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We study the effective potential in renormalizable quantum gravity with a single dimensionless
conformal coupling without a Landau pole. In order to describe a background-free dynamics at the Planck
scale and beyond, the conformal-factor field is quantized exactly in a nonperturbative manner. Since this
field does not receive renormalization, the field-independent constant in the effective potential becomes
itself invariant under the renormalization group flow. That is to say, it gives the physical cosmological
constant. We explicitly calculate the physical cosmological constant at the one-loop level in the Landau
gauge. We find that it is given by a function of renormalized quantities of the cosmological constant, the
Planck mass, and the coupling constant, and it should be the observed value. It will give a new perspective
on the cosmological constant problem free from an ultraviolet cutoff.
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I. INTRODUCTION

The gravitational theories on the basis of the Einstein
action defined by the Ricci scalar cannot go beyond the
Planck scale. So, the Planck mass scale gives an ultraviolet
(UV) cutoff of such classical or quantum theories. Also, the
existence of the UV cutoff is one of the reasons behind
the cosmological constant problem [1]. In order to resolve
the problem, we have to build a field theory without the UV
cutoff, which necessarily becomes quantum gravity.
The quantization of gravity based on the Einstein action

[2–4] has a lot of difficulties. First of all, the theory is not
renormalizable. Furthermore, the path integral becomes
unstable even in a nonperturbative manner, because the
Ricci scalar is not bounded from below, like a scalar theory
with an odd potential. In addition, we cannot eliminate a
spacetime configuration with a singularity, because the
action becomes finite for such a spacetime solution.
In order to resolve these problems, quantum gravity

theories involving the square of the Riemann curvature
tensor have been proposed in the 1970s [5–8]. In those
days, however, one could not avoid the problem that
the negative-metric mode emerges as a gauge-invariant
mode as far as one dealt with all gravitational fields
perturbatively.1

To further resolve the ghost problem, we constructed
renormalizable quantum conformal gravity several years
ago [10–12] by applying a nonperturbative method learned
from the development of two-dimensional quantum gravity
[13–18]. The conformal factor of the metric field is treated

exactly without introducing a coupling constant for it
[19–25], and as a result the theory has Becchi-Rouet-
Stora-Tyutin (BRST) conformal symmetry in the UV limit,
which represents the background-free property of quantum
gravity as a gauge equivalency under conformal trans-
formations [26,27]. This symmetry makes ghost modes
unphysical exactly. Physical states are then given by
diffeomorphism-invariant real scalars only, which is con-
sistent with scalar-dominated scale-invariant spectra of the
early Universe [28,29].
In renormalizable quantum gravity, the cosmological

constant in the action, in general, receives renormalization
so that it becomes running. Since a physically measurable
quantity must be renormalization group (RG) invariant, it
cannot be thought of as a physical cosmological constant.
So, what is a RG-invariant cosmological constant has been
one of the important problems in quantum gravity.
In this paper, we consider what the physical cosmologi-

cal constant is in our renormalizable quantum gravity.
Recall that, when we define a physical mass of a particle in
quantum field theories, we usually adopt the on-shell
renormalization scheme. However, such a scheme is not
known for certain for renormalization of the cosmological
constant in quantum gravity. In order to answer it, we here
consider the effective potential with respect to the cosmo-
logical term that depends on the conformal-factor field only
and discuss its RG structure. Owing to the nonrenormal-
ization property of the conformal-factor field, we find that
the field-independent constant in the effective potential
becomes itself invariant under the RG flow, and thus it
gives the physical cosmological constant.
We then calculate the physical cosmological constant

explicitly at the one-loop level. The calculation is carried
out in the Landau gauge in order to reduce the number of

1There is an idea on unitarity [6] based on the work of Lee and
Wick [9], but it does not work in the UV limit where coupling
constants vanish.
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Feynman diagrams considerably and also to avoid some
indeterminate factors. We show that the physical cosmo-
logical constant is given by a function of renormalized
quantities of the cosmological constant, the Planck mass,
and the dimensionless coupling constant, just like the pole
mass can be written in terms of the renormalized mass and
coupling constant.

II. BRIEF SUMMARY OF RENORMALIZABLE
QUANTUM GRAVITY

First, we briefly summarize recent developments of the
renormalizable quantum field theory of conformal gravity
with adding the Einstein-Hilbert action and the cosmologi-
cal constant term [11,12]. The theory has been formulated
using dimensional regularization. The advantages of
employing this regularization are that it preserves diffeo-
morphism invariance and also the theory becomes inde-
pendent of the choice of the path integral measure owing toR
dDp ¼ δDð0Þ ¼ 0. And also, there are no quadratic and

quartic divergences, which are substantial in UV complete
theories. On the other hand, the contributions from the
measure such as conformal anomalies [30–33] are hidden
between D and four dimensions, and thus we have to
determine the D dependence of the action exactly.

A. Quantum gravity action

When we generalize fourth-order gravitational actions to
D-dimensional ones, a lot of ambiguities emerge, unlike
the case of ordinary gauge field action. In order to settle
such ambiguities, we have recently analyzed Hathrell’s
RG equations for quantum field theories with conformal
couplings in curved space [34–36]. We then found that
the ambiguities disappear and the D dependence of the
gravitational action can be determined at all orders [12,37].
The renormalizable quantum gravity has been defined by
using this action, because it should reduce to the curved
theory in the classical limit of gravity such as the large
number limit of matter fields.
The quantum gravity action determined in this way has

been expressed as

S ¼
Z

dDx
ffiffiffi
g

p �
1

t20
C2
μνλσ þ b0GD −

M2
0

2
Rþ Λ0 þ Lmatter

�
:

The first term is the Weyl action given by the square of
D-dimensional Weyl tensor Cμνλσ as

C2
μνλσ ¼ R2

μνλσ −
4

D − 2
R2
μν þ

2

ðD − 1ÞðD − 2ÞR
2;

and the second term is the Euler density generalized to
D dimensions that is significant for the conformal-
factor dynamics, which is exactly determined by solving
Hathrell’s RG equations as

GD ¼ G4 þ ðD − 4ÞχðDÞH2; ð2:1Þ

where G4 ¼ R2
μνλσ − 4R2

μν þ R2 is the usual Euler combi-
nation andH ¼ R=ðD − 1Þ. The function χðDÞ is expanded
about four dimensions as χðDÞ ¼ P∞

n¼1 χnðD − 4Þn−1,
whose coefficient χn can be determined order by order.
The first two terms have been calculated explicitly as χ1 ¼
1=2 and χ2 ¼ 3=4 [12,37].2 We have then shown that these
are universal values independent of the gauge group and the
contents of matter fields as far as they are conformally
coupled.3

The bare quantity t0 is a single dimensionless gravita-
tional coupling constant, while b0 is not an independent
coupling as mentioned below. The bare mass parameters
M0 and Λ0 are the Planck mass and the cosmological
constant, respectively. The last term Lmatter denotes conven-
tional second-order matter fields with dimensionless con-
formal couplings.
The conformal anomaly associated with the action (2.1)

is then expressed in the form ED ¼ GD − 4χðDÞ∇2H [37].
Here, it is significant that the familiar ambiguous ∇2R term
is fixed completely, and due to χ1 ¼ 1=2 this combination
reduces at D → 4 to E4 ¼ G4 − 2∇2R=3 proposed by
Riegert [19].

B. Renormalization procedure and asymptotic
background freedom

The perturbation in t0 implies that the metric field is
expanded about a conformally flat spacetime satisfying
Cμνλσ ¼ 0, which is defined by

gμν ¼ e2ϕḡμν;

ḡμν ¼ ðĝet0h0Þμν ¼ ĝμλ

�
δλν þ t0hλ0ν þ

t20
2
hλ0σh

σ
0ν þ � � �

�
;

ð2:2Þ

where h0μν ¼ ĝμλhλ0ν, h
μ
0μ ¼ 0, and ĝμν is the background

metric. The quantum gravity can be thus described as a
quantum field theory defined on the background ĝμν.
The significant feature of this theory is that the con-

formal factor e2ϕ is written in the exponential form to
maintain its positivity and treated exactly without intro-
ducing its own coupling constant. It ensures the independ-
ence under the conformal change of the background
ĝμν → e2σ ĝμν, because, as is apparent from (2.2), this
change can be absorbed by rewriting the integration

2Furthermore, from the analysis of QED in curved space [37],
it has been found that χ3 is given by 1=3, which becomes
necessary in calculations of three loops or more.

3If there is a nonconformal dimensionless coupling, we have
to add the pure R2 term to the action in addition to C2

μνλσ and GD.
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variable as ϕ → ϕ − σ in quantized gravity, which is
algebraically represented as BRST conformal symmetry.
Consequently, we can choose the flat background without
affecting the results.
The renormalization factors for the traceless tensor

field and the coupling constant are defined as usual
by h0μν ¼ Z1=2

h hμν and t0 ¼ μ2−D=2Ztt, where μ is an
arbitrary mass scale to make up for the loss of mass
dimensions, and thus the renormalized coupling t
becomes dimensionless. On the other hand, since we
treat the conformal-factor field exactly without introduc-
ing the corresponding coupling constant, diffeomorphism
invariance requires that it does not receive renormaliza-
tion such that4

Zϕ ¼ 1: ð2:3Þ

It can be easily understand from the fact that gauge
invariance results in the relationship between the
renormalization factor of the coupling constant and that
of the corresponding field.5 No coupling constant thus
implies that there is no field-renormalization factor. This
is one of the most significant properties in our renorm-
alization calculations, which reflects the independence
of how to choose the background metric as men-
tioned above.
The beta function of αt ¼ t2=4π is defined by

βt ≡ ðμ=αtÞdαt=dμ ¼ D − 4þ β̄t. At the one-loop level,
we obtain

β̄t ¼ −
�

1

120
ðNS þ 6NF þ 12NAÞ þ

197

30

�
αt
4π

for NS conformally coupled scalars, NF fermions, and NA
gauge fields [30–32]. The last term is the contribution
from the gravitational field [7,21,23]. The coupling αt
thus indicates the asymptotic freedom, which justifies
performing the perturbation theory about conformally flat
spacetime.
Here, we emphasize that the asymptotic freedom of the

traceless tensor field does not mean the realization of a
picture in which free gravitons are propagating in the
flat spacetime, because the conformal factor is still non-
perturbative and spacetime totally fluctuates quantum

mechanically. So, we call it the asymptotic background
freedom. We can thus go beyond the Planck scale.
In addition to these renormalization factors, we also

introduce the bare parameter b0 to renormalize UV diver-
gences proportional to the GD term. Since its volume
integral becomes topological at four dimensions, b0 is not
an independent dynamical coupling, and thus we expand it
in a pure-pole series as

b0 ¼
μD−4

ð4πÞD=2

X∞
n¼1

bn
ðD − 4Þn : ð2:4Þ

Since the expansion of the volume integral of GD starts
from oðD − 4Þ, the finite terms, namely, Wess-Zumino
actions for conformal anomalies, come out with offsetting
this zero by the pole in b0, and those describe the dynamics
of the conformal-factor field. Here, bnðn ≥ 2Þ depends
on the coupling constants only, while the simple-pole
residue has a coupling-independent part, and thus it is
divided as

b1 ¼ bþ b01; ð2:5Þ

where b01 is coupling dependent and b is a constant part.
In order to carry out the renormalization systematically

incorporating the conformal-factor dynamics induced
quantum mechanically, we have proposed the following
procedure. For the moment, b is regarded as a new coupling
constant. The effective action is then finite up to the
topological term as follows:

Γ ¼ μD−4

ð4πÞD=2

b − bc
D − 4

Z
dDx

ffiffiffî
g

p
Ĝ4 þ Γrenðαt; bÞ;

where Γren is the finite part obtained by the standard
renormalization procedure. The divergent term exists in
a curved background only. The one-loop constant bc can be
calculated independently of b [7,21,23,30–32], which is
given by

bc ¼
1

360
ðNS þ 11NF þ 62NAÞ þ

769

180
: ð2:6Þ

After the renormalization is carried out, we take b ¼ bc at
four dimensions. In this way, we obtain the effective action
whose dynamics is governed by a single dimensionless
gravitational coupling αt.
From the RG equation μdb0=dμ ¼ 0, we obtain the

following expression:

μ
db
dμ

¼ ðD − 4Þβ̄b; ð2:7Þ

where β̄b is a finite function given by

4This nonrenormalization theorem has been demonstrated
explicitly in loop calculations of higher order [10–12].

5For instance, ZeZ
1=2
3 ¼ 1 in QED such that e0A0μ ¼ eAμ at

D ¼ 4. In general, the argument precisely holds only for the
background gauge field in the background field method [38]. For
the ϕ field, however, it is true because this field is not gauge fixed,
unlike the traceless tensor field, so that the renormalization factor
of ϕ is the same to that of its background field and it becomes
unity from diffeomorphism invariance. This fact is used in the
next section.
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β̄b ¼ −
�∂b1
∂b

�
−1
�
b1 þ αt

∂b1
∂αt

�
:

Here, in order to be able to replace the coupling b with
the constant bc at the end, the condition μdb=dμ ¼ 0
should be satisfied at four dimensions. Therefore, (2.7)
ensures the validity of the renormalization procedure
proposed above.
From the RG analysis of QED and QCD in curved

space, we find that b01 in (2.5) arises at the fourth
order of the gauge-coupling constant [12,35–37]. From
this fact and the similarity between the gauge field
and the traceless tensor field, we assume that the αt
dependence of b01 is also given by b01 ¼ oðα2t Þ and thus
β̄b ¼ −bþ oðα2t Þ.6

C. Propagators and interactions

In the following, we take the flat background ĝμν ¼ δμν.
The Weyl action in D dimensions is then expanded as
follows:

1

t20

Z
dDx

ffiffiffi
g

p
FD ¼ 1

t20

Z
dDxeðD−4ÞϕC̄2

μνλσ

¼
Z

dDx

�
1

t20
C̄2
μνλσþ

D−4

t20
ϕC̄2

μνλσ þ�� �
�
:

ð2:8Þ

Here, the gravitational quantities with the bar are defined
by using the metric ḡμν in (2.2). The first term of the right-
hand side gives the propagator and self-interactions of the
traceless tensor field. The second and other terms are the
induced Wess-Zumino interactions related to the conformal
anomaly.
The kinetic term of the traceless tensor field is given by

Z
dDx

�
D − 3

D − 2
ðh0μν∂4h0μν þ 2χ0μ∂2χ0μÞ

−
D − 3

D − 1
χ0μ∂μ∂νχ0ν

�
;

where χ0μ ¼ ∂νh0μν and ∂2 ¼ ∂μ∂μ. The same lower indices
denote contraction in the flat metric δμν. According to the
standard procedure of gauge fixing, we introduce the
following gauge-fixing term [7]:

Sgf ¼
Z

dDx

�
1

2ζ0
χ0μNμνχ0ν

�
;

where

Nμν ¼
2ðD − 3Þ
D − 2

�
−2∂2δμν þ

D − 2

D − 1
∂μ∂ν

�
:

The gauge parameter is renormalized as ζ0 ¼ Zhζ. We here
disregard the ghost action, because the ghost field is not
coupled with the conformal-factor field directly so that it is
not necessary in the following calculations.
Let us present the propagator of the traceless tensor field.

The equation of motion is now given byKðζÞ
μν;λσðkÞhλσðkÞ¼0

in momentum space, where

KðζÞ
μν;λσðkÞ

¼ 2ðD − 3Þ
D − 2

�
IHμν;λσk

4 þ 1 − ζ

ζ

�
1

2
k2ðδμλkνkσ þ δνλkμkσ

þ δμσkνkλ þ δνσkμkλÞ −
1

D − 1
k2ðδμνkλkσ þ δλσkμkνÞ

þ 1

DðD − 1Þ δμνδλσk
4 −

D − 2

D − 1
kμkνkλkσ

��
ð2:9Þ

and IHμν;λσ ¼ðδμλδνσþδμσδνλÞ=2−δμνδλσ=D. By solving the

inverse of KðζÞ
μν;λσ , we obtain the propagator in the arbitrary

gauge as

hhμνðkÞhλσð−kÞi ¼
D − 2

2ðD − 3Þ
1

k4
IðζÞμν;λσðkÞ; ð2:10Þ

where

IðζÞμν;λσðkÞ ¼ IHμν;λσ þ ðζ − 1Þ
�
1

2

�
δμλ

kνkσ
k2

þ δνσ
kμkλ
k2

þ δμσ
kνkλ
k2

þ δνλ
kμkσ
k2

�

−
1

D − 1

�
δμν

kλkσ
k2

þ δλσ
kμkν
k2

�

þ 1

DðD − 1Þ δμνδλσ −
D − 2

D − 1

kμkνkλkσ
k4

�
: ð2:11Þ

This tensor satisfies

kμI
ðζÞ
μν;λσðkÞ ¼ ζ

�
1

2
kλδνσ þ

1

2
kσδνλ −

1

D
kνδλσ

�
;

and thus it becomes transverse when ζ ¼ 0. The choice of
ζ ¼ 0 is called the Landau gauge, while ζ ¼ 1 is called the
Feynman gauge.
The kinetic term and self-interaction terms of the

conformal-factor field are derived from the b0GD action.
From (2.1) and (2.4), this action is expanded as follows:

6This assumption should be verified through explicit two-loop
calculations of three-point functions of the traceless tensor field
or indirect calculations using the RG equation, but this work is so
hard and has not been completed yet.
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b0

Z
dDx

ffiffiffi
g

p
GD ¼ μD−4

ð4πÞD=2

Z
dDx

��
b1

D−4
þ b2
ðD−4Þ2þ���

�
Ḡ4þ

�
b1þ

b2
D−4

þ�� �
��

2ϕΔ̄4ϕþ Ḡ4ϕ−
2

3
∇̄2R̄ϕþ 1

18
R̄2

�

þ½ðD−4Þb1þ����ðϕ2Δ̄4ϕþ3ϕ∇̄4ϕþ�� �Þþ �� �
�
; ð2:12Þ

where
ffiffiffi
g

p Δ4 is the fourth-order differential operator that
becomes conformally invariant at four dimensions defined
by Δ4¼∇4þ2Rμν∇μ∇ν−2R∇2=3þ∇μR∇μ=3 [19]. The
terms that we do not use in the next section are denoted by
the dots here.
The first group of the expansion (2.12) gives the

counterterm subtracting UV divergences proportional to
the Euler term Ḡ4, which determine the residue bn in (2.4).
The second group gives the Riegert action [19], which is
the Wess-Zumino action for the conformal anomaly E4. It
includes the bilinear term of the conformal-factor field as

μD−4

ð4πÞD=2 2b
Z

dDxϕ∂4ϕ

at the lowest of the perturbations. Since this term is
independent of the coupling t, we can use it as the kinetic
term, and the propagator is then given by

hϕðkÞϕð−kÞi ¼ μ4−D
ð4πÞD=2

4b
1

k4
: ð2:13Þ

Therefore, quantum corrections from this field are
expanded in 1=b, which corresponds to considering the
large-N expansion for the number of matter fields (2.6).
Since the conformal-factor field does not propagate at
b → ∞, it gives the classical limit of gravity.
The third group of (2.12) gives the self-interaction

among the conformal-factor fields. Since it has the
D − 4 factor, it becomes effective at the one-loop level
and more. And also, there are many interactions including
the traceless tensor field, but most of them can be dropped
here when we employ the Landau gauge.
In the following, all calculations are carried out in the

Landau gauge in order to reduce the number of Feynman
diagrams and also to obtain physically acceptable results
directly. It is because in the arbitrary gauge the b∇̄2R̄ϕ
interaction in (2.12) becomes effective and then yields
contributions with a positive power of b that do not vanish
in the classical limit [12]. We think that such an unphysical
behavior will disappear at last, but it is difficult to show that
explicitly at present.

D. Renormalizations of mass parameters [11,12]

The Einstein-Hilbert action is expanded up to the second
order of the coupling constant as

−
M2

0

2

Z
dDx

ffiffiffi
g

p
R

¼−
M2

0

2

Z
dDxeðD−2ÞϕfR̄−ðD−1Þ∇̄2ϕg

¼3

2
M2

0

Z
dDxeðD−2Þϕ

�
D−1

3
∂2ϕþ t20

12
∂λh0μν∂λh0μνþ���

�
;

where the dots denote the interaction terms that do not
contribute to loop calculations using the Landau gauge in
the next section. The renormalization factor is defined by
M2

0 ¼ μD−4ZEHM2. The anomalous dimension for the
Planck mass is then defined by γEH ≡ −ðμ=M2ÞdM2=dμ ¼
D − 4þ γ̄EH, where γ̄EH ¼ μdðlogZEHÞ=dμ, which has
been calculated in the Landau gauge as

γ̄EH ¼ 1

b
þ 1

b2
þ 5

4

αt
4π

: ð2:14Þ

Here, oð1=b2Þ comes from two-loop diagrams, and others
are from one-loop diagrams. At the end, b is replaced with
bc at four dimensions.
The cosmological term is simply written in terms of the

exponential factor of the ϕ field as

Λ0

Z
dDx

ffiffiffi
g

p ¼ Λ0

Z
dDxeDϕ:

The renormalization factor is defined by Λ0 ¼ μD−4ZΛðΛþ
LMM4Þ, where LM is the pure-pole term. The anomalous
dimension for the cosmological constant is defined by
γΛ ≡ −ðμ=ΛÞdΛ=dμ ¼ D − 4þ γ̄Λ þ ðM4=ΛÞδ̄Λ, where
γ̄Λ ¼ μdðlogZΛÞ=dμ and δ̄Λ ¼ μdLM=dμ − ðD − 4ÞLMþ
ðγ̄Λ − 2γ̄EHÞLM. The calculation in the Landau gauge has
been carried out up to the first order of αt as

γ̄Λ ¼ 4

b
þ 8

b2
þ 20

b3
−
310

9b
αt
4π

; δ̄Λ ¼ −
9ð4πÞ2
8b2

ð2:15Þ

with b ¼ bc. Here, oð1=b3Þ in γ̄Λ comes from three-loop
diagrams, and oðαt=bÞ is from two-loop diagrams. There is
no correction of the first order of αt to δ̄Λ. This anomalous
dimension vanishes at b → ∞, which is consistent with the
classical limit of gravity.
Here, note that the αt-independent terms in γ̄EH (2.14)

and γ̄Λ (2.15) agree with the exact solutions of these
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anomalous dimensions derived using BRST conformal
symmetry at αt ¼ 0 [22,24,26,27].

III. PHYSICAL COSMOLOGICAL CONSTANT IN
QUANTUM GRAVITY

Now, let us discuss the effective action in our renorma-
lizable quantum gravity. We here consider the effective
action that is expanded in powers of the conformal-factor
field background σ as

ΓðσÞ ¼
X
n

1

n!

Z
dDx1…dDxnΓðnÞðx1;…; xnÞσðx1Þ…σðxnÞ

¼
X
n

1

n!

Z
dDk1
ð2πÞD …

dDkn
ð2πÞD ð2πÞDδðDÞðk1 þ � � � þ knÞ

× ΓðnÞðk1;…; knÞσðk1Þ…σðknÞ;

where ΓðnÞ is the renormalized n-point Green function
given by the sum of all 1PI Feynman diagrams with n
external legs of σ.
The RG analysis of the 1PI Green function ΓðnÞ can be

carried out as in the case of the φ4 theory [39–43]. One of
the crucial differences is that the conformal-factor field is
not renormalized such that Zϕ ¼ 1 and also for its back-
ground. Therefore, the renormalized ΓðnÞ is the same as the
bare one, and thus μdΓðnÞ=dμ ¼ 0 is satisfied.7

The effective potential V is given by the zero momentum
part of ΓðnÞðk1;…; knÞ, which is expressed as

ΓðσÞjV ¼
Z

dDxVðσÞ ¼
X
n

1

n!
ΓðnÞð0;…; 0Þ

Z
dDxσnðxÞ:

The diffeomorphism invariance implies thatΓðnÞð0;…; 0Þ ¼
vDn, and thus the effective potential has the form

VðσÞ ¼ veDσðxÞ: ð3:1Þ

The RG equation implies that v is scale invariant such as

μ
d
dμ

v ¼ 0:

We thus find that the effective potential gives the
physical cosmological constant, which can be observed
cosmologically.
Before calculating the physical cosmological constant at

the one-loop level explicitly, we first see the RG structure of
the 1PI Green function, which will give a RG improvement
of the effective action.

A. RG structure

The RG equation is derived from the condition
μdΓðnÞ=dμ ¼ 0, which gives the following equation:

�
μ
∂
∂μþ βtαt

∂
∂αt − γΛΛ

∂
∂Λ − γEHM2

∂
∂M2

�
ΓðnÞ

× ðkj; αt;Λ;M2; μÞ ¼ 0; ð3:2Þ

where we take D ¼ 4 and thus the differential term
ðD − 4Þβ̄b∂=∂b is removed.
Changing the momentum variable as kj → λkj and doing

the dimensional analysis, we find that ΓðnÞ has the follow-
ing form:

ΓðnÞðλkj; αt;Λ;M2; μÞ ¼ μ4ΩðnÞ
�
λkj
μ

; αt;
Λ
μ4

;
M2

μ2

�
:

This implies that ΓðnÞ satisfies the differential equation

�
μ
∂
∂μþ 4Λ

∂
∂Λþ 2M2

∂
∂M2

þ λ
∂
∂λ − 4

�
ΓðnÞ

× ðλkj; αt;Λ;M2; μÞ ¼ 0: ð3:3Þ

Therefore, combining (3.2) and (3.3) and removing the
partial derivative of μ, we obtain the expression

�
−λ

∂
∂λþβtðαtÞαt

∂
∂αt− ½4þ γΛðαt;Λ;M2Þ�Λ ∂

∂Λ
− ½2þ γEHðαtÞ�M2

∂
∂M2

þ4

�
ΓðnÞðλkj;αt;Λ;M2;μÞ¼ 0:

ð3:4Þ

Here, we introduce the running coupling constant ~αtðλÞ,
the running cosmological constant ~ΛðλÞ, and the running
Planck mass ~MðλÞ, which are defined by the following
differential equations:

−λ
d
dλ

~αtðλÞ ¼ βtð ~αtðλÞÞ ~αtðλÞ;

−λ
d
dλ

~ΛðλÞ ¼ −½4þ γΛð ~αtðλÞ; ~ΛðλÞ; ~M2ðλÞÞ� ~ΛðλÞ;

−λ
d
dλ

~M2ðλÞ ¼ −½2þ γEHð ~αtðλÞÞ� ~M2ðλÞ: ð3:5Þ

If we replace αt, Λ, and M2 in Eq. (3.4) with the
corresponding running quantities ~αt, ~Λ, and ~M2, respec-
tively, we find that this equation can be written with the
help of the defining Eqs. (3.5) as

�
−λ

d
dλ

þ 4

�
ΓðnÞðλkj; ~αtðλÞ; ~ΛðλÞ; ~M2ðλÞ; μÞ ¼ 0:7In the φ4 theory, the field receives renormalization so that ΓðnÞ

is not RG invariant, though ΓðφÞ itself is RG invariant.
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Here, note that this RG equation is written in terms of the
total differential with respect to λ, not the partial one. The
solution is thus given by

ΓðnÞðλkj; ~αtðλÞ; ~ΛðλÞ; ~M2ðλÞ; μÞ ¼ λ4ΓðnÞðkj; αt;Λ;M2; μÞ
ð3:6Þ

under the conditions of ~αtð1Þ ¼ αt, ~Λð1Þ ¼ Λ, and
~M2ð1Þ ¼ M2.
From the solution (3.6) with kj ¼ 0 and the expression

(3.1), we obtain the following equation:

Vð ~αtðλÞ; ~ΛðλÞ; ~M2ðλÞ; μÞ ¼ λ4Vðαt;Λ;M2; μÞ:

Thus, the physical cosmological term improved by the RG
equation is given by

V ¼ ~vðλÞe4σðxÞ;

where

~vðλÞ ¼ λ−4vð ~αtðλÞ; ~ΛðλÞ; ~M2ðλÞ; μÞ ð3:7Þ

is the physical cosmological constant, which does not
depend on the RG parameter such that d~vðλÞ=dλ ¼ 0.

B. Explicit form of the physical cosmological constant

As seen above, the effective potential gives the physical
cosmological constant that is invariant under the RG flow.
Let us here calculate the explicit form of it at the one-loop
level, in which the background field σ is taken to be a
constant. We then consider the large b limit, while the ratios
Λ=b and M4=b2 are taken to be the same order and also
αt=4π ∼ 1=b is assumed. In this limit, the one-loop
approximation becomes valid, and loop corrections to
the effective potential are written by a function of these
ratios.
The conformal-factor field is here divided into the

constant background and quantum field φ as

ϕ ¼ σ þ φ:

Expanding the gravitational action up to the second order of
the quantum fields, φ and hμν, in the Landau gauge, we
obtain the following action:

Skin ¼ Sϕ þ Sh þ Sc;

where each term is given by

Sϕ ¼
Z

dDxμD−4
�

1

ð4πÞD=2 ½2bφ∂4φþðD− 4Þbð2σþ 3Þφ∂4φ� þ ðD− 1ÞðD− 2Þ
2

M2eðD−2Þσφ∂2φþΛeDσ

�
1þD2

2
φ2

��
;

Sh ¼
Z

dDx

�
1

2
hαβK

ð0Þ
αβ;γδhγδþðD− 4ÞD− 3

D− 2
σhαβ∂4hαβ −

t2

8
M2eðD−2Þσhαβ∂2hαβ

�
;

Sc ¼
Z

dDxμD−4½ðZΛ − 1ÞΛþZΛLMM4�eDσ:

The kinetic term of the traceless tensor field, whose
momentum representation is given by (2.9), is considered
in the Landau gauge. The terms with the D − 4 factor in Sϕ
and Sh come from the inducedWess-Zumino interactions in
(2.12) and (2.8), respectively. In the Landau gauge, there
are no contributions from the terms including curvature
functions explicitly in (2.12). The renormalization factors
in the last counterterm that is necessary for the one-loop
calculation of effective potential are given by

ZΛ − 1 ¼ −
2

b

�
−

2

D − 4
− γ þ log 4π

�
;

LM ¼
�
9ð4πÞ2
16b2

−
5

64
α2t

��
−

2

D − 4
− γ þ log 4π

�

in the modified minimal subtraction scheme. Here, note
that the oðα2t Þ term of LM gives extra correction 5α2t =32 to
δ̄Λ in (2.15), which is necessary in the approximation we
are considering here.

1. Loops of the conformal-factor field

We first calculate the contribution from the conformal-
factor field to the effective potential. In order to normalize
the action, we rescale the quantum field φ as

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4πÞD2
4bμD−4½1þ ðD − 4Þðσ þ 3

2
Þ�

s
ψ :

Apart from the classical term of ΛeDσ , we then obtain the
following expression:

Sϕ ¼ 1

2

Z
dDk
ð2πÞD ψðkÞDψψð−kÞ

¼ 1

2

Z
dDk
ð2πÞD ψðkÞ½k4 − Ak2 þ B�ψð−kÞ;

where A and B are defined by
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A ¼ ð4πÞD2ðD − 1ÞðD − 2Þ
4b½1þ ðD − 4Þðσ þ 3

2
Þ�M

2eðD−2Þσ;

B ¼ ð4πÞD2D2

4b½1þ ðD − 4Þðσ þ 3
2
Þ�Λe

Dσ:

The one-loop correction to the effective potential is then
expressed as follows:

Vϕ ¼ − log ½detðD−1
0 Dψ Þ�−1

2

¼ 1

2

Z
dDk
ð2πÞD log

�
1 −

A
k2

þ B
k4

�
;

where D0 ¼ k4 is the inverse of the propagator of the
rescaled field ψ . The corresponding Feynman diagrams are
depicted in Fig. 1. Expanding the logarithmic function into
power series of A and B, we obtain the following
expression:

Vϕ ¼ 1

2

X∞
n¼1

ð−1Þn−1
n

Z
dDk
ð2πÞD

�
−
A
k2

þ B
k4

�
n

¼ 1

2

X∞
n¼1

Xn
m¼0

ð−1Þn−1
n

n!
m!ðn −mÞ! ð−AÞ

mBn−mI2n−mðzÞ;

ð3:8Þ

where the loop integral Il is defined by

IlðzÞ ¼
Z

dDk
ð2πÞD

1

ðk2 þ z2Þl

and z is an infinitesimal mass to regularize IR divergences.
After carrying out the calculation, we take z to be zero.
In the fourth-order quantum field theory, IR divergences

become stronger than those of conventional second-order
theories. So, throughout the loop calculations, we have to
introduce such a fictitious small mass that violates diffeo-
morphism invariance. We will then see that all IR diver-
gences indeed cancel out, including the consistency check,

especially in the calculation of the effective potential in
which more strong IR divergences arise.
The integral I1 vanishes at the limit z → 0, while I2 has

the UV and IR divergences as

I2ðzÞ ¼
Γð2 − D

2
Þðz2ÞD2−2

ð4πÞD2

¼ 1

ð4πÞ2
�
−

2

D − 4
− γ þ log 4π − log z2

�
:

The integral with l > 2 has the IR divergence only written
in powers of z as

IlðzÞ ¼
1

ð4πÞ2
1

ðl − 1Þðl − 2Þ
�
1

z2

�
l−2

:

Substituting these integral values into (3.8), we obtain the
following expression:

Vϕ ¼ 1

ð4πÞ2
��

B
2
−
A2

4

��
−

2

D − 4
− γ þ log 4π − log z2

�

þ AB
4

1

z2
−
B2

24

1

z4

�
þ 1

2ð4πÞ2
X∞
n¼3

Xn
m¼0

ð−1Þn−1
n

×
n!

m!ðn −mÞ!
ð−1ÞmAmBn−mðz2Þ2−2nþm

ð2n −m − 1Þð2n −m − 2Þ : ð3:9Þ

The sum of the infinite series part can be evaluated using
the formula given in the Appendix. We can then take the
limit of z → 0 and show that IR divergences indeed cancel
out. In this way, we obtain the expression that has UV
divergences only as follows:

Vϕ ¼
1

ð4πÞ2
�
B
2
−
A2

4

��
−

2

D−4
− γþ log4π

�

þ 1

ð4πÞ2
�
1

8
ð2B−A2Þð3− logBÞ

−
A
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B−A2

p
arccos

�
A

2
ffiffiffiffi
B

p
��

:

Substituting the expressions of A and B, the part with the
pole is now expanded as

1

ð4πÞ2
�
B
2
−
A2

4

�
−2

D − 4

¼ μD−4eDσ

�
−
2

b
Λ
�

2

D − 4
− 2σ − 2þ log 4π − log μ2

�

þ 9π2

b2
M4

�
2

D − 4
− 2σ −

8

3
þ 2 log 4π − log μ2

��
:

The UV divergences are subtracted by the counterterm Sc.
Here, to fit the form of the counterterm, the μ dependence is

FIG. 1. One-loop contributions from the conformal-factor field.
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recovered through the relation μD−4½1 − ðD − 4Þ log μ� ¼
1þ o½ðD − 4Þ2�. Combining all finite terms and taking
D ¼ 4 with replacing b with bc, we obtain the following
effective potential:

Vϕ ¼ e4σ
�
Λ
bc

ð7 − 2 log 4πÞ − 9π2M4

2b2c

�
25

3
− 4 log 4π

�

−
�
Λ
bc

−
9π2M4

2b2c

�
log

64π2Λ
bcμ4

−
6πM2

bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
bc

−
9π2M4

4b2c

s
arccos

�
3πM2

2
ffiffiffiffiffiffiffiffi
bcΛ

p
��

: ð3:10Þ

Here, note that apart from the overall factor the σ
dependence disappears.

2. Loops of the traceless tensor field

We next calculate the contribution from the traceless
tensor field to the effective potential in Landau gauge,
whose diagrams are depicted in Fig. 2.8 We here rewrite the
action in the form

Sh ¼
1

2

Z
dDk
ð2πÞD hμνðkÞKh

μν;λσðkÞhλσð−kÞ:

The momentum function Kh
μν;λσ is given by

Kh
μν;λσ ¼ Kð0Þ

μν;αβ

�
IHαβ;λσ þ

�
ðD − 4Þσ þ C

k2

�
Ið0Þαβ;λσ

�
;

C ¼ t2
ðD − 2Þ
8ðD − 3ÞM

2eðD−2Þσ;

where Kð0Þ
μν;λσ ¼ KðζÞ

μν;λσjζ→0 and Ið0Þμν;λσ is (2.11) at ζ ¼ 0.
The one-loop correction to the effective potential is then
given by

Vh ¼ − log ½det ððK−1
ð0ÞÞμν;αβKh

αβ;λσÞ�−
1
2

¼ ðDþ 1ÞðD − 2Þ
4

X∞
n¼1

ð−1Þn−1
n

× ½CnInðzÞ þ ðD − 4ÞnσCn−1In−1ðzÞ�;

where ðK−1
ð0ÞÞμν;λσ is the free propagator of the traceless

tensor field (2.10) in the Landau gauge and we use
Tr½ðIð0ÞÞn� ¼Tr½Ið0Þ� ¼ ðDþ1ÞðD−2Þ=2. Evaluating loop
integrals as before, we obtain the following expression:

Vh ¼
ðDþ 1ÞðD − 2Þ

4ð4πÞ2
��

1

2
− ðD − 4Þσ

�
C2

×
�

2

D − 4
− γ þ log 4π þ log z2

�

þ z4g

�
C
z2

�
þ ðD − 4ÞσC2h

�
C
z2

��
; ð3:11Þ

where the functions g and h are defined by

gðxÞ ¼
X∞
n¼1

ð−1Þn−1
nðnþ 1Þðnþ 2Þ x

nþ2

¼ ð1þ xÞ2
2

logð1þ xÞ − 3

4
xðxþ 2Þ;

hðxÞ ¼
X∞
n¼1

ð−1Þn
nðnþ 1Þ x

n ¼ 1þ x
x

½1 − logð1þ xÞ�:

The function (3.11) also becomes finite in the z → 0 limit,
and thus all IR divergences cancel out. We then obtain the
following expression:

Vh ¼
1

ð4πÞ2
�
−
ðDþ 1ÞðD − 2Þ

8
C2μD−4

×

�
−

2

D − 4
− γ þ log 4π þ log μ2

�

− 5σC2 þ 5

8
C2ðlogC2 − 3Þ

�
; ð3:12Þ

where the last term in (3.11) yields a finite quantity, but it
vanishes at D ¼ 4 after all, and thus it is removed here.
Substituting the expressions ofC into (3.12),we separate it

into the UV divergent part and the finite part at four
dimensions by expanding around four dimensions. After
subtracting theUVdivergence by the counterterm,we obtain
the one-loop contribution from the traceless tensor field as

Vh ¼
5

128
e4σ

t4

ð4πÞ2M
4

�
log

t4M4

16μ4
−
21

5

�
: ð3:13Þ

This also becomes independent of σ apart from the overall
factor.

3. Physical cosmological constant

Combining (3.10) and (3.13), we finally obtain the
physical cosmological term, which is expressed as

V ¼ Λe4σ þ Vϕ þ Vh ¼ vðΛ;M2; αt; μÞe4σ;

FIG. 2. One-loop contributions from the traceless tensor field.

8There are diagrams, not depicted here, that are obtained by
replacing one of C with ðD − 4Þσ. However, they could be
absorbed in the definition of C by changing the normalization of
the field, as in the case of the conformal-factor field.
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where

v ¼ Λþ Λ
bc

ð7 − 2 log 4πÞ − 9π2M4

2b2c

�
25

3
− 4 log 4π

�

−
�
Λ
bc

−
9π2M4

2b2c

�
log

64π2Λ
bμ4

−
6πM2

bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
bc

−
9π2M4

4b2c

s
arccos

�
3πM2

2
ffiffiffiffiffiffiffiffi
bcΛ

p
�

þ 5

128
α2t M4

�
log

ð4πÞ2α2t M4

16μ4
−
21

5

�
:

Thus, we obtain the physical cosmological constant v as a
function of the renormalized quantities of the cosmological
constant, the Planck mass, and the coupling constant. What
v becomes independent of σ reflects the invariance under the
RG flow discussed before. The physical cosmological
constant can be written in terms of ~αt, ~Λ, and ~M2 as ~vðλÞ
(3.7). The approximation becomes good in the UV limit of
λ → 0, where the running quantities decrease. The RG
analysis indicates that the value of ~vðλÞ fixed there is also
preserved at low energies.
This result also indicates in the aspect of quantum field

theories as follows. The cosmological constant in the action
should be positive and not so small, since the action must
be bounded from below significantly for the path integral to
be stable. Nevertheless, we can take the physical cosmo-
logical constant to be any small value even though the
cosmological constant in the action is not small.

IV. CONCLUSION AND DISCUSSION

We studied what the physical cosmological constant is in
renormalizable quantum gravity indicating the asymptotic
background freedom, which is formulated in a nonperturba-
tive manner with treating the conformal-factor field exactly.
We here examined the RG equation of the effective action
with respect to the cosmological term that depends on the
conformal-factor field only. We then found that, due to the
diffeomorphism invariance and the nonrenormalization prop-
erty of the conformal-factor field, the constant v in the
effective potential becomes invariant under the RG flow, and
thus it gives the physical cosmological constant in this theory.
The physical cosmological constant was calculated at the

one-loop level explicitly. It consists of the renormalized
quantities of the cosmological constant, the Planck mass,
and the coupling constant so that we can take its value to be
small actually without suffering from the instability of the
path integral as mentioned in the last part of the previous
section. Since the theory is UV complete, it gives a different
viewpoint on the cosmological constant problem usually
discussed on the basis of the theory with a UV cutoff. The
value of the physical cosmological constant will be passed
on to the low-energy effective theory of gravity given by an
expansion in derivatives of the metric field [44].

What are the physical quantities in renormalizable quan-
tum gravity which can be observed through cosmological
experiments? The physical cosmological constant is one of
them. The physical Planck mass also will be defined in the
sameway through the effective actionwhose form is fixed by
diffeomorphism invariance. The dynamical IR scale ΛQG
indicated from the dynamics of the traceless tensor field is
also the physical scale that is RG invariant.9 On the other
hand, we cannot define the Smatrix as a physical quantity as
usual, because spacetime still fully fluctuates even at t ¼ 0 so
that there is no flat spacetime to defined the asymptotic state.
Cosmologically, the primordial power spectrum of the

early Universe is one of the physical observables. In a linear
approximation which becomes valid at large bc, such a
spectrum is given by the two-point functionof the conformal-
factor field, which provides the scale-invariant spectrum that
is called the Harrison-Zel’dovich spectrum with positive
amplitude 1=bc. In general, however, there is no systematical
argument yet to derive observables or full spectra fromGreen
functions among diffeomorphism-invariant operators. So,
we cannot discuss the detail of the spectrumbeyond the linear
approximation at present. It is left as a future issue.
Finally, we mention the dynamics of spacetime in our

quantum gravity theory. The background-free property will
violate completely at the dynamical scale ΛQG. Classical
spacetime then emerges. The correlation length ξΛ ¼ 1=ΛQG

specifies the area in which quantum gravity is effective and
outside of it becomes classical. It denotes that there is the
“minimal length” we can measure, without discretizing
spacetime. Thus, spacetime is practically quantized with
this scale. The existence of this scale has been indicated from
the sharp falloff of the large angular component of the cosmic
microwave background spectrum [44–46].10

APPENDIX: EVALUATION OF INFINITE SERIES

The expression (3.9) is here decomposed as

Vϕ ¼ 1

ð4πÞ2
�
B
2
−
A2

4

��
−

2

D − 4
− γ þ log 4π

�
þ UðzÞ:

In the following, we consider UðzÞ, which is the part that
depends on the IR mass scale z.
Let us consider the infinite series defined by

fðx; yÞ ¼
X∞
n¼3

Xn
m¼0

n!
ðn −mÞ!m!

×
ð−1Þn−1ð−1Þm

2nð2n −m − 1Þð2n −m − 2Þ x
2n−mym: ðA1Þ

9At the one-loop level, it is described as ΛQG ¼ μe−1=β1αt ,
where βt ¼ −β1αt.

10In this theory, inflation will ignite at the physical Planck
mass scale, not the physical cosmological constant scale, and
terminate at the dynamical scale ΛQG taking at the order of
1017 GeV lower than the Planck mass scale.

KEN-JI HAMADA and MIKOTO MATSUDA PHYSICAL REVIEW D 96, 026010 (2017)

026010-10



Introducing the variables

x2 ¼ B
z4
; xy ¼ A

z2
;

the z-dependent part U can be expressed as

UðzÞ ¼ 1

ð4πÞ2
�
−
B
2
log z2 þ A2

4
log z2 þ AB

4

1

z2

−
B2

24

1

z4
þ z4f

� ffiffiffiffi
B

p

z2
;
Affiffiffiffi
B

p
��

:

The infinite series f is evaluated as follows. We first
consider the function given by differentiating fðx; yÞ=x
twice with respect to x. It can be easily evaluated as

∂2

∂x2
�
1

x
fðx;yÞ

�
¼
X∞
n¼3

ð−1Þn−1
2n

Xn
m¼0

n!
ðn−mÞ!m!

x2n−m−3ð−yÞm

¼
X∞
n¼3

ð−1Þn−1
2n

1

x3
ðx2−xyÞn

¼ 1

2x3

h
logð1þx2−xyÞ−x2

þxyþ1

2
ðx2−xyÞ2

i
:

Then, integrating two times with respect to x, we obtain the
following result:

fðx; yÞ ¼ x
Z

x

0

du
Z

u

0

dv
∂2

∂v2
�
1

v
fðv; yÞ

�

¼ 3

4
x2 þ 1

24
x4 þ 1

4
ðx − x3Þy − 3

8
x2y2

þ
�
1

4
ð1 − x2Þ − 1

4
xyþ 1

8
x2y2

�
log ð1þ x2 − xyÞ

þ
�
x2y
4

−
x
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − y2

q
arctan

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − y2

p
2 − xy

�
:

Indeed, this function reproduces the series (A1) by expand-
ing in x and y.
Using this expression, we can obtain the loop correction

to the effective potential by taking the vanishing limit of z as

lim
z→0

UðzÞ ¼ 1

ð4πÞ2
�
1

8
ð2B − A2Þð3 − logBÞ

−
A
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B − A2

p
arccos

�
A

2
ffiffiffiffi
B

p
��

:

Here, we assume A < 2
ffiffiffiffi
B

p
and use the formula

arctanð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
=wÞ ¼ arccosw. This result can be

extended to the range of A > 2
ffiffiffiffi
B

p
using the expression

of the arccos function: arccosw ¼ i logðwþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

with w > 1. If we take the limit of B→ 0, U reduces
to A2f−3þ logA2g=8ð4πÞ2.
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