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By performing explicit computations of correlation functions, we find evidence that there is a sector of
the two matrix model defined by the SUð2Þ sector ofN ¼ 4 super Yang-Mills theory that can be reduced to
eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that
plays a role. The observables we study are the Bogomol’nyi-Prasad-Sommerfield operators of the SUð2Þ
sector and include traces of products of both matrices, which are genuine multimatrix observables. These
operators are associated with supergravity solutions of string theory.
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I. MOTIVATION

The large N expansion continues to be a promising
approach toward the strong coupling dynamics of quantum
field theories. For example, ’t Hooft’s proposal that the
large N expansions of Yang-Mills theories are equivalent to
the usual perturbation expansion in terms of topologies
of world sheets in string theory [1] has been realized
concretely in the AdS=CFT correspondence [2]. Besides
the usual planar limit where classical operator dimensions
are held fixed as we take N → ∞, there are nonplanar large
N limits of the theory [3] defined by considering operators
with a bare dimension that is allowed to scale with N as we
take N → ∞. These limits are also relevant for the
AdS=CFT correspondence. Indeed, operators with a
dimension that scales as N include operators relevant for
the description of giant graviton branes [4–6] while
operators with a dimension of order N2 include operators
that correspond to new geometries in supergravity [7–9].
These convincing motivations have motivated sustained
study of large N field theory. Despite this, carrying out the
large N expansion for most matrix models is still beyond
our current capabilities.
One class of models for which the large N expansion can

be computed is the singlet sector of matrix quantum
mechanics of a single Hermitian matrix [10]. We can also
consider a complex matrix model as long as we restrict
ourselves to potentials that are analytic in Z (summed with
the dagger of this which needs to be added to get a real
potential) and observables constructed out of traces of a
product of Z s or out of a product of Z†s [11]. In these
situations we can reduce the problem to eigenvalue dynam-
ics. This is a huge reduction in degrees of freedom since we
have reduced from OðN2Þ degrees of freedom, associated
with the matrix itself, to OðNÞ eigenvalue degrees of free-
dom. Studying saddle points of the original matrix action
does not reproduce the largeN values of observables. This is
a consequence of the large number of degrees of freedom:we
expect fluctuations to be suppressed by 1=N2 so that if N2

variables in total are fluctuating, then we can have fluctua-
tions of size 1=N2 × N2 ∼ 1 which are not suppressed as
N → ∞. In terms of eigenvalues there are only N variables
fluctuating so that fluctuations are bounded by N × 1=N2 ∼
1=N which vanishes as N → ∞. Thus, classical eigenvalue
dynamics captures the large N limit. For example, one can
formulate the physics of the planar limit by using the density
of eigenvalues as a dynamical variable. The resulting
collective field theory defines a field theory that explicitly
has 1=N as the loop expansion parameter [12,13]. It has
found application both in the context of the c ¼ 1 string [14–
16] and in descriptions of the Lin-Lunin-Maldecena (LLM)
geometries [17].
Standard arguments show that eigenvalue dynamics

corresponds to a familiar system: noninteracting fermions
in an external potential [10]. This makes the description
extremely convenient because the fermion dynamics is
rather simple. This eigenvalue dynamics is also a natural
description of the large N but nonplanar limits discussed
above. Giant graviton branes which have expanded into the
AdS5 of the spacetime correspond to highly excited
fermions or, equivalently, to single highly excited eigen-
values: the giant graviton is an eigenvalue [5,9]. Giant
graviton branes which have expanded into the S5 of the
spacetime correspond to holes in the Fermi sea, and hence
to collective excitations of the eigenvalues where many
eigenvalues are excited [9]. Half-BPS geometries also have
a natural interpretation in terms of the eigenvalue dynam-
ics: every fermion state can be identified with a particular
supergravity geometry [8,9]. The map between the two
descriptions was discovered by Lin, Lunin, and Maldacena
in [7]. The fermion state can be specified by stating which
states in phase space are occupied by a fermion, so we can
divide phase space up into occupied and unoccupied states.
By requiring regularity of the corresponding supergravity
solution exactly the same structure arises: the complete set
of regular solutions are specified by boundary conditions
obtained by dividing a certain plane into black (identified
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with occupied states in the fermion phase space) and white
(unoccupied states) regions. See [7] for the details.
Our main goal in this paper is to ask if a similar

eigenvalue description can be constructed for a two matrix
model. Further, if such a construction exists, does it have a
natural AdS=CFT interpretation? Work with a similar
motivation but focusing on a different set of questions
has appeared in [18–22]. We will consider the dynamics of
two complex matrices, corresponding to the SUð2Þ sector
of N ¼ 4 super Yang-Mills theory. Further, we consider
the theory on R × S3 and expand all fields in spherical
harmonics of the S3. We will consider only the lowest
s-wave components of these expansions so that the matri-
ces are constant on the S3. The reduction to the s-wave will
be motivated below. In this way we find a matrix model
quantum mechanics of two complex matrices. Expectation
values are computed as follows:

h� � �i ¼
Z

½dZdZ†dYdY†�e−S � � � : ð1:1Þ

At first sight it appears that any attempts to reduce (1.1) to
an eigenvalue description are doomed to fail: the integral in
(1.1) runs over two independent complex matrices Z and Y
which will almost never be simultaneously diagonalizable.
However, perhaps there is a class of questions, generalizing
the singlet sector of a single Hermitian matrix model, that
can be studied using eigenvalue dynamics. To explore this
possibility, let us review the arguments that lead to
eigenvalue dynamics for a single complex matrix Z. We
can use the Schur decomposition [11,23,24],

Z ¼ U†DU ð1:2Þ

withU a unitary matrix andD an upper triangular matrix, to
explicitly change variables. Since we only consider observ-
ables that depend on the eigenvalues (the diagonal elements
ofD) we can integrateU and the off diagonal elements ofD
out of the model, leaving only the eigenvalues. The result of
the integrations over U and the off diagonal elements of D
is a nontrivial Jacobian. Denoting the eigenvalues of Z by
zi, those of Z† are given by complex conjugation, z̄i. The
resulting Jacobian is [11]

J ¼ ΔðzÞΔðz̄Þ; ð1:3Þ

where

ΔðzÞ ¼

�����������

1 1 � � � 1

z1 z2 � � � zN

..

. ..
. ..

...
...
. ..

.

zN−1
1 zN−1

2 � � � zN−1
N

�����������
¼

YN
j>k

ðzj − zkÞ

ð1:4Þ

is the usual Van der Monde determinant. A standard
argument now maps this into noninteracting fermion
dynamics [10]. Trying to apply a very direct change of
variables argument to the two matrix model problem
appears difficult. There is, however, an approach which
both agrees with the above noninteracting fermion dynam-
ics and can be generalized to the two matrix model. The
idea is to construct a basis of operators that diagonalizes the
inner product of the free theory. The construction of an
orthogonal basis, given by the Schur polynomials, was
achieved in [8]. Each Schur polynomial χRðZÞ is labeled by
a Young diagram R with no more than N rows. In [8] the
exact (to all orders in 1=N) two point function of Schur
polynomials was constructed. The result is

hχRðZÞχSðZ†Þi ¼ fRδRS; ð1:5Þ

where all spacetime dependence in the correlator has been
suppressed. This dependence is trivial as it is completely
determined by conformal invariance. The notation fR
denotes the product of the factors of Young diagram R.
Remarkably there is an immediate and direct connection to
noninteracting fermions: the fermion wave function can be
written as

ψRðfzi; z̄igÞ ¼ χRðZÞΔðzÞe−
1
2

P
i
ziz̄i : ð1:6Þ

This relation can be understood as a combination of the
state operator correspondence (we associate a Schur poly-
nomial operator on R4 with a wave function on R × S3) and
the reduction to eigenvalues [which is responsible for the
ΔðzÞ factor] [9]. In this map the number of boxes in each
row of R determines the amount by which each fermion is
excited. In this way, each row in the Young diagram
corresponds to a fermion and hence to an eigenvalue.
Having one very long row corresponds to exciting a single
fermion by a large amount, which corresponds to a single
large (highly excited) eigenvalue. In the dual AdS gravity, a
single long row is a giant graviton brane that has expanded
in the AdS5 spacetime. Having one very long column
corresponds to exciting many fermions by a single quan-
tum, which corresponds to many eigenvalues excited by a
small amount. In the dual anti–de Sitter (AdS) gravity, a
single long column is a giant graviton brane that has
expanded in the S5 space.
The first questions we should tackle when approaching

the two matrix problem should involve operators built
using many Z fields and only a few Y fields. In this case at
least a rough outline of the one matrix physics should be
visible, and experience with the one matrix model will
prove to be valuable.
For the case of two matrices we can again construct a

basis of operators that diagonalize the free field two point
function. These operators χR;ðr;sÞabðZ; YÞ are a generaliza-
tion of the Schur polynomials, called restricted Schur
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polynomials [25–27]. They are labeled by three Young
diagrams (R, r, s) and two multiplicity labels (a, b). For an
operator constructed using n Z s and m Y s, R ⊢ nþm,
r ⊢ n, and s ⊢ m. The multiplicity labels distinguish
between different copies of the ðr; sÞ irreducible represen-
tation of Sn × Sm that arise when we restrict the irreducible
representation R of Snþm to the Sn × Sm subgroup. The two
point function is

hχR;ðr;sÞabðZ; YÞχT;ðt;uÞcdðZ†; Y†Þi

¼ fR
hooksR

hooksrhookss
δRTδrtδsuδacδbd; ð1:7Þ

where fR was defined after (1.5) and hooksa denotes the
product of the hook lengths associated with Young diagram
a. These operators do not have a definite dimension.
However, they only mix weakly under the action of the
dilatation operator, and they form a convenient basis in
which to study the spectrum of anomalous dimensions [28].
This action has been diagonalized in a limit in which R has
order 1 rows (or columns), m ≪ n, and n is of order N.
Operators of a definite dimension are labeled by graphs
composed of nodes that are traversed by oriented edges
[29,30]. There is one node for each row, so that each node
corresponds to an eigenvalue. The directed edges start and
end on the nodes. There is one edge for each Y field, and the
number of oriented edges ending on a node must equal the
number of oriented edges emanating from a node. See
Fig. 1 for an example of a graph labeling an operator. This
picture, derived in the Yang-Mills theory, has an immediate
and compelling interpretation in the dual gravity: each node
corresponds to a giant graviton brane, and the directed
edges are open string excitations of these branes. The
constraint that the number of edges ending on a node equals
the number of edges emanating from the node is simply
encoding the Gauss law on the brane world volume, which
is topologically an S3. For this reason the graphs labeling
the operators are called Gauss graphs. If we are to obtain a
system of noninteracting eigenvalues, we should only
consider Gauss graphs that have no directed edges stretch-
ing between nodes. See Fig. 2 for an example. In fact, these

all correspond to BPS operators. We thus arrive at a very
concrete proposal:

If there is a free fermion description arising from the
eigenvalue dynamics of the two matrix model, it will
describe the BPS operators of the SUð2Þ sector.
The BPS operators are associated with supergravity

solutions of string theory. Indeed, the only one-particle
states saturating the BPS bound in gravity are associated
with massless particles and lie in the supergravity multiplet.
Thus, eigenvalue dynamics will reproduce the supergravity
dynamics of the gravity dual.
The BPS operators are all constructed from the swave of

the spherical harmonic expansion on S3 [9]. This is our
motivation for only considering operators constructed
using the s wave of the fields Y and Z. One further
comment is that it is usually not consistent to simply restrict
to a subset of the dynamical degrees of freedom. Indeed,
this is possible only if the subset of degrees of freedom
dynamically decouples from the rest of the theory. In the
case that we are considering this is guaranteed to be the
case, in the large N limit, because the Chan-Paton indices
of the directed edges are frozen at large N [29].
We should mention that eigenvalue dynamics as dual to

supergravity has also been advocated by Berenstein and his
collaborators [31–37]. See also [38–41] for related studies.
Using a combination of numerical and physical arguments,
which are rather different from the route we have followed,
compelling evidence for this proposal has already been
found. The basic idea is that at strong coupling the
commutator squared term in the action forces the Higgs
fields to commute and hence, at strong coupling, the Higgs
fields of the theory should be simultaneously diagonaliz-
able. In this case, an eigenvalue description is possible.
Notice that our argument is a weak coupling large N
argument, based on diagonalization of the one loop dilata-
tion operator, that comes to precisely the same conclusion. In
this article wewill make some exact analytic statements that
agree with and, in our opinion, refine some of the physical
picture of the above studies. For example, we will start to
make precise statements about what eigenvalue dynamics
does and does not correctly reproduce.

FIG. 1. An example of a graph labeling an operator with a
definite scaling dimension. Each node corresponds to an eigen-
value. Edges connect the different nodes so that the eigenvalues
are interacting.

FIG. 2. An example of a graph labeling a BPS operator. Each
node corresponds to an eigenvalue. There are no edges connect-
ing the different nodes so that these eigenvalues are not
interacting.
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II. EIGENVALUE DYNAMICS FOR AdS5 × S5

Tomotivate our proposal for eigenvalue dynamics,wewill
review the 1

2
-BPS sector stressing the logic that we will

subsequently use. The way in which a direct change of
variables is used to derive the eigenvalue dynamics can be
motivated by considering correlation functions of arbitrary
observables—that are functions only of the eigenvalues.
Because we are considering BPS operators, correlators
computed in the free field theory agree with the same
computations at strong coupling [42], so that we now work
in the free field theory. Performing the change of variableswe
find

h� � �i ¼
Z

½dZdZ†�e−TrZZ† � � �

¼
Z YN

i¼1

dzidz̄ie
−
P

k
zkz̄kΔðzÞΔðz̄Þ � � �

¼
Z YN

i¼1

dzidz̄ijψgsðfzi; z̄igÞj2 � � � ;

where the ground-state wave function is given by

ψgsðfzi; z̄igÞ ¼ ΔðzÞe−1
2

P
i
ziz̄i : ð2:1Þ

We will shortly qualify the adjective “ground state.” Under
the state-operator correspondence, this wave function is the
state corresponding to the identity operator. The above
transformation is equivalent to the identification

½dZ�e−1
2
TrðZZ†Þ ↔

YN
i¼1

dziψgsðfzi; z̄igÞ: ð2:2Þ

The role of each of the elements of the wave function is
now clear:
(1) Under the state operator correspondence, dimen-

sions of operators map to energies of states. The
dimensions of BPS operators are not corrected; i.e.
they take their free field values. This implies an
evenly spaced spectrum and hence a harmonic
oscillator wave function. This explains the

e−
1
2

P
i
ziz̄i factor. It also suggests that the wave

function will be a polynomial times this Gaussian
factor.

(2) There is a gauge symmetry Z → UZU† that is able
to permute the eigenvalues. Consequently we are
discussing identical particles. Two matrices drawn at
random from the complex Gaussian ensemble will
not have degenerate eigenvalues, so we choose the
particles to be fermions. This matches the fact that
the wave function is a Slater determinant.

The wave function (2.1) satisfies these properties. Further, if
we require that the wave function is a polynomial in the

eigenvalues zi times the exponential e−
1
2

P
i
ziz̄i , then (2.1) is

the state of lowest energy (we did not write down a
Hamiltonian, but any other wave function has more nodes
and hence a higher energy) so it deserves to be called the
ground state. The wave function (2.1) is the state corre-
sponding to the AdS5 × S5 spacetime in the 1

2
-BPS sector.

The above discussion can be generalized to write down a
wave function corresponding to the AdS5 × S5 spacetime
in the SUð2Þ sector. Equation (2.2) is generalized to

½dZdY�e−1
2
TrðZZ†Þ−1

2
TrðYY†Þ →

YN
i¼1

dzidyiΨgsðfzi; z̄i; yi; ȳigÞ:

ð2:3Þ

The wave function must obey the following properties:
(1) Our wave functions again describe states that cor-

respond to BPS operators. The dimensions of the
BPS operators take their free field values, implying
an evenly spaced spectrum and hence a harmonic
oscillator wave function. This suggests the wave
function is a polynomial times the Gaussian factor

e−
1
2

P
i
ziz̄i−1

2

P
i
yiȳi factor.

(2) There is a gauge symmetry Z → UZU† and Y →
UYU† that is able to permute the eigenvalues.
Consequently we are discussing N identical par-
ticles. Matrices drawn at random will not have
degenerate eigenvalues, so we choose the particles
to be fermions. Thus we expect the wave function is
a Slater determinant.

We are working within the AdS=CFT correspondence.
Our main goal is to understand how geometry in the dual
gravity theory emerges. We expect a smooth geometry with
small curvature emerges in the strongly coupled limit of the
CFT. Correlators of operators belonging to the BPS sector
of N ¼ 4 SYM take their free field values even in the
strong coupling limit [42]. Thus, although we study the free
field theory, our intuition should come from the dual
gravity. In the free field theory the eigenvalue density is
expected to have a Uð1Þ × Uð1Þ symmetry [as in (3.5)].
This follows simply by integrating over the noneigenvalue
degrees of freedom in the Gaussian two matrix model. The
strong coupling answer, where we again integrate over the
noneigenvalue degrees of freedom of the two matrices, but
now in the strong coupling limit, will not match this free
matrix model. It will match the dual gravity. In the AdS5 ×
S5 geometry we have an SOð6Þ isometry of the S5, which
acts in the dual field theory as SOð6Þ rotations of the six
adjoint scalars of N ¼ 4 SYM [see (6.1)]. These are R
symmetry rotations. When we restrict to the eigenvalues of
Z and Y, we reduce this to an SOð4Þ symmetry. Since the
geometry should emerge from the eigenvalues [31], this
symmetry should manifest in the single eigenvalue prob-
ability density. This leads us to the last property we impose
on our theory:
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(3) The probability density associated with a single
particle ρgsðz1; z̄1; y1; ȳ1Þ must have an SOð4Þ sym-
metry; i.e. it should be a function of jzij2 þ jyij2.

The single particle probability density referred to in point 3
above is given, for any state Ψðfzi; z̄i; yi; ȳigÞ as usual, by

ρðz1; z̄1; y1; ȳ1Þ ¼
Z YN

i¼2

dzidz̄idyidȳijΨðfzi; z̄i; yi; ȳigÞj2:

ð2:4Þ

There is a good reason why the single particle probability
density is an interesting quantity to look at: at short
distances the eigenvalues feel a repulsion from the Slater
determinant, which vanishes when two eigenvalues are
equal. At long distances the confining harmonic oscillator
potential dominates, ensuring the eigenvalues are clumped
together in some finite region and do not wander off to
infinity. In the end we expect that at largeN the locus where
the eigenvalues lie defines a specific surface, generalizing
the idea of a density of eigenvalues for the single matrix
model. This large N surface is captured by ρðz1; z̄1; y1; ȳ1Þ.
We will make this connection more explicit in a later
section.
There appears to be a unique wave function singled out

by the above requirements. It is given by

Ψgsðfzi; z̄i; yi; ȳigÞ ¼ NΔðz; yÞe−1
2

P
k
zkz̄k−1

2

P
k
ykȳk ; ð2:5Þ

where

Δðz; yÞ ¼

��������������

yN−1
1 yN−1

2 � � � yN−1
N

z1yN−2
1 z2yN−2

2 � � � zNyN−2
N

..

. ..
. ..

...
...
. ..

.

zN−2
1 y1 zN−2

2 y2 � � � zN−2
N yN

zN−1
1 zN−1

2 � � � zN−1
N

��������������
¼

YN
j>k

ðzjyk − yjzkÞ ð2:6Þ

generalizes the usual Van der Monde determinant and N is
fixed by normalizing the wave function. Normalizing the
wave function in the state picture corresponds to choosing a
normalization in the original matrix model so that the
expectation value of 1 is 1. In the next section we will
discuss the proposal (2.5) with a special emphasis on the
symmetries realized by this wave function. As we will
review, a wave function given as a product of Van der
Monde determinants is also a natural guess. We will argue
that (2.5) realizes more symmetries than a product of Van
der Monde determinants does. We will then use the wave
function to compute correlators. Surprisingly, for a large

class of correlators the wave function (2.5) gives the exact
answer.

III. SYMMETRIES OF THE AdS5 × S5

WAVE FUNCTION

The original two (complex) matrix model enjoys an
SOð4Þ≃ SUð2ÞL × SUð2ÞR symmetry. Indeed, the gener-
ators

JR3 ¼ Zij
∂

∂Zij
− Z†

ij
∂

∂Z†
ij

þ Yij
∂

∂Yij
− Y†

ij
∂

∂Y†
ij

;

JRþ ¼ Yij
∂

∂Z†
ij

− Zij
∂

∂Y†ij ; J
R
− ¼ Z†

ij
∂

∂Yij
− Y†

ij
∂

∂Zij
;

JL3 ¼ Zij
∂

∂Zij
− Z†

ij
∂

∂Z†
ij

− Yij
∂

∂Yij
þ Y†

ij
∂

∂Y†
ij

;

JLþ ¼ Y†
ij

∂
∂Z†

ij

− Zij
∂

∂Yij
; JL− ¼ Z†

ij
∂

∂Y†
ij

− Yij
∂

∂Zij

ð3:1Þ

annihilate TrðZZ†Þ þ TrðYY†Þ. The above SOð4Þ sym-
metry can also be realized at the level of the eigenvalues.
In this case, the generators are

JR3 ¼ zi
∂
∂zi − z̄i

∂
∂z̄i þ yi

∂
∂yi − ȳi

∂
∂ȳi ;

JRþ ¼ yi
∂
∂z̄i − zi

∂
∂ȳi ; JR− ¼ z̄i

∂
∂yi − ȳi

∂
∂zi ;

JL3 ¼ zi
∂
∂zi − z̄i

∂
∂z̄i − yi

∂
∂yi þ ȳi

∂
∂ȳi ;

JLþ ¼ ȳi
∂
∂z̄i − zi

∂
∂yi ; JL− ¼ z̄i

∂
∂ȳi − yi

∂
∂zi : ð3:2Þ

It is simple to verify that

JL3Ψgsðfzi; z̄i; yi; ȳigÞ ¼ JLþΨgsðfzi; z̄i; yi; ȳigÞ
¼ JL−Ψgsðfzi; z̄i; yi; ȳigÞ ¼ 0 ð3:3Þ

so that the wave function is manifestly invariant under
SUð2ÞL. Further, since

JR3Ψgsðfzi; z̄i; yi; ȳigÞ ¼ NðN − 1ÞΨgsðfzi; z̄i; yi; ȳigÞ;
ð3:4Þ

it transforms covariantly under Uð1Þ ⊂ SUð2ÞR generated
by JR3 . Thus, in summary, out of the original SOð4Þ
symmetry, the wave function is invariant under SUð2ÞL
and covariant under a Uð1Þ ⊂ SUð2ÞR. Since we will
restrict to the subset of BPS operators that are holomorphic
in Y and Z, this is the biggest symmetry we should expect.
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A few comments are in order. If the interaction is
switched off, the system is invariant under separate
UðNÞ actions on Z and Y. Thus, in this case, the model
has a UðNÞ × UðNÞ symmetry. If we restrict ourselves to
correlators of operators that never have Ys and Zs in the
same trace, the wave function

ΨVdM ¼ NΔðzÞΔðyÞe−1
2

P
j
ðzjz̄jþyjȳjÞ ð3:5Þ

will reproduce the exact values for all correlators. Notice
that this wave function is covariant under Uð1ÞL ×
Uð1ÞR ⊂ SUð2ÞL × SUð2ÞR generated by JL3 and JR3 ; i.e.
it has less symmetry than (2.5). Further, if we consider
correlators of operators that include products of Z and Y
matrices, the symmetry is broken to UðNÞ. The integration
over the noneigenvalue degrees of freedom is nontrivial,
but the result will again be a polynomial in the eigenvalues.
The precise form of the polynomial will depend on the
choice of operators in the correlator, and we will not get a
simple rule for translating a specific operator. In the next
section we will show that using (2.5), we will in fact obtain
a simple rule for translating a specific operator into the
eigenvalue language and the translation will not depend on
the choice of the other operators in the correlator. For these
reasons, we do not discuss ΨVdM further.
To end this section we consider the location of the zeros

of (2.5). For each eigenvalue we have a vector with
coordinates ðzi; yiÞ on C2. Physically we expect that the
wave function must vanish whenever n > 1 eigenvalues
coincide, leading to an enhanced symmetry of the joint
eigenvalue configuration [31]. The wave function vanishes
whenever the vectors associated with two distinct eigen-
values are parallel, i.e. whenever ðzi; yiÞ ¼ λðzj; yjÞ. If
λ ≠ 1, the eigenvalues are not coincident, there is no
enhanced symmetry of the joint eigenvalue configuration,
and physically there is no reason why such an eigenvalue
configuration should be weighted with zero. Thus, there are
more zeros than what we expect. Clearly then (2.5) will get
various things wrong, but given that it realizes more
symmetries than ΨVdM, it may be good enough for some
computations. We will confirm this in the next section by
showing that this wave function reproduces the correct
exact answer for a large class of matrix model correlators.
Finally, note that it is useful to think of the wave function

as a function of two points in CP1 × C�, with ðzi; yiÞ
simultaneously the coordinates of a point and the affine
coordinates of the projective sphere base. With this
interpretation, the singularities are associated with points
coinciding in the base which is physically more sensible.

IV. CORRELATORS

In this section we will provide detailed tests of this wave
function by computing correlators with the wave function
and comparing them to the exact results from the matrix

model. The comparison is accomplished by using the
equationZ

½dYdZdY†dZ†�e−TrðZZ†Þ−TrðYY†Þ � � �

¼
Z YN

i¼1

dzidz̄idyidȳijΨgsðfzi; z̄i; yi; ȳigÞj2 � � � ð4:1Þ

to compute correlators of observables (denoted by � � �
above) that depend only on the eigenvalues. We have
already argued above that we expect that the observables
that are correctly computed using eigenvalue dynamics are
the BPS operators of the CFT. As a first example, consider
correlators of traces OJ ¼ TrðZJÞ. These can be computed
exactly in the matrix model, using a variety of different
techniques—see for example [11,23,43]. The result is

hTrðZJÞTrðZ†JÞi ¼ 1

J þ 1

�ðJ þ NÞ!
ðN − 1Þ! −

N!

ðN − J − 1Þ!
�
ð4:2Þ

if J < N and

hTrðZJÞTrðZ†JÞi ¼ 1

J þ 1

ðJ þ NÞ!
ðN − 1Þ! ð4:3Þ

if J ≥ N. These expressions could easily be expanded to
generate the 1=N expansion if we wanted to do that. We
would now like to consider the eigenvalue computation. It
is useful to write the wave function as

Ψgsðfzi; z̄i; yi; ȳigÞ ¼
π−Nffiffiffiffiffiffi
N!

p ϵa1a2���an
z0a1y

N−1
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0!ðN − 1Þ!p
� � � zk−1ak yN−k

akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk − 1Þ!ðN − kÞ!p � � �

� � � zN−1
aN y0aNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!0!p e−

1
2

P
q
zqz̄q−1

2

P
q
yqȳq :

ð4:4Þ

The gauge invariant observable in this case is given by

TrðZJÞTrðZ†JÞ ¼
XN
i¼1

zJi
XN
j¼1

z̄Jj : ð4:5Þ

It is now straightforward to find

Z YN
i¼1

dzidz̄idyidȳijΨgsðfzi; z̄i; yi; ȳigÞj2
XN
i¼1

zJi
XN
j¼1

z̄Jj

¼ 1

J þ 1

ðJ þ NÞ!
ðN − 1Þ! : ð4:6Þ
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When evaluating the above integral, only the terms with
i ¼ j contribute. From this result we see that we have not
reproduced traces with J < N correctly—we do not even
get the leading large N behavior right. We have, however,
correctly reproduced the exact answer (to all orders in 1=N)
of the two point function for all single traces of dimension
N or greater. For J > N there are trace relations of the form

TrðZJÞ ¼
X
i;j;…;k

cij���kTrðZiÞTrðZjÞ � � �TrðZkÞ; ð4:7Þ

i; j;…; k ≤ N and iþ jþ � � � þ k ¼ J. The fact that we
reproduce two point correlators of traces with J > N
exactly implies that we also start to reproduce sums of
products of traces of less than N fields. This suggests that
the important thing is not the trace structure of the operator,
but rather the dimension of the state.
The fact that we only reproduce observables that have a

large enough dimension is not too surprising. Indeed,
supergravity cannot be expected to correctly describe the
backreaction of a single graviton or a single string. To
produce a state in the CFT dual to a geometry that is
different from the AdS vacuum one needs to allow a
number of giant gravitons (eigenvalues) to condense. The
eigenvalue dynamics is correctly reproducing the two point
function of traces when their energy is greater than that
required to blow up into a giant graviton.

With a very simple extension of the above argument we
can argue that we also correctly reproduce the correlator
hTrðYJÞTrðY†JÞi with J ≥ N. A much more interesting
class of observables to consider are mixed traces, which
contain both Y and Z fields. To build BPS operators using
both Y and Z fields we need to construct symmetrized
traces. A very convenient way to perform this construction
is as follows:

OJ;K ¼ J!
ðJ þ KÞ!Tr

�
Y

∂
∂Z

�
K
TrðZJþKÞ: ð4:8Þ

The normalization up front is just the inverse of the number
of terms that appear. With this normalization, the trans-
lation between the matrix model observable and an eigen-
value observable is

OJ;K ↔
X
i

zJi y
K
i : ð4:9Þ

Since we could not find this computation in the literature,
we will now explain how to evaluate the matrix model two
point function exactly, in the free field theory limit. Since
the dimension of BPS operators are not corrected, this
answer is in fact exact. To start, perform the contraction
over the Y; Y† fields

hOJ;KO
†
J;Ki ¼

�
J!

ðJ þ KÞ!
�

2
�
Tr

�
Y

∂
∂Z

�
K
TrðZJþKÞTr

�
Y† ∂

∂Z†

�
K
TrðZ†JþKÞ

	

¼
�

J!
ðJ þ KÞ!

�
2

K!
�
Tr
� ∂
∂Z

∂
∂Z†

�
K
TrðZJþKÞTrðZ†JþKÞ

	
: ð4:10Þ

Given the form of the matrix model two point function

hZijZ
†
kli ¼ δilδjk; ð4:11Þ

we know that we can write any free field theory
correlator as

h� � �i ¼ eTrð
∂∂Z ∂
∂Z†Þ � � � jZ¼Z†¼0: ð4:12Þ

Using this identity we now find

hOJ;KO
†
J;Ki ¼

�
J!

ðJ þ KÞ!
�

2

K!
ðJ þ KÞ!

J!

× hTrðZJþKÞTrðZ†JþKÞi: ð4:13Þ

Thus, the result of the matrix model computation is

hOJ;KO
†
J;Ki ¼

J!K!
ðJ þ K þ 1Þ!

×
�ðJ þ K þ NÞ!

ðN − 1Þ! −
N!

ðN − J − K − 1Þ!
�
ð4:14Þ

if J þ K < N and

hOJ;KO
†
J;Ki ¼

J!K!

ðJ þ K þ 1Þ!
ðJ þ K þ NÞ!

ðN − 1Þ! ð4:15Þ

if J þ K ≥ N. Notice that for these two matrix observables
we again get a change in the form of the correlator as the
dimension of the trace exceeds N.
Next, consider the eigenvalue computation. We need to

perform the integral
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hOJ;KO
†
J;Ki ¼

Z YN
i¼1

dzidz̄idyidȳijΨgsðfzi; z̄i; yi; ȳigÞj2
XN
k¼1

zJky
K
k

XN
j¼1

z̄Jj ȳ
K
j : ð4:16Þ

After some straightforward manipulations we have

hOJ;KO
†
J;Ki ¼ π−2N

Z YN
i¼1

dzidz̄idyidȳi
jz1j0jy1j2N−2

0!ðN − 1Þ! � � � jzkj
2k−2jykj2N−2k

ðk − 1Þ!ðN − kÞ! � � �

×
jzN j2N−2jyN j0
ðN − 1Þ!0! × e−

P
q
zqz̄q−

P
q
yqȳq

XN
k;j¼1

zJky
K
k z̄

J
j ȳ

K
j : ð4:17Þ

Only terms with k ¼ j contribute so that

hOJ;KO
†
J;Ki ¼

XN
k¼1

ðN − kþ KÞ!
ðN − kÞ!

ðJ þ k − 1Þ!
ðk − 1Þ! ¼ K!J!

ðK þ J þ 1Þ!
ðJ þ K þ NÞ!

ðN − 1Þ! : ð4:18Þ

Thus, we again correctly reproduce the exact (to all orders in 1=N) answer for the two point function of single trace
operators of dimension N or greater. Inspecting (3.1) we notice that we have obtainedOJ;K fromOJþK by applying JL−, that
is, by applying an SUð2ÞL rotation. Since both the original matrix description and the eigenvalue description enjoy SUð2ÞL
symmetry, the agreement of the hO†

J;KOJ;Ki correlator is not independent of the agreement of the hO†
JþKOJþKi correlator.

It is also interesting to consider multitrace correlators. Wewill start with the correlator between a double trace and a single
trace, and we will again start with the matrix model computation

hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i¼ J1!
ðJ1þK1Þ!

J2!
ðJ2þK2Þ!

ðJ1þJ2Þ!
ðJ1þK1þJ2þK2Þ!

×

�
Tr

�
Y

∂
∂Z

�
K1

TrðZJ1þK1ÞTr
�
Y

∂
∂Z

�
K2

TrðZJ2þK2ÞTr
�
Y† ∂

∂Z†

�
K1þK2

TrðZ†J1þK1þJ2þK2Þ
	
:

ð4:19Þ

We could easily setK1 ¼ K2 ¼ 0 and obtain traces involving only a single matrix. Begin by contracting all Y; Y† fields to
obtain

hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i ¼ J1!
ðJ1 þ K1Þ!

J2!
ðJ2 þ K2Þ!

ðJ1 þ J2Þ!
ðJ1 þ K1 þ J2 þ K2Þ!

ðK1 þ K2Þ!

×

� ∂
∂Zi1j1

� � � ∂
∂ZiK1

jK1

TrðZJ1þK1Þ ∂
∂ZiK1þ1jK1þ1

� � � ∂
∂ZiK1þK2

jK1þK2

TrðZJ2þK2Þ

×
∂

∂Z†
j1i1

� � � ∂
∂Z†

jK1þK2
iK1þK2

TrðZ†J1þK1þJ2þK2Þ
	
: ð4:20Þ

It is now useful to integrate by parts with respect to Z†, using the identity

� ∂
∂Zij

fðZÞgðZÞ ∂
∂Z†

ji

hðZ†Þ
	

¼ nfhfðZÞgðZÞhðZ†Þi; ð4:21Þ

where fðZÞ is of degree nf in Z. Repeatedly using this identity, we find
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hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i ¼ J1!
ðJ1 þ K1Þ!

J2!
ðJ2 þ K2Þ!

ðJ1 þ J2Þ!
ðJ1 þ K1 þ J2 þ K2Þ!

ðK1 þ K2Þ!

×
ðJ1 þ K1Þ!

J1!
ðJ2 þ K2Þ!

J2!
hTrðZJ1þK1ÞTrðZJ2þK2ÞTrðZ†J1þK1þJ2þK2Þi

¼ ðJ1 þ J2Þ!ðK1 þ K2Þ!
ðJ1 þ K1 þ J2 þ K2Þ!

hTrðZJ1þK1ÞTrðZJ2þK2ÞTrðZ†J1þK1þJ2þK2Þi: ð4:22Þ

This last correlator is easily computed. For example, if J1 þ K1 < N and J2 þ K2 < N, we have

hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i ¼ ðJ1 þ J2Þ!ðK1 þ K2Þ!
ðJ1 þ K1 þ J2 þ K2 þ 1Þ!

�ðJ1 þ K1 þ J2 þ K2 þ NÞ!
ðN − 1Þ!

þ N!

ðN − J1 − K1 − J2 − K2 − 1Þ! −
ðN þ J1 þ K1Þ!

ðN − J2 − K2 − 1Þ! −
ðN þ J2 þ K2Þ!

ðN − J1 − K1 − 1Þ!
�
; ð4:23Þ

and if J1 þ K1 ≥ N and J2 þ K2 ≥ N, we have

hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i ¼ ðJ1 þ J2Þ!ðK1 þ K2Þ!
ðJ1 þ K1 þ J2 þ K2 þ 1Þ!

ðJ1 þ K1 þ J2 þ K2 þ NÞ!
ðN − 1Þ! : ð4:24Þ

It is a simple exercise to check that, in terms of eigenvalues, we have

hOJ1;K1
OJ2;K2

O†
J1þJ2;K1þK2

i ¼
Z YN

i¼1

dzidz̄idyidȳijΨgsðfzi; z̄i; yi; ȳigÞj2
XN
k¼1

zJ1k y
K1

k

XN
l¼1

zJ2l y
K2

l

XN
j¼1

z̄J1þJ2
j ȳK1þK2

j

¼ ðJ1 þ J2Þ!ðK1 þ K2Þ!
ðJ1 þ K1 þ J2 þ K2 þ 1Þ!

ðJ1 þ K1 þ J2 þ K2 þ NÞ!
ðN − 1Þ! ð4:25Þ

so that once again we have reproduced the exact answer as long as the dimension of each trace is not less than N. The
agreement that we have observed for multitrace correlators continues as follows: as long as the dimension of each trace is
greater than N − 1, the matrix model and the eigenvalue descriptions agree and both give

hOJ1;K1
OJ2;K2

� � �OJn;Kn
O†

J;Ki ¼
J!K!

ðJ þ K þ 1Þ!
ðJ þ K þ NÞ!

ðN − 1Þ! δJ1þ���þJn;JδK1þ���þKn;K ð4:26Þ

for the exact value of this correlator. We have limited ourselves to a single daggered observable in the above expression for
purely technical reasons: it is only in this case that we can compute the matrix model correlator using the identity (4.21). It
would be interesting to develop analytic methods that allow more general computations.
Finally, we can also test multitrace correlators with a dimension of order N2. A particularly simple operator is the Schur

polynomial labeled by a Young diagram R with N rows and M columns. For this R we have

χRðZÞ ¼ ðdetZÞM ¼ zM1 z
M
2 � � � zMN ; ð4:27Þ

χRðZ†Þ ¼ ðdetZ†ÞM ¼ z̄M1 z̄
M
2 � � � z̄MN : ð4:28Þ

The dual LLM geometry is labeled by an annulus boundary condition that has an inner radius of
ffiffiffiffiffi
M

p
and an outer radius offfiffiffiffiffiffiffiffiffiffiffiffiffiffi

M þ N
p

. The two point correlator of this Schur polynomial is
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hχRðZÞχRðZ†Þi ¼
Z YN

i¼1

dzidz̄idyidȳiχRðZÞχRðZ†ÞjΨgsðfzi; z̄i; yi; ȳigÞj2

¼ π−2N
Z YN

i¼1

dzidz̄idyidȳi
jz1j0þ2Mjy1j2N−2

0!ðN − 1Þ! � � � jzkj
2k−2þ2Mjykj2N−2k

ðk − 1Þ!ðN − kÞ!

¼ � � � jzN j
2N−2þ2MjyN j0
ðN − 1Þ!0! × e−

P
q
zqz̄q−

P
q
yqȳq

¼
YN
i¼1

ði − 1þMÞ!
ði − 1Þ! ; ð4:29Þ

which is again the exact answer for this correlator.
After this warm-up example we will now make a few comments that are relevant for the general case. The details are

much more messy, so we will not manage to make very precise statements. We have, however, included this discussion as it
does provide a guide as to when eigenvalue dynamics is applicable. A Schur polynomial labeled with a Young diagram R
that has row lengths ri is given in terms of eigenvalues as (our labeling of the rows is defined by r1 ≥ r2 ≥ � � � ≥ rN)

χRðZÞ ¼
ϵa1a2���aN z

N−1þr1
a1 zN−2þr2

a2 � � � zrNaN
ϵb1b2���bNz

N−1
b1

zN−2
b2

� � � zbN−1

: ð4:30Þ

Using this expression, we can easily write the exact two point function as follows:

hχRðZÞχRðZ†Þi ¼ 1

N!πN
YN−1

j¼0

1

j!

Z YN
i¼1

dzidz̄iϵa1a2���aN z
N−1þr1
a1 zN−2þr2

a2 � � � zrNaN

× ϵb1b2���bN z̄
N−1þr1
b1

z̄N−2þr2
b2

� � � z̄rNbNe−
P

k
zkz̄k

¼
YN−1

j¼0

ðjþ rN−jÞ!
j!

¼ fR: ð4:31Þ

Using our wave function we can compute the two point function of Schur polynomials. The result is

hχRðZÞχRðZ†Þi ¼
Z YN

i¼1

dzidz̄idyidȳiχRðZÞχRðZ†ÞjΨgsðfzi; z̄i; yi; ȳigÞj2

¼ 1

πN
YN−1

j¼0

1

j!

Z YN
i¼1

dzidz̄ijza1 j2N−2jza2 j2N−4 � � � jzaN−1
j2

×
ϵb1b2���bN z

N−1þr1
b1

zN−2þr2
b2

� � � zrNbN
ϵc1c2���cN z

N−1
c1 zN−2

c2 � � � zcN−1

×
ϵd1d2���dN z̄

N−1þr1
d1

z̄N−2þr2
d2

� � � z̄rNdN
ϵe1e2���eN z̄

N−1
e1 z̄N−2

e2 � � � z̄eN−1

e−
P

k
zkz̄k : ð4:32Þ

When the integration over the angles θi associated with zi ¼ rieiθi are performed, a nonzero result is obtained only if powers
of the zi match the powers of the z̄i. The difference between the above expression and the exact answer is simply that in the
eigenvalue expression these powers are separately set to be equal in the measure and in the product of Schur polynomials—
there are two matchings, while in the exact answer the power of zi arising from the product of the measure and the product
of Schur polynomials is matched to the power of z̄i from the product of the measure and the product of Schur polynomials—
there is a single matching happening. Thus, the eigenvalue computation may miss some terms that are present in the exact
answer.1 For Young diagrams with a few corners and OðN2Þ boxes (the annulus above is a good example) the eigenvalues

1This is the reason why (4.6) captures only one of the terms present in the two point function for J < N.
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clump into groupings, with each grouping collecting
eigenvalues of a similar size corresponding to rows with
a similar row length [41]. This happens because the product
of the Gaussian falloff e−zz̄ and a polynomial of fixed
degree jz2jn is sharply peaked at jzj ¼ n. Thus, for
example, if ri ≈M1 for i ¼ 1; 2;…; N

2
and ri ≈M2 for i ¼

1þ N
2
; 2þ N

2
;…; N with M1 and M2 well separated

[M1 −M2 ≥ OðNÞ], under the integral we can replace

ϵb1b2���bN z
N−1þr1
b1

zN−2þr2
b2

� � � zrNbN
ϵc1c2���cN z

N−1
c1 zN−2

c2 � � � zcN−1

→
YN

2

i¼1

zM1
ai z

M2
aiþN

2

: ð4:33Þ

After making a replacement of this type, we recover the
exact answer. This replacement is not exact—we need to
appeal to largeN to justify it. It would be very interesting to
explore this point further and to quantify in general (if
possible) what the corrections to the above replacement are.
For Young diagrams with many corners, row lengths are not
well separated and there is no similar grouping that occurs,
so that the eigenvalue description will not agree with the
exact result, even at largeN. A good example of a geometry
with many corners is the superstar [44]. The corresponding
LLM boundary condition is a number of very thin con-
centric annuli, so that we effectively obtain a gray disk,
signaling a singular supergravity geometry. It is then
perhaps not surprising that the eigenvalue dynamics does
not correctly reproduce this two point correlator.
Having discussed the two point function of Schur

polynomials in detail, the product rule

χRðZÞχSðZÞ ¼
X
T

fRSTχTðZÞ ð4:34Þ

with fRST a Littlewood-Richardson coefficient, implies that
there is no need to consider correlation functions of
products of Schur polynomials.

V. OTHER BACKGROUNDS

In the 1
2
BPS sector there is a wave function correspond-

ing to every LLM geometry. The (not normalized) wave
function has already been given in (1.6). In this section we
consider the problem of writing eigenvalue wave functions
that correspond to geometries other than AdS5 × S5. The
simplest geometry we can consider is the annulus geometry
considered in the previous section, where we argued that
the eigenvalue dynamics reproduces the exact correlator of
the Schur polynomials dual to this geometry. Our proposal
for the state that corresponds to this LLM spacetime is

ΨLLMðfzi;z̄i;yi;ȳigÞ¼
π−Nffiffiffiffiffiffi
N!

p ϵa1a2���an
zMa1y

N−1
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M!ðN−1Þ!p
��� zk−1þM

ak yN−k
akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk−1þMÞ!ðN−kÞ!p

��� zN−1þM
aN y0aNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN−1þMÞ!0!p e−

1
2

P
q
zqz̄q−1

2

P
q
yqȳq :

ð5:1Þ

This is simply obtained by multiplying the ground state
wave function by the relevant Schur polynomial and
normalizing the resulting state. The connection between
matrix model correlators and expectation values computed
using the above wave function is the following2:

h� � �iLLM ¼ h� � � χRðZÞχRðZ†Þi
hχRðZÞχRðZ†Þi

¼
Z YN

i¼1

dzidz̄idyidȳijΨLLMðfzi; z̄i; yi; ȳigÞj2 � � � :

ð5:2Þ

We can use this wave function to compute correlators
that we are interested in. Traces involving only Zs, for
example, lead to

hTrðZJÞTrðZ†JÞiLLM ¼
Z YN

i¼1

dzidz̄idyidȳijΨLLMðfzi; z̄i; yi; ȳigÞj2
XN
k¼1

zJk
XN
l¼1

z̄Jl

¼
XN−1

k¼0

ðJ þ kþMÞ!
ðkþMÞ!

¼ 1

J þ 1

�ðJ þM þ NÞ!
ðM þ N − 1Þ! −

ðJ þMÞ!
ðM − 1Þ!

�
; ð5:3Þ

which agrees with the exact result, as long as J > N − 1. Thus, in this background, eigenvalue dynamics is correctly
reproducing the same set of correlators as in the original AdS5 × S5 background. Traces involving only Y fields are also
correctly reproduced

2The new normalization for matrix model correlators is needed to ensure that the identity operator has expectation value 1. This
matches the normalization adopted in the eigenvalue description.
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hTrðYJÞTrðY†JÞiLLM ¼
Z YN

i¼1

dzidz̄idyidȳijΨLLMðfzi; z̄i; yi; ȳigÞj2
XN
k¼1

yJk
XN
l¼1

ȳJl ¼
1

J þ 1

ðJ þ NÞ!
ðN − 1Þ! ; ð5:4Þ

where J ≥ N. Notice that these results are again exact; i.e. we reproduce the matrix model correlators to all orders in 1=N.
Finally, let us consider the most interesting case of traces involving both matrices. The LLM wave function we have
proposed does not reproduce the exact matrix model computation. The matrix model computation gives

hOJ;KO
†
J;KiLLM ¼

�
J!

ðJ þ KÞ!
�

2
�
Tr

�
Y

∂
∂Z

�
K
TrðZJþKÞTr

�
Y† ∂

∂Z†

�
K
TrðZ†JþKÞ

	
LLM

¼
�

J!
ðJ þ KÞ!

�
2

K!

�
Tr

� ∂
∂Z

∂
∂Z†

�
K
TrðZJþKÞTrðZ†JþKÞ

	
LLM

¼
�

J!
ðJ þ KÞ!

�
2

K!
ðJ þ KÞ!

J!
hTrðZJþKÞTrðZ†JþKÞiLLM

¼ J!K!

ðJ þ K þ 1Þ!
�ðJ þ K þM þ NÞ!

ðM þ N − 1Þ! −
ðJ þ K þMÞ!

ðM − 1Þ!
�

ð5:5Þ

if J þ K ≥ N. Next, consider the eigenvalue computation. We need to perform the integral

hOJ;KO
†
J;KiLLM;eigen ¼

Z YN
i¼1

dzidz̄idyidȳijΨLLMðfzi; z̄i; yi; ȳigÞj2
XN
k¼1

zJky
K
k

XN
j¼1

z̄Jj ȳ
K
j

¼
XN
k¼1

ðN − kþ KÞ!
ðN − kÞ!

ðJ þM þ k − 1Þ!
ðM þ k − 1Þ! : ð5:6Þ

It is not completely trivial to compare (5.5) and (5.6), but it is already clear that they do not reproduce exactly the same
answer. To simplify the discussion, let us consider the case thatM ¼ Oð ffiffiffiffi

N
p Þ. In this case, in the large N limit, we can drop

the second term in (5.5) to obtain

hOJ;KO
†
J;KiLLM ¼ J!K!

ðJ þ K þ 1Þ!
ðJ þ K þM þ NÞ!

ðM þ N − 1Þ! ð1þ � � �Þ; ð5:7Þ

where � � � stand for terms that vanish as N → ∞. In the sum appearing in (5.6), change variables from k to k0 −M and again
appeal to large N to write

hOJ;KO
†
J;KiLLM;eigen ¼

XMþN

k0¼Mþ1

ðN þM − k0 þ KÞ!
ðN þM − k0Þ!

ðJ þ k0 − 1Þ!
ðk0 − 1Þ!

¼
XMþN

k0¼1

ðN þM − k0 þ KÞ!
ðN þM − k0Þ!

ðJ þ k0 − 1Þ!
ðk0 − 1Þ! ð1þ � � �Þ

¼ J!K!

ðJ þ K þ 1Þ!
ðJ þ K þM þ NÞ!

ðM þ N − 1Þ! ð1þ � � �Þ: ð5:8Þ

In the last two lines above � � � again stands for terms that vanish as N → ∞. Thus, we find agreement between (5.5)
and (5.6). It is again convincing to see genuine multimatrix observables reproduced by the eigenvalue dynamics. Notice that
in this case the agreement is not exact, but rather is realized to the large N limit. This is what we expect for the generic
situation—the AdS5 × S5 case is highly symmetric and the fact that eigenvalue dynamics reproduces so many observables
exactly is a consequence of this symmetry. We only expect eigenvalue dynamics to reproduce classical gravity, which
should emerge from the CFT at N ¼ ∞.
Much of our intuition came from thinking about the Gauss graph operators constructed in [29,30]. It is natural to ask if we

can write down wave functions dual to the Gauss graph operators. The simplest possibility is to consider a Gauss graph
operator obtained by exciting a single eigenvalue by J levels, and then attaching a total of K Y strings to it. The extreme
simplicity of this case follows because we can write the (normalized) Gauss graph operator in terms of a familiar Schur
polynomial as
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Ô¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J!
K!ðJþKÞ!

ðN−1Þ!
ðNþJþK−1Þ!

s
Tr

�
Y

∂
∂Z

�
K
χðJþKÞðZÞ;

ð5:9Þ

where we have used the notation (n) to denote a Young
diagram with a single row of n boxes. Consider the
correlator

hÔTrðY†ÞKTrðZ†JÞi ¼
�
Tr

� ∂
∂Y

�
K
ÔTrðZ†JÞ

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J!K!

ðJ þ KÞ!
ðN þ J þ K − 1Þ!

ðN − 1Þ!

s
:

ð5:10Þ

This answer is exact, in the free field theory. In what limit
should we compare this answer to eigenvalue dynamics?
Our intuition is coming from the 1

2
- BPS sector where we

know that rows of Schur polynomials correspond to
eigenvalues and we know exactly how to write the
corresponding wave function. If we only want small
perturbations of this picture, we should keep K ≪ J. In
this case we should simplify

J!
ðJ þ KÞ! →

1

JK
;

ðN þ J þ K − 1Þ!
ðN − 1Þ! ¼ ðN þ J þ K − 1Þ!

ðN þ J − 1Þ!
ðN þ J − 1Þ!
ðN − 1Þ!

→ ðN þ J − 1ÞK ðN þ J − 1Þ!
ðN − 1Þ! : ð5:11Þ

How should we scale J as we take N → ∞? The Schur
polynomials are a sum over all possible matrix trace
structures. We want these sums to be dominated by traces
with a large number of matrices (N or more) in each trace.
To accomplish this we will scale J ¼ OðN1þϵÞ with ϵ > 0.
In this case, at large N, we can replace

1

JK
ðN þ J − 1ÞK → 1 ð5:12Þ

and hence, the result that should be reproduced by the
eigenvalue dynamics is given by

hÔTrðY†ÞKTrðZ†JÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K!

ðN þ J − 1Þ!
ðN − 1Þ!

s
: ð5:13Þ

In the eigenvalue computation, we will use the wave
function of the ground state and the wave function of
the Gauss graph operator [ΨGGðfzi; z̄i; yi; ȳigÞ] to compute
the amplitude

Z YN
i¼1

dzidz̄idyidȳiΨ�
gsðfzi; z̄i; yi; ȳigÞ

�X
i

ȳi

�
K

×
X
j

z̄JjΨGGðfzi; z̄i; yi; ȳigÞ: ð5:14Þ

We expect the amplitude (5.14) to reproduce (5.13). Our
proposal for the wave function corresponding to the above
Gauss graph operator is

ΨGGðfzi; z̄i; yi; ȳigÞ ¼
π−Nffiffiffiffiffiffi
N!

p ϵa1a2���an
z0a1y

N−1
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0!ðN − 1Þ!p � � � zk−1ak yN−k
akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk − 1Þ!ðN − kÞ!p � � �

� � � zN−2
aN−1

yaN−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 2Þ!1!p zJþN−1
aN yKaNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ þ N − 1Þ!K!

p e−
1
2

P
q
zqz̄q−1

2

P
q
yqȳq : ð5:15Þ

The eigenvalue with the largest power of z (i.e. zaN ) was the fermion at the very top of the Fermi sea. It has been excited by J
powers of z and K powers of y. It is now trivial to verify that (5.14) does indeed reproduce (5.13).
Finally, the state with three eigenvalues excited by J1 > J2 > J3 and with K1 > K2 > K3 strings attached to each

eigenvalue is given by

ΨGGðfzi; z̄i; yi; ȳigÞ ¼
π−Nffiffiffiffiffiffi
N!

p ϵa1a2���an
z0a1y

N−1
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0!ðN − 1Þ!p � � � zk−1ak yN−k
akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk − 1Þ!ðN − kÞ!p � � �

� � � zN−4
aN−3

y3aN−3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 4Þ!3!p zJ3þN−3
aN−2 y2þK3

aN−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ3 þ N − 3Þ!ð2þ K3Þ!
p zJ2þN−2

aN−1 yK2þ1
aN−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ2 þ N − 2Þ!ðK2 þ 1Þ!p

×
zJ1þN−1
aN yK1

aNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ1 þ N − 1Þ!K1!
p e−

1
2

P
q
zqz̄q−1

2

P
q
yqȳq : ð5:16Þ

The generalization to any Gauss graph operator is now clear.
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VI. CONNECTION TO SUPERGRAVITY

In this section we would like to explore the possibility
that the eigenvalue dynamics of the SUð2Þ sector has a
natural interpretation in supergravity. The relevant super-
gravity solutions have been considered in [45–48].
There are six adjoint scalars in the N ¼ 4 super Yang-

Mills theory that can be assembled into the following three
complex combinations:

Z ¼ ϕ1 þ iϕ2; Y ¼ ϕ3 þ iϕ4; X ¼ ϕ5 þ iϕ6:

ð6:1Þ

The operators we consider are constructed using only Z and
Y so that they are invariant under the Uð1Þwhich rotates ϕ5

and ϕ6. Further, since our operators are BPS, they are built
only from the s-wave spherical harmonic components of Y
and Z, so that they are invariant under the SOð4Þ symmetry
which acts on the S3 of the R × S3 spacetime on which the
CFT is defined. Local supersymmetric geometries with
SOð4Þ × Uð1Þ isometries have the form [45,48]

ds210 ¼ −h−2ðdtþ ωÞ2 þ h2
�

2

Z þ 1
2

∂a∂̄bKdzadz̄b þ dy2
�

þ yðeGdΩ2
3 þ e−Gdψ2Þ; ð6:2Þ

dω ¼ i
y
ð∂a∂̄b∂yKdzadz̄b − ∂aZdzadyþ ∂̄aZdz̄adyÞ:

ð6:3Þ

Here z1 and z2 are a pair of complex coordinates and K is a
Kahler potential which may depend on y, za, and z̄a. y2 is
the product of warp factors for S3 and S1. Thus we must be
careful and impose the correct boundary conditions at the
y ¼ 0 hypersurface if we are to avoid singularities. The
y ¼ 0 hypersurface includes the four-dimensional space
with coordinates given by the za. These boundary con-
ditions require that when the S3 contracts to zero, we need
Z ¼ − 1

2
, and when the ψ circle collapses, we need Z ¼ 1

2

[45,48]. There is a surface separating these two regions and,
hence, defining the supergravity solution. So far the
discussion given closely matches what is found for the
1
2
-BPS supergravity solutions. In that case the y ¼ 0 hyper-
surface includes a two-dimensional space which is sim-
ilarly divided into two regions, giving the black droplets on
a white plane. The edges of the droplets are completely
arbitrary, which is an important difference from the case we
are considering. The surface defining local supersymmetric
geometries with SOð4Þ × Uð1Þ isometries is not com-
pletely arbitrary—it too has to satisfy some additional
constraints as spelled out in [48]. It is natural to ask if the
surface defining the supergravity solution is visible in the
eigenvalue dynamics?

To answer this question we will now review how the
surface defining the local supersymmetric geometries with
SOð4Þ × Uð1Þ isometries corresponding to the 1

2
-BPS LLM

geometries is constructed. According to [48], the boundary
condition for these geometries have walls between the two
boundary conditions determined by the equation3

z2z̄2 ¼ e−2D̂ðz1;z̄1Þ; ð6:4Þ

where D̂ðz1; z̄1Þ is determined by expanding the functionD
as follows (it is the y coordinate that we set to zero to get the
LLM plane):

D ¼ logðyÞ þ D̂ðz; z̄Þ þOðyÞ: ð6:5Þ

The function D is determined by the equations

y∂yD ¼ 1

2
− Z; V ¼ −iðdz∂z − dz̄∂ z̄ÞD; ð6:6Þ

where Zðy; z1; z̄1Þ is the function obeying Laplace’s equa-
tion that determines the LLM solution and Vðy; z1; z̄1Þ is
the one form appearing in the combination ðdtþ VÞ2 in the
LLM metric.
Consider an annulus that has an outer edge at radius

M þ N and an inner edge at a radius M. This solution
has (these solutions were constructed in the original LLM
paper [7])

Zðy; z1; z̄1Þ ¼ −
1

2

� jz1j2 þ y2 −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjz1j2 þ y2 þMÞ2 − 4jz1j2M

p
þ jz1j2þy2−M−Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjz1j2þy2þMþNÞ2−4jz1j2ðMþNÞ
p

�
;

Vðy; z1; z̄1Þ ¼ dϕ
2

� jz1j2 þ y2 þMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjz1j2 þ y2 þMÞ2 − 4jz1j2M−

p
þ jz1j2þy2þMþNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjz1j2þy2þMþNÞ2−4jz1j2ðMþNÞ
p

�
:

Evaluating at y ¼ 0, the second of (6.6) says

V ¼ −iðdz∂z − dz̄∂ z̄ÞD̂: ð6:7Þ

Setting z1 ¼ re−iϕ and assuming that D̂ depends only on r
we find

r
∂D̂
∂r ¼ −

M þ N
r2 −M − N

þ M
r2 −M

; ð6:8Þ

which is solved by

3This next equation is (6.35) of [48]. We will relate z1 and z2 to
zi (the eigenvalues of Z) and yi (the eigenvalues of Y) when we
make the correspondence to eigenvalues.
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D̂¼ 1

2
log

jz1z̄1−Mj
jz1z̄1−M−Nj : ð6:9Þ

Thus, the wall between the two boundary conditions is
given by

jz2j2 ¼ M þ N − z1z̄1

z1z̄1 −M
: ð6:10Þ

The same analysis applied to the AdS5 × S5 solution
gives

jz1j2 þ jz2j2 ¼ N: ð6:11Þ

For the pair of geometries described above, we know the
wave function in the eigenvalue description. We will now
return to the eigenvalue description and see how these
surfaces are related to the eigenvalue wave functions.
At large N, since fluctuations are controlled by 1=N2, we

expect a definite eigenvalue distribution. These eigenvalues
will trace out a surface specified by the support of the single
fermion probability density

ρðz1; z̄1; y1; ȳ1Þ ¼
Z YN

i¼2

dzidz̄idyidȳijΨðfzi; z̄i; yi; ȳigÞj2:

ð6:12Þ

Denote the points lying on this surface using coordinates
z, y.
Using the wave function Ψgsðfzi; z̄i; yi; ȳigÞ correspond-

ing to the AdS5 × S5 spacetime, the probability density for
a single eigenvalue is

ρðz; z̄; y; ȳÞ ¼ 1

Nπ2
XN−1

i¼0

ðzz̄Þi
i!

ðyȳÞN−i−1

ðN − i − 1Þ! e
−zz̄−yȳ

¼ ðzz̄þ yȳÞN−1

Nπ2ðN − 1Þ! e
−zz̄−yȳ; ð6:13Þ

which is maximized at

zz̄þ yȳ ¼ N − 1: ð6:14Þ

Thus, if we identify the points z, y with the supergravity
coordinates z1, z2 as follows:

z2 ¼ y; z1 ¼ z; ð6:15Þ

we find

jz1j2 þ jz2j2 ¼ N ð6:16Þ

at large N, so that the eigenvalues condense on the surface
that defines the wall between the two boundary conditions.

Let us now compute the positions of our eigenvalues,
using ΨLLMðfzi; z̄i; yi; ȳigÞ. The probability density for a
single eigenvalue is easily obtained by computing the
following integral:

ρðz1; z̄1;y1; ȳ1Þ¼
Z YN

i¼2

dzidz̄idyidȳijΨLLMðfzi; z̄i;yi; ȳigÞj2

¼ 1

Nπ2
XN−1

i¼0

ðz1z̄1ÞMþi

ðMþ iÞ!
ðy1ȳ1ÞN−i−1

ðN− i−1Þ!e
−z1 z̄1−y1ȳ1 :

ð6:17Þ

Following the analysis we performed above, we find that
the probability density is maximized when the following
relations are satisfied:

XN−1

i¼0

� ðyȳÞN−i−1

ðN − i − 1Þ!
� ðzz̄ÞMþi−1

ðM þ i − 1Þ! −
ðzz̄ÞMþi

ðM þ iÞ!
��

¼ 0;

ð6:18Þ

XN−1

i¼0

� ðzz̄ÞMþi

ðM þ iÞ!
� ðyȳÞN−i−2

ðN − i − 2Þ! −
ðyȳÞN−i−1

ðN − i − 1Þ!
��

¼ 0:

ð6:19Þ

The above holds only if each term in each sum is zero. We
find

zz̄ ¼ M þ i; yȳ ¼ N − i − 1; i ¼ 1; 2;…; N − 1:

ð6:20Þ

Thus, if we identify the points z, y and the supergravity
coordinate z1, z2 as follows:

z2 ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj2 −M

p ; z1 ¼ z; ð6:21Þ

we find that (6.10) gives

jyj2
i

¼ M þ N − jzj2
jzj2 −M

ð6:22Þ

in complete agreement with where our wave function is
localized. This again shows that the eigenvalues are
collecting on the surface that defines the wall between
the two boundary conditions. Although these examples are
rather simple, they teach us something important: the map
between the eigenvalues and the supergravity coordinates
depends on the specific geometry we consider.
The fact that eigenvalues condense on the surface that

defines the wall between the two boundary conditions is
something that was already anticipated by Berenstein and
Cotta in [33]. The proposal of [33] identifies the support of
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the eigenvalue distribution with the degeneration locus of
the three sphere in the full ten-dimensional metric. Our
results appear to be in perfect accord with this proposal.

VII. OUTLOOK

There are a number of definite conclusions resulting
from our study. One of our key results is that we have found
substantial evidence for the proposal that there is a sector of
the two matrix model that is described (sometimes exactly)
by eigenvalue dynamics. This is rather nontrivial since, as
we have already noted, it is simply not true that the two
matrices can be simultaneously diagonalized. The fact that
we have reproduced correlators of operators that involve
products of both matrices in a single trace is convincing
evidence that we are reproducing genuine two matrix
observables. The observables we can reproduce correspond
to BPS operators. In the dual gravity these operators map to
supergravity states corresponding to classical geometries.
The local supersymmetric geometries with SOð4Þ ×Uð1Þ
isometries are determined by a surface that defines the
boundary conditions needed to obtain a nonsingular super-
gravity solution. At large N where we expect classical
geometry, the eigenvalues condense on this surface. In this
way the supergravity boundary conditions appear to match
the large N eigenvalue description perfectly.
The eigenvalue dynamics appears to provide some sort

of a coarse grained description. Correlators of operators
dual to states with a very small energy are not reproduced
correctly: for example, the energy of states dual to single
traces has to be above some threshold (N) before they are
correctly reproduced. For complicated operators with a
detailed multitrace structure we would thus expect to get
the gross features correct, but we may miss certain finer
details—see the discussion after (4.32). Developing this
point of view, perhaps using the ideas outlined in [38], may
provide a deeper understanding of the eigenvalue wave
functions.
The eigenvalue description we have developed here is

explicit enough that we could formulate the dynamics in
terms of the density of eigenvalues. This would provide a

field theory that has 1=N appearing explicitly as a coupling.
It would be very interesting to work out, for example, what
the generalization of the Das-Jevicki Hamiltonian [49] is.
The picture of eigenvalue dynamics that we are finding

here is almost identical to the proposal discussed by
Berenstein and his collaborators [31–37], developed using
numerical methods and clever heuristic arguments. The
idea of these works is that the eigenvalues represent
microscopic degrees of freedom. At large N one can move
to collective degrees of freedom that represent the ten-
dimensional geometry of the dual gravitational description.
This is indeed what we are seeing. They have also
considered cases with reduced supersymmetry and orbifold
geometries [50–52]. These are natural examples to consider
using the ideas and methods we have developed in this
article. Developing other examples of eigenvalue dynamics
will allow us to further test the proposals for wave functions
and the large N distributions of eigenvalues that we have
put forward in this article.
An important question that should be tackled is to ask

how one could derive (and not guess) the wave functions
we have described. Progress with this question is likely to
give some insights into how it is even possible to have a
consistent eigenvalue dynamics. One would like to know
when an eigenvalue description is relevant and to what
classes of observables it is applicable.
Another important question is to consider the extension

to more matrices, including gauge and fermion degrees of
freedom. The Gauss graph labeling of operators continues
to work when we include gauge fields and fermions
[53,54], so that our argument goes through without
modification and we again expect that eigenvalue dynamics
in these more general settings will be an effective approach
to compute these more general correlators of BPS oper-
ators. Another important extension is to consider the
eigenvalue dynamics, perturbed by off diagonal elements,
which should allow one to start including stringy degrees of
freedom. Can this be done in a controlled systematic
fashion? In this context, the studies carried out in
[55–57] will be relevant.
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