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We study the effective potential in renormalizable quantum gravity with a single dimensionless
conformal coupling without a Landau pole. In order to describe a background-free dynamics at the Planck
scale and beyond, the conformal-factor field is quantized exactly in a nonperturbative manner. Since this
field does not receive renormalization, the field-independent constant in the effective potential becomes
itself invariant under the renormalization group flow. That is to say, it gives the physical cosmological
constant. We explicitly calculate the physical cosmological constant at the one-loop level in the Landau
gauge. We find that it is given by a function of renormalized quantities of the cosmological constant, the
Planck mass, and the coupling constant, and it should be the observed value. It will give a new perspective
on the cosmological constant problem free from an ultraviolet cutoff.
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I. INTRODUCTION

The gravitational theories on the basis of the Einstein
action defined by the Ricci scalar cannot go beyond the
Planck scale. So, the Planck mass scale gives an ultraviolet
(UV) cutoff of such classical or quantum theories. Also, the
existence of the UV cutoff is one of the reasons behind
the cosmological constant problem [1]. In order to resolve
the problem, we have to build a field theory without the UV
cutoff, which necessarily becomes quantum gravity.

The quantization of gravity based on the Einstein action
[2—4] has a lot of difficulties. First of all, the theory is not
renormalizable. Furthermore, the path integral becomes
unstable even in a nonperturbative manner, because the
Ricci scalar is not bounded from below, like a scalar theory
with an odd potential. In addition, we cannot eliminate a
spacetime configuration with a singularity, because the
action becomes finite for such a spacetime solution.

In order to resolve these problems, quantum gravity
theories involving the square of the Riemann curvature
tensor have been proposed in the 1970s [5-8]. In those
days, however, one could not avoid the problem that
the negative-metric mode emerges as a gauge-invariant
mode as far as one dealt with all gravitational fields
perturbatively. !

To further resolve the ghost problem, we constructed
renormalizable quantum conformal gravity several years
ago [10-12] by applying a nonperturbative method learned
from the development of two-dimensional quantum gravity
[13-18]. The conformal factor of the metric field is treated

'"There is an idea on unitarity [6] based on the work of Lee and
Wick [9], but it does not work in the UV limit where coupling
constants vanish.
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exactly without introducing a coupling constant for it
[19-25], and as a result the theory has Becchi-Rouet-
Stora-Tyutin (BRST) conformal symmetry in the UV limit,
which represents the background-free property of quantum
gravity as a gauge equivalency under conformal trans-
formations [26,27]. This symmetry makes ghost modes
unphysical exactly. Physical states are then given by
diffeomorphism-invariant real scalars only, which is con-
sistent with scalar-dominated scale-invariant spectra of the
early Universe [28,29].

In renormalizable quantum gravity, the cosmological
constant in the action, in general, receives renormalization
so that it becomes running. Since a physically measurable
quantity must be renormalization group (RG) invariant, it
cannot be thought of as a physical cosmological constant.
So, what is a RG-invariant cosmological constant has been
one of the important problems in quantum gravity.

In this paper, we consider what the physical cosmologi-
cal constant is in our renormalizable quantum gravity.
Recall that, when we define a physical mass of a particle in
quantum field theories, we usually adopt the on-shell
renormalization scheme. However, such a scheme is not
known for certain for renormalization of the cosmological
constant in quantum gravity. In order to answer it, we here
consider the effective potential with respect to the cosmo-
logical term that depends on the conformal-factor field only
and discuss its RG structure. Owing to the nonrenormal-
ization property of the conformal-factor field, we find that
the field-independent constant in the effective potential
becomes itself invariant under the RG flow, and thus it
gives the physical cosmological constant.

We then calculate the physical cosmological constant
explicitly at the one-loop level. The calculation is carried
out in the Landau gauge in order to reduce the number of
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Feynman diagrams considerably and also to avoid some
indeterminate factors. We show that the physical cosmo-
logical constant is given by a function of renormalized
quantities of the cosmological constant, the Planck mass,
and the dimensionless coupling constant, just like the pole
mass can be written in terms of the renormalized mass and
coupling constant.

II. BRIEF SUMMARY OF RENORMALIZABLE
QUANTUM GRAVITY

First, we briefly summarize recent developments of the
renormalizable quantum field theory of conformal gravity
with adding the Finstein-Hilbert action and the cosmologi-
cal constant term [11,12]. The theory has been formulated
using dimensional regularization. The advantages of
employing this regularization are that it preserves diffeo-
morphism invariance and also the theory becomes inde-
pendent of the choice of the path integral measure owing to
Jd”p =5”(0) = 0. And also, there are no quadratic and
quartic divergences, which are substantial in UV complete
theories. On the other hand, the contributions from the
measure such as conformal anomalies [30-33] are hidden
between D and four dimensions, and thus we have to
determine the D dependence of the action exactly.

A. Quantum gravity action

When we generalize fourth-order gravitational actions to
D-dimensional ones, a lot of ambiguities emerge, unlike
the case of ordinary gauge field action. In order to settle
such ambiguities, we have recently analyzed Hathrell’s
RG equations for quantum field theories with conformal
couplings in curved space [34-36]. We then found that
the ambiguities disappear and the D dependence of the
gravitational action can be determined at all orders [12,37].
The renormalizable quantum gravity has been defined by
using this action, because it should reduce to the curved
theory in the classical limit of gravity such as the large
number limit of matter fields.

The quantum gravity action determined in this way has
been expressed as

1 M}
S = /dDX\/§ |:t_2 Cﬁyla + bOGD - TOR + AO + Ematter .
0

The first term is the Weyl action given by the square of
D-dimensional Weyl tensor C,,,, as

TRy
D-2""

2
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and the second term is the Euler density generalized to
D dimensions that is significant for the conformal-
factor dynamics, which is exactly determined by solving
Hathrell’s RG equations as
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Gp =G4+ (D —4)y(D)H?, (2.1)

where G, = R, ,, — 4R, + R* is the usual Euler combi-

nation and H = R/(D — 1). The function y(D) is expanded
about four dimensions as y(D) =2, y,(D—4)""!,
whose coefficient y, can be determined order by order.
The first two terms have been calculated explicitly as y; =
1/2 and y, = 3/4 [12,37].> We have then shown that these
are universal values independent of the gauge group and the
contents of matter fields as far as they are conformally
coupled.”

The bare quantity 7, is a single dimensionless gravita-
tional coupling constant, while b, is not an independent
coupling as mentioned below. The bare mass parameters
M, and A, are the Planck mass and the cosmological
constant, respectively. The last term L, denotes conven-
tional second-order matter fields with dimensionless con-
formal couplings.

The conformal anomaly associated with the action (2.1)
is then expressed in the form Ej, = G, — 4y(D)V?H [37].
Here, it is significant that the familiar ambiguous V2R term
is fixed completely, and due to y; = 1/2 this combination
reduces at D —» 4 to E, = G4 —2V?R/3 proposed by
Riegert [19].

B. Renormalization procedure and asymptotic
background freedom

The perturbation in f#; implies that the metric field is
expanded about a conformally flat spacetime satisfying

Cuic = 0, which is defined by

g;ll/ = ez¢§ﬂl/7

_ . R o

g/w = (get(]ho)ﬂu = g/M (fﬁ + [Ohfl)y +§0héghob + - > s

(2.2)

where h,, = §,,hf,. hgﬂ =0, and g,, is the background
metric. The quantum gravity can be thus described as a
quantum field theory defined on the background g,, .
The significant feature of this theory is that the con-
formal factor e’? is written in the exponential form to
maintain its positivity and treated exactly without intro-
ducing its own coupling constant. It ensures the independ-
ence under the conformal change of the background
G — ez"f]ﬂ,,, because, as is apparent from (2.2), this
change can be absorbed by rewriting the integration

2Furthermore, from the analysis of QED in curved space [37],
it has been found that y; is given by 1/3, which becomes
necessary in calculations of three loops or more.

If there is a nonconformal dimensionless coupling, we have
to add the pure R* term to the action in addition to C;, ;, and Gp.
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variable as ¢ — ¢ — o in quantized gravity, which is
algebraically represented as BRST conformal symmetry.
Consequently, we can choose the flat background without
affecting the results.

The renormalization factors for the traceless tensor
field and the coupling constant are defined as usual
by ho,, :Z;,/zhm, and 1o = u*>P/?Z,t, where u is an
arbitrary mass scale to make up for the loss of mass
dimensions, and thus the renormalized coupling ¢
becomes dimensionless. On the other hand, since we
treat the conformal-factor field exactly without introduc-
ing the corresponding coupling constant, diffeomorphism
invariance requires that it does not receive renormaliza-
tion such that*

Zy=1. (2.3)
It can be easily understand from the fact that gauge
invariance results in the relationship between the
renormalization factor of the coupling constant and that
of the corresponding field.” No coupling constant thus
implies that there is no field-renormalization factor. This
is one of the most significant properties in our renorm-
alization calculations, which reflects the independence
of how to choose the background metric as men-
tioned above.

The beta function of a, =t*/4r is defined by
B, = (u/a,)da,/du = D — 4 + f,. At the one-loop level,
we obtain

- 1 197| a
= | (Ng+ 6Ny + 12N) + —| 2
B 120( s +O6Np + a) + 30 | 4z

for Ny conformally coupled scalars, N fermions, and N4
gauge fields [30-32]. The last term is the contribution
from the gravitational field [7,21,23]. The coupling «,
thus indicates the asymptotic freedom, which justifies
performing the perturbation theory about conformally flat
spacetime.

Here, we emphasize that the asymptotic freedom of the
traceless tensor field does not mean the realization of a
picture in which free gravitons are propagating in the
flat spacetime, because the conformal factor is still non-
perturbative and spacetime totally fluctuates quantum

“This nonrenormalization theorem has been demonstrated
exglicitly in loop calclu%ations of higher order [10-12].

For instance, Z,Z;'~ = 1 in QED such that ¢yA,, = eA, at
D = 4. In general, the argument precisely holds only for the
background gauge field in the background field method [38]. For
the ¢ field, however, it is true because this field is not gauge fixed,
unlike the traceless tensor field, so that the renormalization factor
of ¢ is the same to that of its background field and it becomes
unity from diffeomorphism invariance. This fact is used in the
next section.
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mechanically. So, we call it the asymptotic background
freedom. We can thus go beyond the Planck scale.

In addition to these renormalization factors, we also
introduce the bare parameter b, to renormalize UV diver-
gences proportional to the Gp term. Since its volume
integral becomes topological at four dimensions, b is not
an independent dynamical coupling, and thus we expand it
in a pure-pole series as

P b
b0 = mpr2 ; (D—4)" 24

Since the expansion of the volume integral of G starts
from o(D —4), the finite terms, namely, Wess-Zumino
actions for conformal anomalies, come out with offsetting
this zero by the pole in b, and those describe the dynamics
of the conformal-factor field. Here, b,(n > 2) depends
on the coupling constants only, while the simple-pole
residue has a coupling-independent part, and thus it is
divided as
bl = b+bl, (25)
where b/ is coupling dependent and b is a constant part.
In order to carry out the renormalization systematically
incorporating the conformal-factor dynamics induced
quantum mechanically, we have proposed the following
procedure. For the moment, b is regarded as a new coupling
constant. The effective action is then finite up to the
topological term as follows:

ﬂD_4 b—bc . .
:WD_4/d x\/§G4+Fren(at’b),

where I',,, is the finite part obtained by the standard
renormalization procedure. The divergent term exists in
a curved background only. The one-loop constant b,. can be
calculated independently of b [7,21,23,30-32], which is
given by

769
(Ng+ 1INp 4 62N,) + ~—

b .
180

After the renormalization is carried out, we take b = b, at
four dimensions. In this way, we obtain the effective action
whose dynamics is governed by a single dimensionless
gravitational coupling «;.

From the RG equation udby/du =0, we obtain the
following expression:

db

H—VF= (D - 4)Bh,

i (2.7)

where f3, is a finite function given by
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5 8b] -1 (9171
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Here, in order to be able to replace the coupling b with
the constant b, at the end, the condition udb/du =0
should be satisfied at four dimensions. Therefore, (2.7)
ensures the validity of the renormalization procedure
proposed above.

From the RG analysis of QED and QCD in curved
space, we find that b} in (2.5) arises at the fourth
order of the gauge-coupling constant [12,35-37]. From
this fact and the similarity between the gauge field
and the traceless tensor field, we assume that the a,

dependence of b} is also given by b} = o(a7) and thus

Bb =-b + 0((1%).6

C. Propagators and interactions

In the following, we take the flat background g,, = J,,.
The Weyl action in D dimensions is then expanded as
follows:

1 1
—4)p g2
%/de\/ﬁFD——/deeD )¢C/u//16

15

1
= / dD { Czyﬂ(;

Here, the gravitational quantities with the bar are defined
by using the metric g,, in (2.2). The first term of the right-
hand side gives the propagator and self-interactions of the
traceless tensor field. The second and other terms are the
induced Wess-Zumino interactions related to the conformal
anomaly.

The kinetic term of the traceless tensor field is given by

D -3
/ dD {D 2 (hOﬂva4h0ﬂU + 2)(0/46 )(0/4)

D -3

D )(0;4 a}l au)(()v }

where y, = 9,h,, and 0? = 0,0,,.. The same lower indices
denote contraction in the flat metric §,,. According to the
standard procedure of gauge fixing, we introduce the
following gauge-fixing term [7]:

®This assumption should be verified through explicit two-loop
calculations of three-point functions of the traceless tensor field
or indirect calculations using the RG equation, but this work is so
hard and has not been completed yet.
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1
ng_/dD-x{z—é«OXOﬂNyb)(Ou}’

N, = 2P=3) <-2a25,w 0200 )

where

e D=2

The gauge parameter is renormalized as {y = Z,{. We here
disregard the ghost action, because the ghost field is not
coupled with the conformal-factor field directly so that it is
not necessary in the following calculations.

Let us present the propagator of the traceless tensor fleld
The equation of motion is now given by /(w oK) (k)=
in momentum space, where

Kfli)ﬂa(k)
2(D -3) 1-¢
:ﬁ{lﬁvﬁﬂk“ é’ |: kZ( "M'k k +5l,j.k k

1

+ 8,0k, k) + 8,5k, k) — mkz(éyyklka + 8,5k ,k,)

1 D-2
oy ikt = S huk kﬂk(y} } (2.9)

D(D-1)

and I/w Ao T ( /4/15116 + 5/,t 51/2)/2

« ) 10> We obtain the propagator in the arbitrary

w06/ D. By solving the

inverse of K s
gauge as

<h;w(k)h/10'(_k)> -

D-2 1
/O

2D-3) i oo (k) (2.10)

where
19,0 = L, + (€= 1) [1 ( ke, B
-5 1_ 1 <5ﬂy k;j;" + 65 kg)
This tensor satisfies
k1S (k) = c:(% Koo+ 5 ks~ %ky@ﬁ) ,

and thus it becomes transverse when { = 0. The choice of
¢ = 01s called the Landau gauge, while { = 1 is called the
Feynman gauge.

The kinetic term and self-interaction terms of the
conformal-factor field are derived from the byGp, action.
From (2.1) and (2.4), this action is expanded as follows:
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b/de\/_G —ﬂ/d’)x by P G (b
0 97D = 4\ D12 D—4 ' (D—47 4T\ T

+[(D_4>b1+.--]<¢254¢+3¢v4¢+--->+---},

where /gA, is the fourth-order differential operator that
becomes conformally invariant at four dimensions defined
by Ay=V*+2R"*V,V,—2RV?/3+ V¥RV, /3 [19]. The
terms that we do not use in the next section are denoted by
the dots here.

The first group of the expansion (2.12) gives the
counterterm subtracting UV divergences proportional to
the Euler term G,, which determine the residue b, in (2.4).
The second group gives the Riegert action [19], which is
the Wess-Zumino action for the conformal anomaly E,. It
includes the bilinear term of the conformal-factor field as

D-4

JﬂWZb / dPxpd*

at the lowest of the perturbations. Since this term is
independent of the coupling 7, we can use it as the kinetic
term, and the propagator is then given by

(47)P2 1

(P(R)P(=k)) = u*P = — - (2.13)

Therefore, quantum corrections from this field are
expanded in 1/b, which corresponds to considering the
large-N expansion for the number of matter fields (2.6).
Since the conformal-factor field does not propagate at
b — o0, it gives the classical limit of gravity.

The third group of (2.12) gives the self-interaction
among the conformal-factor fields. Since it has the
D — 4 factor, it becomes effective at the one-loop level
and more. And also, there are many interactions including
the traceless tensor field, but most of them can be dropped
here when we employ the Landau gauge.

In the following, all calculations are carried out in the
Landau gauge in order to reduce the number of Feynman
diagrams and also to obtain physically acceptable results
directly. It is because in the arbitrary gauge the bV>R¢p
interaction in (2.12) becomes effective and then yields
contributions with a positive power of b that do not vanish
in the classical limit [12]. We think that such an unphysical
behavior will disappear at last, but it is difficult to show that
explicitly at present.

D. Renormalizations of mass parameters [11,12]

The Einstein-Hilbert action is expanded up to the second
order of the coupling constant as
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+) (2¢A4¢+G4¢—§WR¢+1L8R2>

(2.12)

[
2
—%/de\/ﬁR
2
:—% / APxe DD {R—(D—1)V2p)

3

D-1 75
_EM%/dee(D—Z)qﬁ{ 3 82¢+1_%8/1h0yv81h0ﬂv+"'}’

where the dots denote the interaction terms that do not
contribute to loop calculations using the Landau gauge in
the next section. The renormalization factor is defined by
M3 = uP=*ZguM?. The anomalous dimension for the
Planck mass is then defined by ygy = —(u/M?)dM?/du =
D — 4 + ygy, where ypy = ud(log Zgy)/du, which has
been calculated in the Landau gauge as

1 1 S5Sa
}_’EH:B‘Fﬁ‘FZZ;- (2.14)
Here, o(1/b?%) comes from two-loop diagrams, and others
are from one-loop diagrams. At the end, b is replaced with
b, at four dimensions.

The cosmological term is simply written in terms of the
exponential factor of the ¢ field as

AO/de\/ézAO/deeD‘ﬁ.

The renormalization factor is defined by Ay = uP~*Z, (A+
LyM*), where Ly, is the pure-pole term. The anomalous
dimension for the cosmological constant is defined by
ya=—(u/N)dAjdu =D =4+ 75+ (M*/A)3,, where
7a =pd(logZy)/du and 6y = pdLy/dyu — (D —4)Ly+
(7a — 27gn) Ly The calculation in the Landau gauge has
been carried out up to the first order of ¢, as

4 2 1 - 4r)?
8 0 310« :_9( ) (2.15)

Wy R Ty T o 852
with b = b,. Here, o(1/b%) in ¥, comes from three-loop
diagrams, and o(a,/b) is from two-loop diagrams. There is
no correction of the first order of , to 6. This anomalous
dimension vanishes at b — oo, which is consistent with the
classical limit of gravity.

Here, note that the «,-independent terms in ygy (2.14)
and 7, (2.15) agree with the exact solutions of these
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anomalous dimensions derived using BRST conformal
symmetry at @, = 0 [22,24,26,27].

III. PHYSICAL COSMOLOGICAL CONSTANT IN
QUANTUM GRAVITY

Now, let us discuss the effective action in our renorma-
lizable quantum gravity. We here consider the effective
action that is expanded in powers of the conformal-factor
field background o as

1
o) = Za/del"'denr(n)(xl’ e X)) (1) 0(%,)
_ d k, de
Zn,

(kl,...,k,,)a(kl)...

5 (2m)P60 (ky + - + k)

where T is the renormalized n-point Green function
given by the sum of all 1PI Feynman diagrams with n
external legs of o.

The RG analysis of the 1PI Green function I'™ can be
carried out as in the case of the ¢* theory [39—43]. One of
the crucial differences is that the conformal-factor field is
not renormalized such that Z, = 1 and also for its back-
ground. Therefore, the renormalized I'") is the same as the
bare one, and thus pdl'™ /du = 0 is satisfied.”

The effective potential V is given by the zero momentum
part of T")(k,, ..., k,), which is expressed as

I'(o)|y = / dPxV (o) = Z%rw(o,...,m / dPxo" (x).

The diffeomorphism invariance implies that ') (0, ..., 0) =
vD", and thus the effective potential has the form

V(o) = vePol), (3.1)

The RG equation implies that » is scale invariant such as

d
—v=0.
H b

We thus find that the effective potential gives the
physical cosmological constant, which can be observed
cosmologically.

Before calculating the physical cosmological constant at
the one-loop level explicitly, we first see the RG structure of
the 1PI Green function, which will give a RG improvement
of the effective action.

In the (p4 theory, the field receives renormalization so that I" (n)
is not RG invariant, though I'(¢) itself is RG invariant.

PHYSICAL REVIEW D 96, 026010 (2017)
A. RG structure

The RG equation is derived from the condition
dr'™ /du = 0, which gives the following equation:

0 0 9 0
— — — A A— M?— |1

x (kj, ap, A, M2, u) =0, (3.2)
where we take D =4 and thus the differential term
(D —4)B3,0/0b is removed.

Changing the momentum variable as k; — Ak; and doing
the dimensional analysis, we find that T") has the follow-
ing form:

ki A M?
F(")(lkj,at,A,Mz,ﬂ)—/449(")< L, 2)
W W u

This implies that ') satisfies the differential equation

_ 4) )

Therefore, combining (3.2) and (3.3) and removing the
partial derivative of u, we obtain the expression

anl Lo 9
Fon T T M e e

x (Ak;, o, A, M2, ) = 0.

(5‘ 0 0 0

(3.3)

0

0 0
<_/1§ +ﬂt(at)aza_at -4+ YA(anA’M )]Aﬁ

0
—[2+yEH(at)]M W—’_A‘-)Fn (/?,k at,A,Mz,/l):O.
(3.4)

Here, we introduce the running coupling constant &, (4),
the running cosmological constant A(4), and the running

Planck mass M(4), which are defined by the following
differential equations:

d . - ~
1L 4(0) = B (2)a(2).
1 S RG) = 4+ a0, AG) I ()IAW)
1 S () = ~2 + renl@ W)L (D). 33

If we replace a,, A, and M? in Eq (3.4) with the

corresponding running quantities a;, A, and M2, respec-
tively, we find that this equation can be written with the
help of the defining Egs. (3.5) as

<—/1d% + 4) ) (Akj, @,(2), A(R), M2 (2), 1) = O,
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Here, note that this RG equation is written in terms of the
total differential with respect to 4, not the partial one. The
solution is thus given by

00 (Ak;, a,(2), A2), MP (), 1) = 24T (k;, A, M2, )
(3.6)

under the conditions of a,(1) =«, A(l)=A, and
M*(1) = M2.

From the solution (3.6) with k; = 0 and the expression
(3.1), we obtain the following equation:

V(@,(2), AA), M*(2), ) = 24V (a,. A, M2, ).

Thus, the physical cosmological term improved by the RG
equation is given by

V= 17(/1)64”()‘),
where
9(2) = 7 0(@(4), A(2), M*(4), p) (3.7)

is the physical cosmological constant, which does not
depend on the RG parameter such that dv(1)/dA = 0.

1
Sy —/deyD‘4{(4ﬂ)D/2 [2bgpd*p + (D —4)b(26 +3)pd g

PHYSICAL REVIEW D 96, 026010 (2017)

B. Explicit form of the physical cosmological constant

As seen above, the effective potential gives the physical
cosmological constant that is invariant under the RG flow.
Let us here calculate the explicit form of it at the one-loop
level, in which the background field ¢ is taken to be a
constant. We then consider the large b limit, while the ratios
A/b and M*/b? are taken to be the same order and also
a;/4n ~1/b is assumed. In this limit, the one-loop
approximation becomes valid, and loop corrections to
the effective potential are written by a function of these
ratios.

The conformal-factor field is here divided into the
constant background and quantum field ¢ as

=0+

Expanding the gravitational action up to the second order of
the quantum fields, ¢ and £, in the Landau gauge, we
obtain the following action:

Skin = Sy + Sn + S,

where each term is given by

2

]+<D_1)(D_Z)Mze(D‘z)"(paz(p—l—AeD"(l—I—D—(p2>},

2 2

_ p J1 (0) D-3 4 £ 2 ,(D-2)o 2
Sh_ d X _haﬁK hy5+(D—4)—0haj8 haﬁ—gM e I’laﬁa haﬂ .

ap,yo

2 D-2

So= [ a2y - DA+ ZaLigh e

The kinetic term of the traceless tensor field, whose
momentum representation is given by (2.9), is considered
in the Landau gauge. The terms with the D — 4 factor in S,
and S, come from the induced Wess-Zumino interactions in
(2.12) and (2.8), respectively. In the Landau gauge, there
are no contributions from the terms including curvature
functions explicitly in (2.12). The renormalization factors
in the last counterterm that is necessary for the one-loop
calculation of effective potential are given by

2 2
ZA—I——Z<—m—]/+IOg47T>,

_ (9@4n)* 5, 2
LM_(16b2 64 J\"D-4

in the modified minimal subtraction scheme. Here, note
that the o(a?) term of L,, gives extra correction 5a?/32 to
o, in (2.15), which is necessary in the approximation we
are considering here.

-7+ 10g4ﬂ>

1. Loops of the conformal-factor field

We first calculate the contribution from the conformal-
factor field to the effective potential. In order to normalize
the action, we rescale the quantum field ¢ as

. (@ |
P NapP 1+ -2+

Apart from the classical term of AeP?, we then obtain the
following expression:

D
$s=3 | GrpvDw(=K)

-/ éﬂ)k,) WK = AR + Bl (k).

where A and B are defined by
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A B
Nelelel
B A A
A A B A
Q-
A A

FIG. 1. One-loop contributions from the conformal-factor field.

_ (a3 (D-1)(D~-2)
4b[1+ (D —4)(c +3)]
(47[)%D2
4b[1+ (D —4)(c +3)]

B =

The one-loop correction to the effective potential is then
expressed as follows:

V, = —log [det(Dy'D,,)] 2
1 / k(AL B
2] e B\ TR

where Dy, = k* is the inverse of the propagator of the
rescaled field y. The corresponding Feynman diagrams are
depicted in Fig. 1. Expanding the logarithmic function into
power series of A and B, we obtain the following
expression:

_IK(=D) fdPk (A BY\”
V(p—iz n /(27[)D <_p+ﬁ>
S n _1\n—1 !
B %Z ( 11’3 m'(n l m)‘ (_A)mBn_mI2n—m(Z)’

(3.8)

where the loop integral /; is defined by

dPk 1
1= [ GapE

and z is an infinitesimal mass to regularize IR divergences.
After carrying out the calculation, we take z to be zero.
In the fourth-order quantum field theory, IR divergences
become stronger than those of conventional second-order
theories. So, throughout the loop calculations, we have to
introduce such a fictitious small mass that violates diffeo-
morphism invariance. We will then see that all IR diver-
gences indeed cancel out, including the consistency check,
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especially in the calculation of the effective potential in
which more strong IR divergences arise.

The integral /; vanishes at the limit z — 0, while 7, has
the UV and IR divergences as

1 2

The integral with / > 2 has the IR divergence only written
in powers of z as

| 1 1\ /-2
I)(z) = (471-)2 (I-1)(1-2) <Zz> ‘

Substituting these integral values into (3.8), we obtain the
following expression:

v _ L (EA SE + log 4z — log 72
T a2 |\2 74 )\Tp_g T v 0BT T I08S

AB1 B 1 1 S (=)t
RN
n! (_1 )mAmBn—m (22)2—2n+m

m!(n—m)!'2n—-m—-1)2n-—m-2)" (3.9)

The sum of the infinite series part can be evaluated using
the formula given in the Appendix. We can then take the
limit of z — 0 and show that IR divergences indeed cancel
out. In this way, we obtain the expression that has UV
divergences only as follows:

y,— L (B~ 2 tlogs
= ——— —_— (0]
T an)2\2" 4 J)\Tp=a T8

(417)2 [é(2B —A?)(3-1logB)

A A
—— V4B — A%arccos <—)] )
4 2vVB

Substituting the expressions of A and B, the part with the
pole is now expanded as

1 (B A*\ -2
@n2\2 4)D-4

+

2 2
= //lD_4eDG |:—EA<m - 20' - 2 + lOg 47'[ - 10gﬂ2>
92 2 8
+?M4<m—2G—§+210g4ﬂ'—10gﬂ2>:| .

The UV divergences are subtracted by the counterterm S...
Here, to fit the form of the counterterm, the ¢ dependence is
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recovered through the relation u?~*[1 — (D —4)logu] =
1 + o[(D —4)?]. Combining all finite terms and taking
D = 4 with replacing b with b., we obtain the following
effective potential:

oA 9n*M* (25
A 9PM* 641 A
— | —- 5— | log 1
b,  2b; bep

6ri A LTZMA‘ arccos 3 (3.10)
b, \|b, 4p? 2B A)|T

Here, note that apart from the overall factor the o
dependence disappears.

2. Loops of the traceless tensor field

We next calculate the contribution from the traceless
tensor field to the effective potential in Landau gauge,
whose diagrams are depicted in Fig. 2.8 We here rewrite the
action in the form

=3 [ Gy 00K 1 (s ().

The momentum function K”

a0 1S given by

0 Cl,o
Ky so = Kﬂv%aﬂ{lfjlf,iﬂ + {<D 4)o + }Iﬁtﬁ) Ao}

(D-2) _
C=1 M2 (D 2)0’
§D-3)
where KI(M)M = I(WM|§_)0 and Ifw/b is (2.11) at £ =0.

The one-loop correction to the effective potential is then
given by

1

Vh == IOg [dEt ((Kv(_()l));41/,051((};#/16)]_2

D+ 1)(D=-2) (=1)!
B 4 Z n

x [C',(z) +

n=1

(D =4)noC"'1,(2)],

where (K&})) wao 18 the free propagator of the traceless
tensor field (2.10) in the Landau gauge and we use
Tr[(1©)"] = Tr[I©] = (D + 1)(D —2)/2. Evaluating loop
integrals as before, we obtain the following expression:

¥There are diagrams, not depicted here, that are obtained by
replacing one of C with (D —4)s. However, they could be
absorbed in the definition of C by changing the normalization of
the field, as in the case of the conformal-factor field.
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C
C C
+
C C
FIG. 2. One-loop contributions from the traceless tensor field.

il

Vi

- (D —4)0] c?

2
X <m—y+log4ﬂ+logz2>

n Z4g(§2) + (D —4)6Ch <Z£2> }

where the functions g and % are defined by

(3.11)

n—]

9lx) = Z n( (n+2) e

= * 10g(1+x)_%x(x+2),

1+x

h(x):nf;n((;:_)nl)x”: 21~ tog(1 -+ )

The function (3.11) also becomes finite in the z — 0 limit,
and thus all IR divergences cancel out. We then obtain the
following expression:

1 (D+1)(D-2)
VvV, — _ c2, P-4
" <4n)2[ 8 g
x 2 + log4x + log *
- 0
D_a ! Tlogar+logu

- 56C? +gcz(1og c? - 3)], (3.12)
where the last term in (3.11) yields a finite quantity, but it
vanishes at D = 4 after all, and thus it is removed here.
Substituting the expressions of C into (3.12), we separate it
into the UV divergent part and the finite part at four
dimensions by expanding around four dimensions. After
subtracting the UV divergence by the counterterm, we obtain
the one-loop contribution from the traceless tensor field as

5 z4 Mt 21
Vy=-—=e* M*( log—— — =—
" T 128 (4n) ( Cleu’ 5 )
This also becomes independent of ¢ apart from the overall
factor.

(3.13)

3. Physical cosmological constant

Combining (3.10) and (3.13), we finally obtain the
physical cosmological term, which is expressed as

V=Ae"+V,+V,=0(AM a,u)e*,
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where
A 9 M* (25
v=A +b_c(7 —2log 4x) _ZTg <? - 410g47r)
A 9MY\ . 64n2A
b, 202 ) BTt

6xM?* |A  9mM* ArCCOS 3xM?
b, b, 4b? 2v/b. A\

(47)2a2M* 21)

128 164* 5

+ S a?M* (log

Thus, we obtain the physical cosmological constant v as a
function of the renormalized quantities of the cosmological
constant, the Planck mass, and the coupling constant. What
v becomes independent of ¢ reflects the invariance under the
RG flow discussed before. The physical cosmological

constant can be written in terms of @&,, A, and M? as 7(4)
(3.7). The approximation becomes good in the UV limit of
A — 0, where the running quantities decrease. The RG
analysis indicates that the value of (1) fixed there is also
preserved at low energies.

This result also indicates in the aspect of quantum field
theories as follows. The cosmological constant in the action
should be positive and not so small, since the action must
be bounded from below significantly for the path integral to
be stable. Nevertheless, we can take the physical cosmo-
logical constant to be any small value even though the
cosmological constant in the action is not small.

IV. CONCLUSION AND DISCUSSION

We studied what the physical cosmological constant is in
renormalizable quantum gravity indicating the asymptotic
background freedom, which is formulated in a nonperturba-
tive manner with treating the conformal-factor field exactly.
We here examined the RG equation of the effective action
with respect to the cosmological term that depends on the
conformal-factor field only. We then found that, due to the
diffeomorphism invariance and the nonrenormalization prop-
erty of the conformal-factor field, the constant v in the
effective potential becomes invariant under the RG flow, and
thus it gives the physical cosmological constant in this theory.

The physical cosmological constant was calculated at the
one-loop level explicitly. It consists of the renormalized
quantities of the cosmological constant, the Planck mass,
and the coupling constant so that we can take its value to be
small actually without suffering from the instability of the
path integral as mentioned in the last part of the previous
section. Since the theory is UV complete, it gives a different
viewpoint on the cosmological constant problem usually
discussed on the basis of the theory with a UV cutoff. The
value of the physical cosmological constant will be passed
on to the low-energy effective theory of gravity given by an
expansion in derivatives of the metric field [44].
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What are the physical quantities in renormalizable quan-
tum gravity which can be observed through cosmological
experiments? The physical cosmological constant is one of
them. The physical Planck mass also will be defined in the
same way through the effective action whose form is fixed by
diffeomorphism invariance. The dynamical IR scale Agg
indicated from the dynamics of the traceless tensor field is
also the physical scale that is RG invariant.” On the other
hand, we cannot define the S matrix as a physical quantity as
usual, because spacetime still fully fluctuateseven att = 0 so
that there is no flat spacetime to defined the asymptotic state.

Cosmologically, the primordial power spectrum of the
early Universe is one of the physical observables. In a linear
approximation which becomes valid at large b., such a
spectrum is given by the two-point function of the conformal-
factor field, which provides the scale-invariant spectrum that
is called the Harrison-Zel’dovich spectrum with positive
amplitude 1/b.. In general, however, there is no systematical
argument yet to derive observables or full spectra from Green
functions among diffeomorphism-invariant operators. So,
we cannot discuss the detail of the spectrum beyond the linear
approximation at present. It is left as a future issue.

Finally, we mention the dynamics of spacetime in our
quantum gravity theory. The background-free property will
violate completely at the dynamical scale Agg. Classical
spacetime then emerges. The correlationlength £, = 1/Aqg
specifies the area in which quantum gravity is effective and
outside of it becomes classical. It denotes that there is the
“minimal length” we can measure, without discretizing
spacetime. Thus, spacetime is practically quantized with
this scale. The existence of this scale has been indicated from
the sharp falloff of the large angular component of the cosmic
microwave background spectrum [44-46].1°

APPENDIX: EVALUATION OF INFINITE SERIES

The expression (3.9) is here decomposed as

Vy = L (B_ & 2 +logdrn | + U(z)
T an2\2 "4 )\Tp a7 TR o

In the following, we consider U(z), which is the part that
depends on the IR mass scale z.
Let us consider the infinite series defined by

o n

fxy) = sz

1yt
2n(2n—m—1)2n—m =2)

2n—m

X ym.

(A1)

’At the one-loop level, it is described as Agg = pe™ /A1,
where f, = —pa,.

"In this theory, inflation will ignite at the physical Planck
mass scale, not the physical cosmological constant scale, and
terminate at the dynamical scale Agg taking at the order of
10'7 GeV lower than the Planck mass scale.
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Introducing the variables

, B
xX°=—, Xy =
-

NN| b

the z-dependent part U can be expressed as

AB 1
4 4 72

i (F 7))

The infinite series f is evaluated as follows. We first
consider the function given by differentiating f(x,y)/x
twice with respect to x. It can be easily evaluated as

2 _1\n—-1_n n!
aax { P y)} : 131 z%(n—n:)!m!xzn_m_B(_y)'n

m
(_l)n—l 1
oo

1 B A?
—{——logz2 +—logz> +
7T 2

[\

— M

it

1

Then, integrating two times with respect to x, we obtain the
following result:
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xy—x/ du/ a2 ( (v,y))

3
_ 2 4 )
—4x +—24x +4( x)y g <y

Z 2}log(1+x2—xy)
2 A4 =2
+ (22 -2 /4 -y arctan [ 220,
4 2 2 —xy

Indeed, this function reproduces the series (A1) by expand-
ing in x and y.

Using this expression, we can obtain the loop correction
to the effective potential by taking the vanishing limit of z as

1 1 1
+{4(1 —x?) ——xy+ gxzy

limU(z) = 1 {1 (2B — A%)(3 —log B)

=0 (471’)2 8

A A
4B — AZ% arccos <—> }
2vVB

Here, we assume A < 2\/§ and use the formula
arctan(v' 1 — w?/w) = arccosw.  This
extended to the range of A > 2v/B using the expression
of the arccos function: arccosw = ilog(w + Vw? —1)
with w > 1. If we take the limit of B— 0, U reduces
to A2{-3 + log A%} /8(4x)>.

result can be
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