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CP-odd sector and € dynamics in holographic QCD
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The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit.
An unprecedented analysis of the CP-odd physics is performed going beyond the level of effective field
theories. The structure of holographic saddle points at finite 8 is determined, as well as its interplay with
chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and
nonsinglet masses and mixings) are computed as functions of ¢ and the quark mass m. Wherever applicable
the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the
Witten- Veneziano formula in the small x — 0 limit, we compute the € dependence of the pion mass, and we
derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the

quark mass.
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I. INTRODUCTION AND OUTLOOK

The axial anomaly plays an important role in the physics
of strong interactions and is inherently related to the U(1),
problem of QCD. The massless QCD Lagrangian enjoys a
flavor symmetry, SU(N;)y x SU(N;), x U(1)y x U(1) 4.
The U(1), part is conserved and results in the baryon
number conservation. SU(N )y, x SU(N;), is spontane-
ously broken down to SU(Ns),,. The spontaneous breaking
is signaled by the existence of Goldstone bosons in the low
energy spectrum of the theory. However, there is neither
any trace of U(1), symmetry in the spectrum of the theory
nor any light Goldstone boson which would signal its
spontaneous breaking. Instead, a large mass of 7/, com-
pared to standard expectations from current algebra [1],
was observed experimentally. Historically this is known as
the U(1), problem in QCD [2].

’t Hooft proposed [3] that the nontrivial topological
gauge field configurations, instantons, violate the U(1),
symmetry. Classical instanton solutions lead to nonzero
f d*xTrG A G, where G is the gluon field strength.
This leads to tunneling among different vacua with differ-
ent topological charge. Most importantly, a nontrivial
f d*xTrG A G in QCD results in the nonconservation
of the axial current, due to the axial anomaly. This implies
that a nonzero CP-odd term in the QCD Lagrangian, known

as the 6 term, # TrG A G, can affect nonperturbatively the
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dynamics of the theory. In [4], it was pointed out that in the
context of the instanton picture, certain anomalous Ward
identities are not satisfied and the expectation values of
certain operators do not have the correct € dependence.

The U(1), problem was further studied in the large N,
limit where an additional puzzle appeared: if the U(1),
anomaly is responsible for the would-be Goldstone
boson (the #') having a mass, then the mass must be due
to the instantons. Therefore it should be proportional to the
standard instanton factor that is exponentially small at large
N.. On the other hand, Ward identities seemed to indicate
an inverse power law dependence of the 7' mass on N,.
Witten [5], by studying a similar model in two dimensions,
argued that instantons do not behave as a gas (as is usually
assumed in instanton calculations), but rather the instanton
number becomes continuous, and this is responsible for the
power law dependence of the 7/ mass.

Along the same line of thought, Veneziano [6] intro-
duced the limit where quark loops contribute to leading
order to the U(1), anomaly:

N, — oo, Nf — 00,

Ny : 2

N =r= fixed, A= gyyN,. = fixed. (1.1)
c

In this limit he was able to resolve the inconsistencies
pointed out in [4], to rederive the #'-mass formula,
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Eq. (7.21), which was earlier advocated by Witten [7], and
to show that the anomalous Ward identities are satisfied.

The dependence of low energy QCD physics on the 6
angle was further studied in the context of the low energy
effective Lagrangians [8—13]. More recently, lattice field
theory methods have also been employed to study the
topological dynamics of QCD [14-17].

The inclusion of a € term in QCD obviously leads to CP
violation effects in strong interactions. As it was shown in
[18], independently of the confining gluon dynamics, the
presence of instantons leads to P- and T-odd effects.
However, no such experimental signal has been observed
until now: the experimental bound for the value of 6 is
|0] <3 x 1071, Several attempts have been made to solve
the problem [18-26]. The straightforward solution pro-
poses the existence of a (fundamental) pseudoscalar axion
field which couples to the topological operator TrG A G.
This coupling is suppressed by a large scale, that makes the
axion interactions weak. In this way the 6 angle becomes
now a dynamical variable (the expectation value of the
axion field) and the QCD dynamics forces this expectation
value to relax to zero [7].

The topological effects in QCD, have recently attracted
much attention due to the exciting discovery of the chiral
magnetic effect, which takes place when the quark gluon
plasma (QGP) moves in a background magnetic field, as
soon as there is chiral charge imbalance in the medium. It
has been claimed that such an imbalance is created due to
topological fluctuations of the medium and their connec-
tion to the axial anomaly [27]. Even though it has been
argued that the instanton contributions at finite temperature
are exponentially suppressed [28], topological fluctuations
of the medium, due to sphalerons, at finite temperature
[29], lead to a net axial charge [30]. Anomalous conduc-
tivities were also studied in holography in [31] and their
renormalization for nonconformal theories in [32].

The effects of the axial anomaly and the 6 term in low
energy QCD have been also studied in the context of
holography. In [33], Witten studied the 8 dependence of the
D, brane holographic model, dual to a certain pure four-
dimensional Yang Mills theory [34]. The 6 angle was
introduced as the source of a Ramond-Ramond (RR) bulk
field. Then, the energy density of the vacuum was com-
puted as a function of € and it was shown that for every 6
there are infinite distinct vacua. Similar conclusions hold in
bottom-up holographic models of pure Yang-Mills theory
such as the improved holographic QCD (IHQCD) model
[35,36]. In [37], similar observables were computed,
building on the background solutions with backreacting
0 of [38,39] in the case of 6 ~ O(N?).

The Witten-Veneziano formula for the mass of #’ in the
black D, brane theory was derived holographically in [40]
by including probe Dg flavor branes in the D, background
[41]. A similar result was drawn in a different holographic
model, where D3 branes were embeddedonaCs /(Z3; ® Z3)
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orbifold singularity [42]. Later, the Witten-Veneziano for-
mula was verified in more realistic holographic models such
as the Witten-Sakai-Sugimoto model [43] and the tachyon
AdS/QCD model [44,45], where a  angle of order O(1) was
considered. The backreaction of the flavor to the geometry in
the Witten-Sakai-Sugimoto model and the effect of finite 6
angle were considered in [46]. In models with flavors, the
coupling of the flavor branes to the RR fields is found by
anomaly inflow arguments, which were presented in [47].

The "t Hooft large-N . limit is a excellent technical tool for
studying nonperturbative dynamics. Concerning the physics
of the axial U(1), anomaly, however, the Veneziano large-
N limitin (1.1)is more appropriate as in this limit the U(1) 4
anomaly is a leading effect. This limit was advocated already
in order to describe holographic models similar to QCD that
exhibit a conformal window in some part of their phase
diagram [48]. This led to a class of holographic theories
under the name of V-QCD, whose properties were analyzed
in several contexts with interesting and sometimes unex-
pected results [48-55].

The purpose of the present paper is to fully analyze
the CP-odd dynamics of V-QCD associated with the 6
dynamics as well as with the dynamics of the phases of the
quark mass matrix.

A. Summary of results

We will first describe the complete V-QCD action with
CP-odd terms which contains the physics of the axial
anomaly and the @ angle. We will use this theory to analyze,
among other things, the phase diagram (as a function of the
complex quark mass and the 6 angle) and the meson
spectrum. In more detail, the main results are as follows.

In Sec. II we indicate the general structure of CP-odd
terms that are added in the V-QCD models. Our method is
based on earlier work [44,56,57], and its adaptation to the
fully backreacted models was initially studied in [51]. The
CP-odd sector arises from the Wess-Zumino-Witten term
for the N space-filling pairs of D4 — D4 branes. However,
following the reasoning in the glue [35] and flavor [48]
sectors, we introduce potential functions depending on the
bulk scalars, the dilaton and the tachyon, in the CP-odd
action, therefore switching from a top-down to a bottom-up
approach. We restrict our study to flavor independent
backgrounds [respecting the SU(N),, symmetry], and in
particular, to flavor independent quark mass, writing the
complex tachyon field as 7 = ze’l, where [ is the unit
matrix in flavor space. The final CP-odd action is then given
in Eq. (2.15). We stress that full backreaction between all
terms in the action (glue, flavor, and CP-odd) is included.

The CP-odd fields are the following:

(1) The axion a which is dual to the operator TrG A G

and sources the 8 angle on the boundary.

(i) The phase of the tachyon & which is (roughly) dual

to the operator yysy and sources the phase of the
quark mass.
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(iii) These are related by the anomaly to the divergence
of the axial current [the longitudinal component of
the U(1), vector of the bulk theory].

The precise dictionary is specified through the boundary
coupling to field theory in (2.19). We demonstrate that
V-QCD models are consistent with the periodicity of the 6
angle in QCD. As expected for QCD in the Veneziano limit
[33], the vacua related by € + 0 + 2z are not linked by
continuous deformation of the 8 angle, but there is branch
structure instead. Moreover, we argue that the axial
anomaly, given in Eq. (2.25), is correctly reproduced.
The gauge-independent CP-odd source is identified with
the gauge invariant @ angle in QCD: 6 = 6 + argdet M g
where M is the (complex) quark mass matrix.

In Sec. III we derive the equations of motion for V-QCD
at finite € angle and analyze their asymptotic solutions. The
axial U(1), symmetry implies that the CP-odd degrees of
freedom, the axion and the tachyon phase, can be integrated
out. After taking into account symmetry and regularity in
the IR, their effect reduces to an additional integration
constant C,, which is seen to be proportional to the VEV of
the TrG A G operator. After solving the background
equations, this integration constant can be mapped to the
(UV value of the) € angle.

Perturbative analysis of the solutions near the boundary
shows that solutions at finite C,, (and therefore nontrivial 0)
must always have nonzero quark mass and that 6 becomes
ambiguous as m, — 0. This reflects properties of QCD: the
0 angle can be gauged away if any of the quarks is massless.
We also note that the VEVs of the quark bilinears yy,
wysy, and the VEV of TrG A G respect axial symmetry.
The IR regularity of the (fully backreacted) solutions is
seen to give constraints to the dependence of the flavor and
CP-odd terms of the V-QCD action on the dilaton and the
tachyon. In particular, we point out that the string theory
prediction for the dilaton dependence of the flavor action in
the IR falls in the narrow range of acceptable behaviors
which produce fully regular solutions, complementing
earlier, similar results [35,51].

In Sec. IV we review how the various potentials in the
glue and flavor sectors of the V-QCD action are constrained
due to regularity, asymptotic behavior near the boundary
and in the UV, and by agreement with QCD at the
qualitative level. In particular we combine previous results
with the additional constraints from the asymptotic analysis
of the CP-odd solutions in Sec. III. We determine explicit
choices for potentials which satisfy the constraints, there-
fore finalizing the construction of V-QCD at finite 6.

In order to compare our results to the chiral Lagrangians,
they are derived in the Veneziano limit in Sec. V. We note
the following:

(1) There is a delicate issue in the ordering of the chiral
(m, — 0) and "t Hooft or probe (x — 0) limits: the
chiral limit needs to be taken before the probe limit
or simultaneously with it for the chiral Lagrangians
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to be applicable. This issue is not relevant in the
Veneziano limit, where x is finite.

(i1) Unlike in the 't Hooft limit, the glueballs and mesons
mix at leading order in the Veneziano limit. We
argue that this mixing does not affect the chiral
Lagrangian (5.21) for the Goldstone modes nor the
Gell-Mann-Oakes-Renner (GOR) relation.

(iii) The chiral Lagrangian in the Veneziano limit, (5.21),
has two important terms which are suppressed in the
’t Hooft limit but are leading in the Veneziano limit:
one term is responsible for the chiral anomaly and
another allows the decay constants of the pions and
the ' meson to be different.

In Sec. VI V-QCD is used to analyze (analytically and
numerically) the vacuum structure as a function of m,,
x=Ny/N,, and 6. As a function of x QCD has two phases
of interest: the QCD-like phase for 0 < x < x,., and the
conformal window for x. <0 < 11/2 = x; where the
model has an IR fixed point (see [48] and the review in
Sec. IIB). In addition inside the low-x phase, for
X. —x < 1, there is a region where the RG flow includes
walking, or quasiconformal behavior: the coupling constant
varies very slowly for a large range of energies.

A rich and interesting structure is found in the QCD-like
phase. We solve numerically the vacua in V-QCD and when
applicable we compare the results to those derived from
chiral Lagrangians.

The main results from the analysis of V-QCD in the
QCD-like phase x < x, are the following:

(i) In the limit m, — 0, where chiral Lagrangians for
QCD are reliable, they agree with V-QCD. In
particular, the leading terms of the free energy as
a function of @ and topological susceptibility, which
can be derived analytically in V-QCD, match exactly
with the predictions of the effective (chiral) theory.

(i) The analytic agreement with the effective chiral field
theory is present both when (only) the pions are light
[m, — 0 with x = O(1)], and also when both the
pions and the 7" mesons are light (m, — 0 and x — 0
with m, ~ x).

(iii) We carry out a detailed numerical analysis of the
vacua at finite 6 in V-QCD in regimes where chiral
Lagrangians are not expected do be valid and
analytic approximations are not known (e.g., inter-
mediate quark masses), determining key observables
such as the topological susceptibility and free
energy.

(iv) As m, — oo, the quarks decouple and the dynamics
becomes that of Yang-Mills theory.1

'Decoupling here means that observables as functions of the
gauge invariant 6 angle, such as the topological susceptibility and
the free energy, approach their Yang-Mills form. The phase of the
quark mass does not decouple but appears only through the gauge
invariant variable 6.
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(v) The final result for the free energy for the energeti-
cally favored phase in Eq. (6.16) is similar in form to
the result in the ’t Hooft limit [33].

(vi) We demonstrate that the dependence between the
(complex) source and VEV of the tachyon has a
complicated structure, implied by IR regularity,
which naturally appears in holographic models
but is difficult to describe by using field theory
techniques. The results in this article generalize the
spiral dependence to complex variables and is linked
to a tower of perturbatively unstable Efimov vacua.

The phase structure as a function of x, in the conformal

window, and near the conformal transition at x = x, is
studied as well. In the conformal window, the vacuum
structure is simpler than in the QCD-like phase as the
structure related to the Efimov vacua is absent. In this phase
and near the conformal phase transition, the dependence on
the quark mass of observables (such as the topological
susceptibility) is understood in terms of the separation of UV
and IR scales, in agreement with the behavior at 0 =0/[55].

Specifically, we find the following:

(i) The scale separation gives rise to the hyperscaling
relation for the topological susceptibility in the
conformal window:

A ml+7*

as m;—0, (x.<x<uxpz), (1.2)
where 7, is the anomalous dimension of the quark
mass at the IR fixed point.

(ii) In the walking regime, x. — x < 1, the topological
susceptibility obeys an intermediate scaling law,
X m,z], which holds for longer and longer range
of masses as x — x, from below.

(iii) The agreement with chiral Lagrangians as m, — 0in

the QCD-like phase is found for all x within the range
0 < x < x,, even in the walking regime. We check
this explicitly for the topological susceptibility.

We perform two separate calculations of meson masses.
First, in Sec. VII we complete the analysis of [51] by
computing at vanishing 6 angle the spectra of the flavor
singlet pseudoscalar modes, which involve the fields of the
CP-odd action S,. The results are as follows:

(1) The pseudoscalar glueball modes mix with the yysy
states at generic values of x, and the mixing is
suppressed for x — 0.

(ii) The 5’ meson is identified as the lightest state in this
tower as x — 0. It is shown analytically (in Appen-
dix G) and verified numerically that its mass satisfies
the Witten-Veneziano relation

NN,
LAY ZXYM, (1.3)
Iz

where yyy is the Yang-Mills topological suscep-
tibility, when both x and the quark mass are small.
(iii) Apart from the ' meson, a numerical study shows
that the dependence on the masses on x and m, is

mz, :m%—l—x
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similar to other sectors, discussed in [51]. In
particular, when m, =0 the dependence on x is
mild for x = O(1), and as x — x,.~ all masses follow
the Miransky or Berezinskii-Kosterlitz-Thouless
(BKT) scaling law of Eq. (2.33).

Finally, in Sec. VIII, we analyze the spectrum of flavor
nonsinglet fluctuations at finite  angle. Specifically, we
use the branch of vacua that are continuous deformations of
the “standard” background at 6 = 0.

(i) At finite 0, the scalar and pseudoscalar mesons mix.
The mixing vanishes as expected when & — 0. There
is no mixing in the spin-one sector because vectors
and axial vectors transform with opposite signs
under charge conjugation, which remains as a good
quantum number even at finite 6 (whereas parity and
CP are broken).

(i) The pion mass is shown to satisfy the generalized

Gell-Mann-Oakes-Renner relation

B 0
Fom = =), oy cos -+ O(m3)  (14)
>

analytically and numerically.
(iii) Apart from the pion mode, the dependence of the
meson masses on 6 is weak.

Briefly the structure of this paper is as follows. In Sec. II
we review the V-QCD model and its background solutions
for @ = 0. In Sec. III we derive the equations of motion
with the CP-odd sector included, and analyze their asymp-
totic solutions. In Sec. IV we present choices of potentials
for the V-QCD action which satisfy all known constraints.
Section V contains a detailed analysis of the chiral
Lagrangians for QCD in the Veneziano limit. In Sec. VI
we carry out a detailed analysis of the vacuum structure of
the V-QCD models at finite 6. In Sec. VII we compute the
spectra of flavor singlet CP-odd fluctuations at 6 = 0.
Finally, in Sec. VIII we analyze the flavor nonsinglet meson
spectra at finite 6.

Technical details are presented in the appendices. In
Appendix A, we carry out a detailed analysis of the UV
and IR asymptotics of the backgrounds at finite 6. In
Appendix C we discuss technical details of the vacuum
solutions at finite 6. Appendix D contains the fluctuation
equations for the flavor singlet CP-odd modes. In
Appendix E we derive the fluctuation equations for the
flavor nonsinglet modes at finite 6. Appendix G has details
of the proof of the Witten-Veneziano formula for the mass
of the #/ meson in V-QCD. In Appendix H we prove the
Gell-Mann-Oakes-Renner relation at finite  in V-QCD.

II. V-QCD
We shall start by writing down the action for V-QCD

S=38,+8;+ S, (2.1)

026001-4



CP-ODD SECTOR AND ¢ DYNAMICS IN ...

where S, and S, are the pieces corresponding to the glue
and flavor sectors, while S, which will be the central piece
of our analysis, describes the CP-odd sector. The first two
contributions have been carefully analyzed in [48], since
they are the only ones contributing to the vacuum structure
at zero 6 angle. We will briefly discuss them before
focusing on the CP-odd piece S,,.
The glue action, introduced in [35], takes the form

4 (0A)?
Sg:M3Ng/d5X\/—g<R—3(a/12)

+ Vg(i)> (2.2)

with A = e? the exponential of the dilaton, dual to the
operator TrF?. Hence we identify the background value of
A with the ’t Hooft coupling. As for the metric, the Ansatz
for the background solution reads

ds? = *AU) (dx? 5 + dr?), (2.3)
where the warp factor A is identified with the logarithm of
the energy scale in the field theory. In our conventions, the
UV boundary is at r =0 (and A — o0), and the radial
coordinate is then in the range r € [0, ). Moreover, the
metric will be close to that of AdS near the UV boundary.
Therefore A ~—log(r/¢) with ¢ being the (UV) AdS
radius, and in the UV ris roughly dual to the inverse of the
energy scale of the field theory.

As shown in [51] the fluctuations of the action for the
flavor sector Sy mix with those of the CP-odd term S,.
Therefore we first write the action for the flavor sector in
general [44] (see also [58]),

1 .
S/ = 2 MN,Tr / dxdr(V (4. T'T)\/—det A,

+ V(A TT)\/~detApg), (2.4)
with the radicands defined as
ALyy = gun +w(4, T)Fz(\ﬁz)v
BT (D, 1) (D) + (D) (DT
Arun = gun + w4, T)Fz(tf;z)v
+ 5D ) (D) + (DT (DT
(2.5)
and the covariant derivative is given by
DyT = 9yT + iTAL, — iART. (2.6)

We notate the five-dimensional indices with capital Latin
letters M, N, ... and the four-dimensional Lorentz indices
with Greek letters u, v, ... throughout the article. The fields

PHYSICAL REVIEW D 96, 026001 (2017)

Ap,Ag and T are N X N matrices in the flavor space, and
under the left and right U(N) gauge transformations they
transform as

AL = VAV —idV, V],
T — VTV],

Ag = VRARV i —idV V5,
TH >V, TV}, (2.7)

with VLVZ =[= VRV}. A, Ag are dual to the left and
right flavor currents of the theory while 7 is dual to the
quark mass operator.

It is also useful to define

Ny

X=—.
N,

(2.8)

In general, it is not known how to perform the trace in
(2.4) when the arguments of the determinants are non-
Abelian matrices in flavor space. However, since we will be
considering cases where the quarks are either massless or
have all the same mass, the background solution will be
proportional to the unit matrix. Additionally, for this kind
of background, the fluctuations of the Lagrangian are
unambiguous up to quadratic order.

As in [51] we will consider the following form of the
tachyon potential

V(A TTT) = V(A)e @7 (2.9)
and restrict the functions x(4,7) and w(4,T) to be
independent of 7. Moreover, the functions V (4), a(4),
k(4), and w(4) are constrained by requiring the agreement
with the dynamics of QCD [48,49,51]. We will review the
suitable choices for these potentials in Sec. IV.

A. The CP-odd sector and the U(1), anomaly

The action of the CP-odd sector results from the Wess-
Zumino (WZ) term coupling the closed string axion to the
phase of the tachyon and the U(1), gauge boson. This term
was discussed in [44], and further adapted to our model of
holographic QCD in [51]. Since we will consider only the
case where the quarks are massless, or have all the same
mass, we can write the tachyon as

T = r(r)eié(’)l]Nf, (2.10)

where [ N, denotes the N, X N unit matrix in flavor space.

Next, following [44,51], we write the action of the CP-
odd sector as

|Hy|
Z(4)
(2.11)

2
9

M3
Sa = Sclosed + Sopen’ Sclosed = —7/ dS)C\/—g

H4 :dC3,

026001-5
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where Cj; is the RR three-form axion, and

Sopen:i/C3/\92:i/C3/\d£21,
Q) = iNg2V, (A 1)A=¢&dV ,(4,7)],
where A is the flavor singlet term of the axial gauge boson

Al — Al

A =
M 2

(2.12)
The potential V,(4,7) is known in flat-space tachyon
condensation, in which case it is the same as that appearing
in the tachyonic Dirac-Born-Infeld (DBI) (i.e., V) and is
independent of the dilaton [44,59]. Although in our model
V, might be different from V, it must satisfy the same
basic properties; it becomes a constant (related to the
anomaly) at 7 = 0, and it vanishes exponentially at 7 = oo.
Hence we will initially take V, to be of the form
V(1) = e7b7, (2.13)
and discuss possible alternatives in Sec. IV.

After dualizing the three-form C; to a pseudoscalar
axion field a via

H,

Z0 “(da + i),

(2.14)

the CP-odd action becomes

M3 2
Sa - N /dsx\/ Z( )[aM(I - X<2Va</1, T)AM
- é:ana (’1’ T))] ’ (2-15)
in terms of the QCD axion
a
a= N—C (2.16)

which, as we will discuss below, is normalized so that a is
dual to 6/N..

In order to establish the holographic dictionary for the
CP-odd part of the boundary theory, we start by writing the
Lagrangian of QCD as

1 . _
SQCD = / d4x |:—2—g2—|]—l"G/wle + ll//Dl// - l//RMql//L

(2.17)

- l//LM YR+ eﬂylm_]]—rGqu/m

3277

where w;, = (1+7)w/2, wg = (1 =7 )w/2, and M, is
the (potentially complex) quark mass matrix.

The bulk action (2.15) is invariant under the gauge
transformation

PHYSICAL REVIEW D 96, 026001 (2017)

Ay > Ay +0ye, E—>E—2e, a—-a+2xV,e,

(2.18)

where the first two transformations follow from (2.7)
for a gauge transformation of the form V, = Vi, = ¢"r.
Notice that on the boundary this transformation realizes
the QCD axial anomaly upon assuming that the boundary
values of the fields a, A and & source the operators
" Tr(G,,G,,). J5 and m yy>y respectively, according
to the following boundary action:

N,
3272 /.

) 1
d*xJ P AR )/“J—K/ d*x—pgT
+[§ T xfﬁ rlyL
1
_KT/ dx% W T wg

where 6 is a UV cutoff, and J,
(with i, j = 1...Ny).

The proportionality constants between boundary values
of the bulk fields and the sources of their dual operators on
the field theory are not fixed in (2.19). They nevertheless
disappear from any renormalization group (RG)-invariant
quantity (like the product of a source times its VEV).
Indeed, we have included the parameter K; which will
appear in the relation between the quark mass and the
boundary value of the tachyon.

We could include a second free parameter in front of the
term ~ae"”°Tr(G,,G,,), see [60]. However, we have
chosen to fix the normalization of the axion a such that
its boundary value is precisely 8/N,, as seen by comparing
(2.19) and (2.17). Further requiring that the potential V,
approaches unity at the boundary, V(4,7 =0) = 1, the
U(1), gauge transformation (2.18) implies that the axial
anomaly is correctly reproduced. We will see this explicitly
below in Eq. (2.25).

The normalization of the couplings of the gauge fields
AW/R) was chosen to be consistent with the gauge trans-
formations (2.7).

Further, recall that the CP transformation of the fermion
bilinears is given by

Ss= d4xae””/’”'ﬂ'r(GmGp,,) + / d*xJ P ALwis
r=6

(2.19)

IR — iy, (1 £ 75w /2

gy (1.x) > @yt —x),

@'ysyd (6,X) = —pysy' (1, —x). (2.20)
We require the proportionality coefficient K4 to be real so
that the corresponding terms in (2.19) are CP invariant if
the tachyon transforms as T'(r, ¢, x) +— T(r, t,—x)*, which
is indeed the transformation found in [44].

Notice also that for a diagonal tachyon as in (2.10), the
last two terms of (2.19) take the form
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Kr
2 r=6
K

2 r=0

d‘%%r(é’f + e )y

d%%r(e’f — e ydy,  (2.21)

which in the limit of small phase £ <« 1 reduce to

—KT/ d4xiﬂ,7/y/ - KT/ d4xL§Tiy7y5l;/. (2.22)
r=s L0 r=s L0

Finally, we point out that a(r) and &(r) both transform
under (2.18) reflecting the transformation of € and the
quark mass phase £ under the anomalous U(1),. It is the
gauge invariant combination

a=a-+x£V,, (2.23)
which is dual to the U(1), invariant combination /N, =
0/N, + arg(detM,)/N,., upon taking into account that
V,(4, T=0)=1.

Notice that because ¢ is a phase, any solution is
unchanged under the shift £ — £+ 2z. By using the
dictionary, this shift implies 6+ 6+ 22N, so the
results in our model will be 2zN, periodic in 0. But
it is known that QCD has a much shorter 2z periodicity
in this angle. This periodicity will be less obvious from
our analysis, because it is linked to non-Abelian
SU(Ny) transformations. We have already restricted
our study to backgrounds where the tachyon is propor-
tional to the unit matrix, which effectively excludes such
transformations.

In order to see how the 2z periodicity arises, notice that
we have made a branch choice when defining the CP-odd
action in (2.15). Here the phase of the tachyon could be
written for general T as

1 1
&= ¥ (logdet T —logdetTT) = N—argdetT.

2.24
2iNg £ ( )

We observe that the branch ambiguity of arg in (2.24)
corresponds to &+ &+ 2x/Ny, which gives the desired
0+ 0+ 2z in the boundary theory. The branches are
connected via non-Abelian transformations. To make this
explicit, we may start from a background with a diagonal
tachyon, choose Vi = V] = diag(e®, ..., e, e~ (N/=1o)
in (2.7), and apply the transformation as ¢ varies from
zero to m/Ny. Since the transformation matrices belong to
SU(N;) the CP-odd action (2.15) transforms trivially. In
particular, (2.24) remains constant under the transforma-
tion. The end result is, however, that the tachyon changes
by T + e>"/N/T, corresponding to a shift of the tachyon
phase by 27/N. Therefore, the transformation connects
two “adjacent” branch choices in (2.24).
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According to AdS/CFT, the boundary field theory
generating functional is given by Wqpr[a(x,5), A (x, ),
E(x,8)] = (&%) = e'S«, where the bulk action S, is taken
to be on shell. Applying the transformation (2.18) one
obtains 6,Wqpr « 6,5,, and since S, is invariant under
(2.18), one obtains (e'%:5,S55) = 0. Because (e'%s) defines
the generating functional, taking functional derivatives with
respect to the sources we see that all correlators of the form
(... 6.S5) vanish. Therefore, the following equation holds
for all correlators accessible to our holographic model (and
thus corresponds to an operator identity in the dual QFT):

Ne o ops
9, IO = = e Tr(G,,G,,)

o
+ 2Ky <[z cos(§)],—

|
= 2Ky 3 [zsin(&)],_s- (2.25)

Here J5, = @'y, r w', and we have used the fact that
V,(4, T =0) =1, and that T vanishes in the UV. Next,
upon identifying the energy scale as the metric factor e,
which behaves as e? ~ 1/r in the UV, we define the running
quark mass (evaluated at the energy scale u = e?|,_;) as

_ (6
mc,l,,zKTQ

2.2

while £(8) = & denotes the phase of the quarks, and ¢ is the
AdS radius introduced below (2.3). Hence we can write

N L
9, SO = F;Qd‘”"”Tr(GWGM) + 2im, cos(&)piy y!

— 2, sin(&) 'y, (2.27)
where Yy and Wyy stand for the corresponding
renormalized operators at the energy scale p. Notice that
in the following sections we will instead consider the
operators sourced by the renormalized mass m, which is
defined through the UV asymptotics of the tachyon (see
Appendix A 1 for more details)

%T(r) = mr(=log(rA))™ {1 + 0(@)}

+or3(=log(rA))” {1 +0(10g(1m)ﬂ , (2.28)

where m, is a constant and equals the running quark mass
m, at some fixed renormalization scale [while ¢ corre-
sponds to the renormalized chiral condensate ~(pw),
and p is defined in (A7) in terms of the parameters of
the model]. To be precise, in view of (2.26), i, and m,, are
related via
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1
n, = K —log(6A))7” |1 + O| ——— 2.29
g = Ky (~1og(on) 7140 | 229)

for small § and this same relation will hold between the
renormalized operators sourced by m, [see Eq. (2.27)
above], and those sourced by m,,.

Initially, we will be interested in background solutions
with both A, and & vanishing. Therefore, we need solve the
equations stemming from the O(N2) action S, + Sy to
determine g, , 4, and 7. For the background solutions with a
nonzero O angle analyzed in Sec. VI we will have to
consider also a contribution from S,,.

B. The background solutions at § = 0

In this subsection we review some general features of the
background solutions of V-QCD at zero 0 angle. We will
only consider the standard case that displays a phase
diagram similar to what is expected in QCD (see [51]
for a thorough analysis of the constraints this requirement
imposes on the different potentials entering the theory).

The background solutions follow from an Ansatz where
A, A, and T are functions of the radial coordinate r, while
the rest of the fields in the model are consistently set to
zero. The Ansatz for the tachyon is further restricted to
T = (r)ly,, corresponding to all quarks having the same
real-valued mass [hence setting £ = 0 in (2.10)]. Two types
of (zero temperature) vacuum solutions were found in [48]:

(1) Backgrounds with identically zero tachyon and
nontrivial A(r), A(r). These solutions correspond
to chirally symmetric vacua with zero quark mass. In
this case, analytical integration of the equations of
motion leaves us with a single first order differential
equation that can be easily solved numerically.

(2) Solutions with nonzero A(r), A(r) and z(r). These
describe vacua with broken chiral symmetry, with
the quark mass and the chiral condensate corre-
sponding respectively to the non-normalizable and
normalizable modes of the tachyon [51]. These
backgrounds follow from the numerical integration
of a set of coupled differential equations.

As shown in Appendix A, we can obtain analytic expan-
sions of the solutions in the UV and IR regions of the
geometry (see [48,51] for more detailed analyses).

The standard phase diagram of the theory at zero quark
mass is parametrized in terms of the ratio x = Ny/N,,
which is constrained to the range 0 <x < 11/2 = xp,
since with our normalization the upper bound corresponds
to the Banks-Zaks (BZ) value in QCD for which the leading
coefficient of the f function becomes positive.

The phase diagram within this range consists of two phases,
corresponding to the two types of backgrounds above,
separated by a phase transition at a critical value x = x,..

(i) For the range x. < x < xpz, the dominant vacuum

solution (at zero quark mass) is of the first type
above, with an identically zero tachyon, and
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therefore chiral symmetry is preserved [61]. The
IR geometry is asymptotically AdSs.

(i) For 0 < x < x, the dominant background corre-
sponds to solutions of the second kind, hence the
tachyon presents a nontrivial profile even if the
quark mass is zero. Chiral symmetry is broken in
this phase and the geometry ends in a singularity in
the IR.

The phase transition at x = x,. (only present at zero quark
mass [55]) displays BKT [62] or Miransky [63] scaling, in
accordance with predictions from the Schwinger-Dyson
approach (see, e.g., [64]). The chiral condensate ¢ ~ (py),
which is the order parameter of the phase transition,
vanishes exponentially as x — x. from below. As shown
in [48],

2k 2.30

0~exp< xc—x>’ (2.30)
with K being a positive constant, while o vanishes
identically in the region x > x,. where chiral symmetry
is unbroken. Linked to this scaling is the “walking”
behavior of the coupling constant for x < x.. The field
A(r) dual to the coupling constant becomes approximately
constant, 1 ~ 4., for a large range of r, and the size of this
scaling region enjoys the same scaling as (the square root
of) the condensate (2.30). The physics near the transition
has also been studied in other models: a top-down setup
[65], using a tachyonic DBI action without backreaction
[66], models with Einstein-dilaton gravity tuned to produce
walking [67], and in dynamic AdS/QCD models which are
simple bottom-up models where the holographic RG flow
is tuned to match with QCD [68].

The appearance of a region displaying walking behavior
and the mechanism for the phase transition at x = x,., are
related to the existence of an IR fixed point for x > x,. First,
notice that for the first type of backgrounds in the
classification above, A(r) — A, as r — oo, and the solution
becomes AdS also in the IR. The region x > x,. is therefore
called the “conformal window.” Second, the violation of the
Breitenlohner-Freedman (BF) bound by the tachyon in the
IR fixed point gives rise to an instability that is responsible
for the phase transition at the end of the conformal
window (x = x,.).

The BF bound is given in terms of the effective IR mass
of the tachyon m,, as

-m2,? < 4, (2.31)
where 7, is the radius of the IR AdS geometry. When the
bound is violated, solutions where the tachyon has been
turned on are favored, implying spontaneous breaking of
chiral symmetry (remember that we are setting the source
of the tachyon—corresponding to the quark mass—to
zero). In [48] it was indeed found that the bound (2.31)
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is saturated exactly at x = x,., where the BKT transition
described above occurs. This is in agreement with general
arguments showing that the violation of the BF bound at an
IR fixed point leads to a BKT transition [69]. Additionally,
in [48] the constant K of (2.30) was expressed in terms of
m,, and Z,, which are functions of x, as

T

4 (m2,7)

k:

(2.32)

|x:xc

In [48] it was also shown how the Miransky scaling
manifests itself in the ratio of the scales of the model as
X — x.. One can define the UV and IR scales Ayy = A,
A = 1/R, in terms of the constants appearing respectively
in the UV and IR solutions (see Appendix A). For the
solutions with x < x. and x, — x large enough, Ar/Ayy =
O(1), reflecting the fact that there is only one scale in the
model, as happens normally in QCD (where the single scale
is denoted by Agcp). Instead, when x — x,, there is a clear
separation of scales, and their ratio behaves as

A

Ayv ( K >
—— ~eXp s
AIR VXe — X

hence featuring Miransky scaling.

It is worth pointing out that even as x — x,., Ay is still
the scale at which the coupling constant becomes small. In
that limit, the range where the coupling “walks” is
characterized by the two scales as Ayl < r < A, and
the coupling diverges for r > Af. Moreover, in terms of
the two scales, the chiral condensate can be expressed as
o ~ Ayy(AR)?. Therefore, the Miransky scaling featured
in Eq. (2.30) follows from (2.33) when the condensate is
expressed in units of Ayy, i.e. for 6/(Ayy)>.

When the quark mass is nonzero, the phase transition at
Xx = x. becomes a crossover: chiral symmetry is broken and
the dominant solution changes smoothly as x is varied.
Even though there are no transitions, one can identify
various regions where the dependence of the background
on the quark mass is different [55]:

(1) In the QCD-like regime, with 0 < x < x,, the back-
ground at finite m,, approaches the solution atm, = 0
uniformly as m, — 0. For small enough m,, the mass
dependence is therefore perturbative. A characteristic
feature in this regime is the light pion mode.

(2) Adding a finite quark mass in the conformal window
drives the model away from the IR fixed point. For
m, < Ayy the background walks, and the amount
of walking is controlled by the value of the quark
mass. This leads to the hyperscaling relations
[55,70] for the meson masses.

(3) At large quark mass, m, > Ayy, the background
solution of the tachyon field is large (except for very
close to the UV boundary) which leads to the

(2.33)
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decoupling of quarks from the gluons and a large
mass gap for the meson states.

The results at finite quark mass agree with other
approaches, in regimes of parameter space where such
approaches can be trusted. In particular, the behavior within
the conformal region and close to the critical value x = x,.
is in agreement with the analysis of RG flows [71,72].

Finally, there also exist solutions corresponding to
subdominant vacua of the model. Allowing for a finite
quark mass, one finds the following generic structure [48]:

(1) For x. < x < xpz, only one vacuum solution exists,
even at finite quark mass.

(i) When 0 < x < x, and the quark mass is zero, there
is an infinite tower of (unstable) Efimov saddle-point
solutions in addition to the standard, dominant
solution.”

(iii) When 0 < x < x, and the quark mass is nonzero,
there is an even number (possibly zero) of Efimov
vacua. The number of vacua increases with decreas-
ing quark mass for fixed x.

The subdominant Efimov vacua at finite (real) quark mass
were carefully studied in [55]. In Sec. VI E we will general-
ize that analysis to the case of a complex quark mass.

III. EQUATIONS OF MOTION AND ASYMPTOTIC
SOLUTIONS AT FINITE ¢ ANGLE

A. Equations of motion for the background

In order to study the physics of the model at finite 6
angle, we will solve the equations of motion when the QCD
axion a is finite [and O(1) in the large N, expansion]. As
implied by the axial anomaly (2.18) we must also allow for
a nonzero overall phase of the tachyon, and then all three
sectors, glue, flavor and CP-odd, contribute to the action.
We also need to consider a U(1), flavor singlet gauge field
given in (2.12), while the other components of the gauge
field are set to zero. Notice that we consider a tachyon field
of the form T = rel corresponding to all the quarks
having equal complex mass. This allows us to write the
action as

S=58,+S,+5;

2
- M3N§/d5x{\/—_g[R —;—l(a]/‘{j)

Z(4)
2

- m [\/— detA ) + \/— detA(—)] } (3-1)

where

+V,y(4)

(Opa 4+ xE0y V (A, 7) = 2xAy V . (4, 7))2]

*For simplicity it is assumed that there exists an IR fixed point
for any positive value of x, and that the BF bound is violated at the
fixed point for any x down to x = 0.
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Aomn = gun + k(A)[(Oy7)(Oy7)

+ 72 (O € + 2Ay) (OnE 4+ 2AN)] £ W(A)F .

(3.2)

with Fyy = Oy Ay — OnAyy.

We list the full equations of motion in Appendix B, and
restrict our discussion here to the case (relevant for the
background) where all fields only depend on the radial
coordinate r. We set the sources for the four-vector A, to
zero, and as argued in Appendix B, the solution for A, then
vanishes in the bulk also. Moreover, we choose the
gauge A, = 0.

Taking the Ansatz (2.3) for the metric, we are then left
with the five fields A(r), A(r), a(r), z(r), and &(r). The
equation of motion for a [Eq. (B1) in Appendix B] allows
us to solve for a’ as

Ce—SA
@ =1 - XV,

(3.3)

where C,, is a constant. Moreover, substituting this solution
into the equation of motion for A, (B11), we obtain

oA
TKVszfl - CaVa = O, (34)
G
where
= \/1 + ke (72 4 72E7). (3.5)
Solving for & we arrive at
. C,V, Ve + kr? (3.6)
Kl/z't'\/eSAV]%/cT2 - CE,V?,

As we will see below when analyzing the asymptotic
behavior, the requirement of finding regular solutions with
nonvanishing & restricts the form of the potentials in
our model.

For the equations of motion of the other fields we obtain

A" + 647 — _ 2 L pay oy Gl
302 9 f A
(3.7)
IZAQZ%QHMVQ‘XVJ‘%*C%%’ (3.8)
A /f+3A’,1’ zezw{ 58\; s aa‘;f .
Ee_mg;(;f( 2y g2
czég_i_ C. _5A§,3(;;} (39)
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e3A ~ an €3A
ar (GKVfT/) — eSAGE - é VfKTf/Z
v, av,
— AL e (1/2 + 25/2> +C é’ =0, (3.10)

where we eliminated a by using (3.3).

Notice that as the potentials of the action (3.1) are
independent of a and &, it is invariant under the reflection
at> —a, £+ =&, which corresponds to the CP trans-
formation on the field theory side. This is reflected in the
invariance of the equations of motion (3.6) and (3.7)—(3.10)
under C, — —C,, £ = —¢.

B. Asymptotics

We will now analyze the asymptotic solutions corre-
sponding to backgrounds at finite # angle. We concentrate
on the asymptotics which are affected nontrivially by finite
6. Other results are listed in Appendix A.

1. UV

We begin by considering the effect of a nonzero & on the
UV solutions of the equations (3.7)—(3.9) for A(r) and A(r).
It is easy to check that the standard (0 = 0) UV asymptotics
for A(r) and A(r), Egs. (A2), (A3)), solve those equations
in the UV upon assuming that 7 vanishes at least as 7 ~ r
and & is regular there (the new terms sourced by & are
suppressed at least as 7).

Next, assuming that the UV metric is close to AdS,
namely e? = #/r as implied by the standard UV asymp-
totics of A(r), and that the tachyon is at most 7~ r,
Egs. (3.6) and (3.10) for the modulus and phase of the
tachyon become

7 4 9, log (e4kV 4o)7 — e mit — 7(&)? =

C
e G 3.1
5 KVfOe:;ATZ ( )

where

2a
=——. 3.12
: (3.12)

m?

These two real equations are equivalent to the single linear
complex valued equation

(re)" + 0, log (e¥kV o) (1) — e* m?re®® = 0. (3.13)

Therefore, towards the UV boundary the complex tachyon
satisfies this linearized equation of motion where C, does
not appear explicitly. In particular, the equation is the same
as that for the (real) tachyon at zero 0 angle or equivalently
at zero C,.

Inserting the UV asymptotics of A(r) and A(r) in (3.13),
we obtain the UV asymptotic solution for the complex
tachyon,
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| .
?Telg = e“om, r(—log(Ar)) (1 + O(log(Ar)™"))

+ %051 (~log(Ar))’ (1 + O(log(Ar)™)),
(3.14)

in terms of two real valued constants m, and &), and one
complex constant 6 while p is defined in Eq. (A7). Notice
that m, and &, are the modulus and phase of the source
dual to the complex tachyon, and thus correspond to the
absolute value of the mass of the quarks and its phase. This
solution satisfies the assumptions we made above and is
therefore valid, as can also be verified by inserting it
together with the asymptotics for A(r) and A(r) in the full
system (3.7)—(3.10).

To obtain the relation between the integration constant
C, and the coefficients of the expansion, we insert it in the
second equation in (3.11), which gives

C,= 21,”5K0W0mq1m8, (3.15)
where k) = k(4 = 0) and W, = V(41 = 0). For positive
quark mass, the UV expansion of & can be read from (3.14):

¢ = r-tog(An) | 5 S (1-+ Ollog(an) ),

f5K0W0mq
(3.16)
Similarly, the expansion of the absolute value is
1
Vile m,r(—log(Ar))™ (1 + O(log(Ar)™"))
+ or}(=log(Ar))?(1 + O(log(Ar)™)), (3.17)

where ¢ = Re6. At nonzero quark mass, the relations
between the VEVs can therefore be written as

ic,

—_—. 3.18
21/”5K0W0mq ( )

6=o0+

In the case of massless quarks (m, = 0), as the form of
the complex tachyon solution already makes clear, the
physical solution corresponds to a constant & = &, for
which C, = 0, in agreement with (3.15). Notice finally that
a constant £ can be gauged away via (2.18) as expected for
QCD with massless quarks.

We shall finish this subsection by discussing the relation
between the subleading terms in the UV asymptotics of the
complex tachyon and the corresponding VEVs on the field
theory side. To establish that relation we compare the
variation of the free energies of the field theory and its
holographic dual. We allow the quark mass m,, the phase
&y, and the boundary value of the axion a to vary keeping
A fixed.

PHYSICAL REVIEW D 96, 026001 (2017)

Then, for an IR regular variation, the free energy density
satisfies the standard formula

oL | OL | oL |
08 = —5(1(”)W o _55<F)W o o 7 (r)|,—y’
(3.19)

where L is the (complete) V-QCD Lagrangian, and a was
defined in (2.23). Here the second term vanishes due to the
A, equation of motion.” The third term is UV divergent and
needs to be regulated. We should also make sure that the
variation of the metric does not enter the formula when
A = Ayy is kept fixed. These issues were analyzed in detail
for the case of zero # angle in [55]. By using the UV
expansion of the phase in (3.16) we observe that the
nontrivial phase or the CP-odd action do not add any
nonzero contributions to this analysis, and the result for the
regularized third term is unchanged. That is, (3.19)
becomes

6 = =MPNZC,(8ag + x5&) — 2M>N N (W oot o6m,,
(3.20)

where the first term arises from the first term of (3.19) and
the second term can be computed as in [55]. As a check,
this result may also be written as

68 = —MPN2C ba,

— 2M3N N WokoRe[6* e 05(me')],  (3.21)
ie. the terms involving the tachyon admit a simple
expression in terms of the complex source and VEV in
(3.14), which is consistent with the complex tachyon
being the natural field to consider in the UV as seen from
Eq. (3.13).

By using the QCD Lagrangian (2.17), and the Feynman-
Hellmann theorem, or equivalently by using the dictionary
implied by (2.19), we obtain

e (9 i OE .
7 = | —=4——" ) ==M3N_.N Wk > e*06
(WrwL) 5 <8mq+mq6<§0> NyWokot~e=o
. C
— —M3N N WokolSe (o4 =0 ),
fWokor e (G+255K0W0mq
(3.22)

so that the expectation value is given by the coefficient of
the subdominant term of the complex tachyon in (3.14).
The other condensates are found similarly, e.g.,

3 After switching to the gauge invariant axion a, the action only
depends on ¢ through its derivative and invariance under (2.18)

T oL _ 1L
implies that () = 204"
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() = =2M*N_.N Wk Re | e | 6 + G
S 2£5K0W0mq '

(3.23)

. iC
[ (Fysw) = —2MPN N, WokoSIm | e (o + "¢ |,
i(Wysy) Woko [e 6+2£5K0W0mq

(3.24)
(e7°Tr(G,,G,,)) = 32n*M?N.C,.  (3.25)
The relation between the VEVs
N
32—;2 <€MypgTr(GﬂuG/)a)>
= my sin & (Py) — im, cos & (Fysy) (3.26)

is consistent with (2.27).

The results above show that the phase of the tachyon is a
perturbative correction in the UV when m 6 > C,, under
the natural assumption that the factor #> Wk, is of order
one. It can be fixed by requiring the UV behavior of the
scalar two-point correlator to match with perturbative QCD
[51], which results in

1
M3Wkot? = —.
0%0 4r?

(3.27)
The value of M? can also be constrained independently by
comparing the pressure of the model to that of high
temperature QCD [49,73].

2. IR

We then consider the asymptotic solutions in the IR
(r — o0) at finite 9 angle. For physically relevant solutions
we expect that the tachyon diverges in the IR as it does for
6 =0[51]" so the tachyon potentials V; and V, vanish in
the IR (and this is indeed what we will find for all regular
solutions in the IR). This together with the regularity of &
implies that the glue degrees of freedom A(r) and A(r)
satisfy the same asymptotics as at @ = 0, given in Egs. (A9),
(A10) in Appendix A. The asymptotics of the tachyon field
is, however, modified as one turns on a finite 6 angle.

The most relevant IR constraint arises as the requirement
of having a regular & from Eq. (3.6). Indeed, by demanding
that the denominator of (3.6) does not become complex one
obtains the inequality

e4AVf\/E -|C,V, >0, (r> AR). (3.28)
We have identified two choices for the potentials that
satisfy this inequality and lead to sensible IR solutions.
First, if one considers an Ansatz where the exponential

*The stable minimum of the tachyon potential is at 7 — co.
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factors in V; and V, can be different functions of z, the
inequality will be satisfied by a V, that vanishes faster than
V for an IR diverging tachyon. A simple choice would be
to take V; o« exp(—atr?) and V, = exp(—b7*) where a and
b are constants satisfying b > a. Another choice, which we
will use below, is to modify the tachyon dependence of V,,
to, e.g., V, = exp(—a,* — ajlt|).

Second, if one insists on keeping the same exponential
factors [see (2.9) and (2.13)], and then V, ~ e~ as in flat
space string theory [59], then the inequality above will
constrain V y. Namely, the inequality (3.28) reduces to

e4AVf0\/ET > |C,l, (3.29)
and this condition results in a constraint on the potential
V 10 as we now explain. In [51] it was shown that in order to
have linear meson trajectories, k should behave in the IR as
~A~43_ while for the flavor potential we had Vi~ A
Although v, was not fixed by the spectrum analysis
of [51], it was already shown in [48] that for v, > 10/3
no acceptable solutions existed. Potentials with x ~ A74/3
and v, < 10/3 were indeed analyzed in [51], and shown to
display linear meson trajectories. However, after inserting
the IR asymptotic expansions of A(r), 4(r) and z(r) for that
case, the inequality (3.29) would only be satisfied if we had
v, > 10/3. This leads one to consider potentials having
v, = 10/3:

Kk ~ Kk A3 (log )7,

Vo~ v, A3 (log 1), (A= ). (3.30)
As shown in Appendix A 2, this choice results in regular IR
asymptotics if certain constraints for x, and v, are fulfilled.

In particular, the asymptotics for the phase is

, 2\ vtF C e A5 7
5 g vc\/K_c r2—21},—)<f,[2 ’

(r - o).
(3.31)

However, we have not been able to find potentials with
v, = 10/3 for which the (numerically constructed) solu-
tions would have been regular both in the IR and in the UV.
Regular solutions are found for 4/3 < v, <3. The pre-
diction from string theory, v, = 7/3 (see Sec. 2.4 in [51])
falls in the middle of the acceptable range. Similar
observations have been made earlier for the other potentials
Vg, a, and k in the model: the power laws given by string
theory arguments, possibly with multiplicative logarithmic
corrections, give the best match with QCD physics. The
result for Vfo is, however, different from those for the other
potentials, because the power law is nontrivial (i.e., having
power different from zero) even after the transformation
from Einstein frame to a string frame. That is, choosing all
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potentials to have exactly “critical” asymptotics in the
string frame does not lead to regular solutions, but
following the string theory prediction does, and even
results in physics which is close to QCD.

In the numerical analysis below, we will consequently
use the first option discussed above and choose the tachyon
dependence in the exponential factor of V, so that (3.28) is
satisfied independently of the asymptotic form of V.

IV. CHOICE OF POTENTIALS

In this section we present concrete choices for the
potentials appearing in the action of our holographic model.
These choices will be used in the numerical analysis of
subsequent sections, and largely agree with those intro-
duced in [48], and further constrained in [49,51], as we now
review.

Two classes of potentials V,, Vg, k, and a were
considered in [48,49,51]; they are called potentials I and
potentials 1L

(i) Potentials I were chosen such that the IR power

behavior of k(1) ~ A3 and a(4) ~ 2° is the critical
one; as shown in [51] these values correspond to the
critical point at the edge of the region of acceptable
IR asymptotics. These potentials admit a regular IR
solution with exponential tachyon, 7 ~ 7,e“'”, where
C; can be computed in terms of the potentials, and 7,
is an integration constant (see Appendix D of [51]
for details). For the resulting mesonic spectra, the
asymptotic trajectories of masses in all towers are
linear but have logarithmic corrections. Exactly
linear asymptotic trajectories for the mesons can
be obtained by considering a slight modification of
potentials I such that (1) ~ A=*/3(log 4)'/? in the IR.

(ii) Potentials II behave instead as k(1) ~A~*3 and

a(1) ~2*/* in the IR. These potentials admit a
regular IR solution with 7~ \/Cyr + 7,5, and the
asymptotic trajectories of masses in all towers are
quadratic.

In order to fully fix the action for this article we will also
need to specify the potentials appearing in the CP-odd
action (2.15). Notice that he function Z(4) there contributes
even when x = 0, and therefore has been considered in the
context of IHQCD [35,60,73]. In [73] it was shown that the
asymptotic behavior of Z at 4 — 0 and 4 — oo was fixed
from general principles. We adopt a similar Ansatz com-
patible with the asymptotic behaviors as was used there:

20 =z1+a(3) |

For the physics at finite x the choice of V, is even more
relevant. Based on earlier studies and observations made
above, we can immediately set some constraints. As
pointed out in Sec. Il A, for the anomaly structure to be

(4.1)
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reproduced correctly we need V, (4,7 = 0) = 1. That is, in
the UV we must have V, = 1 up to terms suppressed by
powers of 7, and in particular the leading term is indepen-
dent of A. Dependence on A would have introduced
perturbative corrections to triangle diagrams giving rise
to the axial anomaly, which would have conflicted with our
knowledge of QCD. Here we will impose the stricter but
natural constraint that V, only depends on z. The inde-
pendence of V, on 1 is consistent with the analysis of
boundary string field theory [59] where the flavor and CP-
odd potentials were found to be « exp(—at?) with the same
A-independent factor a in both potentials. The 4 independ-
ence of the flavor potential in V-QCD is also supported by
the analysis of the asymptotic radial trajectories of the
meson spectrum [51] and the behavior of the meson masses
at high quark mass [55].

As we have seen in Sec. III B 2, extra constraints result
from demanding a regular solution for & in the IR; in
particular, the inequality (3.28) must be satisfied. The
options which lead to regular IR asymptotics can be
summarized as follows:

(1) Choose V gy (1) with the asymptotics (3.30), take
V, = exp(—ar?), and use potentials I for the other
functions.

(2) Add a linear term in the exponential factor of
the CP-odd potential: V, = exp(—ar* — a,|t|) (or
modify the tachyon dependence in some other way
such that V, is suppressed with respect to V). Then
the IR behavior V() can be chosen more freely,
e.g., as in previous work [51].

We show in Appendix A 2 that the first choice still gives
regular IR asymptotics for a vanishing 8 angle, and with a
good choice of v, the tachyon phase is also regular when
6 # 0. The second option above is nonanalytic at 7 = 0, but
the extra linear term in the exponential guarantees that the
term involving V, in (3.28) is suppressed, and the inequal-
ity is fulfilled. As we mentioned above, we have not found
potentials satisfying the first option for which the solutions
would have been regular both in the IR and in the UV.
Therefore we selected the latter option when performing the
numerical analysis of vacua at finite 6 angle.

Next we summarize the explicit choices of potentials that
were used to carry out the numerical analysis of Secs. VI,
VII, and VIIL.

A. Potentials I

The motivation for this choice is to mimic (at qualitative
level, without fitting any of the numerical results to QCD
data) the physics of real QCD in the Veneziano limit [51].

With potentials I we have used in this article the choice
V, =exp(—a,r* — aj|t|), suggested above, which also
makes the backgrounds at finite € angle well defined.
As pointed out above, we require that the leading depend-
ence on the tachyon in V, is the same as in Vy, ie.
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a, = const = a. In addition, we choose a; to be a constant

having a sufficiently large value so that ¢**V ;\/k7 in (3.28)
dominates over V, for all r = 1/AR. A convenient choice
is a; =10/Cy, where Cj is the coefficient in the IR
asymptotics of the tachyon: 7 ~ e, For the numerical
coefficients in the function Z(1) of (4.1) we chose Z; = 1
and ¢, = 0.1. This choice was seen to lead to reasonable
behavior for all observables depending on this function.
In summary, the potentials I are given by

1+ log(1 +7)

V,(A) =V |1+ Vid+ V02 . (4.2)
4 (] +I{1_0)2/3
Vfo(/l) = Wo[l + Wlﬂ + Wzlz]z
1
a(Ad) = ay, k() =——=w(1), (4.3
(1) = ag (4) (1 + 37 (4), (4.3)
y) 4
Z() = ZO{HC ( ) }
Ao
V(1) = exp(=a,7* - aj1)), (4.4)
where the coefficients satisfy
11 4619
Vo =12, Vi=—, Vy=—-=———;
0 ' 272 > 466567
24+ (11 =2x)W,
e 2772 W, ’
W — 24(857 — 46x) + (4619 — 1714x + 92x* )W,
2 466567 W, ’
C12-xW, _ 115-16x
ETTRT T e T e
o = 872 (4.5)
Zy =1, c,=0.1, (4.6)

and with @, chosen as explained above. For potentials I we
have used” W, = 3/11.

All computations at finite 8 angle in this article were
done by using this choice of potentials.

B. Potentials 11

This choice might not model QCD as well as potentials I,
but the motivation is to pick a background with different IR
structure in order to see how much this affects our results
for the backgrounds at zero 0 angle. The numerics for
potentials II in this article were done with the choice

>As was shown in [49], the finite temperature phase diagram is
not of the standard type for potentials I if W, is close to its upper
limit 24/11; a chirally symmetric phase is present at small x.
Therefore we pick a value near the lower end of the possible range.
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V, = exp(—a(1)7?), where a(4) is the same function which
appears in V; and is given explicitly in (4.7).
Explicitly we used

L+ ad+4
a(d) = (1 )4/3 ,
1
k(4) = W’ w(d) =1; (4.7)
V, = exp(—a(A)7?), (4.8)

and all the other functions as for potentials I above, except
that we chose

12 ] 1
X (1+7x)%3

instead of W, = 3/11. With this choice, the pressure agrees
with the Stefan-Boltzmann (SB) result at high temperatures
[49] (without the need to introduce an x dependence in the
normalization of the action). In this article, we used
potentials II in the numerical analysis of Sec. VII (at zero
0 angle).

W = (4.9)

V. THE CHIRAL LAGRANGIAN ANALYSIS
IN THE VENEZIANO LIMIT

In this section we will take a detour and consider the
problem from the effective chiral theory point of view. To
do this, we must assume that the bare quark masses m <«
Ayv so that the pions are very light compared to other
particles, and therefore it makes sense to write down an
effective action for them integrating out all other particles.
This analysis is useful as we can see what can be
determined from low energy symmetries alone and what
needs a full nonperturbative computation (using hologra-
phy in this paper). Moreover the chiral Lagrangian results
provide consistency checks for our holographic analysis.

We will start by writing the effective action for the
expectation values of the QCD order parameters W;; which
is an Ny x N; complex matrix (the expectation value of

whyt), as well as G and © the pseudoscalar and scalar
glueball related expectation values following [74] and
references therein.

We start from the U(1), anomaly equation that can be
written as

2
g N . _; j
(075) = T2 L(TAFF) + (M (Wew)) — M3 (k)
= N/N.G + iTr[MW — MW7), (5.1)
with  W;; = <1/7{e‘//2>’ W:j = <l/_f£l/15€>’ (5.2)

as well as the conformal anomaly equation (in flat space)
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1) =22

=N.O + (1 +y(9)TriMW + MTWT],

(Tr{F?]) + (1 + 7(9)) (M, (Frhwk) + c.c.)
(5.3)

where ©®, G were defined so that they are O(1) in the
Veneziano limit and M is the quark mass matrix. Here 3(g)
is the QCD f function and y(g) is the fermion anomalous
dimension. Because of energy and charge conservation G
and H have canonical dimension 4. Note that although the
product Tr[MW] is RG invariant, W is RG dependent. For
the purposes of an effective theory, W will be defined at low
energies and therefore M will be the renormalized quark
matrix at low energies. It will be linearly related to the UV
quark mass matrix for small enough quark masses.
Flavor U(Ny); x U(N)y transformations act as
W=V, WV, (5.4)
where V,, Vg are U(N;) matrices. G, © are flavor
invariants. We can also construct flavor invariants from
the matrix W

1

=
" Nf(gch)(m

Tr[(WWT)"] (5.5)

which are also O(1) in the Veneziano limit. In the absence
of masses and the anomaly, the effective potential takes the
following form:
veff<G’®vIn> :NgVO(G’ G»In)’ (56)
where Vi is an arbitrary function that due to parity
invariance must satisfy
Vo(G,0©,1,) =Vy(-G,0,1,). (5.7)
To accommodate the U(1), anomaly we must consider
that the U(1), transformation acts as
W — e“W, G- G+e. (5.8)
Therefore the full effective potential that includes the
anomaly is

i w
Vg = N2Vo(0,1,,G +—logdet— ). (5.9
off c 0< +2Nf ogde W-‘—) (5.9)

In the presence of a (complex) mass matrix M at linear
order, we have in addition the associated term from the
QCD Lagrangian

i

w
— A2
Vet = N2V <®, 1,,G+ N, logdetm>

+ Tr[MW + MW, (5.10)
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By a chiral rotation we can also introduce the 6 angle:

_ A2 i w0
Veff - NCVO (®ﬂln7 G +2—Ivf10gdetm —N—f>

+ TriMW + MTWT] (5.11)
and by a phase redefinition of W it can be moved to the
masses

i

w
_ A2
Veir = NcVo <®, 1,.G+ N, log detm>

e W + e R WA, (5.12)
When quark masses are small (compared to Agcp) the G
and O glueballs are much heavier than the mesons. We will
therefore neglect their kinetic terms and their equations of
motion amount to minimizing their potential. It is interest-
ing that there seems to be more things that can be said about
the dependence of this action concerning its dependence on
the G and © condensates. A glimpse of this was indicated
first in [75] and in a more targeted way in [76] where the
effective potential for the trace of the stress tensor was
calculated holographically in a single scalar gravitational
theory.

We next move to the two derivative level. We will
concentrate on the kinetic terms of the quark condensate W
which is the only light remaining field. To write such
kinetic terms, we must introduce flavor invariants with up
to two derivatives

= Niwrr[(WWT)"(aMW)W*],

~

=_—Tr{(WW')"w(5,W")], (5.13)

~

and

Jo= Niw[(ww*)m(aHW)(Wwf)n(aﬂwf)], (5.14)
;
and then
S, = / d*x Y [Condn + Cpul 7). (5.15)

m,n=0

We now decompose W as a product of an Hermitian (H)
and a unitary matrix (U)

W =HU, W' =U'H, (5.16)

and thus,
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w
WW' = HUU'H = >, dety = (detU)’. (5.17)

Moreover, we shall write U as

U =exp [;,,/ + maTa] . Tr[TeT?) =85, (5.18)

\/]\Tf

where T are the (traceless) generators of SU(N).

Chiral symmetry breaking will give an expectation value
to H, while U remains free and parametrizes the Goldstone
bosons, namely, 7' and the generalized pions.

Minimizing now the potential in the massless case (by
setting first M = 0) with respect to the “heavy" fields
0, G, H;; we will obtain nontrivial VEVs for G, © and H
that are functions only of AQCD.6 In particular,

(H;;) = 66;;. (5.19)

The VEV of G can be absorbed in the 8 phase changing it
to A. The only part of U that appears in the potential is
logdet U due to the anomaly. As argued in the end of
Sec. VIB the dependence in the Veneziano limit is
quadratic like in the ’t Hooft limit,

Vegr = kN N(—ilogdetU)* + - -. (5.20)

A. The effective action for the Goldstone modes

We now set ©, G and H equal to their VEVs and we
rewrite the effective Lagrangian (up to two derivatives) for
the Goldstone modes described by an Ny x Ny unitary
matrix U as’ [8-11,77]

72
'Cchiral = % [—”—r[aﬂUaﬂU_l] + —H—V[MU + MTUTH
afz
2N,
Iy=7z
¥

(—ilogdetU)?

+ Tr{Ut0,UITr U8 U'). (5.21)

The last term in (5.21) originates in the factorized terms in
(5.15), and although it is subleading in the ’t Hooft limit, it
is O(1) in the Veneziano limit. It is responsible for the fact
that the decay constant of the %’ is different from the rest of
the Goldstone modes (pions).

The term « (logdetU)? in (5.21) is the anomaly term
and is of order O(5y?) giving a mass to the 7’. As discussed

®0Once quark masses are turned on, there will be O(m?)
corrections to such VEVs.

"The pion decay constant f, which is normalized as is usual
for chiral Lagrangians differs from the constant f, used else-
where in this article by N ff% = f2.
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in the end of Sec. VI B this is a good estimate also in the
Veneziano limit. The matrix M is a renormalized quark
mass matrix. We lump the @ parameter inside M via a chiral
rotation. We will consider the SU(N ;) invariant case where
all quark masses are equal to m,,.

Finally, the coefficients are written in terms of the physical
pion and #’ decay constants, f,m/, as well as the parameter a
that as we will soon see is related to the topological
susceptibility. It should be noted that in the Veneziano limit

Fan By~ Nee  my~O(1). (522)

We now consider the case explored in this paper: quark
masses that are SU(N) invariant. In this case the mass
term in the effective chiral Lagrangian can be parametrized
in terms of the pion mass m, as

A

i
Mij = e meizréij' (523)
—i0 .
We now transform U — Ue "/ to obtain
]?2
Lehiral = 7” Tr[0,U* U] + maTr[U + U]
~ % (“ilogdetU — 6)
N, T8
I =1
+ LT [U0,UTr[U U], (5.24)

Ny

from which the pion potential reads

o)
_Jx m2Tr[U + UT] ——

V)=~ N

(—ilogdetU —0)?].
(5.25)

By symmetry we should look for a minimum of V of the
form U;; = ei‘/’éij. However, we should remember that 27z
rotations of individual masses give the same theory.
Therefore, a better parametrization of the vacua is

U,‘j = €l¢62ﬂ1ni5[j.

(5.26)
Then the potential becomes

a

_ 72 2
V(¢) = fz|=Nypmzcosp + N,

(60— N —22N)?

(5.27)

with N = va:fl n;. In the sequel, we will set N = 0, but we
will consider all branches with @ shifted by multiples of 2.
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We define
- 0 Ny
0=—, =, 5.28
N TN, (528)
and obtain

n 5 xa ,~ 5

V(¢) = foﬂ [—m,,coscﬁ +7<9_ ¢) :|
=72 [—m,% cos ¢ + % = ¢)2] ) (5.29)

Note that V.~ O(N.N).

Consider first the case with zero quark mass. In this case
m, = 0 and the extremum is at ¢ = 6. Hence the vacuum
energy is independent of 6 as expected.

When m, # 0, the extrema satisfy the equation

m2sing = ax(0 — ¢), (5.30)
which can be rewritten as
. I . ax
singg —{(0—¢) =0, with =—, (5.31)
mﬂ

{ being a dimensionless parameter which is O(1) in the
Veneziano limit. There are three different parameters that
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enter in {: the QCD scale as a NA(zgcw the bare quark
masses 1,
m2 ~ m,. The assumption for the validity of the effective
chiral theory implies that a > m2. Therefore, for generic
values of x, { > 1. Only in the 't Hooft limit, x — 0, can {
become much smaller than one.

When £ > 1 there is a unique solution to (5.30) as the
left-hand side of (5.31) is monotonic. But for { < 1 there is
arange of values of € where there are two or more minima.

We denote these extrema, which are functions of é, as
¢;(0). They are minima of the potential if

and the flavor parameter x. For small m,,

V"(¢h;) = frmzlcos ¢ + ] > 0. (5.32)

The deepest minimum is the one that minimizes

4

Zm2 [— cos ¢ —I—%(é—qﬁ)ﬂ. (5.33)

Therefore, the 8-dependent vacuum energy is

E(0) = rrgn 2m?

{— cos ¢+ g 0 - ¢)2} . (5.34)

In Fig. 1 we present a calculation for the energy as a
function of 8 for { = 2, where we now have added the 1%,—’;

Elfrm?, Elfrm?,
1.0 Ni=2 (=2
05}
6
0.0 N
-05} -0.5
-1.0 -1.0

A L
\/

v ‘VAQAV'QAVAV
SRS

e
“":9:’:‘6'79'9'9'9'0'6
TITIING99Y,

:‘2‘2‘:‘2‘:‘2‘:‘:‘:‘0‘0‘0‘0‘0‘

LIS
Y9,
R

VL0

i

OIS,

0
e Sesetet

-1.0

FIG. 1.

The branches of vacua according to the chiral Lagrangian analysis. The thin blue lines show (normalized) energy for all

branches, and the thick red line is the final energy for the dominant vacuum. We chose { = 2 in all plots with N, = 2, 5, and 20, in the

top-left, top-right, and bottom plots, respectively.
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shifts as argued above, and we have denoted by red lines the

minimum values that indicate the true 6 dependence of the
ground state energy.

To compute the derivatives of the vacuum energy we
need the derivatives of ¢ from (5.31)

O e ¢ £2sing
— = — = (5.35)
00 {+cosg 00> (¢ +cosq)
We obtain
OE  , - . o OPE ., (cos¢
gffﬂax(e—(ﬁ), )(top(e) = Py nmnm-
(5.36)
At 6 = 0 we have ¢ = 0 and
or
Mlo—o
~ O’E 4
Pwl@=0)=00 = pmitoz0. (537

The topological susceptibility in the normalization used in
the latter sections of the article is then

7 N o azE _)?top(e)

)((6) E)(top(e) =@_ sz.»

(5.38)

Note that y, = O(1) and 2oy = O(N3).
We can now compute the meson masses in the nontrivial
vacuum by expanding U around it

U= e exp {411’ + in“T“]. (5.39)

V Ny
We obtain

- 1.
V=E6) —Ef,zz[m,zzcosqﬁﬂ“ﬂ” + (m2cosp+ax)n*]+ -+
(5.40)

From (5.24) we observe that f, and f, are 6 independent.
We obtain for the #-dependent meson masses

m2(0) =m2cosp, m*(0) = ]]: 22 [m2(6) + ax],
2

2 (5.41)

where f 5, =N fﬁ,. The last relation can be written in terms
of the topological susceptibility by solving (5.36)
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mzzz (6>)?t0p (9)

= - —, 5.42
1T 202(0) - fop) 542

as

_fi fim®) G s

2(8) = r _
7 ) 17 £2m2(0) = 710p(0)

Equation (5.43) is the analogue of the Witten-Veneziano
formula in the Veneziano limit. In the ’t Hooft limit, x — 0O,
we find that

)?top = ffzrax[l + (9()6)}7

)(top_ma+ (x),
y c

m2(0) = m2 + O(x?), (5.44)
where in the last estimate we used (5.55). Since the kinetic
and mass terms of mesons are group theoretically similar
we also have

fn: :fﬂ’[l +O(x2)]’ (545)
and then (5.43) can be written as
e Ato 0
mi,(e) = m2(0) +X;—§) + O(x?)
= m2(0) %;P(O) LOM),  (5.46)

which is the standard Witten-Veneziano relation and is also
in agreement with (G15).

B. The large ¢ limit

We will investigate now the limit where ¢ > 1. This is
reached when the masses of the quarks are much smaller
than the characteristic QCD scale. For { > 1 the unique
solution of (5.31) is

- sind 1sin(2é) sin @ — 3 sin(36) n

=0
¢ R +3 72 + 30
(5.47)
and
 sin%
Vi) = fm2 |+ eosd+ S0 S0, (5.48)

while
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~ - . zé é . zé
E(0) = V(p,) = —f2m2 [COS N Sl;} ~ COSZ;H
1 p ~
+ 6_@Sin29(1 +2cos(20)) + - - ] ' (5.49)

From (5.36) and (5.41) we obtain

o 2[ é_cos(ZQ)
¢

Xop = J x5 | COS

+ O(C‘z)} , (5.50)

sin%6

m%(é):m,z,[cosé+ +0(g—2)]. (5.51)

In the large N limit 0 — 0, and (5.49) becomes

11 0? _
E(0)=—f7m; {1 + (—1 trat ) W%wLO(N/‘)} ‘
(5.52)

In this case, if we are interested in the limit 6 — 0 we can
solve (5.31) to all orders in 1/{ as follows:

L - &
_C+19+6(§+1)

¢ L0 +00), (553)

obtaining the following formula for the energy density:

¢ = ¢

E(0) = —f%m,zr[l a0 +C)9 +4(1 +C)494+O(é6)
= ~fam; [1 B 2(m%aic|— ax) 4
(ax)4 2 26
W@‘* +0(6%], (5.54)

where in the second line we substituted the value of ¢
from (5.31).

C. The ¢ — 0 limit

This limit can be reached as x — 0 and coincides
with the ’t Hooft large-N,. limit. In this limit, { — 0, there
is an infinite number of extrema that can be found
perturbatively in §

¢y =nn+ (-1)"(O0—nx), - (0 —nn)®>+---, (5.55)
and thus
Vi (=D +C+ - (5.56)

which implies that only n = even are minima. Evaluating
the vacuum energy at the 2n-th minimum we obtain
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2 .
Vi=- %m%[l—%(Q—Znn’)z-i—“-], (5.57)

and

E0) = rrgn{—fgmg [1 - g_zgz (0 —2nm)> + - ] }

(5.58)

VI. VACUA OF V-QCD AT FINITE 6 ANGLE

In this section we analyze vacuum solutions of V-QCD at
finite @ angle. First we write down explicitly the solutions
for the axion a and the phase £. We denote

() = V,Ver + kr”? 6.1)
a - .
K]/Z’L'\/eSA Vike? = C3V3

so that (3.6) implies

E(r)=Cafulr). &P =& +C, / "arfo(r). (62)

Here &, is identified as the phase of the quark mass
on the field theory side. The solution for a can be obtained
from (3.3)

_ rodr r
a:ao—xéVa+Ca/0 m‘i‘xca/o ar'f.V,,

&0 = qg + Xé:(), (63)

where the integration constant a is related to the standard 8
angle by ay=a(r=0)=60/N,, and as explained in
Sec. II A, the gauge invariant combination a is related
to the gauge invariant 6 angle through a, = 6/N.. Recall
that 6 = @ + arg detM,, where M, is the quark mass
matrix. We could use the transformation (2.18) to set either
&y or ag to zero, but equivalently we can postpone the gauge
fixing and continue working with a,. The value of a at the
tip (which will be determined below) is then given by

o0 1
a(o0) = ag + Ca/ dr(3A + xfaVa>. (6.4)
0 ez

Notice that it is also gauge invariant.

In order to demonstrate the dependence of the free
energy on 6, we first analyze the contribution solely from
S, which is obtained from the on-shell value of the
Euclidean action [the overall sign of which is opposite
that of (3.1)]:
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E,==M>N? /oo dre*Z(a’ + xEV)?
0

where we used (3.3) to obtain the expression on the second
line. We stress that this expression is not the complete free
energy, which will be analyzed below, but it is the most
important contribution for the 6 dependence. By using (6.4)
the result may be written as

0 -3A~7-1
Sa:1M3N2 Je dre=4z

2 ‘ [fooo dr(e_3AZ_] + xftlvll

i (a4 — a(0))*.
(6.6)

This result is analogous to what was found for the 6
dependence in the Yang-Mills case in [35]. Similarly as in
that case, we expect that the contribution to the energy from
the IR singularity, i.e. a(co0), vanishes. Otherwise, the IR
singularity would play the role of a second boundary.
Vanishing of a(co) also leads to &, o« a3 « 6 [for small 0
so that the implicit dependence of the integrals in (6.6) on 6
can be neglected] which agrees with the large N_. analysis
of QCD [33]. We will argue below that after setting a(oo) to
zero, also the full free energy, not only &,, has quadratic
behavior for small aj.

The issue described above applies to all string theory
“axions,” namely scalars without a potential. As argued
above, in all such cases, an explicit boundary condition
must be imposed in the IR that is not dictated by regularity.
In many cases such axions are internal components of
gauge fields or higher forms (even the ten-dimensional 1IB
axion can be T-dualized to such a form). A concrete
example of this is the case of the black D, soliton where
the € angle is generated by a six-dimensional vector field
[33]. In all such cases, the usual regularity condition for the
form field indicates that it should vanish on the extremal
horizon, not unlike the boundary condition we chose above.

Setting a(oco) = 0, the relation between the source a, and
the VEV C, follows from (6.4)

0 o 1
FE = (10 = —CaA dr<e372 + xfaVa> s (67)

where one should recall that the integral also depends
implicitly on C, so that the relation is not exactly linear.

A. Construction of backgrounds and
their generic properties

Recall that at zero 6, the chirally broken backgrounds
could be parametrized in terms of a single variable defined
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FIG. 2. Sketch of the dependence of the quark mass on T, for
C, =0 =0, i.e. on the horizontal axis of Fig. 3 (left). Solutions
exist right of the vertical blue line. The dashed red vertical line
denotes the location of the standard vacuum with zero
quark mass.

through the IR asymptotics of the solution [48]. For
potentials I, this variable was denoted by T, and controlled
the normalization of the tachyon in the IR. The value of T,
could be mapped to the physical parameter in QCD, the
quark mass, after constructing the background solution.
At zero 6 it was natural to choose the tachyon to be real, and
to define 7 as the real part of the complex field, so that it
could become negative. The source of 7 in the earlier work,
i.e. the quark mass, consequently maps to the real part of
the source of the complex tachyon. An example of the
dependence of the quark mass on 7 (in the QCD regime
0 < x < x,) is given in Fig. 2. Notice also that negative
values of Ty were allowed, but the solutions with opposite
values of Ty were related by the reflection 7 — —z which
left the action invariant.

Implementation of the CP-odd sector removes the reflec-
tion symmetry: Because the phase of the tachyon is non-
trivial, it is natural that 7 is the absolute value of the complex
tachyon. Therefore the quark mass is also defined as the
absolute value of the source for the complex tachyon, and
T, > 0. At finite 6 angle we also have a second variable, the
integration constant C,, which controls the value of the 0
angle. More precisely, the pair (7, C,) can be mapped to
(my, 0) after the background has been constructed.

We have studied the CP-odd backgrounds numerically,
restricting our study to the region with positive C,—the
solutions at negative C, can be obtained by applying the CP
transformation as pointed out at the end of Sec. IIl A. The
procedure for creating the numerical solutions is essentially
the same as discussed in [48,51,55]—the solutions are
obtained by shooting from near the IR singularity, and
the boundary conditions there are given by the known IR
asymptotic expansions. As the axion and the phase of the
tachyon could be integrated out of the equations of motion,
there are essentially only two differences with respect to the
equations at zero 6 angle: there is a new integration constant
C, and the tachyon equation of motion is now written in
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0

0

Sketch of the dependence of the quark mass (left-hand plot) and the € angle (right-hand plot) on the parameters T, and C,

(with C,, given in IR units). The contours lie at fixed quark mass or & angle, and the red crosses denote points where the quark mass
vanishes. Solutions exist in the shaded region. The 6 angle takes piecewise constant values on the intervals of the horizontal axis between

the crosses as indicated in the right-hand plot.

terms of the absolute value of the complex tachyon rather
than its real part. As we have demonstrated above in Sec. 11
the IR asymptotics (and therefore also the IR boundary
conditions) are unchanged, up to the possible appearance of
some special solutions which will be discussed below. When
presenting the numerical data, dimensionful quantities can
be given either in UV units (Ayy) or in IR units (Ag ), which
are discussed in Sec. II B and defined precisely in (A4) and
(A12) in Appendix A.

We discuss first details in the QCD-like phase
[0 < x < x. with x, —x = O(1)], where a rich structure
is found, and return to the dependence of the backgrounds
on x below. In this phase, the absolute value of the quark
mass and the 6 angle depend on T,, and C, as depicted
schematically in Fig. 3. Recall first what happens on the
horizontal axis (C, = 0) where the  angle vanishes and the
tachyon is real. The real quark mass as a function of 7, in
this case is given in Fig. 2; see [48]. As we have already
pointed out, at finite C, we define m,, as the absolute value
of the source of the complex tachyon, whereas Fig. 2 shows
the dependence of the real part of the source on T.
Therefore, in order to compare to Fig. 3 (left), one needs
first take the absolute value so that the negative values of
m, in Fig. 2 are reflected to positive values.

Solutions are only found for T, > T,. where the
critical value T, is the endpoint of the dashed curve in
Fig. 3 and denoted by the vertical blue line in Fig. 2.
The value of the quark mass oscillates as Ty — T, from
above, so that there are infinitely many zeroes (of which
the three which occur at largest 7)’s are shown as red
crosses in Fig. 3). The first node (largest value of 7)) is
the standard stable vacuum at zero quark mass, whereas
the other nodes are unstable Efimov vacua. As one
approaches the critical value T, the background flows
closer and closer to the IR fixed point but misses it
eventually due to the nonzero tachyon. It is also

possible that there is only a finite amount of nodes
on the horizontal axis. This can happen if the bulk mass
of the tachyon satisfies the BF bound at the IR fixed
point [48,51], as is the case for potentials I at low values
of x [49].

Extending to the solutions with C, # 0 and therefore
finite @ angle, the nodes are smoothed out, but the region at
small Ty, where no regular solutions exist (white in Fig. 3),
remains at least for small C,,. The structure of the sketch in
Fig. 3 can be confirmed numerically for the concrete
choices of potentials I that we have introduced. As an
example we show the dependence of the quark mass and the
6 angle on T, and C, for the QCD-like potentials I in Fig. 4.
The range of T, was chosen in the vicinity of the “standard”
zero mass vacuum, which is denoted by the rightmost cross
in Fig. 3 and by the vertical dashed red line in Fig. 2. It can
also be verified analytically that € is quantized in units of
Nz on the C, = 0 axis, as shown in Fig. 3 (right); see
Appendix C. The uniqueness and stability of the solutions
is discussed in the same appendix.

Notice that there are two types of curves of constant m,,
in Fig. 3 (left). First, some of the curves start from the
horizontal axis, circle around some of the nodes, and return
to the axis. Second, some curves start from the horizontal
axis and exit the plot at its upper edge. We plot in Fig. 5
the value of the 6 angle at constant m,, i.e., along the
curves, for potentials I. The plots for m,/Ayy = 0.0001,
my/Ayy = 0.01, and m,/Ayy = 0.025 correspond to con-
tours in Fig. 3 (left) which start from the standard 0=0
solutions, i.e. on the interval marked with dark blue color,
and return on the horizontal axis on the dark red interval,
having = —-N . We will also show in Appendix C why
these curves end exactly at @ = —N . The remaining plot
at m,/Ayy = 1 in Fig. 5 corresponds to a curve in Fig. 3
(left) which starts from the dark blue interval and exits the
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FIG. 4. The behavior of the quark mass (left-hand plot) and the 6 angle (right-hand plot) for the “QCD-like” potentials I with x = 2/3
near the rightmost node in Fig. 3 (left), i.e. the standard zero mass vacuum. The solid blue, dashed red, dotted magenta, and dot-dashed

green curves have C,/Af =0, 0.02, 0.05, and 0.1, respectively.
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FIG.5. The dependence of the (gauge invariant) § angle on C,, for the QCD-like potentials I at x = 2/3 and for various fixed values of
the quark mass as indicated in the plots. The blue curves are numerical data, and the dotted magenta curves are determined by the

analytic approximation at small m, from (6.24).

plot without returning to the horizontal axis, which leads to
the solutions being found only for a finite® range of . We

also show the analytic small m, approximation [given

¥Notice that this is the case only for a single branch of
solutions, which are connected by continuous deformations of the
parameters. As argued in Sec. II, there are also disconnected
branches which realize the 2z periodicity of 6, an taking them
into account solutions are found for all values of 6.

below in (6.24)] as dashed magenta curves. The value
my/Ayy = 1 is so large already that the small m, result
does not work even as a rough approximation. If the value
of my, is increased further the plot will remain essentially
unchanged.

In Fig. 6 we study numerically the holographic RG flow
of the field a = a + x£V, which is invariant under the
U(1), transformation (2.18). The field vanishes in the IR
due to the boundary condition a(co) = a(c0) = 0, and its
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FIG. 6. The holographic RG flow of the gauge invariant field a for potentials T at x = 2/3. Left: a(r) at m,/Ayy = 0.01. The solid
blue and dot-dashed green curves have C,/Af; = 0.02, while the dashed red and dotted magenta curves have C,/Af; = 0.08. The solid
blue and dashed red curves are for the lower branch (as denoted by “L.b.” in the legend) in the top right plot of Fig. 5, while the dotted
magenta and dot-dashed green curves are for the upper branch (denoted by “u.b.” in the legend). Right: a(r) at m,/Ayy = 1. The solid
blue, dashed red, dotted magenta, and dot-dashed green curves have C,/ AfR = 0.2, 0.4, 0.6, and 0.8, respectively.

boundary value is @, = 0/N,. For the left-hand plot we have
picked four points from the curve in the top right plot of
Fig. 5 at m,/Ayy = 0.01, which have pairwise the values
C./Afg =0.02 and C,/Afz = 0.08 but are on different
branches of the curve. The flow of a is determined by (6.3).
When m,,/Ayy < 1, the two integrals in this equation affect
the flow at different scales of r, which can also be seen from
Fig. 6. The first integral is the only finite term in the probe
limit x — 0. It adds a contribution to the flow at r ~ 1/Ayy,
which is roughly proportional to C,. Indeed the curves
having the same C, overlap in Fig. 6 (left) when r ~ 1/ Agy.
The second integral is the flavor contribution which affects
the flow mostly at r ~ \/m. This term is dominant at
small r in the plot, and results in a different flow for the
curves which have the same C,, but different branch. We will
see in Sec. VI D that this structure is analytically tractable in
the limit my = 0. Also, one can show that the flow on the
upper branch of Fig. 5 approaches a step function as C, — 0
(see Appendix C) and indeed the flow at C,/Af = 0.02
(dot-dashed green curve) in the left-hand plot of Fig. 6 is
already reminiscent of a step function. In the right-hand plot
of Fig. 6 we plot a(r) for m,/Ayy = 1 and for various
values of C,,. In this case the RG flow is significant only for
r~1/Ayy. One can check that the first integral in (6.3)
dominates.

B. Free energy and topological susceptibility

We analyzed above the contribution to the free energy
from the CP-odd action S,. However, the dependence of
the free energy density on a is not fully captured by this
contribution when x is nonzero. This is the case because S
depends on the derivative of the phase, £, whose source
varies as dy is varied. Therefore, we need to study the full
energy density. This can be done quite simply since we only
allow a variation of d, while keeping the other sources (in
particular m, and Ayy) fixed. In this case we can read from
(3.20) that

68 = —-M3N2C,6ay = —M>*N.C,56. (6.8)
Notice that this result is valid for any value of a,. Since the
integral in (6.7) is positive, ay = 0 is the only minimum
of the energy (for the branch of solutions continuously
connected to ap = 0).

We may write the relation (6.7) as

-M3C, = G,(0)ay = G*}\(ja)e (6.9)
where
G,(0) = M? [/“’ dr(e3+z + xfuvaﬂ _1. (6.10)
0

The topological susceptibility (generalized to nonzero 6)
therefore becomes, in terms of G,,

2(0)=E"(0) = G,(0) + 0G,(0) (6.11)
where we used (6.8) and (6.10).
For small a, integrating (6.8) gives
- _ 1 1 - _
E(0)-£(0) :ENE;(6(2)+O(&3) :5;(92+(9(94), (6.12)

where y = y(6 = 0) = G,(0 = 0). We denote the energy
in (6.12) by & rather than & in order to stress that it is the
energy of the configuration obtained from the solution at
0 = 0 by continuously varying . In order to determine the
final free energy in the dominant vacuum, &£, we will need
to take into account the other branches of solutions.

We plot the topological susceptibility for potentials I at
x = 2/3 as a function of the quark mass at @ = 0 in Fig. 7
and as a function of € at fixed m, in Fig. 8. The magenta
curves are given by the small m, approximation which will
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of the asymptotic expansions of Appendix A. The blue solid curves are numerical data and the dashed magenta curves follow the
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with x = 2/3. On the left-hand plot, the magenta curve is given by (6.28). The dashed red vertical line denotes the limiting value of the 8

angle as C, - —oo along the curve of the fixed mass value.

be discussed in Sec. VID and matches with effective field
theory (this curve lies above the range of the plot in the
right-hand plot of Fig. 8). We also notice that the suscep-
tibility in IR units shown in Fig. 7 (left) approaches a
constant value at large m,. This signals the decoupling of
quarks, and the value is that of the YM limit (i.e. IHQCD),
which can be seen as follows. As the quark mass grows, the
tachyon is sizeable except for a shortintervalupto r = 1/m,
in the UV. Outside this interval, the exponential behavior of
the potential V, suppresses the second term in the integrand
in (6.10). Therefore the second term is suppressed, and the
leading contribution arises from the first term, which has the
same functional form as the expression for y in IHQCD [35].
Because this integral is dominated in the IR where the
background approaches smoothly the YM (or IHQCD)
background as the quark mass grows [55], the result for y
in this limit agrees with that of YM.

A comparison of the two plots in Fig. 7 at large mass
shows that y only approaches a constant value when
measured in IR units, which signals the fact that Ayy
and Ay are different at large quark mass as we now explain.
The difference between these two scales might be surpris-
ing, since a large mass decouples the quarks so that the low

energy dynamics is that of the YM theory, which only has a
single energy scale. The UV scale Ayy differs from AR
because it is defined through the running of the 't Hooft
coupling asymptotically in the UV where the quarks are not
decoupled: the definition (A4) is not directly affected by the
quark mass for any value of m,. This can be seen explicitly
in the UV expansions (A2)—(A3): for r < 1/ m, the back-
reaction of the tachyon is suppressed, no matter how large
m, is. The relation between the energy scales can be found
by requiring continuity between the YM and full QCD
behavior of the coupling at r ~ 1/m,, which leads to [55]

< m, )bo/bUYM—l B ( m, >—2x/11
AUV AUV '

where b, and b™ are the leading coefficients of the beta
functions of QCD and YM theory, respectively. It was
observed in [55] that observables such as the glueball
masses and thermodynamic variables similarly approach
their YM values in IR units at large m,,, and Ay is therefore
identified as the single energy scale of the YM theory.
Using y ~ Ay at large quark mass, together with the
relation (6.13), gives the asymptotic large m,, behavior of y:

(6.13)
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Left: linear scale. Right: logarithmic scale.
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(6.14)

We also show the m, dependence of the fourth order
coefficient in the expansion of the free energy around § = 0
in Fig. 9. For m,/Ayy > 1, the coefficient approaches a
constant in IR units, as was the case for topological
susceptibility in Fig. 7. For small m,, the coefficient vanishes
in accordance with effective field theory [11].

(E(B)-E(0)INZMPAYy

The free energy for solutions at finite a, can be obtained
by integrating the differential (6.8) numerically, using the
dependence between C,, and d,, (or equivalently 6/ Ny)given
inFig. 5. We present the results as a function of /N ratfixed
quark mass in Fig. 10. The blue curves are numerical data
and magenta dashed curves are given by the analytic result
(6.26) at small m,,. We notice that the approximation works
slightly better for the integrated energy than for the relation
between the 6 angle and C, of Fig. 5 where there is already
significant deviation between the numerical data and the
analytic approximation at m,/Ayy = 0.025.
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FIG. 10. The dependence of the free energy on the 6 angle for potentials I at x = 2/3 and for various fixed values of the quark mass as
indicated in the plots. (Notation as in Fig. 5). The dashed red vertical lines denote the limiting values of the € angle as C, — +oo along

the curve of the fixed mass value.
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Conformal window, x = 4.5. Left: dependence of the topological susceptibility on the quark mass in IR units for potentials I.

Right: ratio Ayy/Ajg as a function of the quark mass (blue solid curve). The red dashed lines show the scaling relations (6.17) and (6.13)

at small and large quark masses, respectively.

The numerical result agrees with the generic argument
presented above: the energy is minimized at @ = 0 for each
value of the quark mass. For very small m, there are also
additional Efimov vacua, which we will discuss more in
Sec. VIE and in Appendix C, and argue that they are also
subleading. The final expression for the energy is then
obtained by taking into account the periodicity of the theta
angle (see Sec. II and [33]):

- . = (0+2nk
5(9)-1}21&15( N, )

(6.15)

When writing down the last expression we recalled that for
a single branch the free energy is naturally a function of
a, =0/ N. Therefore the derivatives with respect to this
variable are of the same order as the function, O(N2). We
have found that the global minimum of & is £(0), so (6.15)
is minimized for some k which satisfies approximately
= —@/2x. Then the argument of £ in (6.15) is O(1/Ny):
there is always some value of k such that |6 + 27k| < 7.
Therefore we may apply Taylor expansion for £ around the
origin, which gives the final result for the free energy

_ 1 _
E(0) = £(0) + = ymin(6 + 27k)? (6.16)
2% kez
in the Veneziano limit. Here we recalled that the second

derivative of £ is the topological susceptibility. The result is
similar in form to that obtained in the ’t Hooft limit [33].

C. Dependence on x and hyperscaling

Above we restricted ourselves to the QCD-like regime
with x = O(1), but it is also interesting to study the vacua
as a function of x.

It was found [48,55] that there is a BKT-type transition at
some x = x, between the QCD-like phase and the con-
formal window as x varies (at zero temperature). In the
QCD phase, the vacua with nontrivial tachyon and zero

quark mass (corresponding to the crosses of Fig. 3) only
exist in the chirally broken phase where one of them is the
energetically favored vacuum.

On the other hand, in the conformal window
(x, < x < 11/2 = xpy), the picture is much simpler. At
zero O, there is no spontaneous chiral symmetry breaking
and the quark mass grows monotonically with 7;. When 6
is nonzero, the situation is similar: in Fig. 3 the nodes on the
horizontal axis are absent and the quark mass grows
monotonically with 7 for fixed C,.

The topological susceptibility in the conformal window
(x = 4.5) is shown for the QCD-like potentials I in Fig. 11
(left). For large quark mass, m,/Ayy > 1, the susceptibil-
ity approaches the YM value as was the case in the
QCD-like phase 0 < x < x,. =4.083. Consequently, the
susceptibility in UV units obeys (6.14) in this limit. When
my/Ayy — 0 the susceptibility also approaches a finite,
nonzero value in IR units. This is in agreement with earlier
observations that mass gaps and decay constants are of
order A for small m,, in the conformal window [55]. Note
that the vertical axis of the plot does not start from the
origin, and the UV and IR limiting values are actually
rather close.

Overall, the dependence of CP-odd observables on m,, is
weak, when the observables are expressed in units of Ap.
For example, the relation between the source 6 and the VEV
C, is similar to that of the bottom-right plot of Fig. 5 for all
values of m,,. The relation is determined by the IR behavior
of the solutions of the various fields which are weakly
dependent on m,. While most observables are therefore
proportional to the scale A, the ratio Ayy/Ar depends
strongly on the quark mass as shown in Fig. 11 (right). The
ratio obeys different power laws for m,/Ayy <1 and
my/Ayy > 1, given in (6.17) and (6.13), respectively,
and shown as red dashed lines in Fig. 11 (right).

The hyperscaling relation (see [72]) for y can be found
by taking into account the dependence of the scales on m
in the limit of small mg,

q
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FIG. 12. Walking regime, x = 4. Left: dependence of the topological susceptibility on the quark mass in IR units for potentials I. The
dashed magenta curve is given by the approximation at small m, given in Eq. (6.29). Right: ratio Ayy /A as a function of the quark
mass (blue solid curve). The red dashed lines show the scaling relations (6.17) (with A, = 2) and (6.13) at intermediate and large quark

masses, respectively.

A b
AR <ﬂ>A , (6.17)
Auv Auv

where A, is the dimension of the quark mass at the IR fixed
point [55]. Because y ~ Af,

4 4
(i G Al U AR i)
A%JV (AUV AUV AUV

where y, is the anomalous dimension of the quark mass at
the fixed point.

We then discuss the phase diagram near the conformal
transition and, in particular, in the regime with walking
behavior (x, — x < 1). As we have already pointed out, the
diagram of Fig. 3 has nodes for all x within the interval
0 < x < x,.. However, they approach the dashed line where
the solution ceases to exist as x — x, from below.

We demonstrate the approach to x = x, by studying
numerically the topological susceptibility in the dominant
vacuum. It is shown at & = 0 as a function of the quark
mass in Fig. 12 (left). We chose x = 4, which is close to the
critical value x. =4.083 for the potentials I used here.
Three separate regimes can be identified as the quark mass
varies. For very small’ my, the topological susceptibility is
proportional to m, and obeys the relation (6.29) as in the
QCD-like phase. In the intermediate regime, the topologi-
cal susceptibility is close to the constant value associated
with the IR CFT (that is approached in the walking region).
Finally, for large m,, y/ Ay approaches the constant value
associated with the QCD-like IR regime. In contrast, for
lower values of x, far from the walking regime, the
topological susceptibility (see the left plot in Fig. 7)

°As shown in [55], the boundaries between the three regimes
are roughly at m, ~ Ayy exp (=2K/,/x,—x) with K given in
(2.32), and at m, ~ Ayy.

contains only the first and third regimes above, while
the intermediate regime is (not surprisingly) absent.

The dependence of the ratio Ayy/Ar on m,/Ayy is
shown in Fig. 12. We observe that the ratio takes a finite value
in the limit m = 0, as in the QCD-like phase, and shows
similar behavior to the conformal window in the intermediate
and large m,, regimes. In particular, the scaling relation (6.17)
with A, = 2 [55] (shown as the dashed red line at inter-
mediate quark masses), is consistent with the numerical
results. Consequently, we obtain a hyperscaling-like relation

)(/A‘LlJV & (mq/AUV)2

in the intermediate regime.

In summary, the dependence of the topological suscep-
tibility (and the CP-odd physics in general) on x and m,, is
qualitatively similar to that obtained for other observables
(such as meson masses) at 0 = 0; see Fig. 2 in [55].

(6.19)

D. The chiral limit and comparison to
effective field theory

The solutions for the CP-odd fields can be studied
analytically at small m,, i.e. in the vicinity of the nodes
of Fig. 3 (left). As shown in Sec. III B 1, in the UV, the
complex tachyon satisfies the linearized Eq. (3.13), where
C, does not appear explicitly. In particular, that equation has
the same form as the equation for the (real) tachyon at zero 0
angle or equivalently at zero C,. The UV boundary data for
the complex tachyon (but not necessarily for its absolute
value and its phase) is expected to behave smoothly as the IR
boundary conditions are varied. For small m, (that is for
m,/Ayy < 69/ Ajy), we may therefore write the asymp-
totic solution as

1 . .
Ere’f = e"fomqr(— log(Ar))™ + oor*(—log(Ar))”,

(6.20)
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where o is the real valued VEV for the standard solution
at my, =0, and we neglected O(m,) corrections to the
VEV term."’

Recall that (6.20) is not gauge invariant: in particular
&y, or equivalently the phase of the quark mass, trans-
forms under U(1),. So far we have not worried about
gauge dependence, because we were mostly using gauge
invariant variables, but it is convenient to fix the gauge
now. We do this by requiring that the tachyon phase
vanishes in the IR, £ — 0 as r — o0. This makes sense
even when working with the UV expansions, because the
phase & only varies significantly in the UV region when
the quark mass is small. That is, the tachyon is real up to
O(m,) corrections in the IR region for this gauge choice.
Continuity at r~ 1/A;g implies the VEV term of the
tachyon and o, are real up to O(m,) corrections.

Inserting the phase and absolute value from (6.20) in the
phase equation of (3.11) we find that

C, = —2m o0kgWoe” sin&y + O(m3).  (6.21)

Moreover, for the current gauge choice (6.7) implies

d, = x& — C, Am dr<L+xfa(va - 1)>, (6.22)

A

where the second term vanishes as m, — 0 [because C, —
0 in this limit as seen from (6.21)]—the possible singular
contributions from f, near the tachyon nodes are regulated
by the factor 1 —V, which also vanishes at the nodes.
Therefore we find

(6.23)

Notice, however, that the first term in (6.22) vanishes as
x — 0—the integral which we dropped is actually much
smaller than the term x&, if x > m,c/ Afy. That is, the
limits x — 0 and m, — 0 do not commute. We will take
x = O(1) first and return to the case of small x below.

1. Limit of small m, for x = O(1)

The relation between the VEV C, and the source 6
becomes

0
Ca = —2mq00K0W0f5 Sian + O(mé)
f

(6.24)

"%One can check that oy is related to o (which was defined in
terms of the UV expansion of the absolute value 7) as
ocoséy = oy + O(m,), and to the complex VEV defined in

(3.14) as €6 = oy + O(m,).
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The free energy at small, constant m, can be then

q
obtained'' by integrating (6.8):

L 0
5(9) - 5(0) = ZNCNfM3qu'0K0W0f5 <1 - COSN—)
f

+O(m2) (6.25)

= =)o 1 =08 -y + OO,
(6.26)

Here we recall that the proportionality constant between
the VEV o6, and the chiral condensate (for the standard
solution at m, = 0) is —=2N.N M>kgWo£° [45,55]. The
same result is also found by using chiral effective
Lagrangians in the limit of small m, [10,11] (see also
the review [14]).

The (generalized) topological susceptibility reads

dca B 2M3mq60K()W()bﬂ5 9

— _M3 i 4 _ . 2
x(0) N, ¥ ; cos N, + O(my)
(6.27)
<l/_/l//>|mq:0 9
= —T}mq cos -+ O(m3). (6.28)
Taking here & — 0 we obtain
- <l/_/W>|mq=0 2
x=x0=0)= v m,+O0(m2),  (6.29)

which agrees with the well-known field theory result [4,18].
The estimates (6.24)—(6.26) were compared to numerical
data in Figs. 5-10 where they give the dotted magenta
curves.

2. Limit of small m, for any x

Notice that because the condensate is O(NN.), (6.29)
diverges for x — 0. This signals the breakdown of the
small m, approximation. As we pointed out above, the
limits m, — 0 and x — 0 do not commute. This reflects
properties of QCD: when x — 0 the axial anomaly is
effectively suppressed, the #' meson becomes light, and
must also be taken into account when analyzing the
physics.

From (6.11) and (6.10) we see that the susceptibility
approaches its YM value yvy (defined in IR units as
explained above) as x — 0. Working directly with this
equation we can obtain an improved estimate:

"'We are working around the standard solution, the rightmost
cross of Fig. 3, so that the integration starts from 6 = 0.
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2

L(l + O(my)).

-1 _ -1
_X —_ —
M), —om,

¥ (6.30)

I,

This expression is valid at small m, but for all values of x
(within the QCD like regime, 0 < x < x.) and agrees with
chiral perturbation theory [78] (see also Sec. V).

We can also derive formulas for the free energy which
are valid for all values of x. Namely, as we pointed out
above, the integral in (6.22) is only relevant when x is
small. But in this regime its second term is suppressed, and
the first term is related to the YM topological susceptibility,
so that we find'?

=& = M*Cox”yqy + O(my) - (6.31)

0

Ny
whereas the relation (6.21) is unchanged and therefore
implies

MSNchCa = <l/_/l//>|mq=0mq sin 50 + O(I’l’lé)

0
= Nixym <§0 - N_f> +O(mg).

(6.32)

We then compare to effective field theory results [11]
given explicitly in Sec. V. Identifying the phase ¢ and the
coupling a (introduced in Egs. (5.21) and (5.26) respec-
tively) as ¢ = &, and

NN, N,
%:_ _ VXYM ’ 0 — A)(QYM’ (6.33)
mﬂ.’ <l//ll/> m,,z()mq V4

where the latter form follows after the use of Gell-
Mann-Oakes-Renner relation, the above conditions (6.32)
match with (5.1) up to corrections suppressed by m,,.
Moreover, imposing these conditions the differential (6.8)
integrates to

E(B) — £(0) =~ —omy(1 = cos &)

+OM (N, =0 + O(m3)  (6.34)
which agrees with the potential (5.33) with the above
identifications.

We also remark that the solutions to the last equality in
(6.32), i.e., & (), are unique only when |(z/71//>|mq:0mq| <

N};{YM. When this condition is violated, &)(6) has several
branches, which is the case for x < m,/Ayy. Because the
condensate is negative these branches first appear near

“The precise scaling limit which determines which terms we
keep here is that xAyy/m, is fixed as m, — 0, but the
expressions which we obtain will also remain valid for x =
O(1) and m, — 0. Notice that the condensate is O(N;N.).

PHYSICAL REVIEW D 96, 026001 (2017)

E=(2n+1)r =0/N; as x decreases, where n is an
arbitrary integer.

Finally, while we wrote the above formulas around the
standard vacuum, i.e. the rightmost cross of Fig. 3, they hold
also in the vicinity of other points with m, = 0 (the Efimov
vacua) with minor changes. That is, we need to interpret o
and (py) as the values of the corresponding m, =0

solutions. In addition, the value of @ should be chosen as
depicted in Fig. 3 (right), so that the starting point of
integration in (6.26) and (6.28) has also changed. For the
susceptibility this results in a factor (—1)" in (6.29) near the
nth Efimov vacuum:

o (=1)"N?
X ! :)(Yll\/[ _<

T oy T Olma))

(6.35)

where the chiral condensate is that of the nth Efimov vacuum
at zero quark mass. The sign of the condensate is —(—1)"
[48,55], so that both contributions to (the inverse of) y are
positive.

E. Complex Efimov spirals

It is possible to gain some analytic understanding of the
structure of the solutions as the dashed line in Fig. 3 is
approached where the theory flows closer and closer to the
IR fixed point. That is, we can generalize the approach
detailed in Sec. Vof [55] to the case of nonzero C,,. First we
briefly review the main points of the analysis at C, = 0.

In the vicinity of the fixed point, when the BF bound is
violated, the tachyon satisfies the linearized equation of
motion, the solution of which can be written as a linear
combination of

m
I 9 g (rAgy)?sin [p1og (rAuy) + du.
¢ Auv

1 1
— << — 6.36
<AUV AIR) ( )
7, c 2
=2 = ——K,(rAyy)?sin [vlog (rAyy) + ¢,].
Ay
( ! <r<k ! > (6.37)
- r —_— '
Ayv Ar

which have zero VEV and quark mass, respectively [the
value of the quark mass and the VEV are determined by the
continuation of the solutions to the UV boundary where
(A6) holds]. Here Ayy > Ay since the flow becomes close
to the fixed point, and the parameters ¢; and K; are O(1)
real numbers which can be determined by solving the
tachyon equation of motion numerically. The parameter v is
the imaginary part of the dimension of the quark mass at the
fixed point: v = ImA, = \/—m2,£% — 4, where m,, and 7,
are the (imaginary) bulk tachyon mass and the AdS radius
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at the fixed point, respectively. The IR regular solution can
be written in a similar form

T .
7= K (rAR)?sin [vlog (rAR) + ¢r].

1 1
— < r<<—,
<AUV AIR>
butin this case it helps to write the dimensionful quantities in
IR units—then the O(1) parameters K and ¢ take
constant values as the fixed point is approached (i.e. as Ty —
T, from above) [55]. Expressing (6.38) as a linear combi-
nation of (6.36) and (6.37), one finds the spiral equations

(6.38)

my, Ky sin (pr — ¢ — vut) —2u

AUV B Km sin (¢m - ¢0)
c _ K sin (¢IR — ¢y — vit) _ou (6.39)
A%V KO' sin (¢O’ - ¢m) .
where the spiral is parametrized in terms of
A
u=log—2 (6.40)

AR’

This kind of spiral structures is relatively common in
holographic models, and has been studied in detail in a
different context in [79].

There is a simple asymptotic relation between u and T,
The IR geometry has a well-defined limit as the fixed point
is approached, and the leading perturbation to the geometry
is driven by the minimal distance to the fixed point [55]:

A )
TO—TOCNA*—ﬁlREA*—A(r:1/AIR)~<Ai> . (6.41)
Uuv

Here r = 1/ A is roughly the value of the coordinate where
the growing tachyon field finally drives the flow away from
the fixed point, and ¢ is the derivative of the holographic beta
function at the fixed point, given by [48,55]

2
5= 4_%_2_
\/ Vo

(6.42)

PHYSICAL REVIEW D 96, 026001 (2017)

In terms of u, (6.41) becomes

ud = —log(Ty — Ty.) + const (To = To.)- (6.44)

The spiral (6.39) admits a relatively simple generalization
to nonzero 6 angle, as we will now show. It is natural to keep
C,in the IR units, i.e. C,/ A, fixed as Ty — T,. Using the
UV expansions of Sec. II in the tachyon equation of motion
we immediately see that the effect of finite C, is suppressed
in the UV by O(r*). But one can derive a more general result
which holds for all » < 1/Ak and in particular near the
fixed point. Namely, the equations (3.11) and (3.13) actually
hold for all r <« 1/Ajr as can be verified by inserting the
behavior of the tachyon 7 ~ r? and the metric e* ~ 1/r near
the fixed point in the generic equations of motion for the
tachyon (3.10).

Since the complex tachyon therefore solves the same
equation as the (real part of the) tachyon at C, = 0, the
solutions (6.36) and (6.37) are otherwise unchanged for
C, # 0, but m, and ¢ should be replaced by their complex
counterparts in (3.14):

m, > mge', o> Ge',

. (6.45)

Here 6 = o +iC,/(2m,¢°k W), with ¢ defined as the
coefficient of the UV expansion of the absolute value of the
tachyon in (3.17). This also means that the coefficients K;
and ¢; in these equations are real and independent of C, and
the € angle.

The flow of the tachyon in the IR (for r ~ 1/Ar), however,
changes in a nontrivial manner. The tachyon is complex in the
IR for generic C,, and therefore the coefficients of (6.38)
must be allowed to take complex values:

K = Ke'®,

PR > PR + PR, (6.46)

and T, also depends on C,. The result for the tachyon near
the fixed point can be found by applying these maps to (6.38)

The parameters V; are defined though the expansion of the 7 et _ i 2 .
effective potential at the fixed point [48] as 4 Kige®(rAm)*{eosh grg sinfy log(rAm) + ]
+ i sinh @ cos|vlog(rAR) + . 6.47
V() = Vg(ﬂ') _ foO(/l) @i cosvlog(rAR) + ¢} ( )
=Vo+Vo(d=4)2+0((A-4)%).  (643) Finally, the spiral equations (6.39) generalize to
|
mqe’fo Kre® sin (¢pr — ¢, — vu) cosh pr + i cos (pr — ¢, — vu) sinh grg by
= - (4
AUV Km sin (¢m - ¢0)
Ge®  Kge®sin (¢ — ¢,, — vu) cosh gig + i cos (¢ — ¢, — vu) sinh grg o (6.48)
= e . .
A%JV KD‘ sin (¢a - ¢m)
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FIG. 13.

Sections of the complex spiral compared with data for potentials I with x = 2.5. The thin black, solid blue, dashed red, dotted

magenta, and dot-dashed green curves have C,/Afz = 0,0.1, 0.3, 0.5, and 1, respectively. Top row: the absolute value of the quark mass
and the condensate in two regions close to the origin of the spiral. Bottom row: the phase of the condensate in the same region as the
absolute values in the top-right plot as a function of the absolute value of quark mass (left) and the phase of the quark mass (right).

These equations describe, among other things, the structure
of the Efimov vacua near C, = 0 as one approaches the
dashed curved of Fig. 3 (left).

The equation for the phase in (3.11), & =C,/ (kV spe**7?),
leads to additional constraints. Inserting here the solution
(6.47) or the combination of (6.36) and (6.37), recalling also
the maps (6.45), gives the identities

C, '
Ve~ ¢ KAy cosh g sinh e
* fo * *

_ CaKmKaAéjvl/ sin (¢m — ¢6>

PRIV (6.49)

Here the first identity constrains the C, dependence of Kz
and @r. Equating the first and third term proves directly that
sin (¢,, — ¢,) > 0, fixing the handedness of the spiral. It was
pointed out in [55] that this sign is also necessary for the
chirally broken vacua to dominate over the chirally sym-
metric vacuum.

We compare the asymptotic formulas (6.48) to numerical
data for potentials I at x =2.5 in Fig. 13. Since the
formulas hold for small quark mass and the condensate,
we plot a section of the spiral (for the absolute value of both
the source and the VEV) very close to the origin, in the
region where the tachyon solution has two nodes as
C, — 0, so the solutions are identified as unstable (second)

Efimov vacua. As it turns out, the C, dependence is
relatively mild, in particular the complex phase factor
@ir remains numerically small for all values of C,.
Therefore our data and curves almost overlap as seen in
the top-left plot. In order to see the dependence on C, we
zoom in the region of the top-left plot near the point where
|6| has a node for C, = 0. The result is shown in the top-
right plot. The data (dots) follows the prediction from the
formulas (curves) well, even if the dependence on C, is
weak. Notice also that the various parameters of the curves
in these plots were not fitted to the data but extracted
directly from their definitions [e.g., in (6.47)].

The dependence on C, can be seen more clearly in the
plots on the bottom row of Fig. 13 where we show the
phases of the source and the VEV in the same region as for
the top-right plot. In the bottom-right plot, the curve for
C, = 0 is not shown because it has shrunk into a set of
discrete points. For this plot, we fitted the value of the phase
factor kg directly to the data. We did this rather than using
the definition in (6.47) because the value of kp obtained
from the definition appeared to be clearly shifted with
respect to data—the spirals for these values of the phase are
given by the thin curves in the plot. It is possible that this
offset is a numerical effect—the construction of an IR
regular tachyon solution close enough to the fixed point for
it to properly obey the asymptotic formula (6.47) and the
consequent four parameter fit to extract the numerical
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values of the parameters is demanding due to limited
numerical precision.

VII. SPECTRA OF SINGLET PSEUDOSCALAR
BOUND STATES AT 0 =0

In order to compute the spectrum of mesons and
glueballs one needs to study the fluctuations of all the
fields of V-QCD. These fluctuations decouple into different
sectors corresponding to glueballs and mesons with
JPC =0t 0=+, 17+, 17,2+, where J stands for the
spin and P and C for the field properties under parity
and charge conjugation respectively. They can be further
classified into two classes according to their transformation
properties under the flavor group: flavor nonsinglet modes
[expanded in terms of the generators of SU(N ;)] and flavor
singlet modes.

The general analysis of the fluctuations for the model at
vanishing 6 angle was carried out in [51]. There the
quadratic action for each sector was computed, and the
spectra for all but one sector were calculated numerically.
In this section we will analyze the one sector left out in
[51]: the flavor singlet pseudoscalar modes at vanishing @
angle. We will restrict our study to the case & = O—this is the
case which is closest to ordinary QCD, and at finite § solving
the fluctuation equations would be technically very involved
because the singlet scalar and pseudoscalar mesons and
glueballs would all mix. This sector is made up of the
pseudoscalar 0~ flavor singlet meson and the 0~ glueball
which mix due to the axial anomaly (realized by the CP-odd
sector). Since we are in the Veneziano limit, the mixing takes
place at leading order in 1/N,. In the next section we will
study the spectra for backgrounds at finite 6 angle, restrict-
ing the analysis to the flavor nonsinglet sector.

The masses of the singlet pseudoscalar states are particu-
larly important, because they contain the physics of the #/
meson, which is identified as the state with the lowest mass
in this sector at small x. We will demonstrate, both
analytically and numerically, that the mass of the 7' meson
obeys the Witten-Veneziano formula. Because of the back-
reaction, the pseudoscalar glueballs and mesons mix non-
trivially already at small x, which affects the derivation of the
Witten-Veneziano relation. We have not found a trans-
formation (e.g., a rotation in the space of wave functions)
which would remove this mixing, so we will need to study it
carefully. Therefore our derivation is more involved than the
typical arguments in the literature [40,42-44].

A. Pseudoscalar singlet fluctuations at 6 = 0

We now write down the fluctuation equations for the
pseudoscalar singlet sector. First, the vector and axial
vector combinations of the gauge fields are

AL+ AR

oAb Al
M 2 ) -

A
M 2

(7.1)
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They contribute to both the singlet and nonsinglet flavor
sectors. Next we write the complex tachyon field as

T(x*,r) = z(r)exp [i07(x*, 1)], (7.2)
where 7 is the background solution, and 67 is the pseu-
doscalar flavor singlet fluctuation.

The flavor singlet pseudoscalar degrees of freedom
correspond to gauge invariant combinations of the longi-

tudinal part of the flavor singlet axial vector fluctuation A,
the pseudoscalar phase of the tachyon 67 and the axion
field a.

We split these fields as

AS (1) = = ()9, (T (x)),
Or (X, r) = 200(r)T (x*),

a(xﬂ7 }") = 2(pax(l‘)7()€”). (73)
The following combinations of the above fields
P(r) = @o(r) — (1),
Q(r) E¢ax(r) +xva(’177)(pL(r)’ (74)

are invariant under the residual gauge transformations (2.18).
They correspond to the pseudoscalar glueball (0~") and #’
meson towers. They satisfy the coupled differential equations
(see Appendix D and [51] for more details)

VfK'TZ
N,+ N,

N, ,
+xva(Na +Nh)Q):|

Va Ny

pPya_b
VaNa +Nb

0, [erAG‘lw2 (—4€2A

+ 4V ;e Grr*P — 4342V ,0 = 0, (7.5)
V.V k2 V!N N
, |:63AZ<4X€2A aV KT P 4x—ata p a Q/>:|
N,+N, N,+N,  N,+N,
+m?e*ZQ =0, (7.6)

where the primes denote derivatives with respectto r,and N ,,
N, and G are given by the following expressions:

N, =V (4e* ke — m*w?), N, = 4xe*' ZV2G,

G =1+ e k7" (7.7)

Notice that G is just the restriction of G defined in (3.5) to
the & = 0 case.

B. Mass of the 7/ meson at small x

We start by discussing the probe limit x — 0 at nonzero
but small quark mass. Because the terms depending on
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flavor are suppressed in the action, the fluctuation equa-
tions (7.5) and (7.6) admit solutions for which P = O(1),
0 = O(x)."” It is identified as the flavor mode at small x: to
leading order in x, the P component satisfies the same
fluctuation equation as the wave function for the nonsinglet
pseudoscalar fluctuation described in [51]. More precisely,
P is mapped to the difference yp — y; of the radial wave
function of the pion field and longitudinal gauge field as
suggested by the definition (7.4), and the variable P defined
in (D13) is mapped to p.

Therefore one is led to expect that the flavor singlet and
nonsinglet pseudoscalar mesons become degenerate as
x — 0. This is however not obvious since, as it turns out,
the convergence towards the x = 0 solution is not uniform
in r. In the IR there is no issue because the exponential
suppression of the potentials V, and V, decouples the glue
from the flavor for all values of x. In the UV, however, glue
and flavor are nontrivially coupled at small r for any
positive x (more precisely, when r < 1/x), as seen from
the UV expansions in Appendix A In principle this could
lead to the flavor singlet and nonsinglet mesons having
different UV boundary conditions in the limit x — 0 and the
masses of the mesons being different. One can check by
using the UV expansions from Appendix A that the
boundary conditions are the same and therefore the singlet
and nonsinglet states do become degenerate. In particular, 7/
becomes degenerate with the pions and its mass obeys the
Gell-Mann-Oakes-Renner (GOR) relation as x — 0 as
expected from the fact that the anomaly vanishes when
x — 0. We will discuss this in more detail below.

1. Limit of zero x

We wish to discuss what happens at small but finite x, but
it is useful to recall first how the GOR relation arises from
the fluctuation equations in the limit of zero x. We rewrite
the fluctuation equations (7.5) and (7.6) as a first order
system (for later convenience first at finite x)

3A
P=— 5[V GP =V, Z(Q + xV,P)], (7.8)
mf - HPS
~ ez
O=——7F5—"—— {mz Q' +xV,P
T —Hpg) |1} )
4™kt d
e P 7.
ST, (19)

PThere is also another set of solutions which has a different x
dependence and will be identified with the glueballs in the limit
x = 0 as we shall see below.

Notice that the situation is different from the scalar sector,
where the glue and flavor were decoupled also asymptotically
in the UV and therefore the convergence toward x =0 was
uniform [51].
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P' = eM(V,ZQ — GV x1*P), (7.10)
0 =-e*7Q, (7.11)
where
d4e* k> 44 xGViZ
Hps = —— =, (7.12)

and my is the mass of the fluctuations.

As x — 0 the fluctuations associated with the mesons
satisfy (7.8) and (7.10) with Q and x set to zero and including
only the first term in (7.12). These equations are the same as
the fluctuation equations for the nonsinglet pseudoscalar
mesons [51], which signals the suppression of the axial
anomaly as x — 0. The GOR relation is found by studying
the fluctuation equations perturbatively at small m? and also
taking m, — 0. When m} = 0 there is a solution to the
system which is normalizable in the IR but not in the UV. As
seen from the expansions (F14) and (F15) in Appendix A
both P and P approach finite values at the boundary. It is
convenient to normalize the solution such that P — 1 as
r — 0. Then the boundary value of i’,

Cp =1lim P(r), (m% =0) (7.13)

r—0

can be related to the decay constant of the #' meson [up to
corrections O(m,)]. The relation is analogous to that for the
pion decay constant, found in Appendix E of [55]. Since we
have taken x = 0 the decay constants of the pion and the #’
are actually equal. After a careful comparison to the analysis
of [55] we find

f2= fz, = M?N;N.Cp + O(m,), (x=0). (7.14)
To obtain the GOR relation we compute the leading
order perturbation in m2 and check when the solution
becomes normalizable in the UV. As is always the case for
the GOR relation (and as we will verify below) the relevant
regime is close to the boundary (r ~ \/m,/c), where the
source and VEV terms of the tachyon are of the same order.
Therefore we can take P = const and neglect the loga-
rithmic corrections to the potentials in (7.8). We obtain

—4r m?-r3
Z/ﬂWOW(Z) W0K0f31'2

P'(r) :cp< ) (7.15)

Here the constants wy, k(, and W, are the boundary values of

w, k, and Vg, respectively. We also approximated eA=7/r.

The first term in (7.15) gives the weak r dependence of the

m; = 0 solution which can be neglected, but the second

term is the important perturbation which becomes O(1)
2

when m, ~ mj. Integrating over r and using the fact that

P =1 when m} = 0 gives
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Cpm} /oo Pdi
W0K0f3 r T(?)z’

P(r) =1 (7.16)

where the integral is dominated by the regime with r ~
\/m,/c as expected. The solution is normalizable when P

vanishes at the boundary, which determines the mass of the
#'. This leads to the GOR relation in the limit x — O:

_ Cpmy, /oo Pdi fom?
Woko?? Jo  ©(7)*  2M3N N WokotSm o
f2’m2/
=TT (7.17)
my ()

2. Small but finite x

We then discuss the O(x) contributions to the GOR
relation for #/. At this order the coupling between the glue
and the flavor can no longer be neglected and we need to
study the complete system (7.8)—(7.11). But in the IR there
is decoupling and we can unambiguously define the IR
normalizable solutions for the glue and the flavor, denoted
by w(@) and "), respectively. The leading term of y(*) can
be readily identified with the zero x solution discussed
above. In order to determine the 7' mass we need to study
the normalizability of both these solutions in the UV. More
precisely, we would want to find the coefficients C_ and C;
of the non-normalizable terms of the UV asymptotic
expressions in (F9) and (F11) for each of these two
solutions. It is, however, easier to expand at x = O before
expanding at » = 0 and therefore study the non-normal-
izable terms (F13) and (F15). Indeed by studying the
expansions one sees that the non-normalizable terms in
the two sets of asymptotic expressions are mapped to
(linear combinations of) each other (possibly up to highly
suppressed terms) when the order of limits is changed. We
present here a sketch on how the O(x) corrections behave,
and a systematic, precise treatment is done in Appendix G.

We denote the solutions defined by the UV expansions
(F13) and (F15) by ¢@ and ¢*), respectively. As the
superscripts suggest, ¢*) is the perturbative solution of the
P field with vanishing Q, and ¢ is obtained by first
solving Q perturbatively, in analogy to the IR normalizable
solutions. We further define

(o) = (e ) (3e)
+ UV normalizable terms. (7.18)

A normalizable mode can be constructed as a linear
combination of w?) and w(@) when the determinant of
the coefficient matrix vanishes.
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We will sketch here how the coefficient matrix is
computed—a detailed analysis will be given in
Appendix G by performing a systematic expansion in both
x and the (squared) bound state mass mJ% The elements can
be obtained essentially by computing the values of P and Q
near the boundary for the solutions (") and y(9): as seen
by comparing to the expressions (F13) and (F15), C;; is the
value of J for the solution w'!) (with I, J taking the values
P, 0).” The coupling between the glue and the flavor is
irrelevant for the diagonal elements of the matrix. We have
computed w (") at leading order in x above, from which we
readily obtain that Cpp = 1 — m7/mz. We may normalize
(@) such that C oo = 1. The backreaction of flavor on glue
is suppressed by x but not vice versa, which leads to'®
Cpo = O(x) but Cpp = O(x°). From the fluctuation equa-
tions we see'’ that C op 1s enhanced as m, — 0, which will
also be proven in Appendix G. Taking stock,

(CPP Cpo ) _ - O(xm?)
CQP CQQ O(m;2x0) 1

The determinant vanishes when m, equals the mass of the
', which leads to the expected relation

| 3
Tol=Tto

(7.19)

mi, = m2 + O(xm?). (7.20)

In order to compute the coefficient in the O(x) term of
(7.20), we solve the fluctuation equations in a systematic
expansion of the wave functions at small x and m, in
Appendix G. This results in the Witten-Veneziano formula
for the mass of the #' meson:

Nch)(YM
7

mz,zm,zz—i—x

2 (7.21)

where yy\ is the topological susceptibility for Yang-Mills

theory. For our conventions fZ = O(N;N,), so that the
second term is indeed O(x).

C. Numerical results

We have computed the spectra of the singlet pseudo-
scalars numerically both for the potentials I and potentials
IT defined above in Sec. I'V. The numerical study was done
by using the fluctuation equations given in Appendix D as
explained in [51] and in Appendix G of [55].

'>Some care is needed because $'9 also contains a loga-
rithmically divergent term for P.
This ensures that taking x — 0 the determinant is « Cpp and
we will have m,; = m,.
YSolving (7.8) for P’ gives P’ ~ Q'/7> + - - - which leads to
this enhancement.
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FIG. 14. Masses of the lowest four singlet pseudoscalar states in the logarithmic scale as a function of x. Left: potentials I. Right:

potentials II.
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FIG. 15.

The mass of the ’ meson for potentials II. Left: mass of 7’ as a function of x in log-log scale for m

mzr,q'/ AUV
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= 0. The dashed blue line

is a fit with the expected dependence mi, « x. Right: dependence of the mass of the #’ (red circles) and the pion mass (magenta squares)

on m, at x = 0.0001. The blue line is a fit to the GOR relation.

The spectrum is shown in the logarithmic scale as a
function of x in Fig. 14. The light 7’ state is best visible in
the right-hand plot for small x. The third lowest state is a
glueball in the limit x — O for both potentials18 whereas the
other states are iy states. In the walking regime all masses
tend to zero obeying the Miransky scaling law. Apart from
the light # meson at small x, the dependence of the
spectrum on x is for both potentials very similar to that
found for the singlet scalars in [51]. Notice that there
is an additional interesting level crossing structure for
potentials 1.

We study the dependence of the mass of the 77 meson on x
and m, in more detail for potentials II (for which the
numerical computations are much easier then for potentials
I) in Fig. 15. The left-hand plot demonstrates that the
dependence on x at m,=0 is that predicted by Eq. (7.21).
The right-hand plot shows the data for the " and pion masses
at very small x = 0.0001. The data points overlap perfectly,

"®The mass of the glueball is actually the same for both
potentials I and II because they only differ in the flavor sector.

as predicted by Eq. (7.21). The dependence on the quark
mass matches with the GOR relation (blue line).

VIIL. FLAVOR NONSINGLET SPECTRA
AT FINITE 6

A. Fluctuations at finite 0

We now study the quadratic fluctuations for the back-
grounds with a nontrivial @ angle studied in Sec. III. In
those backgrounds both the tachyon phase £ and the QCD
axion a are nonvanishing, which makes the analysis of the
fluctuations, in particular the flavor singlet sector, more
involved. In the following we will restrict ourselves to the
analysis of the flavor nonsinglet sector. This sector consists
of the flavor nonsinglet 17~ vector and 17 axial vector
mesons, and the flavor nonsinglet 0~ pseudoscalar and
0™ scalar mesons; and these last two get mixed in a parity
breaking' finite & vacuum.

PNotice that charge conjugation remains as a good quantum
number, and therefore the vectors and axial vectors do not mix at
finite 6.
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1. Flavor nonsinglet sector

This sector involves the SU(N ;) part of the vector, axial
vector, scalar, and pseudoscalar mesons. The vector and
axial vector fluctuations were defined in Eq. (7.1). The
scalar and pseudoscalar mesons, which will mix in the
presence of a nonzero phase of the tachyon, correspond to
fluctuations of the complex tachyon:

T=1[z(r)+s(r,x)+5(r,x))
xexp[&(r) +0r(r.x) +7z(r.x)],
with 5(r,x)=8%(r,x)t*, z(r,x)=z(r,x)t*. (8.1)

Only the DBI piece of the action, i.e. Eq. (2.4), contributes
to the nonsinglet sector fluctuations. In Appendix E we
write the resulting action up to quadratic order in the
fluctuations and derive the equations of motion. We now
summarize them sector by sector.

2. Scalar-pseudoscalar mesons

The fluctuations of the modulus and phase of the
tachyon, and the longitudinal part of the axial vector
contribute to this sector. We shall consider the following
Ansatz for the three coupled fields:

Al = =y (r)8, P (x)1,
7 =2y, (r)P(x)t°,

§ =, (P PY(x)1e,
(8.2)

where 0,0/P(x) = m*P%(x). As shown in Appendix E
the equations of motion for these fields can be recombined
into the two coupled equations (E8), (E9) for the two fields
v, and ; = eAWZVfG_ly/j_. The normalizable solutions
of those equations will correspond to the scalar and
pseudoscalar mesons, which mix in a parity breaking finite
6 vacuum.

3. Vector mesons

We consider the Ansatz
V,=wy(r)Ve(x), with 9,0"V4(x) =m{Vi(x), (8.3)
for the transverse part of the vector meson fluctuation (the

longitudinal part can be set to zero). The equation of motion
for V,, resulting from the Lagrangian (E2) reduces to

w2
——0, <erA E@,Wy) +miyy =0. (8.4)

4. Axial vector mesons

We shall take the following Ansatz for the transverse part
of the axial vector mesons:

A =ya(r)Ad(x)1, with 9,0" A4 (x) =m3 Al(x),

u

(8.5)
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The equation of motion for A/f follows swiftly from the
Lagrangian (E2), and in terms of this Ansatz takes the form

0,(Vwret G 'ow,)  Pke*AG?
: = -4 = +mly, =0.
VwretG w2G? va AV

(8.6)

B. The Gell-Mann-Oakes-Renner relation at finite 6

It is possible to compute analytically the 6 dependence of
the pion mass at small m,, and to use this to write the
generalization of the GOR relation at finite 6. We review
here the key points of the computation and details are given
in Appendix H.

The pion mass is found by analyzing the fluctuation
equations for the pseudoscalar and scalar sectors in the UV
and in the IR, and requiring a match of the results in the
middle, where the regimes of applicability of the two
results overlap when m, is small. In the UV analysis, it is
essential to use the fluctuations of the real and imaginary
parts of the tachyon, in terms of which the fluctuation
equations decouple when r < 1/Ayy and m,/Ayy < 1.
The most important difference with respect to the compu-
tation at @ = 0 is that the background tachyon solution is
replaced by the real part of the tachyon (see Appendix H for
details). In the IR, or more precisely when r > | /m, /o, itis
enough to show that the mixing of the scalars and pseudo-
scalars is suppressed by O(mz), and consequently the IR

solutions are the same as at @ = 0.

Matching the UV and IR approximations for /m,/c <
r < 1/Ayy, where both of them are accurate, then fixes the
pion mass. The only difference with respect to the result at
0 is that m, is replaced by the source for the real part of the
tachyon, i.e., m,cosé&, =m,cos(9/N;), where we also
recalled the result (6.23). The final result for the generalized
GOR relation is therefore

] 0
oz = =@ )|n, —omy SN +0(m3).  (8.7)

where f, is the pion decay constant at & = 0. The result
agrees with effective field theory (see, e.g., [26]).

C. Numerical analysis

The flavor nonsinglet spectra of vector, axial-vector,
pseudoscalar, and scalar mesons have been calculated for
different values of quark mass, as a function of the 0 angle.
The full action of the model, Eqgs. (2.4) and (2.15), is
expanded to quadratic order in terms of the excitation fields
defined in Sec. VIIIA1l. The quadratic action of the
flavored excitations in a background of nontrivial 6 is
presented in Eq. (E2). The vector and axial-vector excita-
tion equations are decoupled and are given by Eqgs. (8.4)
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m/Auy my/Ayy=0.0001 m/Avy mq/AUV:O~01
1 0 == Vector st mode 1 0 == Vector st mode
=== Vector 2nd mode ——— — === Vector 2nd mode
8 == Vector 3rd mode 8 == Vector 3rd mode
6 == Axial vector Ist mode == Axial vector 1st mode
== Axial vector 2nd mode 6 == Axial vector 2nd mode
4 === Axial vector 3rd mode 4 == Axial vector 3rd mode
2 2
—0/N¢ —0/Ng
0.5 1.0 1.5 0.5 1.0 1.5
mgy / AUV =1
m/Auy
== Vector Ist mode
18
=== Axial vector 1st mode
16 - - o
=== Vector 2nd mode
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12 === Axial vector 2nd mode
10
—0/N¢

0.1 0.2 0.3 04 0.5

FIG. 16. The vector and axial vector masses for quark masses, m,/Ayy = 0.0001, 0.01, 1, in terms of 0/N.. for potentials I.

and (8.6), while the pseudoscalars and scalars are coupled
because of the nonzero background € angle, Eqs. (E4),
(ES), and (E6). The numerical procedure of determining the
mass spectrum, both for coupled and decoupled excitations,
is described in detail in [51]. The computation consists
basically of the solution of the excitation equations in the
bulk spacetime with normalizable boundary conditions
both at the boundary and the bottom of spacetime. The
spectrum is calculated for potentials I, and for different
values of quark masses m,/Ayy = 0.0001, 0.01, 1. As is
depicted in Fig. 5, in case of small quark mass, for any
value of the integration parameter, C,, there are two
background solutions, corresponding to two different
values of 6. For larger quark mass, only the lower branch
survives, and it does not turn back to the horizontal axis
(my/Ayy = 1 case). It has been found numerically that the
spectrum is stable only in the lower branch of the solution.

m/Ayy

In the upper branch of solutions, it was found that one mode
from the scalar channel has negative mass squared signal-
ing an instability of the spectrum (see last plot in Fig. 19).

In Fig. 16, we plot the three lowest masses of the vector
and axial-vector mesons. It observed that the vector and
axial-vector masses have a mild dependence on 8/N,. As it
is expected, for larger quark masses the whole spectrum
moves to higher meson masses, even though the difference
in the spectrum for m,/Ayy = 0.0001 and m,/Ayy =
0.01 is small. The dependence of the pion mass on §/N ris
depicted in Fig. 17. The pion mass decreases with increas-
ing 6 angle. In case of small equal quark masses, the pion
mass as a function of @ is obtained from (8.7)

my(8) = m,(0)y /cos (Ni) (8.8)

0.5} m/Auy ma/Auv=1
. 5.290
0.4F  _ myan=001 5.285
0.3 == mg/Ayy=0.0001 5.280
0.2 5.275
0.1 5.270
== _g/N; 5265 .
0.5 1.0 1.5 01 0.2 03 04 05 6/

FIG. 17. The lowest mode masses of the pseudoscalar-scalar channel, for quark masses, m,/Ayy = 0.0001, 0.01 (left plot) and
my/Ayy = 1 (right plot), in terms of 0/N.. for potentials I. Those modes correspond the pion.
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mg/Ayy=0.0001

m/Ayy
0.05]
0.04
0.03
0.02

0.01

-0 /N¢

0.5 1.0 1.5

FIG. 18. The numerical result of the pion mass in terms of @ in
V-QCD is seen to be in perfect agreement with analytic
formula (8.8).

In case of mq/AUV = 0.0001, we verified the above
relationship numerically as is seen in Fig. 18. Finally,
the pseudoscalar-scalar masses are presented in Fig. 19. It
is noticed that the states do not mix at finite 6. The
lowest state corresponds to the pion, the next two to
scalar excitations, and the highest to a pseudosca-
lar mode.

mq/AUV:O.OOOI

m/Ayy

a2 N W A O

_g N
0.5 1.0 /N
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APPENDIX A: UV AND IR ASYMPTOTICS
OF THE BACKGROUND

In this section we will present the asymptotic form of the
background fields for the choices of potentials relevant for
the analysis in this work. Most of the expressions turn out
to be independent of 6. For a more general analysis of the
asymptotics at @ = 0 we refer the reader to Appendix D
of [51].

mq//\UV:0.01
m/Auy

= N W b 01 O

0.5

mq//\UV =0.01
m?/Ayv?

_g N¢
2.2 /N

24 26 28 3.0

-0.05
-0.10
-0.15
-0.20
-0.25

FIG. 19. The lowest mode masses of the pseudoscalar-scalar channel, for quark masses, m,/Ayy = 0.0001, 0.01, 1, in terms of 0/N.
for potentials I. The lightest mode corresponds to the pion. In the last plot, it is shown that the pseudoscalar-scalar channel contains a

mode of negative mass squared in the upper branch of solutions.

The example which is shown here is for m,/Ayy = 0.01.
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1. UV asymptotics
As explained in [51], in the UV (r — 0) the tachyon
decouples from the glue fields 4 and A, whose asymptotic
form is determined by the effective potential

Verr(4) = V() = xV((4,0)

2
resulting in the following solutions:
r 4
A(r) = —log+ ——
(r) = =log Z 4 Goa Ay
b [95 - S| + Flog [ log(rA)][-23 + 4]
+ log(rA)?
1
0 O(m2 2 A2
+0 (g + O -
8 log [—log(rA)] [% - 18218‘22]
Via(r) = - |
A7) 9log(rA) - log(rA)?
1
Ol ——— O(m2r?), A3

where A = Ayy defines the UV scale of the theory. We also
wrote down the size of the leading corrections due to the
tachyon. Notice, in particular, that these results are inde-
pendent of 6.

The UV scale may be defined explicitly as

8 (2 16V5) 9V,
ov,z \36 92 ) %8 |

(A4)

1
Ayy = lrl_r)%?exp [A

In order to solve for the tachyon one inserts the
asymptotic solutions for 4, and A into the equation of
motion for the tachyon. We also need the UV expansions of
a and k, which read

k(A) ~ko(1 + Kk14), a(l) ~ag(1 + a;A); with
Ko 2f2
—=— AS
a3 (A5)

We discuss the asymptotics of the tachyon at finite 6 in
Sec. IIIB 1. We present here for reference the result at
6 = 0, which reads

%T(r) — myr(~log(rA))* [1 + o(@)]
+ o (= log(rA))? [1 + o(log (lm)ﬂ . (A6)
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with

(A7)

2. IR asymptotics

We will only present here the discussion for the
particular asymptotics of V, that matches well with the
IR properties of QCD [35].

a.Aand A

For regular potentials, the IR divergence of the tachyon
decouples the tachyon and the axion from 4 and A and
therefore their asymptotics is independent of €. For a glue
potential V, with the following IR asymptotic form®

A \4/3 A
Vg(’l) = 0<8ﬂ2> gw
Uy U
x |1+ + + - ] (A8)
[ log(gh)  log*(gk)

the asymptotic solution for the background glue fields reads

2 r _
A=-gtologn+A+0(r2),  (A9)
3 72 -
10g/1:7—2+/10 +O(V ), (AIO)
2R
with
5 3 23 4
:—logR——IOgUo+ 10g2+ 1°g3+ +ﬂ
24 3
23 2
A = T 2v; + log(87*). (All)

Here R = 1/ Ay sets the IR scale of the model. A possible
explicit definition is

1 /2
AIR — hm - *log/l
r—oo r 3

b. The tachyon

We will consider the following asymptotics for the
relevant potentials

(A12)

k(A) ~ kA% (log A) 7%,
Vio(d) ~ v (log 4)~",

a(l) ~ a. A% (log 1)
(A13)

*The factors of 87> were included because this leads to simple
expressions for the coefficients »; for the potentials which we use.
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where k. and a, are assumed to be positive. In particular,
we will focus on the special case v, = 10/3, singled out by
the requirement of having nonsingular 6 # 0 backgrounds.
A thorough analysis of the acceptable asymptotics with
v, < 10/3 was presented in Appendix D of [51]. At finite
9, the results for 7 there remain unchanged, and the
asymptotics of & can be found by substitution to (3.6).
We consider two cases at v, = 10/3 in the following, both
leading to acceptable IR asymptotics.

l.v,=10/3,x, =4/3,x, > -3/2,a,=a, =0, and
vy > 1 —k,/2. This case results in the following asymp-
totic solution for the tachyon

r

2(r) = 7o exp {cl <E>3+2K/(1 Lo, (Al4)

with

9 1—kp 3k, a, oAt R2
(3 + 2Kf)(21)/ + Ky — 2) ’

Cy = (A15)

Substituting these asymptotics in Eq. (3.6) we obtain for &
in the IR

8
¢ c 3\ vetE e~ 45 o
~ — -
a 2 /—KC,UC r2—Kf—2vf1.2

2 1-3k,—v, 3%Kf+we—%&,ac ( r> 3k,+20,

70(2v, + Ky — 2)1}01(3/2 R

7\ 3+2k,
x exp |—Cy R ,

where the prime stands now for the derivative with respect
to the dimensionless variable®' r/R. & vanishes exponen-
tially, and therefore leads to a regular background in the IR.
Moreover, one can easily check that for such an exponen-
tially vanishing &, all the new terms (proportional to &) in
the tachyon equation of motion (3.10) are exponentially
suppressed, and thus the asymptotic solution (A14) is not
modified by a nonzero &'

2.v,=10/3,x,=4/3,k, = -3/2,a, = a, =0, and
vy > 7/4. This case results in a tachyon diverging power
like in the IR, namely

— _C, R

(A16)

o(r) = 74 (%) 1+ 00, (A17)

where

2Notice that, as can be seen from Eq. (3.3), C,, has units of R*,
and thus the combinations C,R?e~>Ac in (A16), and C,e~* in
(A21) are dimensionless.
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We now analyze the asymptotics of &. First, the constraint
(3.29), namely ¢*'V sy\/k7 > 0, in terms of the IR asymp-
totics becomes

CH > 2’Uf - 7/2, (A19)
and therefore we have

7 7 C

Z<Uf<1+%, (A20)

while the equation (3.6) for & reduces to

g o Ca(B)ree Ty (ry st )
7 \3 vo/ke \R ’

which vanishes powerlike (as r — oo0) if the constraint
(A19) is satisfied. In addition, the new terms (proportional
to &) in the equation of motion for 7 (3.10) are suppressed
by powers of r. Then the leading IR asymptotic form (A17)
for 7 is not modified by a nonzero &.

c¢. Special tachyon asymptotics

We have also found special asymptotic solutions which
are absent at vanishing @ angle. For such special solutions,
the two terms in (3.28) have the same asymptotic behavior:

MV kT ~|Cy|V,, (r - o). (A22)
Such solutions are linked to the regular tachyon solutions
discussed above as follows. One may consider what
happens as the single parameter 7, (the same parameter
as T in Fig. 3), which determines the normalization of the
tachyon, decreases. Typically, assuming that the potentials
admit a fixed point, there is a critical value 7. such that the
background flows closer and closer to the fixed point as
79 — 7. from above (or more precisely, the length of the
interval of the bulk coordinate where the background is
close to the fixed point, increases). Then when 7, < 7., no
solution with regular UV behavior exists. But it may also
happen that there is no lower boundary for 7, in which case
one can consider the limit 7z, — 0.

Taking 7, — O at vanishing @ angle, one expects that
there is a region with small tachyon, 7 < 1, already deep in
the IR, where 1 > 1. When there is a fixed point, for small
enough 7, the tachyon is therefore much smaller than one
when 4 > A,, in the region corresponding to a positive /3
function. Consequently the tachyon decouples from the
metric and the flow of the solution from the IR toward the
UV stops without reaching the standard regular UV
boundary. That is, a critical value 7, exists, below which
the UV regularity is lost. But when the 6 angle is nonzero,
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the situation is different, because the tachyon is complex.
When 7 is decreased, and 7 becomes relatively small deep
in the IR, the dynamics of the phase of the tachyon becomes
important. As it turns out, the phase starts to evolve,
backreacting on the behavior of the absolute value r.
Instead of approaching smoothly the origin, the value of
the tachyon starts to rotate around it on the complex plane.
The net effect is, as pointed out above, that (A22) holds,
and the tachyon does not decouple. In the limit 7, — 0 one
obtains a new asymptotic behavior, which is determined
by (A22).

It is straightforward to compute this special tachyon
asymptotics for any of the choices of potentials in the IR
discussed above or in [51]. As an example, we present the
solution for a class of potentials which includes the
potentials I which were used in the numerical analysis in
this article. That is, we take k, = 4/3,k, = 0,a(A) = const,
V,(t) = exp(—ar® — aj|r]), and restrict to 0 < v, < 10/3,
in which case the regular tachyon asymptotics is an
exponential [51]. The special asymptotics for the tachyon
then reads

10-3 20, — 4 1\ 0
T= %2 2 log(r)—i—(’)((;) ) (A23)

261[ a

The phase of the tachyon behaves as & ~1/y/r as
r — oo, and
|

0= 2V, (4 )" =GZ()Hy ~ 5 V(1 D)€ + 24

+£8N {Vf(ﬂ,z')w(l) Z k —detA(k)((A(—kl))MN _ (A(—k1)>NM):|’

k=+,—

where

HM = aMQ + xfaMVa(ﬂ, T) - 2XAMVa(ﬂ, T)

= (9M6 - xVa (ﬂ, T)aMé - 2XAMVu (ﬂ, T), (B3)

A ;) were defined in (3.2), and @ = a + x£V,, (4,7). Due to
invariance under (2.18), we have?

6S _ ., 85 1. &S
sE(x) T 9%a(x) 2 MBAy(x)

(B4)

Consequently the equation of motion for ¢ follows from
(B1) and (B2).

22Considering a as the axion field (rather than a), as we will be
doing below, we obtain otherwise the same equation as (B4), but
without the a term.
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8AY/2 .2
e VfK'T_ Nl

—_— A24
v - (A24)

(r - o0),

so that (A22) is indeed confirmed.

Notice that the special solution does not involve any
additional integration constants (unlike the regular tachyon
solutions which have one constant). Therefore it maps to a
curve on the plane of physical parameters (m,/Ayy, 0). It
may happen though that the solution does not admit a
regular UV boundary—this is not guaranteed even if the
dynamics of the complex tachyon prevents the tachyon
from decoupling. Actually for the numerical values of
parameters used in the numerical analysis of this article, it
turns out that the special solution is always unphysical.
However, if we decreased the value of a; in (4.4) from the
chosen value, the solution would be physical.

APPENDIX B: EQUATIONS OF MOTION

In this appendix we present the full equations of motion
arising from the action (3.1), and discuss some of their
consequences. We first write down the equations of motion
for the CP-odd fields a and A,;. They read

0= Oylg"™v=9Z(2)Hy]. (B1)
/= det A ((AG)MY 4 (A7} )v)
=+
(B2)
[
The Einstein equations take the form
1
Ryn =5 9unR = Thy + Ty + Tigy: (B
where
1 4(0pA)?| 40y A0NA
Thyy = 5 9mN |:Vg 3 2 3 2 (B6)
. xV .,
Thy = —2—2 \/ ~ det Ay gup
8y/=9 k;—
x [(AG)"2 + (AL 90w (B7)
a 1 2 Z
Tyn = _ZQMNZ(HP) +5HyHy. (B8)

The remaining equations of motions are those of the
scalars A and 7. Itis useful to keep a, rather than a, fixed when
varying the scalar fields. The equations can be written as
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0o [QM”«;% LY~ vy IR A

Tar "2 o

—|-\/_Zx ! 0K

1 ow '
+ZfoaFMN E k —detA(k) (A_l MN
k=+,—

and

0_—0M {vfxa,vr >\ /—detAy

ke=+.—

—l%{\/ detA —l—\/—detA }

We will now argue that the gauge field vanishes for the
background solution. To see this, we consider an Ansatz
where all fields depend on r only, and assume the Poincaré
covariant form of the metric (2.3). Since there are other four
vectors than A, and no sources which break the Poincaré
symmetry, we expect that A, = 0. In order to verify this, we
notice that for the background Ansatz A . are diagonal up
to terms involving A,. Therefore, as only radial derivatives
are nonzero, the equations of motion for A, in (B2) are
indeed satisfied for A, = 0. Moreover, it is convenient to
choose the gauge where A, = 0. This still leaves the
freedom of transforming a and &£ by a constant € in (2.18).

After setting the gauge fields to zero, we notice that
A(4) = A () and both matrices are symmetric so that the last
term in (B2) vanishes. Inserting the r-dependent Ansatz, the
only nontrivial equation is obtained for M = r, which
simplifies to

V(A 7)Kk(2) T e

V(A1) Z(W)H, — e

=0 (BI11)
with G defined in (3.5).

APPENDIX C: ON THE PHASE DIAGRAM
AT FINITE 6 ANGLE

We discuss here first the branch structure and/or unique-
ness of the background solutions at finite  angle. In Fig. 5
and at small quark mass, there are two or zero solutions at
fixed C, and m,,, but as functions of the sources m,, and 0 the
solutions are typically unique. One should notice, however,
that these plots do not contain all possible solutions as we did
not study the solutions near the Efimov vacua, i.e. close to
the leftmost crosses of Fig. 3. The sketch of Fig. 3 suggests
that the mapping from (7, C,) to (m,, 0) is bijective also in
the regime of Efimov vacua. This indeed turns out to be the

(aM§+2AM )N H .

2 dA

(8M5+2AM) MNHN__XVf aﬂ[(aMT)(aNT) +7°(Oné +2Ay) (OnE+24y))] Z \/ —detA gy (AG)MY

A +( ())NM)} _%VfKT<aM§+2AM)(8N§+2AN)Z —detA ) (A7)

k=+.—

(B10)

|

case for generic values of x, but (as we demonstrate in
Sec. VID) for very small values of x the mapping is not
bijective: as x — 0 anontrivial branch structure as a function
of 6 appears in the vicinity of the Efimov vacua.

Even at larger x where the nontrivial branch structure is
absent, one should bear in mind that the € angle is periodic.
Near different crosses of Fig. 3 we encounter backgrounds
for which @ differs by integer multiples of 27N, but the
quark mass is the same: this corresponds to the change of
phase of the tachyon by multiples of 2z and therefore the
backgrounds cannot be distinguished by using UV data.
Consequently, solutions at high m, are unique, but the
solutions which differ by 2z rotations of the tachyon in the
UV appear at small m, and generalize the Efimov vacua to

finite @ angle. The number of Efimov vacua grows with
decreasing m, and becomes infinite for m, = 0.

We argue now that the generalized Efimov vacua at finite
C, are unstable. For fixed m,/ Ayy < 1, such Efimov vacua
are found on half-rings that encircle the crosses of Fig. 3. We
have shown in [48,51,55] that for C, = 0 the Efimov vacua
are perturbatively unstable. We remind the reader that in
Fig. 3, the Efimov vacua for C, = 0 and with fixed (absolute
value of) quark mass are found on the horizontal axis for
various discrete values of Ty and the stable standard vacuum
is found on the horizontal axis to the right of the Efimov
vacua. For these vacua, the free energy decreases with
Ty. This was proven analytically for vacua with high n (i.e.
close to the dashed curve in Fig. 3) and numerically for vacua
with low n. For the Efimov vacua at finite C,, the free energy
on the half-rings around the crosses is typically monotonic,
as is seen from the plots of Fig. 10. When this is the case,
the question of ordering the saddle points at C, # 0
according to their energies simply boils down to the same
question for the saddle points at C, = 0. There are also cases
(as one can see from the analysis of Sec. V, and the
discussion in Sec. VID 2), in particular at small x, where
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the energy is not monotonic on the half-rings. Even in this
case, the variation of the free energy along the half-rings is of
the order ~m,,| () |n.m, —o Where the chiral condensate is
evaluated at the corresponding Efimov vacua at m, = 0.
Because the condensate at the Efimov vacua are strongly
suppressed with respect to the standard vacuum (see, e.g.,
Fig. 9 in [55], where the Efimov vacua are found near the
origin), this variation is too small to overcome the energy
difference between the Efimov vacua and the standard
vacuum.

In Sec. VIII we will also demonstrate numerically that
even the solutions near the m, = 0 standard vacuum (the
rightmost cross in Fig. 3) are perturbatively unstable if
6| > Nz/2. Therefore, all vacua in Fig. 3 left of the
standard vacuum, i.e. for |0| > N,x/2, are perturbatively
unstable. Moreover, if we take into account all branches of
solutions, which are obtained by shifting # by multiples of
27, the dominant solutions are found in the immediate
vicinity of the @ = 0 standard solutions [marked with the
blue line in Fig. 3 (right)], as we argue in Sec. VI B.

As shown on the horizontal axis of Fig. 3 (right), 6 takes
values quantized in units of zN ; on this axis, corresponding
to phase shifts in units of z of the tachyon. In order to prove
this, we analyze the behavior of the tachyon solution near
the horizontal axis of Fig. 3. As C, — 0, the solution
approaches smoothly the real valued solution having C, =
0 exactly. Between the rightmost cross on the real axis and
the next cross to the left in Fig. 3 (left), the (real part of the)
tachyon at C, = 0 has a single node at some r = rp—
notice that indeed such a solution has> m, < 0 in the plot
of Fig. 2. By definition 7 is positive in our analysis at
C, # 0, so a change of sign in the real part of the tachyon
must be realized through a shift in the tachyon phase &.
From (3.6) we see that & is positive for positive C,, so the
phase must jump by +x at the node of the tachyon as C, —
0 from above: we have

¢'(r) = =6(r = ro), (C1)
where r is the location of the node. By using (3.3) for the
gauge invariant contribution we obtain
a'=a' +x(&V,) =xEV,+0(C,) - xnd(r—ry) (C2)
as C, — 0 from above, where we used the fact that V, = 1
at the tachyon node [as the tachyon vanishes by definition,
7(ry) = 0]. Consequently,

0= Ncao i —ﬂNf (C3)

3 As we discussed above, in this plot the quark mass is defined
as the real part of the source for the tachyon (whereas at finite €
we define m, as the absolute value of the source). Therefore
negative values are possible.
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For solutions with more tachyon oscillations, which can be
found on the horizontal axis of Fig. 3 closer to the dashed
curve, one just needs to sum over the contributions from
separate tachyon nodes. One finds that 6 — —nN,m as
C, — 0 from above, where n is the number of nodes.

An interesting possibility is that the white region of
Fig. 3 at small T is absent at large C, so that the dashed
curve ends on the vertical axis. Such behavior is observed
for potentials I for some (small) choices of the coefficient a;
in the function V() = exp(—a,7* — a;r) (but not for the
choice of a; used in the numerical studies of this article).
This means that solutions exist at arbitrary small T, so it is
natural to ask what happens in the limit 7y — 0. As it turns
out, the tachyon does not vanish in this limit, but assumes
an asymptotic behavior in the IR, which is different from
the standard regular IR asymptotics (see Appendix A). For
this special asymptotics, the two terms in (3.28) have the
same IR behavior:

e4AVf(/1’ T) \% K()“)T = |Ca|Va<T)

For potentials I with the above choice of V, the tachyon
diverges as t ~ r2, while the phase behaves as ~+/7 at large r
(see the end of Appendix A for precise treatment). This
behavior is enough to decouple the tachyon from the metric,
which consequently follows the usual (Yang-Mills) asymp-
totics. Unlike with the standard asymptotics, this tachyon
asymptotics involves no free parameters, and the only free
parameter for this kind of solutions is C,. Therefore the
solutions would define a curve on the (m,, ) plane.

(C4)

(r - o).

APPENDIX D: FLUCTUATION EQUATIONS FOR
THE SINGLET PSEUDOSCALARS AT 6 =0

In [51] the whole set of fluctuations of V-QCD was
studied at @ = 0. Here we will focus on those contributing
to the singlet pseudoscalar sector. We need only consider
the flavor singlet axial vector, the phase of the tachyon, and
the axion field.

The fluctuations of the left and right gauge fields can be
written in terms of the vector and axial combinations

_ Al + AR AL — A%
2 ' 2 '
with the associated field strengths being Vv, Aysy- For the

axial vectors we first need to separate the transverse and
longitudinal parts:

A (1) = AR r) + Al r), (D2)
where 0“A-(x*,r) = 0, and the longitudinal term is the
divergence of a scalar function.

For the axial vector modes we need to treat the flavor
nonsinglet and flavor singlet terms separately, and therefore
we write
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Aj- (x#,r) = Af;F(x”, r)+ Af;s(x", r),

Al r) = Al (o, )+ AL G ), (D3)
where the superscript S (F) stands for the flavor singlet
(nonsinglet) part of the mode. In the following we will
deal only with the longitudinal flavor singlet part of the
longitudinal axial vector mode A, since only this part
contributes to the action of the singlet pseudoscalar
sector.

On the other hand, the fluctuations of the tachyon are
given by

T = (7 + 5 + 891%) 0r+in"t" (D4)

S, = —M3N%§/d4xdrvf(ﬂ,1)eAG_l

x [w(4,7)2(0,A0°)? + k(A 7)7%(8,07)* + XA Gk(2,7)72(0,07 + 2A1° )],

and
M>N¢ 4 34 152
Sy =-— d*xdrZ(2)e’*[(0,a — 2xV (A, 7)Ay)
(D0 + X0,V (0, )07, (D6)
where
G =/1+ e k(W)1? (D7)
and we have set A, = 0.
We split the fields in the action as
AL (1) = =L ()0, (T ().
Or (&, r) = 200(r)T (),
a(, 1) = 24 (r)T (x*). (D8)
The following combinations of the above fields
P(r) = go(r) = gL(r),
O(r) = @ax(r) + xVo (A 1)L (1),
R(r) = @i (r) + x0,V o (4, 7)o (1) (D9)

are invariant under the residual gauge transformations
(2.18). Only two of them are independent, and they realize
the pseudoscalar glueball (0~%) and 7/ meson towers.

|
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where 1 are the generators of SU(N,). We are mostly
interested in the standard vacuum for 0 < x < x,. which
gives rise to a nontrivial spectrum [51]. Therefore, the
background solution z(r) is nonzero and the phases 0, ¢
in (D4) are well defined.

1. Flavor singlet pseudoscalar mesons

The quadratic action for all the fluctuations of V-QCD
was computed in [51].

Here we will write down the two pieces contributing to
the flavor singlet pseudoscalar sector: S; coming from the
DBI piece (2.4), and S, from the CP-odd sector (2.15). We
write each separately:

(D5)

Indeed, following [51] R can be eliminated from the
fluctuation equations, which are found by varying
Egs. (D5) and (D6). The result may be written as

VfK"L'2
N,+ N,

N, ,
+xva(Na+Nh)Q)]

+ 4V ;e Grr*P — 4342V ,0 = 0,

V! N,

P44 _b_
VaNa +Nb

0, {erA G 'w? <—4€2A

(D10)

V.,V ikt V!N N
0, e Z | 4xe* /K p +x—24 P+ 0
N,+N, N,+N, N,+N,
+m?e1ZQ =0, (D11)
where N, and N, are given by the following
expressions:

N, =V (4e* ke — m*w?), N, = 4xe*' ZV2G.

(D12)

a. Change of variables

For the analysis of the mass of the #'meson, it is useful
to define the conjugate variables of P and Q:

N A2 A2
- <P> S S (N = 4V ) o ( . ) (D13)
Q No+Np \ 347(4xe?A V, Vikt? = NxV,m™2 e ZN, m™> (Q+xV,P)
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Then the terms in the square brackets in (D10) and (D11)
can be expressed in terms of P and (. Taking a suitable
linear combination of these equations, differentiating once,
and after some simplifications, the fluctuation equations
can be written as

Y+ C'o,C1Y + MY =0, (D14)

Vﬂ

1
C. — e—SA GV/K‘[Z GV/»K'L'2
1= V.x 1+ Vix ’

Z GV_,-Kr2

4 (GVaxZAGPV k)
Vfw2

4e* GV xZ
e 2a)c m2
Viw

e Ak?m?V, )

(D15)

2. Flavor singlet axial vector mesons

It was shown in [51] that the action for the singlet sector
of the (transverse) axial vector modes has an extra term
coming from the CP-odd sector. The action is given by

M3N?

1
Sy= /d4xdr{JCV]»(A,T)eAG_1 [EGZW(A,T)ZAWA”’“

—l—w(/l,r)Za,AjSa,ALS”+4K(/1,1)1262AG2A,fSALS”}
+4x?Z(2) eV ,(2,7)* A SALSH } (D16)

where indeed the last contribution originates from the
CP-odd action (2.15) while all the other terms come
|

1 ~
S, = —5M3NCTTr/d4xder(/1, 7)eAG™!

AR ~ ~
X { |:2K';/—f1'/ + (0,6)7 (1 + G%) = 2 AG 2217 E2

f
RV Li=n OV
S 2AG2 oV f o 17) 2en 2
+[—Vf e +—Vf (0.x) (% + 72E%) + v,

€_2A

4G

(8,K)2(T/2 + 125/2)2 + KG_Z(I + Ke_2A1/2)§/2:| 32
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from the flavor sector piece (2.4). Taking the following
Ansatz:
AP r) = pa(r) X, (3), (D17)

the resulting fluctuation equation takes the form

1
a 14 /1’ /1’ 2 AG_lar
Vf(/l»T)W(/l,r)zeAG F(Vi(dr)w(d,7)%e ®4)
+ mypa+
Z 2 2 24
—4[xng Va2t T
Vi(d1)Gw(d,1)*  w(d 1)
(D18)

APPENDIX E: FLUCTUTIONS OF THE @
BACKGROUNDS

In this section we will derive the equations of motion for
the fluctuations in backgrounds corresponding to nonzero
vacua of the dual theory. As mentioned in Sec. VIII A we
will only consider the flavor nonsinglet sector, which
consists of the vector and axial vector mesons, together
with the scalar and pseudoscalar fluctuations of the com-
plex tachyon which we write as

T =[e(r) + s(r,x) + 3(r,x)]
xexp [&(r) +Or(r,x) + z(r,x)],
with 5(r,x) =89(r,x)t%,  #(r.x) =7(r.x)".  (El)

Only the DBI piece of the action, given by Eq. (2.4),
contributes to the nonsinglet sector fluctuations. Up to
quadratic order in the fluctuations it reads

} 55

a,V 2 -
T fKT§/2+%(T/2+TZ§/2)+(81K)(1+G—2)T§/2

+ [KG72(1 + ke 2A2E2)|52 + [k(1 + ke A72£2)](9,5)?

+ kG722 (1 + ke 2422)] 72 + [k7?(1 + ke 2422)] (0,7 + 24,,)>

0.V,

~ 2 ~
+2& [V— k7?4 k7(2 — G2 e Ak2E?) + % (0.x)(1 + G_z)] s’

f

~2

~ . - - G
— 2eAGARPPTENT T — 2632 E (0,7 + 24,) 045 + wre A { 5 (AL AM +V, VI + A2 + V,’f] } (E2)

The vector and axial vector mesons correspond to the transverse part of the fields V,, and A, respectively, and their equations
of motion can be readily obtained from the above Lagrangian. They are Eqs. (8.4) and (8.6) in the main text.
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1. Scalar-pseudoscalar mesons

This sector consists of the fluctuations of the modulus and phase of the tachyon, and the longitudinal part of the axial
vector, which we decompose as

A = = (NP, F =y (PR, F =2, ()P ), (E3)

where 9,0P*(x) = m*P“(x). The corresponding equations of motion read:

G e
mar [Vfé (4P, + My, + Mzwé)] +m*4P(w, —w.) + M3y, =0, (E4)
G A
mar Vi=wiyy | +4P(w, —wi) + May, =0, (ES)
re G

G oA
v {Vfg (2839 + Sy + 2le//;)] +2m* M3y, —yp) +2m* Sy — Sy — 28w — 2Myy, = 0, (E6)
f
where the different coefficients are given by
P, = kt*(1 + ke™?A7?), Py = kG222 (1 4 ke 2472),

0.V, _ )
S, = 21<V—f1’ + (0,)7' (1 + G %) = 274G k207’ €2,
;

o2V -, 0V 9.V -
Sz — |: ;/ f 62AG2 + ;/ f(aTK)(le +72§/2) +2 5/2 (,L_IZ +TZ§’2) (aTK)(l —I—G_Z)Téf/z
f f Vi

6_2A

— 6;2 (3,K)2(1’2 + 125/2)2 + KG_Z(I =+ Ke_ZA‘L"z)af/z] ,

S _ K_("';—Z(l +K€—2A12€/2)’ S4 — K(l 4 K'E_ZA’L'zf/z),

Vs i
= 25’[ v [ kr? 4 kt(2 — G 2e~2Ake?E?) + (6,1()(1 + G_z)} .

!
= 2eNGRTE, My = —2eM320E (E7)

The equations (E4)—(E6) can be recombined into two equations for two variables. They read

1 m> M M
4+ 8,(log C))ys + — (M + 8,C 2C — 10, (=2) ==Ly, =0, E8
Wy + r(og I)Ws+cl( +0,05+m 2)Ws+2cl |: r<P2 PZ Vi ( )

W) P, . . M
szar (K—Pll> —_ 4€2A W—il//l + mzl//l + K |:P28r <P—l3> —_ M1:| l//s = 0, (Eg)
in terms of

P =e szfG v, (E10)

- M2 -
K=eMv,G"', M= K(Z_Pz - zsz> C, =26V kG, (E11)

G MM

C, = 2Ke3Ava, C; = (sl -2 ar, 2) (E12)

In addition, one can solve for y, from the equation

m?> 1 M, M,
ey =yl — L El3
Vo =3 kP, " " 2P, W 2P,V (E13)

026001-46



CP-ODD SECTOR AND ¢ DYNAMICS IN ...

APPENDIX F: UV ASYMPOTICS OF THE MESON
WAVE FUNCTIONS

In this section we shall study the UV (r — 0) asymptotic
solutions of the system of coupled differential

PHYSICAL REVIEW D 96, 026001 (2017)

following UV asymptotics for the remaining potentials
determining the action of the fluctuations:

Vio(d) ~ Wo(1 + Wy2), Va(2,7) ~ 1 = by,

equations (D10)~(D11) satisfied by the wave functions Z(A) ~Zo(1 + c14), w(d) ~wo(l +wid). (F1)
of the flavor singlet pseudoscalar modes.
We will first study the system (D10)—~(D11) in the UV
(r = 0) region. The UV asymptotics of the background 1. Zero quark mass
were presented in Appendix A 1. We will consider the The UV expansions at m, = 0 are given by
|
p —r%(=log(rA))"+(1 + O(log(rA)™"))
0 xr% (—log(rA))P+(1 + O(log(rA)1))
po| = O | mE A A (1 O(log(rA) ) (F2)
9 xrrtes 23 (- rA))P _
e PN (1 1 Oflog(rA) ™))
—r%(=1log(rA))P-(1 + O(log(rA)™1))
xr%(—=1log(rA))P-(1 + O(log(rA)™1))
xXr ot (= ri))P- - F
O | e 14 Oflog(ra) ) )
A2 (14 Olog(rA) )
— T ClosrA) T (L 0(log(rA) 1)
20°6% Wk g
m?r(=3xbow2 Zo+wi Woko+x6>Zoky) 1
ez (L Olog(rA)™h)
+ Cl 3m? 2w (—xby Zo+Woko) 1 (F4)
8w5W0K0—4foZOK0 (1 + O(log(rA) ))
m? r?(=3xbow? Zo+w2 Woko+x£>Zok —
| R e 2 (1 + Ollog(rA) ™))
1 — 1) (1 4 O(log(rA)~))
L2 (=1og(rA))* 62 xWo (£2ky—6byw? _
T = (1 4 O(log (rA) ™) -
+ C2 5 (=10g(rA)) ¥ 2w2 W (xbo Zo— Wk, ’ F5
(=log( IZB%WO_%fZ(;(ZOO o=Woko) (1 + (’)(log(rA)_l))
63 (= log(rA\)) P 6> xW ko (£ kg—6bow? _
( 0g(—4)2;zzo+2:l/1?0(w3 : : 0) (1 + O(log(rA) 1))
where we have defined
P (F6)
a =
8 Wowg
and
16XKZZO(V1 —C; — Wl - 2W1)
pe =+ 2 4x0°7, ) (F7)
9V1 W()WO 1 + Wgw(z)o

The parameter p was defined in (A7) and m is the mass of the fluctuation.
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2. Finite quark mass

The UV expansions at finite m, are given by

o Qv

—r% (= log(rA))P+(1 + O(log(rA)™1))
xr® (=log(rA))P+ (1 + O(log(rA)™1))
C+ xr_2+a+f3(—10g(r/\))p+zo (1 + O(log(rA)_] ))

—2+a,

xr=2tes £3(—log(ri\))P+ Z, (1 + (’)(log(r/\)_l))

+C_ xr~2te=£3(—log(rA))P- Z, (1 + O(log(rA)_l

+ G,

2—a,

—r (= log(rA))P- (1 4+ O(log(rA)™"))

xr®

~(=1log(rA))P-(1 4+ O(log(rA)~!

)
)

—2+4a_

xr‘“"‘*ﬂ(—log(rA))p*ZO (1 + O(log(l’/\)_l))

2—a_

W (ZloerA (1 4 O(log(rA)!))

205mZ Wk,

_mzr4(xbOW(Z)Zo+W(2)WOKO—XfZZOKO) (1 + (’)(log(rA)_l))

1-—

203 Zo(-2wEWo+x£ Zy ko
2.2

m?r w(z)(xbOZO—WOKO) (1 + O(lOg(l"A)_l))

SW(Z) Woko—4x£?Zk

m? 2 (xbowi Zo+wi Wokg—xt> Zyk ) (1 + O(log(r/\)_l))

8ng0K0—4xf220K0

m2r2 ogl(r. —_
L+ 2508 (14 O(log(rA) ™))

262 (=log(rA)) "2’ m2 Wk, _
(CLoalrAVZmiWoss (14 O(log(rA) ™))

A loalrA) i Woloxb 2t Wors) (1t 0(1og(rA) ™))

2xZ,

£5(=1og(rA)) =22 m2 Wk, _
CloslrA) 2V (14 Oflog(rA) ™))

If we set x — O first the expansions become

S Qv

_ C(Q)

- 1

+C

Q)
2

Ak (1+ O(log(rA) ™))
22 (1 + O(log(rA) ™)
1+ 22 (1 + O(log(rA)2))
1 =7 (1 4 O(log(rA)™2))

22 log(rA)Z, —
—W§W0 (14 O(log(rA)™))
1422 (1 4+ O(log(rA)™"))
— 2% (1 4 O(log(rA)™))

2% (1 + O(log(rA)™))
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m?r?(—log(rA))%

PHYSICAL REVIEW D 96, 026001 (2017)

P e (1+ O(log(rA)™"))
< f > _ P 2052 Wor (F14)
P 1—im?r?(1- W + O(log(rA)72))
1258 (14 O(log(rA) ™))
P A F15
T & £3(=log(rA)) = mg Wokq -1 ( )
1-2p (1+ O(log(rA)™))
[
where Q =0= Q for the last two functions. Going hlgher order in m]% we find that
L eAG(WP Py — 4e* k7P )
APPENDIX G: PROOF OF THE Pl = Ve ,
WITTEN-VENEZIANO FORMULA . y
P/IO = —€3AGVfKT2P10. (G3)

In order to prove the Witten-Veneziano formula we
follow the strategy outlined in Sec. VIIB 2. We need to
compute the coefficient matrix in (7.18) at leading non-
trivial order by studying the behavior of the IR normal-
izable solutions in the UV. To do this precisely we expand
the IR normalizable solutions y(") and y(2) systematically
at small x and m]% with m ¢ being the mass of the fluctuation

mode. We write the expansions of the various fields as

(F=P,0.P.m}Q). (Gl)

Z FMNm
M.N=0

Notice that in addition to x and mj% we have another small
parameter m,. Therefore we should study how the compo-
nents Fyy behave at small m,. In particular some of the
components are proportional to m;l ~mz;> (as we have
already seen in Sec. VIIB2) and therefore subleading
terms in the expansion may contribute at leading order in
the ' mass. We need to identify such terms.

For the ") solution we expect that Q = O(x) = Q and
therefore we can set Qg = 0 = QOM for all M. Substituting
the expansions in the fluctuation equations (7.8)—(7.11)
we find

4¢74G .

Poo = _Wpoth Py = =GV Py, (G2)

We choose the IR normalizable solution which is recognized
as the my = 0 = x solution discussed in Sec. VII B 1, with
the normalization Py, — 1 and Pyy — Cp as r — 0. Recall
that Cp was related to the pion decay constantin (7.14), up to
corrections suppressed by m,, and x. The other components
F;n can be solved iteratively from the fluctuation equations
with the boundary condition that they vanish in the IR, which
uniquely defines y(*).

Here P, is not enhanced as m ¢ — 0, but Py is. The same
arguments as when discussing (7.15) give24

Cp
W0K0f3

o r3dr 1
/0 2+(9(m2) =——2+(9(m2).

limP,, = —
0 0 2(r) m

(G4)
The higher order corrections in x in the equations lead to

P 4e™4G
01 — va2 01>

Py = —3A(V2ZPy + GV jx1*Py,). (G5)

‘We notice that these terms are not enhanced as m ¢~ 0 and

may be neglected as their contributions are suppressed by
O(x). Summarizing, we obtain the anticipated result

. 2 m?’
Cpp = llm(PO() + mfPIO) =1- —5- (G6)
r—0 my
We also obtain the exact solutions
Qo1 =0. Qg =—V,Py. (G7)

This is remarkable since it allows us to compute the leading
contribution to the mixing coefficient Cpy. It is given by
Cpo = Jdif%Qm == (G8)

r—>
where we used the fact that V, — 1 at the boundary as
required by the implementation of the axial anomaly. Again

**To be precme the corrections to the integral in (G4) are
larger than O(m)) because we did not include the logarithmic
corrections to the potentials, but in the final expression the
corrections are indeed O(mY) as shown in Appendix D of [55].
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it may be checked that higher order terms in the series
expansion contribute negligibly to Cpy.

We then go on discussing the solution y(2). The solution
is defined by setting

Qoo = const = —Co, (G9)
which leads to
© d7
Quo(r) = CQ/r iz (G10)

Normalizing Qg to unity at the boundary (so that Cyp = 1)

Cp= /wi Tt
0 0 €3AZ M3’

where yvy is the (Yang-Mills) topological susceptibility.
Again solving the fluctuation equations perturbatively gives

(G11)

€_3AG(CQVaW2 + 4€2AKT2P00)

/
POO__ 2 ’

Vfwzm'

Py = A(V,ZQ0y — GV ;k7*Pyy). (G12)

As m, — 0 the most important contribution is the term
o Cy, and after integration

. Co o r3dr 0
11—{%})00(}’) - W()Kof:;/)\ T(r)2 + O(mq)
C
2+ om), (G13)

CP my

where we again could set V, to unity near the boundary.
Therefore Cyp = Cy/Cpmi.
Collecting the results,

2
(CPP CPQ>: 1—,7§ —-X

(G14)
Cor Coo

Requiring the determinant of this matrix to vanish marks
the point m; = m,/, and results in the Witten-Veneziano
formula

2

C NN
mn,’—vm,z[—l—x—Q’—“m,z,—l—x S Hvm

——, (GI5
Cr ro O
where we used (7.14) and (G11) in the last step. Recall that
for our normalization conventions f2 = O(N,N,).
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APPENDIX H: THE GELL-MANN-OAKES-
RENNER RELATION AT FINITE 6

It is possible to compute the dependence of the mass of
the pion on @ in the QCD-like regime [0 < x < x. and
x. —x = O(1)] when the quark mass m,, is small. This can
be done by solving the fluctuation equations in different
approximations near the boundary and in the IR and by
requiring that the two results agree.

The general fluctuation equations for the scalar and
pseudoscalar mesons are given in Egs. (E9) in Appendix E.
However, the (appropriately normalized) pion wave func-
tion is localized near the boundary, for r ~ /m,/c (see
computation for V-QCD at @ = 0 in Appendices E and F of
[55]). In order to see how the pion wave function behaves
in this neighborhood at finite 0, it is useful to rewrite
the fluctuations of the tachyon using a decomposition into
real and imaginary parts rather then the absolute value
and phase.

To make the argument precise, we write

T = te’ + 5%t + is¢te (H1)
for the flavor nonsinglet fluctuations instead of (El).
Moreover we decompose the wave functions of the
fluctuations to radial and spatial parts as in (E3) and denote
the radial wave functions as y, and y;. When r < 1/Ayy
and when the squared mass of the fluctuations is O(m,,), as
we expect for the lowest mode which will be identified as
the pion below, the tachyon field of (HI), and therefore
also the functions y, and wy;, satisfy the same equa-
tion (3.13) as the background:

y) + 0, log (eMkV o)y, — e Amiy ),

1
G (]

H2
Aoy (H2)
where the leading correction arises from the terms involv-
ing the (squared) mass of the fluctuations.

We denote the linearly independent non-normalizable
and normalizable solutions of (H2) as z,, and z,, respec-
tively, so that the background solution reads

7(r)etl) = mg e, (r) + (o + O(m,))7,(r)

1
r<——1.
( AUV>

Here we denoted the value of the VEV at m, = 0 by ¢, and
dropped corrections O(m,) to the VEV term as in the
analysis of Sec. VID. We have chosen the gauge where
£—0 as r— oo, so that £=6/N; [see (6.23)]. The
imaginary part of the pion mode is UV normalizable and
therefore given as

(H3)
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reos(§y, =1y, =w; = C)p1,, (H4)
where
7, = 1¢08(&) = m, cos(&)7,, + 07, (H5)

is the real part of the background solution. Now we
find that

ToTy — TyTy

vy =Cp 2 (H6)
Tr
and therefore
V ke iy, = C,V ke’ (1,7, — 7,7,).  (HT)

This expression is constant for r < 1/Ayy, up to correction
suppressed by O(m,), as can be seen analyzing (H2)—
the latter form is proportional to the Wronskian (see also
Appendix D in [55]). The value of the constant can be
computed by taking r — O on the right-hand side:

342,/ /

— 3 /
VfOKe Yy = Cp}%(TﬂTr - TO'TV)

= 2CPWOK0Lﬂ5mq COS 50. (Hg)

To complete the computation of the pion mass we need
to make contact with the fluctuations in the IR. We note

that the tachyon background depends on m, smoothly
when written as a complex field:
e’ = 794+ O(m,), (H9)

where 7, is the (real) background at m, = 0. As 7, does
not have nodes in the IR, the phase & is O(m,). The
phase is the source of parity violation, and therefore
the mixing between the scalar and pseudoscalar fluctua-
tions is controlled by it. That is, all coefficients of the
mixing terms in the fluctuation equations (E4)-(E6) in
Appendix E are O(m,) in the IR. Therefore we can
choose a basis with an IR normalizable mode, relevant
for the pion, which has y, = O(1) and y, = O(m,).
Taking stock, the fluctuation equation (E4) for the pion
mode becomes

1 V krels
( ! w}) +m*(y, =)

(H10)
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where the precise range of validity can be seen by
inserting the UV expression (H3) into the fluctuation
equations. This implies that in the IR the fluctuation
equation takes the same form as for & = 0. In particular,
there is not dependence on @, apart from possible
dependence through the mass of the fluctuation m.
When m = 0 exactly, the solutions to (H10) are given by

V krted

G

The first solution is non-normalizable in the IR, but the
second solution is normalizable (when m, = 0 also it is
identified as the pion mode). For m small but nonzero the
terms mix so that the normalizable mode is constant to
leading order in m but also includes a component o m?
corresponding to the first term which can be computed by
integrating (H10).

When /m,/cy < r < 1/Ayy we can match the UV
and IR behavior of the fluctuations, construct the pion
mode, and determine its mass. From the IR analysis we
learned that the pion is dominated by the second solution in
(H1T1), but there is also a small component corresponding to
the first solution [which can be obtained in principle by
integrating (H10)], which satisfies

m 1
V ikt ety =k, miy , +O(m3) (1 < r<<—> ,
0o Ayy
(H12)

/

), = const, w, = const. (HII)

where the proportionality coefficient k, is independent of
m, and 6. Notice that for r < 1/Ayy we were able to
approximate G = 1 and that (H10) implies that the left-
hand side of (H12) is indeed constant in this regime.
Comparing to the result of the UV analysis in (H8)
(noticing that C, =, and 7, = 7) we see that

k,mz = 2Wokot m, cos &y + O(m7).  (H13)

p

As k, was independent of m, and 0, we find that
m2 m, cos &;. Comparing to the GOR relation at 0=0
[55], the proportionality constant is found to be k, = f ,2[,0 /
M3N N 0y, where f , is the pion decay constant at 0 =0.

The final result therefore reads

_ 0
oMz = =), —om, cosy Tt O(m3).  (H14)

where we inserted (6.23) and the relation between the
condensate and o,.
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