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Using self-dual Ashtekar variables, we investigate (at the effective level) the spherically symmetry
reduced model of loop quantum gravity, both in vacuum and when coupled to a scalar field. Within the real
Ashtekar-Barbero formulation, the system scalar field coupled to spherically symmetric gravity is known
to possess a non closed (quantum) algebra of constraints once local (pointwise) holonomy corrections are
introduced, which leads to several obstructions in the loop quantization of the model. Moreover, the
vacuum case, while not anomalous, introduces modifications which have been suggested to be an effective
signature change of the metric in the deep quantum region. We show in this paper that both those
complications disappear when working with self-dual Ashtekar variables, both in the vacuum case and in
the case of gravity minimally coupled to a scalar field. In this framework, the algebra of the holonomy
corrected constraints is anomaly free and reproduces the classical hypersurface deformation algebra
without any deformations. A possible path towards quantization of this model is briefly discussed.
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I. INTRODUCTION

In the last decade symmetry reduced models have played
an increasing pivotal role in Loop QuantumGravity (LQG).
The full theory being not yet accessible, an important effort
has been devoted to applying the polymer quantization
procedure to some restricted sector of the phase space of
General Relativity (GR). The most exciting sectors to apply
the loop quantization are the ones which admit classical
singularities, typically early universe cosmology and black
hole geometries. Indeed, it is expected that taking into
account the quantum nature of geometry, through loop
quantization, will lead to regular quantum geometries
where the singularities shall be naturally resolved. While
regular quantum cosmological geometries provide a very
promising framework to study bouncing quantum cosmol-
ogies and extend the cosmological scenario to the Planck
era [1–9], regular quantum dynamical black hole geom-
etries would be the ideal platform to test ideas about the
gravitational collapse scenario, Hawking radiation and the
tunneling from black holes to white holes recently proposed
in [10–15].
Let us briefly summarize the strategy used in most of

the effective loop models. Once the symmetry reduced
phase space is obtained, one follows the loop procedure
and polymerize the (components of the) connection vari-
able which survived the symmetry reduction. Physically,
this is justified by the fact that, at the quantum level,
the gravitational field is not well described by the con-
nection but rather by its holonomy, which is an extended

unidimensional object. Then one obtains a new phase space
where the symmetry reduced constraints are modified by
the so called holonomy corrections. These quantum cor-
rections encode the effect of the quantum nature of the
geometry at the Planck scale. Using this strategy and loop
techniques, one then quantizes this effective phase space
which is believed to be the correct physical one suitable to
describe quantum gravity effects. Of course, for a full loop
quantization, one needs to do much more than a simple
polymerization, whereby one must additionally regularize
the constraint operators after choosinf suitable factor-
ordering schemes, before going on to solve for the physical
Hilbert space.
However, the holonomy corrections introduced in the

classical constraints have important consequences on
the fate of the symmetries of the system described by
the modified gauge generators. Indeed, the first class
constraints of GR, i.e. the vectorial constraint Ha and
the scalar constraint H, generate the infinitesimal four
dimensional diffeomorphisms and form therefore a closed
algebra called the hypersurface deformation algebra. It
is therefore natural to wonder what is the generalization
of the underlying symmetry of the effective phase space
with holonomy corrections. Putting it differently, does the
algebra of the constraints remain closed after implementing
the holonomy corrections? Such questions refer to the
covariance of the effective phase space and are therefore of
primary importance. Indeed, if the algebra of the modified
constraints does not close, it is then much more compli-
cated to canonically quantize the system following the
Dirac procedure. In order to not violate the underlying
gauge symmetry of the system, which in the case of
gravity, is general covariance, one would then need to
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add secondary constraints which would then significantly
complicate the quantization procedure. However, if the
anomaly term which appears, cannot be turned into a
secondary constraint, then one would have lesser number of
first class constraints left to generate gauge transformations
and would be left with spurious degrees of freedom in the
modified system.
Following [16], we will say that a system admits a

covariant quantization if the following two requirements
are satisfied:

(i) The first class constraints remain first class after
implementing the holonomy corrections. They cor-
respond therefore to infinitesimal generators of some
symmetries for the phase space variables and form a
closed algebra (at the effective level).

(ii) The modified first class constraints admit the right
classical limit and lead to the usual hypersurface
deformation algebra of GR in that limit.

Up to now, the most important effort in the loop
quantization of symmetry reduced models has been spared
while focusing on the homogenous case, which have grown
into the sub-field of Loop Quantum Cosmology (LQC)
[1–3]. From those models, one can exhibit some generic
results inherited by the polymer quantization—the most
important one being the resolution of the initial cosmo-
logical singularity. This singularity resolution allows one to
extend the well known standard model of cosmology,
starting at the beginning of inflation, to the so called
Planck era and even beyond [4–6]. This extension to the
pre-inflationary era led to a very large literature, and it is
now argued that the LQC framework is now mature enough
to make contact with the observations [7–9].
Yet, the symmetry reduction implemented within the

context of LQC is a very drastic one, where only the
Hamiltonian constraint survives in a very simplified form.
In this truncated system, the covariance of the holonomy
corrected system becomes trivial due to vanishing of the
spatial diffeomorphism constraint. However, the question
of covariance can become highly nontrivial when applied to
other symmetry reduced models, as pointed out in [16,17].
In order to investigate this property within the holonomy
corrected loop models, one needs to go beyond the
homogenous framework, and turn to less drastic symmetry
reduced models where, at least, some components of the
Gauss constraint Gi, the vectorial constraint Ha and the
scalar constraint H survive. Only in this context can one
investigate the fate of the covariance of the effective system
by studying the closure of the algebra of modified con-
straints, and study possible deformations to it. This task
was worked out for the spherical symmetric case in [16]
and for the Gowdy model in [17], using real Ashtekar-
Barbero variables.
Let us summarize those results. In the spherically

symmetric case, one needs to distinguish between the
vacuum case, which does not have local degrees of

freedom, and the system where matter is coupled to gravity,
which exhibits local physical degrees of freedom. Indeed,
for the vacuum case, the algebra of the modified constraints
remain closed although some modifications show up in the
structure functions appearing in the Poisson bracket of the
scalar constraint with itself fH½N1�;H½N2�g. This defor-
mation in the algebra has been interpreted in the literature
as an ‘effective’ change of signature of the metric in the
deep quantum regime [18,19], but the physical nature of
this modification is not yet fully understood at the funda-
mental level.1 Such phenomenon leads to drastic modifi-
cations such as the loss of metric structure and a change in
the character of the partial differential equations involved
from hyperbolic to elliptic [21–23]. See e.g. [24–27] for
some investigations of the consequences in LQC, and [28]
for the resulting deformations in the Poincaré algebra in the
flat spacetime limit. Yet, it is also possible that such
phenomenon is a pure mathematical artifact due to the
way nonperturbative quantum corrections are implemented.
We note that this signature change shows up also in the so
called anomaly free approach to compute the cosmological
perturbations as developed in [29,30]. See [31] for a
detailed discussion. Despite this point, ignoring the sig-
nature change phenomenon, the spherically symmetric
vacuum can be safely quantized using loop techniques.
However, the situation gets quite messy when one tries to
couple some local matter degrees of freedom. Indeed, when
coupling the spherically symmetric gravitational field to
matter, the holonomy modification function prevents the
Poisson brackets of the scalar constraint with itself from
closing into the diffeomorphism constraint [16]. The form
of the holonomy modification function assumed to prove
this is rather general and, as a subclass, has the function
used in effective LQG models. Thus covariance is violated
in the case of the modified system gravity plus matter.
Therefore, already for the spherically symmetric case, this
partial no-go result prevents from coupling any kind of
matter to gravity in the loop approach. The situation is
much worse in the context of the Gowdy model where
the same no-go result show up already at the level of the
vacuum case (which contains gravitational local degrees
of freedom) [17]. Therefore, these powerful no-go results
derived in [16,17] represent a general obstruction to the
development of a loop quantization of midisuperspace
models that have some local physical degrees of freedom.
Having clarified the situation from the point of view

of the underlying covariance of the model, let us now
summarize what has been done in the loop quantization of
the spherically symmetry reduced model. The first steps of
the loop quantization of spherically symmetric geometries
was initiated in [32–34], where the area spectrum as
well as the volume spectrum were discussed in details.

1Indeed, it has been shown that this leads to the emergence of
non-Riemannian geometries in higher curvature regimes [20].
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The dynamics through the imposition of the spherically
symmetric version of the scalar constraint was studied
in detail in [35]. As already pointed out earlier, since the
vacuum spherical case remains covariant even after
implementing the holonomy corrections, one can safely
complete the quantization. The polymer quantization of
the Schwarzschild interior spacetime was first worked
out by Ashtekar and Bojowald almost ten years ago
[36]. Their quantization is based on the fact that the interior
Schwarzschild spacetime can be described as a homog-
enous contracting cosmology, i.e. the Kantowski-Sachs
homogenous spacetime. This quantization was studied
further by Modesto in [37,38]. Following the improved
dynamics introduced in LQC, Bohmer and Vandersloot
introduced a new scheme in [39,40], fixing some draw-
backs of the previous works, such as the dependency on
some auxiliary unphysical structures as the fiducial cell.
The interior problem was then revisited in [41] by
Campiglia, Gambini, and Pullin. The inhomogeneous
exterior spacetime was worked out in [42] by the same
authors, some of whom extended the study to the whole
spacetime in [43]. In these works, the diffeomorphism
constraint was removed by a suitable gauge fixing. In [44],
Gambini and Pullin introduced a new quantization pro-
cedure, based on an Abelianization of the constraints,
avoiding therefore the previous gauge fixing of the diffeo-
morphism constraint. More recently, the interior problem
was revisited by Corichi and Singh in [45], improving the
classical limit of the antecedent works aforementioned. As
expected, a common conclusion of these works is that the
central singularity is removed by the polymer quantization
procedure, leading to a vacuum regular quantum geometry
for the black hole. Unfortunately, as mentioned earlier,
the loop quantization of the full dynamical system gravity
plus matter remains elusive up to now, because of the
difficulty of closing the modified algebra. An exception of
this statement is the electro-vacuum case which was treated
in [46]. Because of these difficulties, the first quantization
of a scalar field coupled to spherical symmetric gravity
were initiated in [47,48] using another strategy called
uniform discretization technique [49]. In [50,51], a new
strategy was proposed based on the new gauge fixing
leading to a simplification of the modified constraints.
Although interesting, such gauge fixings prevent us from
inferring anything about the covariance of the system.
Few years later, Gambini and Pullin introduced the first
study of the Hawking radiation in this framework [52,53],
while the quantization of a test shell was presented in [54].
While very promising, it is important to note that those
conclusions rely on the study of a test scalar field over a
quantum spherically symmetric vacuum geometry and thus
not on the full quantization of a scalar field coupled to
spherical symmetric gravity. These models typically have a
nonmatching version of covariance of the matter and the
gravity sectors, as explained in [16]. Although those results

on the vacuum black hole geometry are very promising and
lead to interesting insights, it seems mandatory to go
beyond the vacuum case and obtain a quantizable model
for the full system scalar field coupled to spherically
symmetric gravity. In order to so, one needs to by pass the
partial no-go results of [16] associated with the algebra of
the modified constraints for this system.
The first attempt to go beyond the test field approxima-

tion and study a full spherically self- gravitating collapsing
shell was introduced recently in [55]. In this model, the
authors succeeded to bypass the no-go theorem of [16] and
obtained an anomaly free algebra of the modified con-
straint. The strategy used in this work is to keep the Poisson
bracket unchanged so that fKϕ; Eϕg ¼ ffðKϕÞ; gðKϕÞEϕg
which is then a canonical transformation for a suitable
choice of f and g, namely, fðKϕÞ ¼ sinðρKϕÞ=ρ and
gðKϕÞ ¼ 1= cosðρKϕÞ. While this canonical transformation
provides indeed an anomaly free algebra of constraints,
there are three difficulties arising within this approach.
First, because we are dealing with a canonical trans-
formation of the classical case, it is then difficult to interpret
them as loop quantized models where, usually, the effective
Poisson bracket gets modified due to polymerization.
Second, while the first modification function fðKϕÞ
accounts for the usual polymerization of the connection
component, the second modification function gðKϕÞ
remains quite unusual with respect to the loop quantization
procedure. Indeed, it is not clear why one should implement
a holonomy correction on the conjugate triad variable Eϕ in
the process and this step remains to be justified from first
principles. Finally, it is immediate to see that at the
singularity, where fðKϕÞ ¼ sinðρKϕÞ=ρ becomes maximal,
the correction gðKϕÞ ¼ 1= cosðρKϕÞ is no more well
defined. One, therefore, has to remove by hand some
regions from the spectrum of the theory to obtain a well
defined effective theory, which seems problematic if one
wants to describe singularity resolution at the dynamical
level. While interesting for evading the no-go result of [16],
this proposal turns out to suffers from drawbacks that still
need to be fixed or clarified, either through the quantization
of the model, or through some new inputs. It is therefore
natural to look for another perspective in order to answer
the question of the anomaly freeness of this system.
In this paper, we introduced a different strategy to obtain

an anomaly-free algebra of constraints which does not
suffers from the same drawbacks. The initial observation is
to wonder if the choice of variables is responsible for the
anomaly of the modified algebra. Indeed, all the conclusion
and partial no-go results presented in [16,17] were obtained
using the real Ashtekar-Barbero formulation. How many
of those conclusions might get modified if one uses instead
the self dual variables? (Interestingly, a similar comparison
between the Schrödinger quantization of spherically
symmetric models, using real variables and the self-dual
variables, was done in [56]).
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Recently, some efforts have been developed to under-
stand more precisely the impact of working with the self
dual variables instead of the real ones. The result of those
investigations, which focus mainly in the context of black
hole thermodynamics suggest that the self dual variables
could be better behaved than the real ones with respect to
the semiclassical limit of the theory. It is well known that
the computation of the entropy of a spherically symmetric
isolated horizon based on the real Ashtekar-Barbero var-
iables leads to a semiclassical result which agrees with the
Bekenstein-Hawking area law only up to a fine tuning of
the Immirzi parameter γ. On the other hand, it was shown
in [57,58] that the dimension of the Hilbert space of a
spherically isolated horizon, which is a function of γ, can be
analytically continued to γ ¼ �i in a consistent way.
Surprisingly, the result matches perfectly the Bekenstein-
Hawking entropy without requiring any fine tuning.
Although this result has been obtained via an analytic
continuation procedure and therefore, there is little control
on the underlying self-dual quantum theory, it is quite
striking. This conclusion was recently generalized to the
case of rotating isolated horizon in [59]. Aside from this
result, others investigations in the context of black holes
thermodynamics [60–67], spinfoams models [68] and in
(2þ 1)-dimensional LQG in [69,70], were worked out in
the same period, all of which suggest that the self-dual
variables could be more suited than the real ones with
respect to the semiclassical limit of the theory.
Moreover, from the point of view of the symmetries, it is

well known that the real Ashtekar-Barbero connection does
not transform as a true spacetime connection under the
action of the Hamiltonian constraint, contrary to the self-
dual connection [71]. This fact could be responsible for
anomalies when going to the quantum theory. In this paper,
we will show that working with the self-dual variables
instead of the real ones indeed allows to preserve the
covariance of the system scalar field coupled to spherically
symmetric gravity, once the holonomy corrections have
been introduced. More precisely, it turns out that using the
self-dual variables allows one to naturally bypass the partial
no-go result obtained in [16] with the real variables, and
obtain a closed algebra for the modified constraints. Thus,
it is possible to obtain an anomaly free algebra for the
system scalar field coupled to spherically symmetric
gravity, which moreover does not exhibit any deformations,
reproducing exactly the classical hypersurface deformation
algebra of GR.2 It represents, therefore, a first step towards
the construction of anomaly free LQG model with local
physical degrees of freedom, which was up to now out
of reach.

From the point of view of the flat spacetime limit, it is
well known that the classical hypersurface deformation
algebra of GR reduces uniquely to the Poincaré algebra
[74]. Since the holonomy corrected algebra of constraint
studied in this paper reproduces without deformations the
hypersurface deformation algebra of GR, it is natural to
conclude that its flat spacetime limit will also reduces to the
Poincaré algebra. Whether some deformations occurs at
the level of the co-algebra in the flat spacetime limit is still
an open question [75]. However, since our interest is to
build a quantizable model for studying the gravitational
collapse in the context of LQG, the flat spacetime limit of
our modified algebra is of no interest for our purposes.
The paper is presented as follows. In Sec. II, we recall the

partial no-go results obtained in [16,17]. In Sec. III, we first
introduce the formulation of the spherically symmetric
sector of GR written in terms of the self-dual Ashtekar
variables. This first part relies heavily on the work of
Thiemann and Kastrup [76]. Then we implement holonomy
corrections and obtain our modified effective phase space.
In Sec. IV, we study the algebra of the modified constraints
and present our main result. Finally, Sec. V is devoted to a
discussion of the plausible future direction to quantize this
model.

II. SUMMARY OF THE PARTIAL NO-GO
RESULTS OBTAINED USING THE REAL
ASHTEKAR-BARBERO FORMALISM

In this section, we recall some previously established
facts and summarize the partial no-go results obtained
in [16].

A. The classical framework

Let us consider the phase space of GR written in terms of
the real SU(2) Ashtekar-Barbero variables

fAi
a; Eb

jg ¼ γδijδ
b
a; Ai

a ¼ Γi
a þ γKi

a; Ea
i ¼

ffiffiffi
q

p
eai ;

ð2:1Þ

where q is the determinant of the induced metric over
the spatial slices qab ¼ eiae

j
bδij and Ki

a ¼ Kabebi is the
extrinsic curvature of these spatial slices. The canonical
variables are constrained to satisfy the Gauss constraint Gi,
the vectorial constraint Ha and the scalar (Hamiltonian)
constraint H,

Gi ¼ DaEa
i ; Ha ¼ Eb

i F
i
ab;

H ¼ 1ffiffiffiffi
E

p Ea
i E

b
j ðϵijkFk

ab − 2ð1þ γ2ÞK½i
aK

j�
b Þ; ð2:2Þ

where Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b is the curvature of
the Ashtekar-Barbero connection. While the Gauss con-
straint generates the SU(2) gauge transformations, the linear

2It is not necessary that quantum corrections must lead to a
deformed notion of general covariance. Indeed, it is known that
perturbative higher curvature corrections do not modify the
hypersurface deformation algebra [72,73].
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combination D½Na� ¼ NaðHa − γ−1Aa:GÞ generates the
infinitesimal spatial diffeomorphisms and the scalar con-
straint H generates the infinitesimal diffeomorphisms in
the time direction as selected by the initial slicing of the four
dimensional manifold M. Once smeared, those constraints
form the following algebra:

fD½Ma
1�; D½Ma

2�g ¼ D½LM1
Ma

2�; ð2:3Þ

fH½N�; D½Ma�g ¼ −H½LMN�; ð2:4Þ

fH½N1�; H½N2�g ¼ D½qabðN1∂bN2 − N2∂bN1Þ�: ð2:5Þ

We do not rewrite the Poisson bracket involving only the
Gauss constraint, since they will not play a role in what
follow.
The spherically symmetric sector of the phase space of

GR in terms of the real Ashtekar Barbero variables is given
by three pairs of canonically conjugated variables which
are constrained to satisfy the three first class constraints Gi,
Hx and H (there is only one nontrivial component of
the Gauss and the diffeomorphism constraint each).
Therefore, the number of local physical degrees of freedom
is d ¼ 6 − 2 × 3 ¼ 0 and we end up with only a global
degrees of freedom, the ADM mass, as is expected in
vacuum spherical symmetry. The spatial metric is given by
(see, for instance, [77])

ds2 ¼ ðEϕÞ2
jExj dx2 þ jExjðdθ2 þ sin2θdϕ2Þ; ð2:6Þ

where x is the noncompact direction which matches the
radial direction at infinity. The prime shall be used from
now on to denote derivatives with respect to the radial
coordinate. Once the Gauss constraint Gi is solved, we
obtain a phase space given by two pairs of canonically
conjugated variables denoted (once we set G ¼ 1) as

fKxðxÞ; ExðyÞg ¼ δðx; yÞ; fKϕðxÞ; EϕðyÞg ¼ δðx; yÞ:
ð2:7Þ

The remaining constraints are given by

D½M� ¼
Z

dxMðxÞ
�
1

2
ðExÞ0Kx þ K0

ϕE
ϕ

�
; ð2:8Þ

H½N� ¼ 1

2

Z
dxNðxÞ

�
Eϕ

jExj1=2 K
2
ϕ þ 2jExj1=2KϕKx

þ Eϕ

jExj1=2 ð1 − Γ2
ϕÞ þ 2Γ0

ϕjExj1=2
�
: ð2:9Þ

Their algebra is simply the hypersurface deformation
algebra adapted to the midisuperspace model, given by

fD½M1�; D½M2�g ¼ D½LM1
M2� ð2:10Þ

fH½N�; D½M�g ¼ −H½LMN� ð2:11Þ

fH½N1�; H½N2�g ¼ D½qxxðN1∂xN2 − N2∂xN1Þ�: ð2:12Þ

Let us now study the holonomy corrected constraints.

B. The holonomy corrected constraint algebra
for the vacuum case

At the effective level, the polymerization of the
connection variables (in this case, the extrinsic curvature
components) can be implemented as the following
transformations:

Kx → f1ðKxÞ and Kϕ → f2ðKϕÞ: ð2:13Þ

However, the holonomy corresponding to Kx is an
extended one represented along the edges of spin-network
states and is actually difficult to implement explicitly,
requiring suitable nonlocal functions (see e.g. [78] for a
negative result in this regard). Therefore, this holonomy
correction is usually disregarded in the first attempt. While
this might seem to be an oversimplification at first, it can be
shown that it is possible to rewrite the constraints in such a
manner that the Hamiltonian constraint does not depend on
Kx. Therefore, the correction Kx → f1ðKxÞ can be safely
ignored for our purposes3 One should also pay attention to
the fact that the final form of the polymerization function
appears for the (angular) extrinsic curvature component
instead of the full Ashtekar-Barbero connection compo-
nent. The reason for this is as follows. The the asymptotic
falloff behavior of Kϕ, unlike those for Aϕ, gives the correct
classical limit of the Hamiltonian constraint from the
“holonomies” considered. (In this context, we should have
indeed based the polymerization functions on Ax had such
nonlocal functions been used.)
In [36–45], the function f2 was chosen such that

f2ðKϕÞ ¼ sin ðλKϕÞ=λ, in analogy with the result of the
polymerization procedure that is implemented within LQC.
For a formal derivation of this correction, we should first
find a regularization formula for the curvature or for the
connection in term of the holonomies, such as the Baker
Campbell Haussdorf formula used in LQC, and then derive
the precise form of the polymerization function f2 from it.
In order to avoid this difficulty, we will work with a general
function f2 without fixing its expression and allowing for
quantization ambiguities. This is the strategy used in [16],
which ensures that conclusions will be general.

3Although the diffeomorphism constraint does still depend
on Kx, it is usually left unchanged. Even the Kϕ component
appearing in D½Nx� is not modified. See [16] for details on why
this is justified.
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Under this polymerization, the modified algebra of the
basic variables is as follows:

fKxðxÞ; ExðyÞg ¼ δðx; yÞ;

ff2ðKϕÞðxÞ; EϕðyÞg ¼ df2
dKϕ

ðxÞδðx; yÞ: ð2:14Þ

As in [36–45], we only polymerize the scalar constraint
and, therefore, obtain

D½M� ¼
Z

dxMðxÞ
�
1

2
ðExÞ0Kx − ðKϕÞ0Eϕ

�
; ð2:15Þ

H½N� ¼ 1

2

Z
dxNðxÞ

�
Eϕ

jExj1=2 f2ðKϕÞ þ 2jExj1=2g2ðKϕÞKx

þ Eϕ

jExj1=2 ð1 − Γ2
ϕÞ þ 2Γ0

ϕjExj1=2
�
; ð2:16Þ

where we have introduced a new function g2 in order to be
general. One can show [16] that the functions f2 and g2 are
not independent, but are actually related through (which, of
course, is true for the classical case as well)

g2 ¼
1

2

∂f2
∂Kϕ

: ð2:17Þ

This property also allows one to Abelianize the constraints,
as first proposed in [42].
Following [16], we compute the algebra of the modified

constraints and finally obtain

fD½M1�; D½M2�g ¼ D½LM1
M2�; ð2:18Þ

fH½N�; D½M�g ¼ −H½LMN�; ð2:19Þ

fH½N1�; H½N2�g ¼ D½βðKϕÞqxxðN1∂xN2 − N2∂xN1Þ�;

where βðKϕÞ ¼
1

2

∂2f2
∂K2

ϕ

: ð2:20Þ

We can see immediately that the algebra of the modified
constraints is still closed, allowing for a complete quan-
tization of the spherically symmetric vacuum case.
However, the last bracket is modified by the function β,
which depends only on the extrinsic curvature Kϕ. If the
singularity is resolved when f2ðKϕÞ is maximal, as in LQC,
the function β, given by the second derivative of f2, flips its
sign at the maxima of the function, which is precisely
where the classical singularity resides. This can then be
interpreted as an “effective” signature change since then it
has the same signature as in the Euclidean case.
Let us now describe the case where a scalar field is

coupled to the spherically symmetric vacuum, thus includ-
ing some local degrees of freedom within the analysis.

C. Adding a minimally coupled scalar field

The situation is radically different when we couple a
scalar field Φ to the vacuum model. In this case, the system
inherits some local degrees of freedom and the canonical
pairs are given by

fKxðxÞ; ExðyÞg ¼ δðx; yÞ; fKϕðxÞ; EϕðyÞg ¼ δðx; yÞ;
fΦðxÞ; PΦðyÞg ¼ δðx; yÞ: ð2:21Þ

The total constraints are given by [77]

DT ½M� ¼ Dg½M� þDm½M� ¼
Z

dxMðxÞ
�
1

2
ðExÞ0Kx þ K0

ϕE
ϕ

�
þ 4π

Z
dxMðxÞPΦΦ0;

HT ½N� ¼ Hg½M� þHm½M�

¼ 1

2

Z
dxNðxÞ

�
Eϕ

jExj1=2 K
2
ϕ þ 2jExj1=2KϕKx þ

Eϕ

jExj1=2 ð1 − Γ2
ϕÞ þ 2Γ0

ϕjExj1=2
�

þ 4π

Z
dxNðxÞ

�
P2
Φ

2jExj1=2Eϕ
þ jExj3=2

2Eϕ Φ02 þ 1

2
jExj1=2EϕVðΦÞ

�
:

Proceeding to the same polymerization mentioned above, we obtain the following holonomy corrected constraints:

DT ½M� ¼ Dg½M� þDm½M� ¼
Z

dxMðxÞ
�
1

2
ðExÞ0Kx þ K0

ϕE
ϕ

�
þ 4π

Z
dxMðxÞPΦΦ0

HT ½N� ¼ Hg½M� þHm½M�

¼ 1

2

Z
dxNðxÞ

�
Eϕ

jExj1=2 f2ðKϕÞ þ 2jExj1=2g2ðKϕÞKx þ
Eϕ

jExj1=2 ð1 − Γ2
ϕÞ þ 2Γ0

ϕjExj1=2
�

þ 4π

Z
dxNðxÞ

�
P2
Φ

2jExj1=2Eϕ
þ jExj3=2

2Eϕ Φ02 þ 1

2
jExj1=2EϕVðΦÞ

�
;
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where the functions f2 and g2 satisfy (2.17). After a lengthy
but straightforward computation, we obtain the algebra of
those modified constraints supplemented with holonomy
corrections,

fDT ½M1�; DT ½M2�g ¼ DT ½LM1
M2�; ð2:22Þ

fHT ½N�; DT ½M�g ¼ −HT ½LMN�; ð2:23Þ

fHT ½N1�; HT ½N2�g ¼ Dg½βðKϕÞqxxðN1∂xN2 − N2∂xN1Þ�
þDm½qxxðN1∂xN2 − N2∂xN1Þ�

ð2:24Þ

≠ DT ½βðKϕÞqxxðN1∂xN2 − N2∂xN1Þ�: ð2:25Þ

While the former two brackets, (2.22) and (2.23), reproduce
the corresponding subalgebra of the hypersurface defor-
mation algebra, the latter one, (2.25), does not close
anymore. Indeed, modifications on the gravitational part
occurring through the function βðKϕÞ do not show up in the
matter part. Thus, we cannot factorize these modifications,
and we finally obtain the full diffeomorphism constraint
DT . One can still try to introduce some modifications
through some functions depending onKϕ in the matter part,
in such a way that the function βðKϕÞ factorizes, but now
the bracket between the gravitational and the matter parts is
not zero anymore, which will prevent the algebra from
closing. Note that these results do not depend on the precise
form of the correction function f2. Therefore, this is a very
general obstruction preventing the matter part of the
constraint from closing the algebra. See [16] for a detailed
proof of these statements.
As a consequence, one is forced to conclude that within

this context, the holonomy corrected system scalar field
coupled to spherically symmetric gravity is not covariant.
This no-go result prevents from quantizing this loop model,
within the effective framework,4 following the procedure
adopted for the vacuum case in [36–45]. It is therefore
mandatory, as a first step, to find a way to by pass those
partial no-go results and find an effective covariant model
for this system. In a second step, one should find a way to
get the physical Hilbert space this system. If one succeeds
to do so, it would provide a very exciting simplified
platform to investigate the fate of a gravitational collapsing
scalar quantum shell, its evaporation through Hawking
radiation and problems related to those phenomena, such as
the information loss paradox.

In this paper, we present a way out for the first step, i.e.,
the possibility to obtain a covariant holonomy corrected
phase space for this system. The second step, i.e., the full
quantization of this model, will be discussed at the end, but
it will require some novel nontrivial steps which are still
under development and are beyond the scope of this paper.

III. THE SPHERICAL SYMMETRIC SECTOR
OF SELF-DUAL ASHTEKAR GRAVITY

In this section, we present the spherically symmetric
phase space of GR in terms of the self-dual Ashtekar
variables. The formulation of the spherically symmetric
sector was first presented in [76] where the authors
proceeded to the quantization of the spherically symmetric
vacuum in the Schrödinger representation. We will keep
their notations in our presentation. The details concerning
the symmetry reduction procedure and the construction of
the adapted variables can be found in [80–85].

A. The classical framework

Let us first focus on the pure gravity case. Using the self-
dual Ashtekar formulation of GR, the Holst action for pure
gravity reads (for details, we refer the reader to [86]).

S¼ 1

κ

Z �
1

2
ϵIJKLeI ∧ eJ ∧FKLðAÞþ 1

γ
eI ∧ eJ ∧FðAÞIJ

�
;

ð3:1Þ

where γ ¼ �i and the gauge group is SLð2;CÞ.
The interest of working with self-dual variables in the

action is that the canonical analysis turns out to be much
simpler, and while we end up again with first class
constraints, the form of the scalar constraint H simplifies
drastically. In terms of these constraints, the precedent
action can be written as

S ¼ 1

κ

Z
dt

Z
dx3

�
ΘL −

�
iλiGi − iNaDa þ

1

2
~NH

��
;

ð3:2Þ
where the different terms are respectively the canonical
variables part, i.e. the Liouville form ΘL, the Gauss
constraint Gi enforcing the SLð2;CÞ symmetry, the spatial
diffeomorphism constraint Da, and finally the Hamiltonian
constraintH. The self-dual canonical variables are given by

Ai
a ¼ Γi

a þ iKi
a; Ea

i ¼ ϵabcϵijke
j
be

k
c; fAi

a; Eb
jg ¼ iδijδ

b
a

ð3:3Þ
and satisfy the first class constraints,

Gi ¼ DaEa
i ; Ha ¼ ϵabcEbiBc

i ; H ¼ 1

2
ϵabcϵ

ijkEb
i E

c
jB

a
k;

ð3:4Þ

4However, even when dealing with operators, obstructions
have been found to quantize the model [79]. Within the approach
of Abelianization of the Hamiltonian constraints, similar ob-
structions appears when dealing with the full ‘matter plus gravity’
system, in the presence of holonomy corrections.
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where the ~N ¼ N=ðdetEÞ−1 is the rescaled lapse function.
The “magnetic” field variable B has been defined for
simplicity and is related to the curvature of the self-dual
Ashtekar connection as

Ba
i ¼

1

2
δijϵ

abcFj
bc ¼

1

2
δijϵ

abcð∂bA
j
c − ∂cA

j
b þ ϵjklA

k
bA

l
cÞ:
ð3:5Þ

Finally, we have also to impose some reality conditions
to the canonical variables in order to recover GR:

Ei
aEbi − Ēi

aĒbi ¼ 0 and Ai
a − Āi

b ¼ 2Γi
a: ð3:6Þ

However, as discussed later, there are alternative ways to
implement the reality conditions, one of which shall be
employed by us.

B. Reduction to spherical symmetry

Let us now select the spherically symmetric sector of this
phase space. The procedure for performing this symmetry
reduction was presented and discussed in [76,80–85].
We refer the reader to those references for more details.
The spatial metric is given by

ds2 ¼ E
2E1

dx2 þ E1ðdθ2 þ sin2θdϕ2Þ;
where E ¼ ðE2Þ2 þ ðE3Þ2: ð3:7Þ

The Ei, ði ¼ 1; 2; 3Þ are the components of the densitized
triad along the internal directions.
Using this procedure, we end up with the symmetry

reduced connection adapted to the spherically symmetric
case, as well as its conjugated momentum. They read

ðEx; Eθ; EϕÞ ¼
�
E1 sin θnx;

1ffiffiffi
2

p ðE2nθ þ E3nϕÞ sin θ;
1ffiffiffi
2

p ðE2nϕ − E3nθÞ
�
; ð3:8Þ

ðAx; Aθ; AϕÞ ¼
�
A1nx;

1ffiffiffi
2

p ðA2nθ þ ðA3 −
ffiffiffi
2

p
ÞnϕÞ;

1ffiffiffi
2

p ðA2nϕ − ðA3 −
ffiffiffi
2

p
ÞnθÞ sin θ

�
; ð3:9Þ

where the n’s stand for the unit vector components along the radial and the two angular directions. We can then compute the
“magnetic” field B,

ðBx; Bθ; BϕÞ ¼
�
B1 sin θnx;

1ffiffiffi
2

p ðB2nθ þ B3nϕÞ sin θ;
1ffiffiffi
2

p ðB2nϕ − B3nθÞ
�
; ð3:10Þ

where we have

B1 ¼ 1

2
ððA2Þ2 þ ðA3Þ2 − 2Þ; ð3:11Þ

B2 ¼ A0
3 þ A1A2; ð3:12Þ

B3 ¼ −A0
2 þ A1A3: ð3:13Þ

Having obtained our variables, we can now give the
expression of the constraints in the reduced symmetry
model. The Liouville form reduces to

ΘL ¼ −i sin θfE1 _A1 þ E2 _A2 þ E3 _A3g: ð3:14Þ

We deduce that we have three canonically conjugate pair
of variables, which define our unconstrained phase space.
Those variables are algebraically constrained by the
three first class constraints, which therefore lead to D ¼
6 − 2 × 3 ¼ 0 local degrees of freedom in this system, as
expected for the vacuum spherically symmetric sector.

The (nontrivial) constraints are given by

Gx ¼ sin θfðE1Þ0 − E2A3 þ E3A2g; ð3:15Þ

Hx ¼ sin θfB2E3 − B3E2g; ð3:16Þ

H ¼ sin θ
2

fE2ð2E1B2 þ E2B1Þ þ E3ð2E1B3 þ E3B1Þg:
ð3:17Þ

We can rewrite the diffeomorphism constraint D as the
following linear combination of the vectorial constrant Hx
and the Gauss constraint Gx:

D¼Hx−A1Gx ¼ sinθfA0
3E

3þA0
2E

2−A1ðE1Þ0g: ð3:18Þ

This latter will generate the residual diffeomorphisms
along the radial direction x. Note that the overall factor
sin θ will disappear once integrating over the angular part
of the action (this is different from [76] in that the angular
part was already integrated out at this stage). Finally, the
spherically symmetric version of the reality conditions will
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not be useful in what follows; thus, we refrain from writing
them explicitly (see the last section for more details about
the reality conditions). Having described our classical
symmetry reduced phase space, we can now implement
the holonomy corrections.

C. Implementing the holonomy corrections

In this section, we implement the holonomy corrections,
which encode the quantum corrections at an effective level
inherited from the polymer or loop quantization. However,
we also note that there are also inverse-triad corrections at
the effective level, coming from such a quantization, which
we do not consider in this work. When such corrections
were considered in the real variables framework, they can
give rise to interesting phenomenology [87–89]. However,
such corrections, while deforming the algebra, do not give
rise to any no-go theorem (or sign change) for the real
variables either, unlike the holonomy modifications. Thus
their effect on the algebra in the self-dual formulation shall
be investigated in future work, since our main objective
in this paper is to show that there is a way to evade the
obstructions arising from the holonomy corrections in the
real-valued formulation.
Instead of following exactly what is done in the real

formulation [16],K → fðKÞ, we follow a similar procedure
where we introduce corrections of the type B → fðBÞ. This
implies that we end up modifying the curvature functions
on using the holonomies (instead of the connection
coefficients) in them. It is important to note that this is
what is usually done in the simplest (flat, FLRW) LQC
models. Thus, instead of introducing modification func-
tions for the Ashtekar connection components, Ai, we
therefore choose to modify the dual of the curvature
components, Bi. Classically, this is an equivalent prescrip-
tion since the dualized curvature components are functions
of Ai alone and does not depend on the triad components
and, thus, there is a one-to-one correspondence between
them. But, of course, the resulting effective theory shall be
different depending on our choice of the variables which
end up being polymerized. The holonomy corrections, in a
very general way, can be implemented by the following
transformations:

B1 → f1ðB1Þ; B2 → f2ðB2Þ; B3 → f3ðB3Þ: ð3:19Þ

However, all of these transformations simultaneously turn
out to be too general, and cannot be implemented con-
sistently. Instead, we will mimic what is usually done in the
real spherically symmetric model, and introduce only
pointwise local holonomy modifications, namely,

B1 → f1ðB1Þ while f2ðB2Þ ¼B2 f3ðB3Þ ¼B3: ð3:20Þ

The above choice deserves some justification. In the case
of the real variables, one can only introduce pointwise

holonomy corrections corresponding to the angular
component of the connection. In the self-dual case, to
mimic what is done for real variables, one should then
introduce general functions of the form fðA2

2 þ A2
3Þ,

which is equivalent to using a modified version of B1

that represents regularized version of the angular part of
the curvature. This justifies modifying the angular part
of the curvature, B1 ∼ F23. However, why do we choose
to not modify the other curvature components? In
principle, there is no objection à priori to rule them
out but in the appendix, we show why f2 and f3 must
be equal to identity. To understand the physics behind
this, let us once again go back to the well-understood
case of the real variables. In that case, one could only
modify one of the connection components of the three
available (indeed, it was chosen to be the above
combination of A2 and A3 which represents the angular
part of the connection). For the other two, one was pure
gauge and could be eliminated by solving the Gauss
constraint and the other one, Ax in that notation, could
not be polymerized. The reason for this was that this
would require including nonlocal holonomy corrections,
since the integration would be over an edge of the
spin-network, which has so far not been achieved in
real-valued LQG. Coming back to self-dual variables,
modifying the other curvature components, B2 and B3,
would be like including such nonlocal corrections since
it includes the A1 component (which is synonymous to
Kx in the real theory). The dependence of B2 and B3 on
A2 and A3 are not of the form ðA2

2 þ A2
3Þ and thus

modifying those would not be akin to modifying the
angular part of the connection alone. Hence, it is natural
that we are able to only modify the B1 component of the
curvature exactly as one was able to polymerize only the
Kϕ component on the real case.
In addition to the above mentioned reason, one can easily

check to find that replacing A2 → h1ðA2Þ and A3 → h2ðA3Þ
in the B2 and B3 immediately requires that such modifi-
cation functions have to be the same as in the classical case
from requirements of anomaly freedom of the constraint
algebra (See the Appendix for clarifications of this
assertion).
With this effective modification, the deformed con-

straints are therefore given by

D ¼ ½A0
3E

3 þ A0
2E

2 − A1ðE1Þ0�; ð3:21Þ

H¼ 1

2
½E2ð2E1B2 þE2f1ðB1ÞÞ þE3ð2E1B3 þE3g1ðB1ÞÞ�;

ð3:22Þ
where we have introduced a new function g1 to remain
general. We will see that, in order to close the algebra, we
must require f1 ¼ g1. Note also that, once again, we have
modified only the scalar constraint, following what was
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done in [16].5 We are now ready to compute the algebra of
the modified constraint and investigate the covariance of
this new holonomy-corrected system.

IV. INVESTIGATING THE COVARIANCE OF THE
MODEL IN THE SELF-DUAL CONTEXT

In this section, we present the computation of the
algebra of the modified constraints. We first demonstrate
our results for the vacuum case, and then extend it to the
system composed by the scalar field minimally coupled to
spherically symmetric gravity.

A. The vacuum model

The Hamiltonian constraint, for this case, reads

H½N� ¼
�
1

2

�Z
dxNðxÞfE2ðxÞð2B2ðxÞE1ðxÞ þ B1ðxÞE2ðxÞÞ

þE3ðxÞð2B3ðxÞE1ðxÞ þ B1ðxÞE3ðxÞÞg: ð4:1Þ

Due to regularization, we need to introduce modification
functions for implementing the holonomy corrections.
As explained earlier, we only want to introduce the local
holonomy corrections by replacing the above constraint by

H½N� ¼
�
1

2

�Z
dxNfE2ð2B2E1 þ f1ðB1ÞE2Þ

þ E3ð2B3E1 þ g1ðB1ÞE3Þg; ð4:2Þ

where we have introduced the two different modification
functions f1 and g1 and have suppressed the argument of

each of the phase space variables on the radial coordinate.
The other constraints, the diffeomorphism one and the
Gauss one, remain unmodified from the classical ones.
Our first goal is to calculate the fH½N�; H½M�g bracket with
such correction functions. We look at the brackets of the
Hamiltonian constraint with itself and with the diffeo-
morphism constraint. The other bracket involving the
Hamiltonian constraint with the Gauss constraint remains
obviously unmodified. This can be easily seen on close
inspection of the form of the Gauss constraint. The Poisson
bracket of the modification function with E2 and E3 cancel
each other, just like the classical case.

1. fH;Hg bracket

We start with the calculation of the fH;Hg bracket, since
this is the only one which gets deformed in the real
Ashtekar-Barbero case by a modification of the structure
functions appearing on the right hand side of the expres-
sion. In such calculations, it is useful to remember that we
have a nonzero bracket between two conjugate variables
only when one of them have a spatial derivative on it. (For
instance, note that B1 is independent of spatial derivatives
whereas B2, B3 are not.) This is the case since, once the
delta function is evaluated, ðNM −MNÞf ¼ 0 whereas
ðN0M −M0NÞf is nonzero, where f is some generic phase
space function. Thus, the contribution to this bracket
should come from the commutator between the first and
third term, the second and third term and the first and
fourth term in the Hamiltonian constraint.
The bracket between the first and third term is

Z
dxdyMðxÞNðyÞE1ðxÞE1ðyÞfE2ðxÞB2ðxÞ; E3ðyÞB3ðyÞg − ðx ↔ yÞ

¼ i
Z

dxdyMðxÞNðyÞE1ðxÞE1ðyÞ
�
E2ðxÞB3ðyÞ d

dx
½δðx; yÞ� þ B2ðxÞE3ðyÞ d

dy
½δðx; yÞ�

�
− ðx ↔ yÞ

¼ −i
Z

dxðM0ðxÞNðxÞ − N0ðxÞMðxÞÞfðE1ðxÞÞ2E2ðxÞB3ðxÞ − ðE1ðxÞÞ2E3ðxÞB2ðxÞg: ð4:3Þ

The above bracket does not involve any of the modification functions and is exactly what it would have been for the
classical case. Turning our attention to the bracket between the first and fourth term, we find the appearance of the
holonomy corrections:Z

dxdyMðxÞNðyÞE1ðxÞE2ðxÞf1ðB1ðyÞÞfB2ðxÞ; ðE3ðyÞÞ2g − ðx ↔ yÞ

¼
Z

dxdyMðxÞNðyÞE1ðxÞE2ðxÞf1ðB1ðyÞÞE3ðyÞ d
dx

½δðx; yÞ� − ðx ↔ yÞ

¼ i
Z

dxðM0ðxÞNðxÞ − N0ðxÞMðxÞÞE1ðxÞE2ðxÞE3ðxÞf1ðB1ðyÞÞ: ð4:4Þ
Proceeding similarly, we find that the bracket between the second and third terms gives

5In our case, this seems natural as we are only modifying the curvature components and not the connection components directly.
Indeed, the magnetic field component B1 doesn’t enter in the expression of the diffeomorphism constraint.
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− i
Z

dxðM0ðxÞNðxÞ − N0ðxÞMðxÞÞ

× E1ðxÞE2ðxÞE3ðxÞg1ðB1ðyÞÞ: ð4:5Þ

We know that fH½N�; H½M�g must close into one of the
other first class constraints. In the classical case, we have

fH½N�; H½M�g ¼ −i
Z

dxðMðxÞN0ðxÞ − NðxÞM0ðxÞÞ

× ðE1ðxÞÞ2fB2ðxÞE3ðxÞ − B3ðxÞE2ðxÞg;
ð4:6Þ

where the vector constraint is given by Hx½Nx� ¼R
dxNxðxÞfB2ðxÞE3ðxÞ − B3ðxÞE2ðxÞg. In order to have

a similar closure of the fH½N�; H½M�g commutator, it is
immediately obvious that we require f1ðB1Þ ¼ g1ðB1Þ for
(4.4) to cancel (4.5), just as in the classical case. Thus, we
find that the commutator of Hamiltonian constraints gives
us the exact same result as we have in the classical case,
even in the presence of holonomy modifications.
There are a few observations to make from this rather

astonishing result. Firstly, from a mathematical point of
view, the reason for this can be explained as follows. The
modification to the structure functions in the real variables
case is primarily due to the presence of second (spatial)
derivatives of the triad components appearing in the
Hamiltonian constraint [90]. Those terms appear from
the presence of the spin connection term, which does
not appear in the self-dual case. The coefficient of the spin

connection term is ð1þ γ2Þ and that goes to zero when
γ ¼ i. (This also tells us that this result is a rather special
case and would not be valid for a general imaginary
Immirzi parameter.) The other thing to point out is that
we should really look at the hypersurface deformation
algebra which really has the ½H;H� bracket closing into a
diffeomorphism constraint. We can easily rewrite the vector
constraint as a combination of the diffeomorphism con-
straint and the Gauss constraint. We then need to make sure
that the bracket of the Hamiltonian constraint closes with
both these other first class constraints. The one with the
Gauss constraint remains obviously unmodified, whereas
the one with the diffeomorphism constraint is shown in the
next section.

2. fD;Hg bracket

Rewriting the diffeomorphism constraint,

D½Nx� ¼
Z

dxNx½−A1ðE1Þ0 þ A0
2E

2 þ A0
3E

3�; ð4:7Þ

we want to evaluate the bracket fD½Nx�; H½N�g. Instead of
explicitly showing the full calculation involving all the
terms, let us only focus on the bracket of the second term
from the Hamiltonian constraint with the diffeomorphism
constraint. It is enough to do so in this case since a
particular term of the Hamiltonian constraint must repro-
duce that specific term from the bracket with the diffeo-
morphism constraint:

�
D½Nx�;− 1

2

Z
dyNf1ðB1ÞðE2Þ2

�

¼ 1

2

Z
dxdyNxðxÞNðyÞ½−A1ðxÞðE1Þ0ðxÞ þ A2ðxÞ0E2ðxÞ þ A0

3ðxÞE3ðxÞ; f1ðB1ðyÞÞðE2Þ2ðyÞ�

¼ −i
Z

dxNx0Nf1ðB1ÞðE2Þ2 − i
Z

dxNxNf1ðB1ÞðE2Þ0E2

−
i
2

Z
dxNxNA0

2

∂f1
∂A2

ðE2Þ2 − i
2

Z
dxNxNA0

3

∂f1
∂A3

ðE2Þ2

¼ −
i
2

Z
dxðNx0N − NxN0ÞðE2Þ2f1ðB1Þ − i

2

Z
dxNx0NðE2Þ2f1ðB1Þ − i

2

Z
dxNxN0ðE2Þ2f1ðB1Þ

−
i
2

Z
dxNxNðE2Þ2½f1ðB1Þ�0 − i

Z
dxNxNf1ðB1ÞðE2Þ0E2

¼ −
i
2

Z
dxððNxÞ0N − NxN0ÞðE2Þ2f1ðB1Þ − i

2

Z
dxðNxNÞ0ðE2Þ2f1ðB1Þ

−
i
2

Z
dxNxNðE2Þ2½f1ðB1Þ�0 − i

2

Z
dxNxNf1ðB1ÞððE2Þ2Þ0

¼ −
i
2

Z
dxððNxÞ0N − NxN0ÞðE2Þ2f1ðB1Þ þ total derivative: ð4:8Þ

In the above, we have used the relation f01 ¼ ð∂f1=∂A2ÞA0
2 þ ð∂f1=∂A3ÞA0

3. Similarly, the bracket of all the other terms of
the Hamiltonian constraint with the diffeomorphism constraint reproduces the whole Hamiltonian constraint.
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Thus, we have shown that starting from the holonomy
corrected constraints,

D ¼ ½A0
3E

3 þ A0
2E

2 − A1ðE1Þ0�; ð4:9Þ

H¼ 1

2
½E2ð2E1B2þE2f1ðB1ÞÞþE3ð2E1B3þE3g1ðB1ÞÞ�;

ð4:10Þ
their algebra is given by

fD½Mx
1�; D½Mx

2�g ¼ D½LMx
1
Mx

2�; ð4:11Þ

fH½N�; D½Mx�g ¼ −H½LMxN�; ð4:12Þ

fH½N1�; H½N2�g ¼ Hx½ðE1ðxÞÞ2ðN1∂xN2 − N2∂xN1Þ�;
ð4:13Þ

reproducing without any modifications the classical algebra
of constraints. However, to reproduce the hypersurface
deformation algebra of GR, we need to rewrite the vector
constraint in terms of the diffeomorphism constraint and
the Gauss constraint as well as restore the rescaling of the
lapse functions in terms of the determinant of the spatial
metric. Looking at the rhs of (4.13),

Z
dxðE1ðxÞÞ2ðN1∂xN2 − N2∂xN1ÞHx

¼
Z

dxðE1ðxÞÞ2
�

~N1

ðdetEÞ ∂x

�
~N2

ðdetEÞ
�

−
~N2

ðdetEÞ ∂x

�
~N1

ðdetEÞ
��

ðDþ A1GxÞ

¼
Z

dxqxxð ~N1∂x
~N2 − ~N2∂x

~N1ÞðDþ A1GxÞ; ð4:14Þ

it is clear that we can recover the usual form of the classical
hypersurface deformation algebra, once we solve for the
Gauss constraint Gx ≈ 0. (We have used the expression for
qxx in the last line above.)
More precisely, the modifications function βðKϕÞ that

shows up in the Poisson bracket between two
Hamiltonian constraints (2.20) in the real formulation
has disappeared in the self-dual formulation. Therefore,
the question of the interpretation of this modification
simply drops out in the context of the self-dual
formulation.

B. Adding a minimally coupled scalar field

Let us now couple a scalar field to the spherically
symmetric vacuum. The preceding holonomy corrected
constraints for the vacuum case are now supplemented by
terms arising from the matter part. The matter part of the
constraint comes in turn from the corresponding ones for
a minimally coupled scalar to a spherically symmetric
spacetime. The Hamiltonian constraint for a scalar field is
given by

Hscalar ¼
Z

d3xN

�
P2
Φ

2
ffiffiffi
q

p −
1

2

ffiffiffi
q

p
qxxΦ02 þ ffiffiffi

q
p

VðΦÞ
�
;

ð4:15Þ

whereas the diffeomorphism constraint in this case is

Dscalar ¼
Z

d3xNxΦ0pΦ: ð4:16Þ

We have one more canonical pair in the new phase space
given by fPΦðxÞ;ΦðyÞg ¼ δðx; yÞ=4π. Thus, the full con-
straint is as follows:

DT ½Mx� ¼ Dgrav½Mx� þDscalar½Mx� ¼
Z

dxMðxÞðA0
3E

3 þ A0
2E

2 − A1ðE1Þ0Þ þ 4π

Z
dxMðxÞPΦΦ0;

HT ½N� ¼ Hgrav½N� þHscalar½N�

¼ 1

2

Z
dxNðxÞðE2ð2E1B2 þ E2f1ðB1ÞÞ þ E3ð2E1B3 þ E3f1ðB1ÞÞÞ

þ 2π

Z
dxNðxÞðP2

Φ þ ðE1Þ2Φ02 þ E1ððE2Þ2 þ ðE3Þ2ÞVðΦÞÞ:

It is easy to observe that there shall be no holonomy
modification functions appearing in the matter sector since
they do not have any dependence on the connection
components but rather on only triad variables. Thus the
commutator of the scalar Hamiltonian would close into the
scalar diffeomorphism, as in the classical case. However,
deviations from the classical form of the hypersurface

deformation algebra can still take place only if there are
cross terms between the gravity and matter sectors, i.e. if
½Hgrav½N�; Hscalar½M�� ≠ 0. In the classical case, such cross
terms were zero and thus the bracket closed into the vector
constraint. The holonomy corrections introduced by us
have an argument of B1, and do not depend on the other
curvature components. However, B1 does not have any

BEN ACHOUR, BRAHMA, and MARCIANÒ PHYSICAL REVIEW D 96, 026002 (2017)

026002-12



spatial derivatives on the connection components, which
has no nonzero contribution to the above bracket. Since
this is the only modification introduced by us, and it
does not contribute to the bracket, we can easily con-
clude ½Hgrav½N�; Hscalar½M�� ¼ 0. Thus the full Hamiltonian
constraint commutator still closes into constraints without
any deformation of the structure function as in the
classical case.
All the other brackets between the full Hamiltonian

constraint and the full diffeomorphism constraint, and
between the full Hamiltonian constraint and the full
Gauss constraint, remain the same as in the classical
case. We can see this without explicit calculation by just
noticing that all the cross terms between the gravitational
and the matter parts of the constraints vanish, i.e.
fHgrav½N�; Dscalar½Nx�g ¼ 0 and fHgrav½N�;Gscalar½λ�g ¼ 0.
Thus, we now have a model with local degrees of freedom
which does have holonomy corrections but the underlying
covariance of the system is the same as the classical case
and is given by

fDT ½M1�; DT ½M2�g ¼ DT ½LM1
M2�; ð4:17Þ

fHT ½N�; DT ½M�g ¼ −HT ½LMN�; ð4:18Þ

fHT ½N1�; HT ½N2�g ¼ DT ½qxxðN1∂xN2 − N2∂xN1Þ�;
ð4:19Þ

where we have written HT ¼ Hgrav þHscalar and DT ¼
Dgrav þDscalar.

V. DISCUSSION

Let us now discuss the results obtained in this paper. We
have shown that the partial no-go results obtained in [16]
within the context of spherically symmetry reduced loop
model can be overcome by working with the self-dual
variables instead of the real ones. We comment briefly on
the status of the self-dual variables and then discuss the
possibility to quantize this model.

A. Undeformed covariance with self-dual variables

From the point of view of the self-dual variables, our
result reinforces the idea that the self-dual variables are
more natural in the context of the loop quantum theory of
black holes. Indeed, as pointed out in the Introduction, it
has been shown recently that the self-dual variables
reproduce in a more satisfying way (without any fine
tuning) the expected semiclassical results in the context of
black holes thermodynamics, such as the Bekenstein-
Hawking area law for the entropy of spherically and
rotating isolated horizons [57–59], or the thermal character
of the partition function for the horizon [60–62]. In this
paper, we have shown that, additionally, the use of the self-
dual variables allows to define a quantizable model for the

gravitational collapse, which does not suffer from the
drawbacks of [55] and by pass naturally the no-go result
found in [16].
While the model we studied in this work is an effective

quantum one, where the holonomy corrections are partially
implemented (recall that we only modified the angular part
of the curvature), it represents the first holonomy corrected
model of spherically symmetric gravity coupled to a scalar
field which is fully covariant. It seems that one is forced to
use the self-dual variables in order to define a quantizable
holonomy corrected model for this system due to the no-go
theorem of [16]. Even more remarkably, we have shown
that the holonomy corrected algebra has the exact same
form as the classical hypersurface deformation algebra,
which is an unexpected outcome. Indeed, it is commonly
believed that classical diffeomorphism symmetry of general
relativistic spacetimes will be deformed at the quantum
level. While it is the case when one uses the real Ashtekar-
Barbero variables resulting in the so called signature
change phenomenon [16], it turns out that no symmetry
deformation occurs in the self-dual case, at least in the
spherically symmetric sector. Whether this conclusion
extends to other sectors where the signature change
phenomenon also occurs, needs to be worked out in the
future. If this conclusion holds for all such models, then one
should interpret sign change in the constraint algebra as an
artificial characteristic of using the real Ashtekar-Barbero
variables.
Moreover, the fact that we have obtained an algebra of

the modified constraints which is exactly the same than the
hypersurface deformation algebra, as arising for ordinary
GR, could seem problematic at first. Indeed, the well
known theorem obtained by Hojman, Kuchar and
Teitelboim [91,92] states that starting from the hypersur-
face deformation algebra, one can uniquely derive the
Einstein-Hilbert action, up to a cosmological constant,
when the constraints contain no higher than second
derivatives of the metric. However, that result has been
derived for full (3þ 1)-gravity and we have considerable
more freedom in our case since we are working in a
symmetry reduced model. (Once again, this is related to the
fact that we have only one nonzero component of the
spatial diffeomorphism constraint in our case.) Therefore,
the Hojman-Kuchar-Teitelboim theorem, in its original
form, doesn’t apply to our symmetry reduced system.
Finally, from the point of view of the anomaly free

algebra, this result opens up a very promising path towards
constructing quantum theories of inhomogeneous midisu-
perspace models with local physical degrees of freedom,
which have been out of reach up till now. While our results
point towards the need of using self-dual variables for such
nontrivial models, a definitive conclusion is not yet
possible and one has to investigate some other reduced
loop model in order to obtain a more robust generic result
along these lines. Note that we have demonstrated a similar
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result for cosmological scalar perturbations in the self-dual
context where we end up with an undeformed algebra, as
opposed to the system with real-valued variables [93].
In this context, a major difference between the two is that
we have not modified the diffeomorphism constraint in
this work whereas we have done that for the case of
cosmological perturbations. This is not really a choice but
is rather forced by the closure of the algebra, i.e. in the case
of the cosmological perturbations, one is forced to modify
the spatial diffeomorphism constraint in order to have a
closed algebra. The physical reason behind this can also
be understood by realizing that these two models have a
crucial difference. Inhomogeneities are nonperturbative in
the case of spherical symmetry as opposed to the cosmo-
logical case. This was also valid in the case of the of the real
Ashtekar-Barbero variables. In that case, one had to add
counter-terms by hand in the cosmological perturbations
setup to ensure closure of the algebra although no such
prescription was necessary for spherically symmetric grav-
ity. Thus, this is a finding of our results. One necessarily has
to include quantum corrections in the spatial diffeomor-
phism constraint in the system with cosmological pertur-
bations. However, one might conjecture that such
modifications might also be necessary in the spherically
symmetric case once both local and nonlocal holonomy
corrections are included, which are beyond the scope of this
paper. The next interesting reduced models to investigate
would be polarized Gowdy models for which partial no-go
theorem have already been proven in [17] using the real
Ashtekar-Barbero formulation. We plan to address this
question in a future work.
While very encouraging, the anomaly free algebra

presented in this work will be useful only if one is either
able to extract a concrete effective theory from it, by
picking up an explicit form of the holonomy correction f1,
or, even better if one is able to quantize this model based on
the self-dual variables. Let us now comment on this point.

B. On the quantization of this self-dual model

There are two main outstanding technical complications
that are encountered within the quantization procedure of
this model:
(1) one has to derive the explicit expression of the

holonomy correction function f1ðB1Þ;
(2) one has to find a way to implement the reality

conditions inherent to the self-dual formulation.
Before elaborating on the above two points, let us point
out that there are several other steps necessary to
construct the quantum theory, most notably defining a
kinematic Hilbert space with a suitable physical inner
product on it (this last task is considerably more difficult
for a noncompact group as in our case). However, in our
opinion, the above two points form the biggest challenges
in building up the quantum theory. While the first point
represents the most important difficulty, the second one

can be overcome more easily in this spherically sym-
metry reduced case. Let us comment on this latter point
first. While the imposition of the reality conditions at the
quantum level for the full theory is a highly nontrivial
problem, which remains open since the very advent of
the self-dual variables, the situation is quite different in
symmetry reduced models. Indeed, if one knows what are
the quantum observables of the system studied, which is
a nontrivial question for a diffeomorphism invariant
system, one can simply require those observables to be
self-adjoint with respect to the scalar product on the
physical Hilbert space of the quantum theory. This was
precisely the strategy used in [76] where the spherically
symmetric self-dual Ashtekar gravity was quantized in
the Schrödinger representation. Therefore, it seems rea-
sonable to infer that the problem generally associated to
the reality conditions will not be difficult to be solved
within our symmetry-reduced model either.
For the first obstruction, the situation is more subtle.

Since we are now working in the self-dual formulation of
gravity, the gauge group is noncompact and given by
SLð2;CÞ. At first sight, it could seem hopeless to expect
a resolution of the singularity because the holonomy
corrected functions can be unbounded contrary to the
SU(2) case. However, it has been shown in [94] that
such preconceptions can be misleading. In this work, a
proposal for defining a self-dual model of LQC through
an analytic continuation procedure was introduced. It was
possible to exhibit a bounded holonomy correction
function involving hyperbolic functions, which still pre-
served the bouncing scenario and led to the right semi-
classical limit. Although the precise expression of this
function is quite complicated and a full quantization of
the model becomes rather intractable, it shows that we
have not to work necessarily with almost-periodic trigo-
nometric functions in order to obtain the bouncing
scenario at the effective level. This issue can be better
understood as follows. Because of the noncompactness of
the gauge group, it is now possible to work either with
null, elliptic or hyperbolic elements of the group when
computing the holonomy corrections. Since the graphs,
on which the quantum states are supposed to be defined,
live on a space-like hypersurface due to the initial slicing
of the manifold, the holonomy of the connection asso-
ciated to each edge will be given by an hyperbolic
element of SLð2;CÞ. It is then straightforward to see that
we cannot work in the fundamental representation if we
want to obtain singularity resolution since the curvature
will be replaced by an unbounded function. Instead, we
need to investigate the higher dimensional representations
of the group in order to obtain holonomy corrections
which remains bounded (albeit this comes at the expense
of working with more complicated looking functions).
Implementing this program is currently under investiga-
tion with promising initial results.
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APPENDIX

Let us suppose that we do not consider local holonomy
corrections alone and introduce modification fucntions
in A2 and A3 wherever we see them in B1, B2 and B3.
The correction functions would then take the form

B1 ¼ f1ðA2
2 þ A2

3Þ ðA1Þ

B2 ¼ dg1ðA3Þ
dA3

A0
3 þ A1h1ðA2Þ ðA2Þ

B3 ¼ dg2ðA2Þ
dA2

A0
2 þ A1h2ðA3Þ: ðA3Þ

The correction functions g1 and g2 an be immediately ruled
out by looking at Eqs. (4.4) and (4.5). If we have g1 and g2
different from the classical case, then these two terms

cannot cancel out any more (which we require for the
closure of the brackets).
However, the modification functions h1 and h2 do not

cause any problems as far as the closing of the brackets are
concerned. But if we look at Eq. (4.3), we shall find that the
new term left over is not going to be proportional to the
diffeomorphism (or vector) constraint any longer. The new
version of Eq. (4.3) shall be given by

i
Z

dxðM0ðxÞNðxÞ − N0ðxÞMðxÞÞ

× fðE1ðxÞÞ2E2ðxÞB3ðxÞ − ðE1ðxÞÞ2E3ðxÞB2ðxÞg; ðA4Þ

with the modification coming from the fact that B1 and B2

are now modified by the presence of h1 and h2. One might
think that this is okay if we redefine our vector constraint to
have these modifications in built in it. However, in that
case, the diffeomorphism constraint shall also get modified
by the presence of these functions h1 and h2 (remember that
the diffeomorphism constraint is just a linear combination
of the vector and Gauss constraints). It is then easy to
convince one self that the fD;Dg bracket does not close
with any modification functions in it (and this is partly the
reason why we do not modify the diffeomorphism con-
straint). Thus, from an independent perspective, it is easy to
see that we cannot close the bracket with local correction
functions beyond what we have introduced in this paper
for B1 → fðB1Þ.
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