarithmic corrections in
Eq. (A92) and Eq. (A93), they take the form

∂ρβc −
1

ρ
ðγc þ 2βcÞ ¼ −JΣd

− ∂ρβlog þ
1

ρ
ð2βlog þ γlogÞ;

ðA97Þ

∂ργc −
1

2ρ
ðβc þ 5γcÞ ¼ −JΣb

− ∂ργlog þ
1

2ρ
ðβlog þ 5γlogÞ;

ðA98Þ

where the logarithmic corrections to β and γ are calculated
from Eq. (A35),

βlog ¼ log ρ
X6
i¼3

ρi

ð1þ ρÞi
~D1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ðlog ρÞ2
X6
i¼5

ρi

ð1þ ρÞi
~D2;i½p0ðτ; xÞ�; ðA99Þ
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FIG. 11. Plots of ϕðτ; ρ; xÞ at two specific times. On the left-hand sides, the quench has not been switched on. Specifically, these plots
show the configuration at τ ¼ −3.75. At some time long after the quench, for instance, τ ¼ 12, the profiles for ϕðτ; ρ; xÞ are shown on
the right-hand sides. Dimensions of lattices from the first to the last row are respectively given by 20 × 20, 30 × 30, 40 × 40 and
50 × 50. Fixed parameters are α ¼ 1 and σ ¼ ffiffiffiffiffi

Lx
p

.
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γlog ¼ log ρ
X6
i¼3

ρi

ð1þ ρÞi
~B1;i½p0ðτ; xÞ; p2ðτ; xÞ�

þ ðlog ρÞ2
X6
i¼5

ρi

ð1þ ρÞi
~B2;i½p0ðτ; xÞ�: ðA100Þ

In the matrix form, we can rewrite Eq. (A92)–Eq. (A93), in
the following way,

 
Ix ⊗ Dρ − 1

ρ

− 1
2ρ Ix ⊗ Dρ − 5

2ρ

!�
βτi

γτi

�
n;l

¼ −

 
~JΣτi

d

~JΣτi
b

!
n;l

;

ðA101Þ

with ~JΣτi
d
and ~JΣτi

b
that include terms such as βlog, γlog and

their derivative as they appear on the right-hand side of
Eq. (A97) and Eq. (A98). This yields βτin;l and γτin;l at the
initial time τ ¼ τi. Now, similarly to the procedure
mentioned in detail for the scalar field ϕτi

n;l, we can perform
four steps of the RK method to evaluate Eq. (A94)–
Eq. (A95) for τ ¼ τi þ Δτ. This is the last stage of our
simulation, and all the steps that we have done so far will
be repetitively performed until the desired final time τ ¼ τf
is reached.

Discretization.—In this section, we look at the effect of
the discretization and possible sources of numerical
artifacts. There are two main sources of numerical
artifacts: the chosen number of points on the lattice
and the chosen value for the time steps Δτ. One

advantage of having an observable as a function of
two coordinates is that numerical instabilities or artifacts,
if any, are hard to miss. Therefore, the best method is just
to change the number of lattice points and compare
them.
For simplicity, all of the lattices that we have considered

are square lattices with Nx ¼ Nρ. As an example, we
compared ϕðτ; ρ; xÞ for lattices with 20 × 20, 30 × 30,
40 × 40 and 50 × 50 at two specific times, early before
(τ ¼ −3.75) and a long time after turning on the quench
(τ ¼ 12). The corresponding plots are shown in Fig. 11.
The other source of numerical instability is the value

chosen for the marching steps in the Runge-Kutta method.
Below, we compare one of the observables computed in the
paper, L2, the two-point function for case I, for two
different time steps, Δτ and Δτ

2
.

Numerical instabilities that are produced this way are
specifically dominant for a region near ρ ∼ 1. Observables
in our computation, such as entanglement entropies that
depend on Taylor expansions of the metric near ρ ∼ 0, are
the least affected quantities by these instabilities. This is
mainly due to the fact that we have calculated their
expansions up to Oðρ8Þ analytically using the Einstein
equations. This in part allows us to use a lower number of
lattice points for simulating them.
This check is the most time-consuming part. For a

lattice of Nx ¼ Nρ ¼ 20 points, this takes roughly a
month. For a lattice of Nx ¼ Nρ ¼ 30, this process takes
two months. Different observables for various parameters
have been executed on different nodes. It takes three
days to produce a single plot for a parallelized code on
a 16-core node. The corresponding plots are shown in
Fig. 12.

FIG. 12. The effect of the numerical instabilities coming from the RK method shown for the two-point function. Here,
in both diagrams, Nx ¼ Nρ ¼ 20. The time step for the left-hand diagram is Δτ and half of this value for the plot on
the right-hand side.
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b. Thermalization.—In the same category, we look at the
effects of the lattice artifacts on the thermalization. The
normalizable mode in the expansion of the bulk scalar
allows us to observe this since this is the response to the
mass gap. Practically, the numerical algorithm was
designed to stop when the standard deviation from the
mean value goes below 10−11 while in the trend toward
thermalization. We plot the dynamical evolution of this
component of the scalar field for various lattice sizes in
Fig. 13. The standard deviations from the mean values at
late times are given in the table below:

Measure of thermalization
Nx or Nρ Nτ Standard deviation

20 7810 8.9 × 10−12

30 17560 3.5 × 10−13

40 31210 1.7 × 10−13

50 41272 2.1 × 10−13
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