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The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit.
An unprecedented analysis of the CP-odd physics is performed going beyond the level of effective field
theories. The structure of holographic saddle points at finite θ is determined, as well as its interplay with
chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and
nonsinglet masses and mixings) are computed as functions of θ and the quark massm. Wherever applicable
the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the
Witten-Veneziano formula in the small x → 0 limit, we compute the θ dependence of the pion mass, and we
derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the
quark mass.
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I. INTRODUCTION AND OUTLOOK

The axial anomaly plays an important role in the physics
of strong interactions and is inherently related to the Uð1ÞA
problem of QCD. The massless QCD Lagrangian enjoys a
flavor symmetry, SUðNfÞV × SUðNfÞA ×Uð1ÞV ×Uð1ÞA.
The Uð1ÞV part is conserved and results in the baryon
number conservation. SUðNfÞV × SUðNfÞA is spontane-
ously broken down to SUðNfÞV . The spontaneous breaking
is signaled by the existence of Goldstone bosons in the low
energy spectrum of the theory. However, there is neither
any trace of Uð1ÞA symmetry in the spectrum of the theory
nor any light Goldstone boson which would signal its
spontaneous breaking. Instead, a large mass of η0, com-
pared to standard expectations from current algebra [1],
was observed experimentally. Historically this is known as
the Uð1ÞA problem in QCD [2].
’t Hooft proposed [3] that the nontrivial topological

gauge field configurations, instantons, violate the Uð1ÞA
symmetry. Classical instanton solutions lead to nonzeroR
d4xTrG ∧ G, where G is the gluon field strength.

This leads to tunneling among different vacua with differ-
ent topological charge. Most importantly, a nontrivialR
d4xTrG ∧ G in QCD results in the nonconservation

of the axial current, due to the axial anomaly. This implies
that a nonzero CP-odd term in the QCD Lagrangian, known
as the θ term, θ

32π2
TrG ∧ G, can affect nonperturbatively the

dynamics of the theory. In [4], it was pointed out that in the
context of the instanton picture, certain anomalous Ward
identities are not satisfied and the expectation values of
certain operators do not have the correct θ dependence.
The Uð1ÞA problem was further studied in the large Nc

limit where an additional puzzle appeared: if the Uð1ÞA
anomaly is responsible for the would-be Goldstone
boson (the η0) having a mass, then the mass must be due
to the instantons. Therefore it should be proportional to the
standard instanton factor that is exponentially small at large
Nc. On the other hand, Ward identities seemed to indicate
an inverse power law dependence of the η0 mass on Nc.
Witten [5], by studying a similar model in two dimensions,
argued that instantons do not behave as a gas (as is usually
assumed in instanton calculations), but rather the instanton
number becomes continuous, and this is responsible for the
power law dependence of the η0 mass.
Along the same line of thought, Veneziano [6] intro-

duced the limit where quark loops contribute to leading
order to the Uð1ÞA anomaly:

Nc → ∞; Nf → ∞;

Nf

Nc
¼ x ¼ fixed; λ ¼ g2YMNc ¼ fixed: ð1:1Þ

In this limit he was able to resolve the inconsistencies
pointed out in [4], to rederive the η0-mass formula,
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Eq. (7.21), which was earlier advocated by Witten [7], and
to show that the anomalous Ward identities are satisfied.
The dependence of low energy QCD physics on the θ

angle was further studied in the context of the low energy
effective Lagrangians [8–13]. More recently, lattice field
theory methods have also been employed to study the
topological dynamics of QCD [14–17].
The inclusion of a θ term in QCD obviously leads to CP

violation effects in strong interactions. As it was shown in
[18], independently of the confining gluon dynamics, the
presence of instantons leads to P- and T-odd effects.
However, no such experimental signal has been observed
until now: the experimental bound for the value of θ is
jθj ≤ 3 × 10−10. Several attempts have been made to solve
the problem [18–26]. The straightforward solution pro-
poses the existence of a (fundamental) pseudoscalar axion
field which couples to the topological operator TrG ∧ G.
This coupling is suppressed by a large scale, that makes the
axion interactions weak. In this way the θ angle becomes
now a dynamical variable (the expectation value of the
axion field) and the QCD dynamics forces this expectation
value to relax to zero [7].
The topological effects in QCD, have recently attracted

much attention due to the exciting discovery of the chiral
magnetic effect, which takes place when the quark gluon
plasma (QGP) moves in a background magnetic field, as
soon as there is chiral charge imbalance in the medium. It
has been claimed that such an imbalance is created due to
topological fluctuations of the medium and their connec-
tion to the axial anomaly [27]. Even though it has been
argued that the instanton contributions at finite temperature
are exponentially suppressed [28], topological fluctuations
of the medium, due to sphalerons, at finite temperature
[29], lead to a net axial charge [30]. Anomalous conduc-
tivities were also studied in holography in [31] and their
renormalization for nonconformal theories in [32].
The effects of the axial anomaly and the θ term in low

energy QCD have been also studied in the context of
holography. In [33], Witten studied the θ dependence of the
D4 brane holographic model, dual to a certain pure four-
dimensional Yang Mills theory [34]. The θ angle was
introduced as the source of a Ramond-Ramond (RR) bulk
field. Then, the energy density of the vacuum was com-
puted as a function of θ and it was shown that for every θ
there are infinite distinct vacua. Similar conclusions hold in
bottom-up holographic models of pure Yang-Mills theory
such as the improved holographic QCD (IHQCD) model
[35,36]. In [37], similar observables were computed,
building on the background solutions with backreacting
θ of [38,39] in the case of θ ∼OðN2

cÞ.
The Witten-Veneziano formula for the mass of η0 in the

black D4 brane theory was derived holographically in [40]
by including probe D6 flavor branes in the D4 background
[41]. A similar result was drawn in a different holographic
model,whereD3 braneswere embeddedon aC3=ðZ3 ⊗ Z3Þ

orbifold singularity [42]. Later, the Witten-Veneziano for-
mula was verified in more realistic holographic models such
as the Witten-Sakai-Sugimoto model [43] and the tachyon
AdS/QCDmodel [44,45],where a θ angle of orderOð1Þwas
considered. The backreaction of the flavor to the geometry in
the Witten-Sakai-Sugimoto model and the effect of finite θ
angle were considered in [46]. In models with flavors, the
coupling of the flavor branes to the RR fields is found by
anomaly inflow arguments, which were presented in [47].
The ’t Hooft large-Nc limit is a excellent technical tool for

studying nonperturbative dynamics. Concerning the physics
of the axial Uð1ÞA anomaly, however, the Veneziano large-
Nc limit in (1.1) ismore appropriate as in this limit theUð1ÞA
anomaly is a leading effect. This limit was advocated already
in order to describe holographic models similar to QCD that
exhibit a conformal window in some part of their phase
diagram [48]. This led to a class of holographic theories
under the name of V-QCD, whose properties were analyzed
in several contexts with interesting and sometimes unex-
pected results [48–55].
The purpose of the present paper is to fully analyze

the CP-odd dynamics of V-QCD associated with the θ
dynamics as well as with the dynamics of the phases of the
quark mass matrix.

A. Summary of results

We will first describe the complete V-QCD action with
CP-odd terms which contains the physics of the axial
anomaly and the θ angle. We will use this theory to analyze,
among other things, the phase diagram (as a function of the
complex quark mass and the θ angle) and the meson
spectrum. In more detail, the main results are as follows.
In Sec. II we indicate the general structure of CP-odd

terms that are added in the V-QCD models. Our method is
based on earlier work [44,56,57], and its adaptation to the
fully backreacted models was initially studied in [51]. The
CP-odd sector arises from the Wess-Zumino-Witten term
for the Nf space-filling pairs of D4 −D4 branes. However,
following the reasoning in the glue [35] and flavor [48]
sectors, we introduce potential functions depending on the
bulk scalars, the dilaton and the tachyon, in the CP-odd
action, therefore switching from a top-down to a bottom-up
approach. We restrict our study to flavor independent
backgrounds [respecting the SUðNfÞV symmetry], and in
particular, to flavor independent quark mass, writing the
complex tachyon field as T ¼ τeiξI, where I is the unit
matrix in flavor space. The finalCP-odd action is then given
in Eq. (2.15). We stress that full backreaction between all
terms in the action (glue, flavor, and CP-odd) is included.
The CP-odd fields are the following:
(i) The axion a which is dual to the operator TrG ∧ G

and sources the θ angle on the boundary.
(ii) The phase of the tachyon ξ which is (roughly) dual

to the operator ψ̄γ5ψ and sources the phase of the
quark mass.
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(iii) These are related by the anomaly to the divergence
of the axial current [the longitudinal component of
the Uð1ÞA vector of the bulk theory].

The precise dictionary is specified through the boundary
coupling to field theory in (2.19). We demonstrate that
V-QCD models are consistent with the periodicity of the θ
angle in QCD. As expected for QCD in the Veneziano limit
[33], the vacua related by θ ↦ θ þ 2π are not linked by
continuous deformation of the θ angle, but there is branch
structure instead. Moreover, we argue that the axial
anomaly, given in Eq. (2.25), is correctly reproduced.
The gauge-independent CP-odd source is identified with
the gauge invariant θ̄ angle in QCD: θ̄ ¼ θ þ arg detMq,
where Mq is the (complex) quark mass matrix.
In Sec. III we derive the equations of motion for V-QCD

at finite θ angle and analyze their asymptotic solutions. The
axial Uð1ÞA symmetry implies that the CP-odd degrees of
freedom, the axion and the tachyon phase, can be integrated
out. After taking into account symmetry and regularity in
the IR, their effect reduces to an additional integration
constant Ca, which is seen to be proportional to the VEVof
the TrG ∧ G operator. After solving the background
equations, this integration constant can be mapped to the
(UV value of the) θ̄ angle.
Perturbative analysis of the solutions near the boundary

shows that solutions at finite Ca (and therefore nontrivial θ̄)
must always have nonzero quark mass and that θ̄ becomes
ambiguous asmq → 0. This reflects properties of QCD: the
θ angle can be gauged away if any of the quarks is massless.
We also note that the VEVs of the quark bilinears ψ̄ψ ,
ψ̄γ5ψ , and the VEV of TrG ∧ G respect axial symmetry.
The IR regularity of the (fully backreacted) solutions is
seen to give constraints to the dependence of the flavor and
CP-odd terms of the V-QCD action on the dilaton and the
tachyon. In particular, we point out that the string theory
prediction for the dilaton dependence of the flavor action in
the IR falls in the narrow range of acceptable behaviors
which produce fully regular solutions, complementing
earlier, similar results [35,51].
In Sec. IV we review how the various potentials in the

glue and flavor sectors of the V-QCD action are constrained
due to regularity, asymptotic behavior near the boundary
and in the UV, and by agreement with QCD at the
qualitative level. In particular we combine previous results
with the additional constraints from the asymptotic analysis
of the CP-odd solutions in Sec. III. We determine explicit
choices for potentials which satisfy the constraints, there-
fore finalizing the construction of V-QCD at finite θ̄.
In order to compare our results to the chiral Lagrangians,

they are derived in the Veneziano limit in Sec. V. We note
the following:

(i) There is a delicate issue in the ordering of the chiral
(mq → 0) and ’t Hooft or probe (x → 0) limits: the
chiral limit needs to be taken before the probe limit
or simultaneously with it for the chiral Lagrangians

to be applicable. This issue is not relevant in the
Veneziano limit, where x is finite.

(ii) Unlike in the ’t Hooft limit, the glueballs and mesons
mix at leading order in the Veneziano limit. We
argue that this mixing does not affect the chiral
Lagrangian (5.21) for the Goldstone modes nor the
Gell-Mann-Oakes-Renner (GOR) relation.

(iii) The chiral Lagrangian in the Veneziano limit, (5.21),
has two important terms which are suppressed in the
’t Hooft limit but are leading in the Veneziano limit:
one term is responsible for the chiral anomaly and
another allows the decay constants of the pions and
the η0 meson to be different.

In Sec. VI V-QCD is used to analyze (analytically and
numerically) the vacuum structure as a function of mq,
x ¼ Nf=Nc, and θ̄. As a function of x QCD has two phases
of interest: the QCD-like phase for 0 < x < xc, and the
conformal window for xc ≤ 0 < 11=2≡ xBZ where the
model has an IR fixed point (see [48] and the review in
Sec. II B). In addition inside the low-x phase, for
xc − x ≪ 1, there is a region where the RG flow includes
walking, or quasiconformal behavior: the coupling constant
varies very slowly for a large range of energies.
A rich and interesting structure is found in the QCD-like

phase. We solve numerically the vacua in V-QCD and when
applicable we compare the results to those derived from
chiral Lagrangians.
The main results from the analysis of V-QCD in the

QCD-like phase x < xc are the following:
(i) In the limit mq → 0, where chiral Lagrangians for

QCD are reliable, they agree with V-QCD. In
particular, the leading terms of the free energy as
a function of θ̄ and topological susceptibility, which
can be derived analytically in V-QCD, match exactly
with the predictions of the effective (chiral) theory.

(ii) The analytic agreement with the effective chiral field
theory is present both when (only) the pions are light
[mq → 0 with x ¼ Oð1Þ], and also when both the
pions and the η0 mesons are light (mq → 0 and x → 0

with mq ∼ x).
(iii) We carry out a detailed numerical analysis of the

vacua at finite θ̄ in V-QCD in regimes where chiral
Lagrangians are not expected do be valid and
analytic approximations are not known (e.g., inter-
mediate quark masses), determining key observables
such as the topological susceptibility and free
energy.

(iv) As mq → ∞, the quarks decouple and the dynamics
becomes that of Yang-Mills theory.1

1Decoupling here means that observables as functions of the
gauge invariant θ̄ angle, such as the topological susceptibility and
the free energy, approach their Yang-Mills form. The phase of the
quark mass does not decouple but appears only through the gauge
invariant variable θ̄.
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(v) The final result for the free energy for the energeti-
cally favored phase in Eq. (6.16) is similar in form to
the result in the ’t Hooft limit [33].

(vi) We demonstrate that the dependence between the
(complex) source and VEV of the tachyon has a
complicated structure, implied by IR regularity,
which naturally appears in holographic models
but is difficult to describe by using field theory
techniques. The results in this article generalize the
spiral dependence to complex variables and is linked
to a tower of perturbatively unstable Efimov vacua.

The phase structure as a function of x, in the conformal
window, and near the conformal transition at x ¼ xc is
studied as well. In the conformal window, the vacuum
structure is simpler than in the QCD-like phase as the
structure related to the Efimov vacua is absent. In this phase
and near the conformal phase transition, the dependence on
the quark mass of observables (such as the topological
susceptibility) is understood in terms of the separation ofUV
and IR scales, in agreement with the behavior at θ̄ ¼ 0 [55].
Specifically, we find the following:
(i) The scale separation gives rise to the hyperscaling

relation for the topological susceptibility in the
conformal window:

χ ∝m
4

1þγ�
q as mq → 0; ðxc < x<xBZÞ; ð1:2Þ

where γ� is the anomalous dimension of the quark
mass at the IR fixed point.

(ii) In the walking regime, xc − x ≪ 1, the topological
susceptibility obeys an intermediate scaling law,
χ ∝ m2

q, which holds for longer and longer range
of masses as x → xc from below.

(iii) The agreement with chiral Lagrangians asmq → 0 in
the QCD-like phase is found for all xwithin the range
0 < x < xc, even in the walking regime. We check
this explicitly for the topological susceptibility.

We perform two separate calculations of meson masses.
First, in Sec. VII we complete the analysis of [51] by
computing at vanishing θ̄ angle the spectra of the flavor
singlet pseudoscalar modes, which involve the fields of the
CP-odd action Sa. The results are as follows:

(i) The pseudoscalar glueball modes mix with the ψ̄γ5ψ
states at generic values of x, and the mixing is
suppressed for x → 0.

(ii) The η0 meson is identified as the lightest state in this
tower as x → 0. It is shown analytically (in Appen-
dix G) and verified numerically that its mass satisfies
the Witten-Veneziano relation

m2
η0 ¼ m2

π þ x
NfNcχYM

f2π
; ð1:3Þ

where χYM is the Yang-Mills topological suscep-
tibility, when both x and the quark mass are small.

(iii) Apart from the η0 meson, a numerical study shows
that the dependence on the masses on x and mq is

similar to other sectors, discussed in [51]. In
particular, when mq ¼ 0 the dependence on x is
mild for x ¼ Oð1Þ, and as x → xc− all masses follow
the Miransky or Berezinskii-Kosterlitz-Thouless
(BKT) scaling law of Eq. (2.33).

Finally, in Sec. VIII, we analyze the spectrum of flavor
nonsinglet fluctuations at finite θ̄ angle. Specifically, we
use the branch of vacua that are continuous deformations of
the “standard” background at θ̄ ¼ 0.

(i) At finite θ̄, the scalar and pseudoscalar mesons mix.
The mixing vanishes as expected when θ̄ → 0. There
is no mixing in the spin-one sector because vectors
and axial vectors transform with opposite signs
under charge conjugation, which remains as a good
quantum number even at finite θ̄ (whereas parity and
CP are broken).

(ii) The pion mass is shown to satisfy the generalized
Gell-Mann-Oakes-Renner relation

f2πm2
π ¼ −hψ̄ψijmq¼0mq cos

θ̄

Nf
þOðm2

qÞ ð1:4Þ

analytically and numerically.
(iii) Apart from the pion mode, the dependence of the

meson masses on θ̄ is weak.
Briefly the structure of this paper is as follows. In Sec. II

we review the V-QCD model and its background solutions
for θ̄ ¼ 0. In Sec. III we derive the equations of motion
with the CP-odd sector included, and analyze their asymp-
totic solutions. In Sec. IV we present choices of potentials
for the V-QCD action which satisfy all known constraints.
Section V contains a detailed analysis of the chiral
Lagrangians for QCD in the Veneziano limit. In Sec. VI
we carry out a detailed analysis of the vacuum structure of
the V-QCD models at finite θ̄. In Sec. VII we compute the
spectra of flavor singlet CP-odd fluctuations at θ̄ ¼ 0.
Finally, in Sec. VIII we analyze the flavor nonsinglet meson
spectra at finite θ̄.
Technical details are presented in the appendices. In

Appendix A, we carry out a detailed analysis of the UV
and IR asymptotics of the backgrounds at finite θ̄. In
Appendix C we discuss technical details of the vacuum
solutions at finite θ̄. Appendix D contains the fluctuation
equations for the flavor singlet CP-odd modes. In
Appendix E we derive the fluctuation equations for the
flavor nonsinglet modes at finite θ̄. Appendix G has details
of the proof of the Witten-Veneziano formula for the mass
of the η0 meson in V-QCD. In Appendix H we prove the
Gell-Mann-Oakes-Renner relation at finite θ̄ in V-QCD.

II. V-QCD

We shall start by writing down the action for V-QCD

S ¼ Sg þ Sf þ Sa; ð2:1Þ
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where Sg and Sf are the pieces corresponding to the glue
and flavor sectors, while Sa, which will be the central piece
of our analysis, describes the CP-odd sector. The first two
contributions have been carefully analyzed in [48], since
they are the only ones contributing to the vacuum structure
at zero θ angle. We will briefly discuss them before
focusing on the CP-odd piece Sa.
The glue action, introduced in [35], takes the form

Sg ¼ M3N2
c

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3

ð∂λÞ2
λ2

þ VgðλÞ
�

ð2:2Þ

with λ ¼ eϕ the exponential of the dilaton, dual to the
operator TrF2. Hence we identify the background value of
λ with the ’t Hooft coupling. As for the metric, the Ansatz
for the background solution reads

ds2 ¼ e2AðrÞðdx21;3 þ dr2Þ; ð2:3Þ

where the warp factor A is identified with the logarithm of
the energy scale in the field theory. In our conventions, the
UV boundary is at r ¼ 0 (and A → ∞), and the radial
coordinate is then in the range r ∈ ½0;∞Þ. Moreover, the
metric will be close to that of AdS near the UV boundary.
Therefore A ∼ − logðr=lÞ with l being the (UV) AdS
radius, and in the UV r is roughly dual to the inverse of the
energy scale of the field theory.
As shown in [51] the fluctuations of the action for the

flavor sector Sf mix with those of the CP-odd term Sa.
Therefore we first write the action for the flavor sector in
general [44] (see also [58]),

Sf ¼ −
1

2
M3NcTr

Z
d4xdrðVfðλ; T†TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAL

p
þ Vfðλ; TT†Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAR

p
Þ; ð2:4Þ

with the radicands defined as

ALMN ¼ gMN þ wðλ; TÞFðLÞ
MN

þ κðλ; TÞ
2

½ðDMTÞ†ðDNTÞ þ ðDNTÞ†ðDMTÞ�;

ARMN ¼ gMN þ wðλ; TÞFðRÞ
MN

þ κðλ; TÞ
2

½ðDMTÞðDNTÞ† þ ðDNTÞðDMTÞ†�;
ð2:5Þ

and the covariant derivative is given by

DMT ¼ ∂MT þ iTAL
M − iAR

MT: ð2:6Þ

We notate the five-dimensional indices with capital Latin
letters M;N;… and the four-dimensional Lorentz indices
with Greek letters μ; ν;… throughout the article. The fields

AL, AR and T are Nf × Nf matrices in the flavor space, and
under the left and right UðNfÞ gauge transformations they
transform as

AL →VLALV
†
L− idVLV

†
L; AR →VRARV

†
R− idVRV

†
R;

T→VRTV
†
L; T† →VLT†V†

R; ð2:7Þ

with VLV
†
L ¼ I ¼ VRV

†
R. AL, AR are dual to the left and

right flavor currents of the theory while T is dual to the
quark mass operator.
It is also useful to define

x≡ Nf

Nc
: ð2:8Þ

In general, it is not known how to perform the trace in
(2.4) when the arguments of the determinants are non-
Abelian matrices in flavor space. However, since we will be
considering cases where the quarks are either massless or
have all the same mass, the background solution will be
proportional to the unit matrix. Additionally, for this kind
of background, the fluctuations of the Lagrangian are
unambiguous up to quadratic order.
As in [51] we will consider the following form of the

tachyon potential

Vfðλ; TT†Þ ¼ Vf0ðλÞe−aðλÞTT†
; ð2:9Þ

and restrict the functions κðλ; TÞ and wðλ; TÞ to be
independent of T. Moreover, the functions Vf0ðλÞ, aðλÞ,
κðλÞ, and wðλÞ are constrained by requiring the agreement
with the dynamics of QCD [48,49,51]. We will review the
suitable choices for these potentials in Sec. IV.

A. The CP-odd sector and the Uð1ÞA anomaly

The action of the CP-odd sector results from the Wess-
Zumino (WZ) term coupling the closed string axion to the
phase of the tachyon and the Uð1ÞA gauge boson. This term
was discussed in [44], and further adapted to our model of
holographic QCD in [51]. Since we will consider only the
case where the quarks are massless, or have all the same
mass, we can write the tachyon as

T ¼ τðrÞeiξðrÞINf
; ð2:10Þ

where INf
denotes the Nf × Nf unit matrix in flavor space.

Next, following [44,51], we write the action of the CP-
odd sector as

Sa¼ SclosedþSopen; Sclosed¼−
M3

2

Z
d5x

ffiffiffiffiffiffi
−g

p jH4j2
ZðλÞ ;

H4¼ dC3; ð2:11Þ
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where C3 is the RR three-form axion, and

Sopen ¼ i
Z

C3 ∧ Ω2 ¼ i
Z

C3 ∧ dΩ1;

Ω1 ¼ iNf½2Vaðλ; τÞA − ξdVaðλ; τÞ�;

where A is the flavor singlet term of the axial gauge boson

AM ¼ AL
M − AR

M

2
: ð2:12Þ

The potential Vaðλ; τÞ is known in flat-space tachyon
condensation, in which case it is the same as that appearing
in the tachyonic Dirac-Born-Infeld (DBI) (i.e., Vf) and is
independent of the dilaton [44,59]. Although in our model
Va might be different from Vf, it must satisfy the same
basic properties; it becomes a constant (related to the
anomaly) at T ¼ 0, and it vanishes exponentially at T ¼ ∞.
Hence we will initially take Va to be of the form

VaðτÞ ¼ e−bτ
2

; ð2:13Þ

and discuss possible alternatives in Sec. IV.
After dualizing the three-form C3 to a pseudoscalar

axion field ~a via

H4

ZðλÞ ¼
�ðd ~aþ iΩ1Þ; ð2:14Þ

the CP-odd action becomes

Sa ¼ −
M3N2

c

2

Z
d5x

ffiffiffiffiffiffi
−g

p
ZðλÞ½∂Ma − xð2Vaðλ; τÞAM

− ξ∂MVaðλ; τÞÞ�2; ð2:15Þ

in terms of the QCD axion

a ¼ ~a
Nc

; ð2:16Þ

which, as we will discuss below, is normalized so that a is
dual to θ=Nc.
In order to establish the holographic dictionary for the

CP-odd part of the boundary theory, we start by writing the
Lagrangian of QCD as

SQCD ¼
Z

d4x

�
−

1

2g2
TrGμνGμν þ iψ̄Dψ − ψ̄RMqψL

− ψ̄LM
†
qψR þ θ

32π2
ϵμνρσTrGμνGρσ

�
ð2:17Þ

where ψL ¼ ð1þ γ5Þψ=2, ψR ¼ ð1 − γ5Þψ=2, and Mq is
the (potentially complex) quark mass matrix.
The bulk action (2.15) is invariant under the gauge

transformation

AM → AM þ ∂Mε; ξ → ξ − 2ε; a → aþ 2xVaε;

ð2:18Þ

where the first two transformations follow from (2.7)
for a gauge transformation of the form VL ¼ V†

R ¼ eiεINf .
Notice that on the boundary this transformation realizes
the QCD axial anomaly upon assuming that the boundary
values of the fields a, A and ξ source the operators
ϵμνρσTrðGμνGρσÞ; J5μ and mqψ̄γ

5ψ respectively, according
to the following boundary action:

Sδ ¼
Nc

32π2

Z
r¼δ

d4xaϵμνρσTrðGμνGρσÞþ
Z
r¼δ

d4xJðLÞijμ AðLÞμij

þ
Z
r¼δ

d4xJðRÞijμ AðRÞμij−KT

Z
r¼δ

d4x
1

lδ
ψ̄RTψL

−KT

Z
r¼δ

d4x
1

lδ
ψ̄LT†ψR ð2:19Þ

where δ is a UV cutoff, and JðL=RÞijμ ¼ ψ̄ iγμð1� γ5Þψ j=2
(with i; j ¼ 1…Nf).
The proportionality constants between boundary values

of the bulk fields and the sources of their dual operators on
the field theory are not fixed in (2.19). They nevertheless
disappear from any renormalization group (RG)-invariant
quantity (like the product of a source times its VEV).
Indeed, we have included the parameter KT which will
appear in the relation between the quark mass and the
boundary value of the tachyon.
We could include a second free parameter in front of the

term ∼aϵμνρσTrðGμνGρσÞ, see [60]. However, we have
chosen to fix the normalization of the axion a such that
its boundary value is precisely θ=Nc, as seen by comparing
(2.19) and (2.17). Further requiring that the potential Va
approaches unity at the boundary, Vaðλ; T ¼ 0Þ ¼ 1, the
Uð1ÞA gauge transformation (2.18) implies that the axial
anomaly is correctly reproduced. We will see this explicitly
below in Eq. (2.25).
The normalization of the couplings of the gauge fields

AðL=RÞ was chosen to be consistent with the gauge trans-
formations (2.7).
Further, recall that the CP transformation of the fermion

bilinears is given by

ψ̄ iψ jðt;xÞ ↦ ψ̄ jψ iðt;−xÞ;
ψ̄ iγ5ψ

jðt;xÞ ↦ −ψ̄ jγ5ψ
iðt;−xÞ: ð2:20Þ

We require the proportionality coefficient KT to be real so
that the corresponding terms in (2.19) are CP invariant if
the tachyon transforms as Tðr; t;xÞ ↦ Tðr; t;−xÞ�, which
is indeed the transformation found in [44].
Notice also that for a diagonal tachyon as in (2.10), the

last two terms of (2.19) take the form
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−
KT

2

Z
r¼δ

d4x
1

lδ
τðeiξ þ e−iξÞψ̄ψ

−
KT

2

Z
r¼δ

d4x
1

lδ
τðeiξ − e−iξÞψ̄γ5ψ ; ð2:21Þ

which in the limit of small phase ξ ≪ 1 reduce to

−KT

Z
r¼δ

d4x
1

lδ
τψ̄ψ − KT

Z
r¼δ

d4x
1

lδ
ξτiψ̄γ5ψ : ð2:22Þ

Finally, we point out that aðrÞ and ξðrÞ both transform
under (2.18) reflecting the transformation of θ and the
quark mass phase ξ under the anomalous Uð1ÞA. It is the
gauge invariant combination

ā ¼ aþ xξVa; ð2:23Þ

which is dual to the Uð1ÞA invariant combination θ̄=Nc ¼
θ=Nc þ argðdetMqÞ=Nc, upon taking into account that
Vaðλ; T ¼ 0Þ ¼ 1.
Notice that because ξ is a phase, any solution is

unchanged under the shift ξ ↦ ξþ 2π. By using the
dictionary, this shift implies θ̄ ↦ θ̄ þ 2πNf, so the
results in our model will be 2πNf periodic in θ̄. But
it is known that QCD has a much shorter 2π periodicity
in this angle. This periodicity will be less obvious from
our analysis, because it is linked to non-Abelian
SUðNfÞ transformations. We have already restricted
our study to backgrounds where the tachyon is propor-
tional to the unit matrix, which effectively excludes such
transformations.
In order to see how the 2π periodicity arises, notice that

we have made a branch choice when defining the CP-odd
action in (2.15). Here the phase of the tachyon could be
written for general T as

ξ ¼ 1

2iNf
ðlog detT − log detT†Þ ¼ 1

Nf
arg detT: ð2:24Þ

We observe that the branch ambiguity of arg in (2.24)
corresponds to ξ ↦ ξþ 2π=Nf, which gives the desired
θ̄ ↦ θ̄ þ 2π in the boundary theory. The branches are
connected via non-Abelian transformations. To make this
explicit, we may start from a background with a diagonal
tachyon, choose VR ¼ V†

L ¼ diagðeiφ;…; eiφ; e−iðNf−1ÞφÞ
in (2.7), and apply the transformation as φ varies from
zero to π=Nf. Since the transformation matrices belong to
SUðNfÞ the CP-odd action (2.15) transforms trivially. In
particular, (2.24) remains constant under the transforma-
tion. The end result is, however, that the tachyon changes
by T ↦ ei2π=NfT, corresponding to a shift of the tachyon
phase by 2π=Nf. Therefore, the transformation connects
two “adjacent” branch choices in (2.24).

According to AdS=CFT, the boundary field theory
generating functional is given by WQFT½aðx; δÞ; Aμðx; δÞ;
ξðx; δÞ�≡ heiSδi ¼ eiSa , where the bulk action Sa is taken
to be on shell. Applying the transformation (2.18) one
obtains δεWQFT ∝ δεSa, and since Sa is invariant under
(2.18), one obtains heiSδδεSδi ¼ 0. Because heiSδi defines
the generating functional, taking functional derivatives with
respect to the sources we see that all correlators of the form
h… · δεSδi vanish. Therefore, the following equation holds
for all correlators accessible to our holographic model (and
thus corresponds to an operator identity in the dual QFT):

∂μJð5Þμ ¼
Nf

16π2
ϵμνρσTrðGμνGρσÞ

þ 2iKT ψ̄
iγ5ψ i 1

δ
½τ cosðξÞ�r¼δ

− 2KT ψ̄
iψ i 1

δ
½τ sinðξÞ�r¼δ: ð2:25Þ

Here J5μ ¼ ψ̄ iγμγ
5ψ i, and we have used the fact that

Vaðλ; T ¼ 0Þ ¼ 1, and that T vanishes in the UV. Next,
upon identifying the energy scale as the metric factor eA,
which behaves as eA ∼ 1=r in the UV, we define the running
quark mass (evaluated at the energy scale μ ¼ eAjr¼δ) as

m̄qjμ ¼ KT
τðδÞ
lδ

; ð2:26Þ

while ξðδÞ ¼ ξ0 denotes the phase of the quarks, and l is the
AdS radius introduced below (2.3). Hence we can write

∂μJð5Þμ ¼
Nf

16π2
ϵμνρσTrðGμνGρσÞ þ 2im̄q cosðξ0Þψ̄ iγ5ψ i

− 2m̄q sinðξ0Þψ̄ iψ i; ð2:27Þ

where ψ̄ψ and ψ̄γ5ψ stand for the corresponding
renormalized operators at the energy scale μ. Notice that
in the following sections we will instead consider the
operators sourced by the renormalized mass mq which is
defined through the UV asymptotics of the tachyon (see
Appendix A 1 for more details)

1

l
τðrÞ¼mqrð− logðrΛÞÞ−ρ

�
1þO

�
1

logðrΛÞ
��

þσr3ð− logðrΛÞÞρ
�
1þO

�
1

logðrΛÞ
��

; ð2:28Þ

where mq is a constant and equals the running quark mass
m̄q at some fixed renormalization scale [while σ corre-
sponds to the renormalized chiral condensate ∼hψ̄ψi,
and ρ is defined in (A7) in terms of the parameters of
the model]. To be precise, in view of (2.26), m̄q and mq are
related via
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m̄q ¼ KTmqð− logðδΛÞÞ−ρ
�
1þO

�
1

logðδΛÞ
��

ð2:29Þ

for small δ and this same relation will hold between the
renormalized operators sourced by m̄q [see Eq. (2.27)
above], and those sourced by mq.
Initially, we will be interested in background solutions

with both Aμ and ξ vanishing. Therefore, we need solve the
equations stemming from the OðN2

cÞ action Sg þ Sf to
determine gμν; λ, and τ. For the background solutions with a
nonzero θ angle analyzed in Sec. VI we will have to
consider also a contribution from Sa.

B. The background solutions at θ ¼ 0

In this subsection we review some general features of the
background solutions of V-QCD at zero θ angle. We will
only consider the standard case that displays a phase
diagram similar to what is expected in QCD (see [51]
for a thorough analysis of the constraints this requirement
imposes on the different potentials entering the theory).
The background solutions follow from an Ansatz where

λ, A, and T are functions of the radial coordinate r, while
the rest of the fields in the model are consistently set to
zero. The Ansatz for the tachyon is further restricted to
T ¼ τðrÞINf

, corresponding to all quarks having the same
real-valued mass [hence setting ξ ¼ 0 in (2.10)]. Two types
of (zero temperature) vacuum solutions were found in [48]:
(1) Backgrounds with identically zero tachyon and

nontrivial λðrÞ, AðrÞ. These solutions correspond
to chirally symmetric vacua with zero quark mass. In
this case, analytical integration of the equations of
motion leaves us with a single first order differential
equation that can be easily solved numerically.

(2) Solutions with nonzero λðrÞ, AðrÞ and τðrÞ. These
describe vacua with broken chiral symmetry, with
the quark mass and the chiral condensate corre-
sponding respectively to the non-normalizable and
normalizable modes of the tachyon [51]. These
backgrounds follow from the numerical integration
of a set of coupled differential equations.

As shown in Appendix A, we can obtain analytic expan-
sions of the solutions in the UV and IR regions of the
geometry (see [48,51] for more detailed analyses).
The standard phase diagram of the theory at zero quark

mass is parametrized in terms of the ratio x ¼ Nf=Nc,
which is constrained to the range 0 ≤ x < 11=2 ¼ xBZ
since with our normalization the upper bound corresponds
to the Banks-Zaks (BZ) value in QCD for which the leading
coefficient of the β function becomes positive.
The phase diagramwithin this range consists of two phases,

corresponding to the two types of backgrounds above,
separated by a phase transition at a critical value x ¼ xc.

(i) For the range xc ≤ x < xBZ, the dominant vacuum
solution (at zero quark mass) is of the first type
above, with an identically zero tachyon, and

therefore chiral symmetry is preserved [61]. The
IR geometry is asymptotically AdS5.

(ii) For 0 < x < xc the dominant background corre-
sponds to solutions of the second kind, hence the
tachyon presents a nontrivial profile even if the
quark mass is zero. Chiral symmetry is broken in
this phase and the geometry ends in a singularity in
the IR.

The phase transition at x ¼ xc (only present at zero quark
mass [55]) displays BKT [62] or Miransky [63] scaling, in
accordance with predictions from the Schwinger-Dyson
approach (see, e.g., [64]). The chiral condensate σ ∼ hψ̄ψi,
which is the order parameter of the phase transition,
vanishes exponentially as x → xc from below. As shown
in [48],

σ ∼ exp

�
−

2K̂ffiffiffiffiffiffiffiffiffiffiffiffi
xc − x

p
�
; ð2:30Þ

with K̂ being a positive constant, while σ vanishes
identically in the region x > xc where chiral symmetry
is unbroken. Linked to this scaling is the “walking”
behavior of the coupling constant for x≲ xc. The field
λðrÞ dual to the coupling constant becomes approximately
constant, λ ∼ λ�, for a large range of r, and the size of this
scaling region enjoys the same scaling as (the square root
of) the condensate (2.30). The physics near the transition
has also been studied in other models: a top-down setup
[65], using a tachyonic DBI action without backreaction
[66], models with Einstein-dilaton gravity tuned to produce
walking [67], and in dynamic AdS/QCD models which are
simple bottom-up models where the holographic RG flow
is tuned to match with QCD [68].
The appearance of a region displaying walking behavior

and the mechanism for the phase transition at x ¼ xc, are
related to the existence of an IR fixed point for x ≥ xc. First,
notice that for the first type of backgrounds in the
classification above, λðrÞ → λ� as r → ∞, and the solution
becomes AdS also in the IR. The region x ≥ xc is therefore
called the “conformal window.” Second, the violation of the
Breitenlohner-Freedman (BF) bound by the tachyon in the
IR fixed point gives rise to an instability that is responsible
for the phase transition at the end of the conformal
window (x ¼ xc).
The BF bound is given in terms of the effective IR mass

of the tachyon mτ� as

−m2
τ�l2� < 4; ð2:31Þ

where l� is the radius of the IR AdS geometry. When the
bound is violated, solutions where the tachyon has been
turned on are favored, implying spontaneous breaking of
chiral symmetry (remember that we are setting the source
of the tachyon—corresponding to the quark mass—to
zero). In [48] it was indeed found that the bound (2.31)
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is saturated exactly at x ¼ xc, where the BKT transition
described above occurs. This is in agreement with general
arguments showing that the violation of the BF bound at an
IR fixed point leads to a BKT transition [69]. Additionally,
in [48] the constant K̂ of (2.30) was expressed in terms of
mτ� and l�, which are functions of x, as

K̂ ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
dx ðm2

τ�l2�Þjx¼xc

q : ð2:32Þ

In [48] it was also shown how the Miransky scaling
manifests itself in the ratio of the scales of the model as
x → xc. One can define the UV and IR scales ΛUV ¼ Λ,
ΛIR ¼ 1=R, in terms of the constants appearing respectively
in the UV and IR solutions (see Appendix A). For the
solutions with x < xc and xc − x large enough, ΛIR=ΛUV ¼
Oð1Þ, reflecting the fact that there is only one scale in the
model, as happens normally in QCD (where the single scale
is denoted by ΛQCD). Instead, when x → xc, there is a clear
separation of scales, and their ratio behaves as

ΛUV

ΛIR
∼ exp

�
K̂ffiffiffiffiffiffiffiffiffiffiffiffi
xc − x

p
�
; ð2:33Þ

hence featuring Miransky scaling.
It is worth pointing out that even as x → xc, ΛUV is still

the scale at which the coupling constant becomes small. In
that limit, the range where the coupling “walks” is
characterized by the two scales as Λ−1

UV ≪ r ≪ Λ−1
IR , and

the coupling diverges for r≳ Λ−1
IR . Moreover, in terms of

the two scales, the chiral condensate can be expressed as
σ ∼ ΛUVðΛIRÞ2. Therefore, the Miransky scaling featured
in Eq. (2.30) follows from (2.33) when the condensate is
expressed in units of ΛUV, i.e. for σ=ðΛUVÞ3.
When the quark mass is nonzero, the phase transition at

x ¼ xc becomes a crossover: chiral symmetry is broken and
the dominant solution changes smoothly as x is varied.
Even though there are no transitions, one can identify
various regions where the dependence of the background
on the quark mass is different [55]:
(1) In the QCD-like regime, with 0 < x < xc, the back-

ground at finitemq approaches the solution atmq ¼ 0

uniformly asmq → 0. For small enoughmq the mass
dependence is therefore perturbative. A characteristic
feature in this regime is the light pion mode.

(2) Adding a finite quark mass in the conformal window
drives the model away from the IR fixed point. For
mq ≪ ΛUV the background walks, and the amount
of walking is controlled by the value of the quark
mass. This leads to the hyperscaling relations
[55,70] for the meson masses.

(3) At large quark mass, mq ≫ ΛUV, the background
solution of the tachyon field is large (except for very
close to the UV boundary) which leads to the

decoupling of quarks from the gluons and a large
mass gap for the meson states.

The results at finite quark mass agree with other
approaches, in regimes of parameter space where such
approaches can be trusted. In particular, the behavior within
the conformal region and close to the critical value x ¼ xc
is in agreement with the analysis of RG flows [71,72].
Finally, there also exist solutions corresponding to

subdominant vacua of the model. Allowing for a finite
quark mass, one finds the following generic structure [48]:

(i) For xc ≤ x < xBZ, only one vacuum solution exists,
even at finite quark mass.

(ii) When 0 < x < xc and the quark mass is zero, there
is an infinite tower of (unstable) Efimov saddle-point
solutions in addition to the standard, dominant
solution.2

(iii) When 0 < x < xc and the quark mass is nonzero,
there is an even number (possibly zero) of Efimov
vacua. The number of vacua increases with decreas-
ing quark mass for fixed x.

The subdominant Efimov vacua at finite (real) quark mass
were carefully studied in [55]. In Sec. VI E we will general-
ize that analysis to the case of a complex quark mass.

III. EQUATIONS OF MOTION AND ASYMPTOTIC
SOLUTIONS AT FINITE θ ANGLE

A. Equations of motion for the background

In order to study the physics of the model at finite θ
angle, we will solve the equations of motion when the QCD
axion a is finite [and Oð1Þ in the large Nc expansion]. As
implied by the axial anomaly (2.18) we must also allow for
a nonzero overall phase of the tachyon, and then all three
sectors, glue, flavor and CP-odd, contribute to the action.
We also need to consider a Uð1ÞA flavor singlet gauge field
given in (2.12), while the other components of the gauge
field are set to zero. Notice that we consider a tachyon field
of the form T ¼ τeiξI corresponding to all the quarks
having equal complex mass. This allows us to write the
action as

S ¼ Sg þ Sa þ Sf

¼ M3N2
c

Z
d5x

� ffiffiffiffiffiffi
−g

p �
R −

4

3

ð∂MλÞ2
λ2

þ VgðλÞ

−
ZðλÞ
2

ð∂Maþ xξ∂MVaðλ; τÞ − 2xAMVaðλ; τÞÞ2
�

−
xVfðλ; τÞ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAðþÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAð−Þ

q ��
; ð3:1Þ

where

2For simplicity it is assumed that there exists an IR fixed point
for any positive value of x, and that the BF bound is violated at the
fixed point for any x down to x ¼ 0.
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Að�ÞMN ¼ gMN þ κðλÞ½ð∂MτÞð∂NτÞ
þ τ2ð∂Mξþ 2AMÞð∂Nξþ 2ANÞ� � wðλÞFMN;

ð3:2Þ

with FMN ¼ ∂MAN − ∂NAM.
We list the full equations of motion in Appendix B, and

restrict our discussion here to the case (relevant for the
background) where all fields only depend on the radial
coordinate r. We set the sources for the four-vector Aμ to
zero, and as argued in Appendix B, the solution for Aμ then
vanishes in the bulk also. Moreover, we choose the
gauge Ar ¼ 0.
Taking the Ansatz (2.3) for the metric, we are then left

with the five fields AðrÞ, λðrÞ, aðrÞ, τðrÞ, and ξðrÞ. The
equation of motion for a [Eq. (B1) in Appendix B] allows
us to solve for a0 as

a0 ¼ Cae−3A

Z
− xξV 0

a; ð3:3Þ

where Ca is a constant. Moreover, substituting this solution
into the equation of motion for Ar (B11), we obtain

e3A

~G
κVfτ

2ξ0 − CaVa ¼ 0; ð3:4Þ

where

~GðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κe−2Aðτ02 þ τ2ξ02Þ

q
: ð3:5Þ

Solving for ξ0 we arrive at

ξ0 ¼ CaVa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2A þ κτ02

p

κ1=2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e8AV2

fκτ
2 − C2

aV2
a

q : ð3:6Þ

As we will see below when analyzing the asymptotic
behavior, the requirement of finding regular solutions with
nonvanishing ξ0 restricts the form of the potentials in
our model.
For the equations of motion of the other fields we obtain

6A00 þ 6A02 ¼ −
4

3

λ02

λ2
þ e2AVg − xe2AVf

~G − C2
a
e−6A

2Z
;

ð3:7Þ

12A02 ¼ 4

3

λ02

λ2
þ e2AVg − xVf

e2A

~G
þ C2

a
e−6A

2Z
; ð3:8Þ

λ00−
λ02

λ
þ3A0λ0 ¼ 3

8
e2Aλ2

�
−
∂Vg

∂λ þx
∂Vf

∂λ ~G

þx
2
e−2A

∂κ
∂λ

Vf

~G
ðτ02þ τ2ξ02Þ

þC2
a
e−8A

2Z2

∂Z
∂λ −xCae−5Aξ0

∂Va

∂λ
�
; ð3:9Þ

∂r

�
e3A

~G
κVfτ

0
�
− e5A ~G

∂Vf

∂τ −
e3A

~G
Vfκτξ

02

− e3A
Vf

2 ~G
ðτ02 þ τ2ξ02Þ ∂κ∂τ þ Caξ

0 ∂Va

∂τ ¼ 0; ð3:10Þ

where we eliminated a by using (3.3).
Notice that as the potentials of the action (3.1) are

independent of a and ξ, it is invariant under the reflection
a ↦ −a, ξ ↦ −ξ, which corresponds to the CP trans-
formation on the field theory side. This is reflected in the
invariance of the equations of motion (3.6) and (3.7)–(3.10)
under Ca ↦ −Ca, ξ ↦ −ξ.

B. Asymptotics

We will now analyze the asymptotic solutions corre-
sponding to backgrounds at finite θ angle. We concentrate
on the asymptotics which are affected nontrivially by finite
θ̄. Other results are listed in Appendix A.

1. UV

We begin by considering the effect of a nonzero ξ on the
UV solutions of the equations (3.7)–(3.9) for AðrÞ and λðrÞ.
It is easy to check that the standard (θ ¼ 0) UVasymptotics
for AðrÞ and λðrÞ, Eqs. (A2), (A3)), solve those equations
in the UV upon assuming that τ vanishes at least as τ ∼ r
and ξ0 is regular there (the new terms sourced by ξ0 are
suppressed at least as r2).
Next, assuming that the UV metric is close to AdS,

namely eA ≃ l=r as implied by the standard UV asymp-
totics of AðrÞ, and that the tachyon is at most τ ∼ r,
Eqs. (3.6) and (3.10) for the modulus and phase of the
tachyon become

τ00 þ ∂r log ðe3AκVf0Þτ0 − e2Am2
τ τ − τðξ0Þ2 ≃ 0;

ξ0 ≃ Ca

κVf0e3Aτ2
; ð3:11Þ

where

m2
τ ¼ −

2a
κ
: ð3:12Þ

These two real equations are equivalent to the single linear
complex valued equation

ðτeiξÞ00 þ ∂r log ðe3AκVf0ÞðτeiξÞ0 − e2Am2
τ τeiξ ≃ 0: ð3:13Þ

Therefore, towards the UV boundary the complex tachyon
satisfies this linearized equation of motion where Ca does
not appear explicitly. In particular, the equation is the same
as that for the (real) tachyon at zero θ angle or equivalently
at zero Ca.
Inserting the UVasymptotics of AðrÞ and λðrÞ in (3.13),

we obtain the UV asymptotic solution for the complex
tachyon,
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1

l
τeiξ ¼ eiξ0mqrð− logðΛrÞÞ−ρð1þOðlogðΛrÞ−1ÞÞ

þ eiξ0 σ̂r3ð− logðΛrÞÞρð1þOðlogðΛrÞ−1ÞÞ;
ð3:14Þ

in terms of two real valued constants mq and ξ0, and one
complex constant σ̂ while ρ is defined in Eq. (A7). Notice
that mq and ξ0 are the modulus and phase of the source
dual to the complex tachyon, and thus correspond to the
absolute value of the mass of the quarks and its phase. This
solution satisfies the assumptions we made above and is
therefore valid, as can also be verified by inserting it
together with the asymptotics for AðrÞ and λðrÞ in the full
system (3.7)–(3.10).
To obtain the relation between the integration constant

Ca and the coefficients of the expansion, we insert it in the
second equation in (3.11), which gives

Ca ¼ 2l5κ0W0mqImσ̂; ð3:15Þ

where κ0 ¼ κðλ ¼ 0Þ and W0 ¼ Vf0ðλ ¼ 0Þ. For positive
quark mass, the UVexpansion of ξ0 can be read from (3.14):

ξ0 ¼ rð− logðΛrÞÞ2ρ
�

Ca

l5κ0W0m2
q

�
ð1þOðlogðΛrÞ−1ÞÞ:

ð3:16Þ

Similarly, the expansion of the absolute value is

1

l
τ ¼ mqrð− logðΛrÞÞ−ρð1þOðlogðΛrÞ−1ÞÞ

þ σr3ð− logðΛrÞÞρð1þOðlogðΛrÞ−1ÞÞ; ð3:17Þ

where σ ¼ Reσ̂. At nonzero quark mass, the relations
between the VEVs can therefore be written as

σ̂ ¼ σ þ iCa

2l5κ0W0mq
: ð3:18Þ

In the case of massless quarks (mq ¼ 0), as the form of
the complex tachyon solution already makes clear, the
physical solution corresponds to a constant ξ ¼ ξ0, for
which Ca ¼ 0, in agreement with (3.15). Notice finally that
a constant ξ can be gauged away via (2.18) as expected for
QCD with massless quarks.
We shall finish this subsection by discussing the relation

between the subleading terms in the UVasymptotics of the
complex tachyon and the corresponding VEVs on the field
theory side. To establish that relation we compare the
variation of the free energies of the field theory and its
holographic dual. We allow the quark mass mq, the phase
ξ0, and the boundary value of the axion a0 to vary keeping
Λ fixed.

Then, for an IR regular variation, the free energy density
satisfies the standard formula

δE¼−δāðrÞ ∂L
∂ā0ðrÞ

				∞
r¼0

−δξðrÞ ∂L
∂ξ0ðrÞ

				∞
r¼0

−δτðrÞ ∂L
∂τ0ðrÞ

				∞
r¼0

;

ð3:19Þ

where L is the (complete) V-QCD Lagrangian, and ā was
defined in (2.23). Here the second term vanishes due to the
Ar equation of motion.3 The third term is UV divergent and
needs to be regulated. We should also make sure that the
variation of the metric does not enter the formula when
Λ ¼ ΛUV is kept fixed. These issues were analyzed in detail
for the case of zero θ angle in [55]. By using the UV
expansion of the phase in (3.16) we observe that the
nontrivial phase or the CP-odd action do not add any
nonzero contributions to this analysis, and the result for the
regularized third term is unchanged. That is, (3.19)
becomes

δE ¼ −M3N2
cCaðδa0 þ xδξ0Þ − 2M3NcNfW0κ0l5σδmq;

ð3:20Þ

where the first term arises from the first term of (3.19) and
the second term can be computed as in [55]. As a check,
this result may also be written as

δE ¼ −M3N2
cCaδa0

− 2M3NcNfW0κ0l5Re½σ̂�e−iξ0δðmqeiξ0Þ�; ð3:21Þ

i.e. the terms involving the tachyon admit a simple
expression in terms of the complex source and VEV in
(3.14), which is consistent with the complex tachyon
being the natural field to consider in the UV as seen from
Eq. (3.13).
By using the QCD Lagrangian (2.17), and the Feynman-

Hellmann theorem, or equivalently by using the dictionary
implied by (2.19), we obtain

hψ̄RψLi¼
eiξ0

2

� ∂E
∂mq

þ i
mq

∂E
∂ξ0
�
¼−M3NcNfW0κ0l5eiξ0 σ̂

¼−M3NcNfW0κ0l5eiξ0
�
σþ iCa

2l5κ0W0mq

�
;

ð3:22Þ

so that the expectation value is given by the coefficient of
the subdominant term of the complex tachyon in (3.14).
The other condensates are found similarly, e.g.,

3After switching to the gauge invariant axion ā, the action only
depends on ξ through its derivative and invariance under (2.18)
implies that ∂L

∂ξ0ðrÞ ¼ 1
2
∂L
∂Ar

.
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hψ̄ψi ¼ −2M3NcNfW0κ0l5Re

�
eiξ0
�
σ þ iCa

2l5κ0W0mq

��
;

ð3:23Þ

ihψ̄γ5ψi¼−2M3NcNfW0κ0l5Im

�
eiξ0
�
σþ iCa

2l5κ0W0mq

��
;

ð3:24Þ

hϵμνρσTrðGμνGρσÞi ¼ 32π2M3NcCa: ð3:25Þ

The relation between the VEVs

Nf

32π2
hϵμνρσTrðGμνGρσÞi

¼ mq sin ξ0hψ̄ψi − imq cos ξ0hψ̄γ5ψi ð3:26Þ

is consistent with (2.27).
The results above show that the phase of the tachyon is a

perturbative correction in the UV when mqσ ≫ Ca, under
the natural assumption that the factor l5W0κ0 is of order
one. It can be fixed by requiring the UV behavior of the
scalar two-point correlator to match with perturbative QCD
[51], which results in

M3W0κ0l5 ¼ 1

4π2
: ð3:27Þ

The value of M3 can also be constrained independently by
comparing the pressure of the model to that of high
temperature QCD [49,73].

2. IR

We then consider the asymptotic solutions in the IR
(r → ∞) at finite θ angle. For physically relevant solutions
we expect that the tachyon diverges in the IR as it does for
θ ¼ 0 [51]4 so the tachyon potentials Vf and Va vanish in
the IR (and this is indeed what we will find for all regular
solutions in the IR). This together with the regularity of ξ0
implies that the glue degrees of freedom AðrÞ and λðrÞ
satisfy the same asymptotics as at θ ¼ 0, given in Eqs. (A9),
(A10) in Appendix A. The asymptotics of the tachyon field
is, however, modified as one turns on a finite θ angle.
The most relevant IR constraint arises as the requirement

of having a regular ξ0 from Eq. (3.6). Indeed, by demanding
that the denominator of (3.6) does not become complex one
obtains the inequality

e4AVf
ffiffiffi
κ

p
τ − jCajVa > 0; ðr ≫ Λ−1

IR Þ: ð3:28Þ
We have identified two choices for the potentials that
satisfy this inequality and lead to sensible IR solutions.
First, if one considers an Ansatz where the exponential

factors in Vf and Va can be different functions of τ, the
inequality will be satisfied by a Va that vanishes faster than
Vf for an IR diverging tachyon. A simple choice would be
to take Vf ∝ expð−aτ2Þ and Va ¼ expð−bτ2Þ where a and
b are constants satisfying b > a. Another choice, which we
will use below, is to modify the tachyon dependence of Va,
to, e.g., Va ¼ expð−aqτ2 − aljτjÞ.
Second, if one insists on keeping the same exponential

factors [see (2.9) and (2.13)], and then Va ∼ e−aτ
2

as in flat
space string theory [59], then the inequality above will
constrain Vf0. Namely, the inequality (3.28) reduces to

e4AVf0
ffiffiffi
κ

p
τ > jCaj; ð3:29Þ

and this condition results in a constraint on the potential
Vf0 as we now explain. In [51] it was shown that in order to
have linear meson trajectories, κ should behave in the IR as
∼λ−4=3, while for the flavor potential we had Vf0 ∼ λvp .
Although vp was not fixed by the spectrum analysis
of [51], it was already shown in [48] that for vp > 10=3
no acceptable solutions existed. Potentials with κ ∼ λ−4=3

and vp < 10=3 were indeed analyzed in [51], and shown to
display linear meson trajectories. However, after inserting
the IR asymptotic expansions of AðrÞ, λðrÞ and τðrÞ for that
case, the inequality (3.29) would only be satisfied if we had
vp ≥ 10=3. This leads one to consider potentials having
vp ¼ 10=3:

κ ∼ κcλ
−4=3ðlog λÞ−κl ;

Vf0 ∼ vcλ10=3ðlog λÞ−vl ; ðλ → ∞Þ: ð3:30Þ

As shown in Appendix A 2, this choice results in regular IR
asymptotics if certain constraints for κl and vl are fulfilled.
In particular, the asymptotics for the phase is

ξ0 ∼
�
2

3

�
vlþκl

2 Cae−4Ac−8
3
λc

vc
ffiffiffiffiffi
κc

p τ0

r2−2vl−κlτ2
; ðr → ∞Þ:

ð3:31Þ

However, we have not been able to find potentials with
vp ¼ 10=3 for which the (numerically constructed) solu-
tions would have been regular both in the IR and in the UV.
Regular solutions are found for 4=3 ≤ vp ≲ 3. The pre-
diction from string theory, vp ¼ 7=3 (see Sec. 2. 4 in [51])
falls in the middle of the acceptable range. Similar
observations have been made earlier for the other potentials
Vg, a, and κ in the model: the power laws given by string
theory arguments, possibly with multiplicative logarithmic
corrections, give the best match with QCD physics. The
result for Vf0 is, however, different from those for the other
potentials, because the power law is nontrivial (i.e., having
power different from zero) even after the transformation
from Einstein frame to a string frame. That is, choosing all4The stable minimum of the tachyon potential is at T → ∞.
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potentials to have exactly “critical” asymptotics in the
string frame does not lead to regular solutions, but
following the string theory prediction does, and even
results in physics which is close to QCD.
In the numerical analysis below, we will consequently

use the first option discussed above and choose the tachyon
dependence in the exponential factor of Va so that (3.28) is
satisfied independently of the asymptotic form of Vf0.

IV. CHOICE OF POTENTIALS

In this section we present concrete choices for the
potentials appearing in the action of our holographic model.
These choices will be used in the numerical analysis of
subsequent sections, and largely agree with those intro-
duced in [48], and further constrained in [49,51], as we now
review.
Two classes of potentials Vg, Vf0, κ, and a were

considered in [48,49,51]; they are called potentials I and
potentials II.

(i) Potentials I were chosen such that the IR power
behavior of κðλÞ ∼ λ−4=3 and aðλÞ ∼ λ0 is the critical
one; as shown in [51] these values correspond to the
critical point at the edge of the region of acceptable
IR asymptotics. These potentials admit a regular IR
solution with exponential tachyon, τ ∼ τ0eCIr, where
CI can be computed in terms of the potentials, and τ0
is an integration constant (see Appendix D of [51]
for details). For the resulting mesonic spectra, the
asymptotic trajectories of masses in all towers are
linear but have logarithmic corrections. Exactly
linear asymptotic trajectories for the mesons can
be obtained by considering a slight modification of
potentials I such that κðλÞ ∼ λ−4=3ðlog λÞ1=2 in the IR.

(ii) Potentials II behave instead as κðλÞ ∼ λ−4=3 and
aðλÞ ∼ λ2=3 in the IR. These potentials admit a
regular IR solution with τ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CIIrþ τ0

p
, and the

asymptotic trajectories of masses in all towers are
quadratic.

In order to fully fix the action for this article we will also
need to specify the potentials appearing in the CP-odd
action (2.15). Notice that he function ZðλÞ there contributes
even when x ¼ 0, and therefore has been considered in the
context of IHQCD [35,60,73]. In [73] it was shown that the
asymptotic behavior of Z at λ → 0 and λ → ∞ was fixed
from general principles. We adopt a similar Ansatz com-
patible with the asymptotic behaviors as was used there:

ZðλÞ ¼ Z0

�
1þ ca

�
λ

λ0

�
4
�
: ð4:1Þ

For the physics at finite x the choice of Va is even more
relevant. Based on earlier studies and observations made
above, we can immediately set some constraints. As
pointed out in Sec. II A, for the anomaly structure to be

reproduced correctly we need Vaðλ; τ ¼ 0Þ ¼ 1. That is, in
the UV we must have Va ¼ 1 up to terms suppressed by
powers of τ, and in particular the leading term is indepen-
dent of λ. Dependence on λ would have introduced
perturbative corrections to triangle diagrams giving rise
to the axial anomaly, which would have conflicted with our
knowledge of QCD. Here we will impose the stricter but
natural constraint that Va only depends on τ. The inde-
pendence of Va on λ is consistent with the analysis of
boundary string field theory [59] where the flavor and CP-
odd potentials were found to be ∝ expð−aτ2Þwith the same
λ-independent factor a in both potentials. The λ independ-
ence of the flavor potential in V-QCD is also supported by
the analysis of the asymptotic radial trajectories of the
meson spectrum [51] and the behavior of the meson masses
at high quark mass [55].
As we have seen in Sec. III B 2, extra constraints result

from demanding a regular solution for ξ0 in the IR; in
particular, the inequality (3.28) must be satisfied. The
options which lead to regular IR asymptotics can be
summarized as follows:
(1) Choose Vf0ðλÞ with the asymptotics (3.30), take

Va ¼ expð−aτ2Þ, and use potentials I for the other
functions.

(2) Add a linear term in the exponential factor of
the CP-odd potential: Va ¼ expð−aτ2 − aljτjÞ (or
modify the tachyon dependence in some other way
such that Va is suppressed with respect to Vf). Then
the IR behavior Vf0ðλÞ can be chosen more freely,
e.g., as in previous work [51].

We show in Appendix A 2 that the first choice still gives
regular IR asymptotics for a vanishing θ angle, and with a
good choice of vl the tachyon phase is also regular when
θ ≠ 0. The second option above is nonanalytic at τ ¼ 0, but
the extra linear term in the exponential guarantees that the
term involving Va in (3.28) is suppressed, and the inequal-
ity is fulfilled. As we mentioned above, we have not found
potentials satisfying the first option for which the solutions
would have been regular both in the IR and in the UV.
Therefore we selected the latter option when performing the
numerical analysis of vacua at finite θ angle.
Next we summarize the explicit choices of potentials that

were used to carry out the numerical analysis of Secs. VI,
VII, and VIII.

A. Potentials I

The motivation for this choice is to mimic (at qualitative
level, without fitting any of the numerical results to QCD
data) the physics of real QCD in the Veneziano limit [51].
With potentials I we have used in this article the choice

Va ¼ expð−aqτ2 − aljτjÞ, suggested above, which also
makes the backgrounds at finite θ angle well defined.
As pointed out above, we require that the leading depend-
ence on the tachyon in Va is the same as in Vf, i.e.
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aq ¼ const ¼ a. In addition, we choose al to be a constant
having a sufficiently large value so that e4AVf

ffiffiffi
κ

p
τ in (3.28)

dominates over Va for all r≳ 1=ΛIR. A convenient choice
is al ¼ 10=CI, where CI is the coefficient in the IR
asymptotics of the tachyon: τ ∼ eCIr. For the numerical
coefficients in the function ZðλÞ of (4.1) we chose Z0 ¼ 1
and ca ¼ 0.1. This choice was seen to lead to reasonable
behavior for all observables depending on this function.
In summary, the potentials I are given by

VgðλÞ ¼ V0

2
641þ V1λþ V2λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ logð1þ λ

λ0
Þ

q
ð1þ λ

λ0
Þ2=3

3
75; ð4:2Þ

Vf0ðλÞ ¼ W0½1þW1λþW2λ
2�;

aðλÞ ¼ a0; κðλÞ ¼ 1

ð1þ 3a1
4
λÞ4=3 ¼ wðλÞ; ð4:3Þ

ZðλÞ ¼ Z0

�
1þ ca

�
λ

λ0

�
4
�
;

VaðτÞ ¼ expð−aqτ2 − aljτjÞ; ð4:4Þ

where the coefficients satisfy

V0 ¼ 12; V1 ¼
11

27π2
; V2 ¼

4619

46656π4
;

W1 ¼
24þ ð11 − 2xÞW0

27π2W0

;

W2 ¼
24ð857 − 46xÞ þ ð4619 − 1714xþ 92x2ÞW0

46656π4W0

;

a0 ¼
12 − xW0

8
¼ aq; a1 ¼

115 − 16x
216π2

;

λ0 ¼ 8π2; ð4:5Þ

Z0 ¼ 1; ca ¼ 0.1; ð4:6Þ

and with al chosen as explained above. For potentials I we
have used5 W0 ¼ 3=11.
All computations at finite θ angle in this article were

done by using this choice of potentials.

B. Potentials II

This choice might not model QCD as well as potentials I,
but the motivation is to pick a background with different IR
structure in order to see how much this affects our results
for the backgrounds at zero θ angle. The numerics for
potentials II in this article were done with the choice

Va ¼ expð−aðλÞτ2Þ, where aðλÞ is the same function which
appears in Vf and is given explicitly in (4.7).
Explicitly we used

aðλÞ ¼ a0
1þ a1λþ λ2

λ2
0

ð1þ λ
λ0
Þ4=3 ;

κðλÞ ¼ 1

ð1þ λ
λ0
Þ4=3 ; wðλÞ ¼ 1; ð4:7Þ

Va ¼ expð−aðλÞτ2Þ; ð4:8Þ

and all the other functions as for potentials I above, except
that we chose

W0 ¼
12

x

�
1 −

1

ð1þ 7
4
xÞ2=3

�
ð4:9Þ

instead ofW0 ¼ 3=11. With this choice, the pressure agrees
with the Stefan-Boltzmann (SB) result at high temperatures
[49] (without the need to introduce an x dependence in the
normalization of the action). In this article, we used
potentials II in the numerical analysis of Sec. VII (at zero
θ angle).

V. THE CHIRAL LAGRANGIAN ANALYSIS
IN THE VENEZIANO LIMIT

In this section we will take a detour and consider the
problem from the effective chiral theory point of view. To
do this, we must assume that the bare quark masses m ≪
ΛUV so that the pions are very light compared to other
particles, and therefore it makes sense to write down an
effective action for them integrating out all other particles.
This analysis is useful as we can see what can be
determined from low energy symmetries alone and what
needs a full nonperturbative computation (using hologra-
phy in this paper). Moreover the chiral Lagrangian results
provide consistency checks for our holographic analysis.
We will start by writing the effective action for the

expectation values of the QCD order parametersWij which
is an Nf × Nf complex matrix (the expectation value of

ψ̄ i
Rψ

j
L), as well as G and Θ the pseudoscalar and scalar

glueball related expectation values following [74] and
references therein.
We start from the Uð1ÞA anomaly equation that can be

written as

h∂μJ
μ
5i ¼

g2Nf

16π2
hTr½F ~F�i þ iðMijhψ̄ i

Rψ
j
Li −M†

ijhψ̄ i
Lψ

j
RiÞ

¼ NfNcGþ iTr½M̄W − M̄†W†�; ð5:1Þ

with Wij ≡ hψ̄ j
Rψ

i
Li; W†

ij ≡ hψ̄ j
Lψ

i
Ri; ð5:2Þ

as well as the conformal anomaly equation (in flat space)

5As was shown in [49], the finite temperature phase diagram is
not of the standard type for potentials I if W0 is close to its upper
limit 24=11; a chirally symmetric phase is present at small x.
Therefore we pick a value near the lower end of the possible range.
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hTμ
μi ¼ −

βðgÞ
2g

hTr½F2�i þ ð1þ γðgÞÞðMijhψ̄ i
Rψ

j
Ri þ c:c:Þ

¼ NcΘþ ð1þ γðgÞÞTr½M̄W þ M̄†W†�; ð5:3Þ

where Θ, G were defined so that they are Oð1Þ in the
Veneziano limit and M̄ is the quark mass matrix. Here βðgÞ
is the QCD β function and γðgÞ is the fermion anomalous
dimension. Because of energy and charge conservation G
and H have canonical dimension 4. Note that although the
product Tr½M̄W� is RG invariant, W is RG dependent. For
the purposes of an effective theory,W will be defined at low
energies and therefore M̄ will be the renormalized quark
matrix at low energies. It will be linearly related to the UV
quark mass matrix for small enough quark masses.
Flavor UðNfÞL ×UðNfÞR transformations act as

W → VLWV†
R; ð5:4Þ

where VL, VR are UðNfÞ matrices. G, Θ are flavor
invariants. We can also construct flavor invariants from
the matrix W

In ≡ 1

Nfðg2NcÞ6n
Tr ½ðWW†Þn� ð5:5Þ

which are also Oð1Þ in the Veneziano limit. In the absence
of masses and the anomaly, the effective potential takes the
following form:

VeffðG;Θ; InÞ ¼ N2
cV0ðG;Θ; InÞ; ð5:6Þ

where V0 is an arbitrary function that due to parity
invariance must satisfy

V0ðG;Θ; InÞ ¼ V0ð−G;Θ; InÞ: ð5:7Þ

To accommodate the Uð1ÞA anomaly we must consider
that the Uð1ÞA transformation acts as

W → eiϵW; G → Gþ ϵ: ð5:8Þ

Therefore the full effective potential that includes the
anomaly is

Veff ¼ N2
cV0

�
Θ; In; Gþ i

2Nf
log det

W
W†

�
: ð5:9Þ

In the presence of a (complex) mass matrix M̄ at linear
order, we have in addition the associated term from the
QCD Lagrangian

Veff ¼ N2
cV0

�
Θ; In; Gþ i

2Nf
log det

W
W†

�

þ Tr½M̄W þ M̄†W†�: ð5:10Þ

By a chiral rotation we can also introduce the θ angle:

Veff ¼ N2
cV0

�
Θ; In; Gþ i

2Nf
log det

W
W† −

θ

Nf

�

þ Tr½M̄W þ M̄†W†� ð5:11Þ

and by a phase redefinition of W it can be moved to the
masses

Veff ¼ N2
cV0

�
Θ; In; Gþ i

2Nf
log det

W
W†

�

þ Tr½ei
θ
NfM̄W þ e

−i θ
Nf M̄†W†�: ð5:12Þ

When quark masses are small (compared to ΛQCD) the G
and Θ glueballs are much heavier than the mesons. We will
therefore neglect their kinetic terms and their equations of
motion amount to minimizing their potential. It is interest-
ing that there seems to be more things that can be said about
the dependence of this action concerning its dependence on
the G and Θ condensates. A glimpse of this was indicated
first in [75] and in a more targeted way in [76] where the
effective potential for the trace of the stress tensor was
calculated holographically in a single scalar gravitational
theory.
We next move to the two derivative level. We will

concentrate on the kinetic terms of the quark condensateW
which is the only light remaining field. To write such
kinetic terms, we must introduce flavor invariants with up
to two derivatives

Inμ ≡ 1

Nf
Tr½ðWW†Þnð∂μWÞW†�;

Īnμ ≡ 1

Nf
Tr½ðWW†ÞnWð∂μW†Þ�; ð5:13Þ

and

Jmn ≡ 1

Nf
Tr½ðWW†Þmð∂μWÞðWW†Þnð∂μW†Þ�; ð5:14Þ

and then

S2 ¼
Z

d4x
X∞
m;n¼0

½CnmJmn þ ĈmnIμĪμ�: ð5:15Þ

We now decomposeW as a product of an Hermitian (H)
and a unitary matrix (U)

W ¼ HU; W† ¼ U†H; ð5:16Þ

and thus,
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WW† ¼ HUU†H ¼ H2; det
W
W† ¼ ðdetUÞ2: ð5:17Þ

Moreover, we shall write U as

U¼ exp

�
iffiffiffiffiffiffi
Nf

p η0 þ iπaTa

�
; Tr½TaTb� ¼ δab; ð5:18Þ

where Ta are the (traceless) generators of SUðNfÞ.
Chiral symmetry breaking will give an expectation value

to H, while U remains free and parametrizes the Goldstone
bosons, namely, η0 and the generalized pions.
Minimizing now the potential in the massless case (by

setting first M̄ ¼ 0) with respect to the “heavy" fields
Θ; G;Hij we will obtain nontrivial VEVs for G, Θ and H
that are functions only of ΛQCD.

6 In particular,

hHiji ¼ σδij: ð5:19Þ

The VEVofG can be absorbed in the θ phase changing it
to θ̄. The only part of U that appears in the potential is
log detU due to the anomaly. As argued in the end of
Sec. VI B the dependence in the Veneziano limit is
quadratic like in the ’t Hooft limit,

Veff ¼ κNcNfð−i log detUÞ2 þ � � � : ð5:20Þ

A. The effective action for the Goldstone modes

We now set Θ, G and H equal to their VEVs and we
rewrite the effective Lagrangian (up to two derivatives) for
the Goldstone modes described by an Nf × Nf unitary
matrix U as7 [8–11,77]

Lchiral ¼
f̂2π
2
½Tr½∂μU∂μU−1� þ Tr½M̂U þ M̂†U†��

−
af̂2π
2Nc

ð−i log detUÞ2

þ f̂2η0 − f̂2π
2Nf

Tr½U†∂μU�Tr½U∂μU†�: ð5:21Þ

The last term in (5.21) originates in the factorized terms in
(5.15), and although it is subleading in the ’t Hooft limit, it
is Oð1Þ in the Veneziano limit. It is responsible for the fact
that the decay constant of the η0 is different from the rest of
the Goldstone modes (pions).
The term ∝ ðlog detUÞ2 in (5.21) is the anomaly term

and is of order Oðη02Þ giving a mass to the η0. As discussed

in the end of Sec. VI B this is a good estimate also in the
Veneziano limit. The matrix M̂ is a renormalized quark
mass matrix. We lump the θ parameter inside M̂ via a chiral
rotation. We will consider the SUðNfÞ invariant case where
all quark masses are equal to mq.
Finally, the coefficients arewritten in terms of the physical

pion and η0 decay constants, f̂π;η0 , as well as the parameter a
that as we will soon see is related to the topological
susceptibility. It should be noted that in the Veneziano limit

f̂2π ∼ f̂2η0 ∼ Nc; mη0 ∼Oð1Þ: ð5:22Þ

We now consider the case explored in this paper: quark
masses that are SUðNfÞ invariant. In this case the mass
term in the effective chiral Lagrangian can be parametrized
in terms of the pion mass mπ as

M̂ij ¼ e
i θ
Nfm2

πδij: ð5:23Þ

We now transform U → Ue
−i θ

Nf to obtain

Lchiral ¼
f̂2π
2

�
Tr½∂μU∂μU−1� þm2

πTr½U þ U†�

−
a
Nc

ð−i log detU − θÞ2
�

þ f̂2η0 − f̂2π
2Nf

Tr½U†∂μU�Tr½U∂μU†�; ð5:24Þ

from which the pion potential reads

VðUÞ ¼ f̂2π
2

�
m2

πTr½U þ U†� − a
Nc

ð−i log detU − θÞ2
�
:

ð5:25Þ

By symmetry we should look for a minimum of V of the
form Uij ¼ eiϕδij. However, we should remember that 2π
rotations of individual masses give the same theory.
Therefore, a better parametrization of the vacua is

Uij ¼ eiϕe2πiniδij: ð5:26Þ

Then the potential becomes

VðϕÞ ¼ f̂2π

�
−Nfm2

π cosϕþ a
2Nc

ðθ − Nfϕ − 2πNÞ2
�
ð5:27Þ

with N ¼PNf

i¼1 ni. In the sequel, we will set N ¼ 0, but we
will consider all branches with θ shifted by multiples of 2π.

6Once quark masses are turned on, there will be Oðm2Þ
corrections to such VEVs.

7The pion decay constant f̂π which is normalized as is usual
for chiral Lagrangians differs from the constant fπ used else-
where in this article by Nff̂

2
π ¼ f2π.
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We define

~θ ¼ θ

Nf
; x ¼ Nf

Nc
; ð5:28Þ

and obtain

VðϕÞ ¼ Nff̂
2
π

�
−m2

π cosϕþ xa
2
ð~θ − ϕÞ2

�

¼ f2π

�
−m2

π cosϕþ xa
2
ð~θ − ϕÞ2

�
: ð5:29Þ

Note that V ∼OðNcNfÞ.
Consider first the case with zero quark mass. In this case

mπ ¼ 0 and the extremum is at ϕ ¼ ~θ. Hence the vacuum
energy is independent of θ as expected.
When mπ ≠ 0, the extrema satisfy the equation

m2
π sinϕ ¼ axð~θ − ϕÞ; ð5:30Þ

which can be rewritten as

sinϕ − ζð~θ − ϕÞ ¼ 0; with ζ ¼ ax
m2

π
; ð5:31Þ

ζ being a dimensionless parameter which is Oð1Þ in the
Veneziano limit. There are three different parameters that

enter in ζ: the QCD scale as a ∼ Λ2
QCD, the bare quark

masses mq, and the flavor parameter x. For small mq,
m2

π ∼mq. The assumption for the validity of the effective
chiral theory implies that a ≫ m2

π . Therefore, for generic
values of x, ζ ≫ 1. Only in the ’t Hooft limit, x → 0, can ζ
become much smaller than one.
When ζ ≥ 1 there is a unique solution to (5.30) as the

left-hand side of (5.31) is monotonic. But for ζ < 1 there is
a range of values of θ where there are two or more minima.
We denote these extrema, which are functions of ~θ, as
ϕið~θÞ. They are minima of the potential if

V 00ðϕiÞ ¼ f2πm2
π½cosϕi þ ζ� ≥ 0: ð5:32Þ

The deepest minimum is the one that minimizes

VðϕÞ ¼ f2πm2
π

�
− cosϕþ ζ

2
ð~θ − ϕÞ2

�
: ð5:33Þ

Therefore, the θ-dependent vacuum energy is

Eð~θÞ ¼ min
ϕ
f2πm2

π

�
− cosϕþ ζ

2
ð~θ − ϕÞ2

�
: ð5:34Þ

In Fig. 1 we present a calculation for the energy as a
function of ~θ for ζ ¼ 2, where we now have added the 2π

Nf

FIG. 1. The branches of vacua according to the chiral Lagrangian analysis. The thin blue lines show (normalized) energy for all
branches, and the thick red line is the final energy for the dominant vacuum. We chose ζ ¼ 2 in all plots with Nf ¼ 2, 5, and 20, in the
top-left, top-right, and bottom plots, respectively.
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shifts as argued above, and we have denoted by red lines the
minimum values that indicate the true ~θ dependence of the
ground state energy.
To compute the derivatives of the vacuum energy we

need the derivatives of ϕ from (5.31)

∂ϕ
∂ ~θ ¼ ζ

ζ þ cosϕ
;

∂2ϕ

∂ ~θ2 ¼ ζ2 sinϕ
ðζ þ cosϕÞ3 : ð5:35Þ

We obtain

∂E
∂ ~θ ¼ f2πaxð~θ − ϕÞ; χ̂topð~θÞ≡ ∂2E

∂ ~θ2 ¼ f2πm2
π

ζ cosϕ
ζ þ cosϕ

:

ð5:36Þ

At ~θ ¼ 0 we have ϕ ¼ 0 and

∂E
∂ ~θ
				
~θ¼0

¼ 0;

χ̂topð~θ ¼ 0Þ≡ ∂2E

∂ ~θ2
				
~θ¼0

¼ f2πm2
π

ζ

1þ ζ
≥ 0: ð5:37Þ

The topological susceptibility in the normalization used in
the latter sections of the article is then

χð~θÞ≡ χtopð~θÞ≡ ∂2E
∂θ2 ¼ χ̂topð~θÞ

N2
f

: ð5:38Þ

Note that χtop ¼ Oð1Þ and χ̂top ¼ OðN2
fÞ.

We can now compute the meson masses in the nontrivial
vacuum by expanding U around it

U ¼ eiϕ · exp

�
iffiffiffiffiffiffi
Nf

p η0 þ iπaTa

�
: ð5:39Þ

We obtain

V¼Eð~θÞ−1

2
f̂2π½m2

π cosϕπaπaþðm2
π cosϕþaxÞη02�þ �� � :

ð5:40Þ

From (5.24) we observe that fπ and fη0 are θ independent.
We obtain for the ~θ-dependent meson masses

m2
πð~θÞ¼m2

π cosϕ; m2
η0 ð~θÞ¼

f2π
f2η0

½m2
πð~θÞþax�; ð5:41Þ

where f2η0 ¼ Nff̂
2
η0 . The last relation can be written in terms

of the topological susceptibility by solving (5.36)

ax ¼ m2
πð~θÞχ̂topð~θÞ

f2πm2
πð~θÞ − χ̂topð~θÞ

; ð5:42Þ

as

m2
η0 ð~θÞ ¼

f2π
f2η0

f2πm2
πð~θÞ

f2πm2
πð~θÞ − χ̂topð~θÞ

m2
πð~θÞ: ð5:43Þ

Equation (5.43) is the analogue of the Witten-Veneziano
formula in the Veneziano limit. In the ’t Hooft limit, x → 0,
we find that

χ̂top ¼ f2πax½1þOðxÞ�;

χtop ¼
f2π

NfNc
aþOðxÞ;

m2
πð~θÞ ¼ m2

π þOðx2Þ; ð5:44Þ

where in the last estimate we used (5.55). Since the kinetic
and mass terms of mesons are group theoretically similar
we also have

fπ ¼ fη0 ½1þOðx2Þ�; ð5:45Þ

and then (5.43) can be written as

m2
η0 ð~θÞ ¼ m2

πð0Þ þ
χ̂topð0Þ
f2π

þOðx2Þ

¼ m2
πð0Þ þ x

NfNcχtopð0Þ
f2π

þOðx2Þ; ð5:46Þ

which is the standard Witten-Veneziano relation and is also
in agreement with (G15).

B. The large ζ limit

We will investigate now the limit where ζ ≫ 1. This is
reached when the masses of the quarks are much smaller
than the characteristic QCD scale. For ζ ≫ 1 the unique
solution of (5.31) is

ϕ� ¼ ~θ −
sin ~θ

ζ
þ 1

2

sinð2~θÞ
ζ2

þ sin ~θ − 3 sinð3~θÞ
8ζ3

þ � � � ;

ð5:47Þ

and

V 00ðϕ�Þ ¼ f2πm2
π

�
ζ þ cos ~θ þ sin2 ~θ

ζ
þ � � �

�
> 0; ð5:48Þ

while
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Eð~θÞ ¼ Vðϕ�Þ ¼ −f2πm2
π

�
cos ~θ þ sin2 ~θ

2ζ
−
cos ~θsin2 ~θ

2ζ2

þ 1

6ζ3
sin2 ~θð1þ 2 cosð2~θÞÞ þ � � �

�
: ð5:49Þ

From (5.36) and (5.41) we obtain

χtop ¼ f2πm2
π

�
cos ~θ −

cosð2~θÞ
ζ

þOðζ−2Þ
�
; ð5:50Þ

m2
πð~θÞ ¼ m2

π

�
cos ~θ þ sin2 ~θ

ζ
þOðζ−2Þ

�
: ð5:51Þ

In the large Nf limit ~θ → 0, and (5.49) becomes

EðθÞ¼−f2πm2
π

�
1þ
�
−1þ1

ζ
−
1

ζ2
þ�� �

�
θ2

2N2
f

þOðN−4
f Þ
�
:

ð5:52Þ

In this case, if we are interested in the limit ~θ → 0we can
solve (5.31) to all orders in 1=ζ as follows:

ϕ ¼ ζ

ζ þ 1
~θ þ ζ3

6ðζ þ 1Þ4
~θ3 þOð~θ5Þ; ð5:53Þ

obtaining the following formula for the energy density:

Eð~θÞ ¼ −f2πm2
π

�
1 −

ζ

2ð1þ ζÞ
~θ2 þ ζ4

4ð1þ ζÞ4
~θ4 þOð~θ6Þ

�

¼ −f2πm2
π

�
1 −

ax
2ðm2

π þ axÞ
~θ2

þ ðaxÞ4
4ðm2

π þ axÞ4
~θ4 þOð~θ6Þ

�
; ð5:54Þ

where in the second line we substituted the value of ζ
from (5.31).

C. The ζ → 0 limit

This limit can be reached as x → 0 and coincides
with the ’t Hooft large-Nc limit. In this limit, ζ → 0, there
is an infinite number of extrema that can be found
perturbatively in ζ

ϕn ¼ nπ þ ð−1Þnð~θ − nπÞζ − ð~θ − nπÞζ2 þ � � � ; ð5:55Þ

and thus

V00 ∼ ð−1Þn þ ζ þ � � � ð5:56Þ

which implies that only n ¼ even are minima. Evaluating
the vacuum energy at the 2n-th minimum we obtain

Vn ¼ −f2πm2
π

�
1 −

ζ − ζ2

2
ð~θ − 2nπÞ2 þ � � �

�
; ð5:57Þ

and

Eð~θÞ ¼ min
n

�
−f2πm2

π

�
1 −

ζ − ζ2

2
ð~θ − 2nπÞ2 þ � � �

��
:

ð5:58Þ

VI. VACUA OF V-QCD AT FINITE θ ANGLE

In this section we analyze vacuum solutions of V-QCD at
finite θ angle. First we write down explicitly the solutions
for the axion a and the phase ξ. We denote

faðrÞ≡ Va

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2A þ κτ02

p

κ1=2τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e8AV2

fκτ
2 − C2

aV2
a

q ð6:1Þ

so that (3.6) implies

ξ0ðrÞ¼CafaðrÞ; ξðrÞ¼ ξ0þCa

Z
r

0

dr0faðr0Þ: ð6:2Þ

Here ξ0 is identified as the phase of the quark mass
on the field theory side. The solution for a can be obtained
from (3.3)

a ¼ ā0 − xξVa þ Ca

Z
r

0

dr0

e3AZ
þ xCa

Z
r

0

dr0faVa;

ā0 ≡ a0 þ xξ0; ð6:3Þ

where the integration constant a0 is related to the standard θ
angle by a0 ¼ aðr ¼ 0Þ ¼ θ=Nc, and as explained in
Sec. II A, the gauge invariant combination ā0 is related
to the gauge invariant θ̄ angle through ā0 ¼ θ̄=Nc. Recall
that θ̄ ¼ θ þ arg detMq, where Mq is the quark mass
matrix. We could use the transformation (2.18) to set either
ξ0 or a0 to zero, but equivalently we can postpone the gauge
fixing and continue working with ā0. The value of a at the
tip (which will be determined below) is then given by

að∞Þ ¼ ā0 þ Ca

Z
∞

0

dr

�
1

e3AZ
þ xfaVa

�
: ð6:4Þ

Notice that it is also gauge invariant.
In order to demonstrate the dependence of the free

energy on θ̄, we first analyze the contribution solely from
Sa which is obtained from the on-shell value of the
Euclidean action [the overall sign of which is opposite
that of (3.1)]:
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Ea ¼
1

2
M3N2

c

Z
∞

0

dre3AZða0 þ xξV 0
aÞ2

¼ 1

2
M3N2

cCa

Z
∞

0

drða0 þ xξV 0
aÞ

¼ 1

2
M3N2

cCa

�
að∞Þ − ā0 − xCa

Z
∞

0

drfaVa

�
; ð6:5Þ

where we used (3.3) to obtain the expression on the second
line. We stress that this expression is not the complete free
energy, which will be analyzed below, but it is the most
important contribution for the θ̄ dependence. By using (6.4)
the result may be written as

Ea ¼
1

2
M3N2

c

R∞
0 dre−3AZ−1

½R∞0 drðe−3AZ−1 þ xfaVaÞ�2
ðā0 − að∞ÞÞ2:

ð6:6Þ

This result is analogous to what was found for the θ
dependence in the Yang-Mills case in [35]. Similarly as in
that case, we expect that the contribution to the energy from
the IR singularity, i.e. að∞Þ, vanishes. Otherwise, the IR
singularity would play the role of a second boundary.
Vanishing of að∞Þ also leads to Ea ∝ ā20 ∝ θ̄2 [for small θ̄
so that the implicit dependence of the integrals in (6.6) on θ̄
can be neglected] which agrees with the large Nc analysis
of QCD [33]. Wewill argue below that after setting að∞Þ to
zero, also the full free energy, not only Ea, has quadratic
behavior for small ā0.
The issue described above applies to all string theory

“axions,” namely scalars without a potential. As argued
above, in all such cases, an explicit boundary condition
must be imposed in the IR that is not dictated by regularity.
In many cases such axions are internal components of
gauge fields or higher forms (even the ten-dimensional IIB
axion can be T-dualized to such a form). A concrete
example of this is the case of the black D4 soliton where
the θ angle is generated by a six-dimensional vector field
[33]. In all such cases, the usual regularity condition for the
form field indicates that it should vanish on the extremal
horizon, not unlike the boundary condition we chose above.
Setting að∞Þ ¼ 0, the relation between the source ā0 and

the VEV Ca follows from (6.4)

θ̄

Nc
¼ ā0 ¼ −Ca

Z
∞

0

dr

�
1

e3AZ
þ xfaVa

�
; ð6:7Þ

where one should recall that the integral also depends
implicitly on Ca so that the relation is not exactly linear.

A. Construction of backgrounds and
their generic properties

Recall that at zero θ̄, the chirally broken backgrounds
could be parametrized in terms of a single variable defined

through the IR asymptotics of the solution [48]. For
potentials I, this variable was denoted by T0 and controlled
the normalization of the tachyon in the IR. The value of T0

could be mapped to the physical parameter in QCD, the
quark mass, after constructing the background solution.
At zero θ̄ it was natural to choose the tachyon to be real, and
to define τ as the real part of the complex field, so that it
could become negative. The source of τ in the earlier work,
i.e. the quark mass, consequently maps to the real part of
the source of the complex tachyon. An example of the
dependence of the quark mass on T0 (in the QCD regime
0 < x < xc) is given in Fig. 2. Notice also that negative
values of T0 were allowed, but the solutions with opposite
values of T0 were related by the reflection τ ↦ −τ which
left the action invariant.
Implementation of theCP-odd sector removes the reflec-

tion symmetry: Because the phase of the tachyon is non-
trivial, it is natural that τ is the absolute value of the complex
tachyon. Therefore the quark mass is also defined as the
absolute value of the source for the complex tachyon, and
T0 > 0. At finite θ̄ angle we also have a second variable, the
integration constant Ca, which controls the value of the θ̄
angle. More precisely, the pair ðT0; CaÞ can be mapped to
(mq; θ̄) after the background has been constructed.
We have studied the CP-odd backgrounds numerically,

restricting our study to the region with positive Ca—the
solutions at negativeCa can be obtained by applying theCP
transformation as pointed out at the end of Sec. III A. The
procedure for creating the numerical solutions is essentially
the same as discussed in [48,51,55]—the solutions are
obtained by shooting from near the IR singularity, and
the boundary conditions there are given by the known IR
asymptotic expansions. As the axion and the phase of the
tachyon could be integrated out of the equations of motion,
there are essentially only two differences with respect to the
equations at zero θ̄ angle: there is a new integration constant
Ca and the tachyon equation of motion is now written in

FIG. 2. Sketch of the dependence of the quark mass on T0 for
Ca ¼ 0 ¼ θ̄, i.e. on the horizontal axis of Fig. 3 (left). Solutions
exist right of the vertical blue line. The dashed red vertical line
denotes the location of the standard vacuum with zero
quark mass.
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terms of the absolute value of the complex tachyon rather
than its real part. As we have demonstrated above in Sec. III
the IR asymptotics (and therefore also the IR boundary
conditions) are unchanged, up to the possible appearance of
some special solutionswhichwill be discussed below.When
presenting the numerical data, dimensionful quantities can
be given either in UVunits (ΛUV) or in IR units (ΛIR), which
are discussed in Sec. II B and defined precisely in (A4) and
(A12) in Appendix A.
We discuss first details in the QCD-like phase

[0 < x < xc with xc − x ¼ Oð1Þ], where a rich structure
is found, and return to the dependence of the backgrounds
on x below. In this phase, the absolute value of the quark
mass and the θ̄ angle depend on T0 and Ca as depicted
schematically in Fig. 3. Recall first what happens on the
horizontal axis (Ca ¼ 0) where the θ̄ angle vanishes and the
tachyon is real. The real quark mass as a function of T0 in
this case is given in Fig. 2; see [48]. As we have already
pointed out, at finite Ca we define mq as the absolute value
of the source of the complex tachyon, whereas Fig. 2 shows
the dependence of the real part of the source on T0.
Therefore, in order to compare to Fig. 3 (left), one needs
first take the absolute value so that the negative values of
mq in Fig. 2 are reflected to positive values.
Solutions are only found for T0 > T0c, where the

critical value T0c is the endpoint of the dashed curve in
Fig. 3 and denoted by the vertical blue line in Fig. 2.
The value of the quark mass oscillates as T0 → T0c from
above, so that there are infinitely many zeroes (of which
the three which occur at largest T0’s are shown as red
crosses in Fig. 3). The first node (largest value of T0) is
the standard stable vacuum at zero quark mass, whereas
the other nodes are unstable Efimov vacua. As one
approaches the critical value T0c, the background flows
closer and closer to the IR fixed point but misses it
eventually due to the nonzero tachyon. It is also

possible that there is only a finite amount of nodes
on the horizontal axis. This can happen if the bulk mass
of the tachyon satisfies the BF bound at the IR fixed
point [48,51], as is the case for potentials I at low values
of x [49].
Extending to the solutions with Ca ≠ 0 and therefore

finite θ̄ angle, the nodes are smoothed out, but the region at
small T0, where no regular solutions exist (white in Fig. 3),
remains at least for small Ca. The structure of the sketch in
Fig. 3 can be confirmed numerically for the concrete
choices of potentials I that we have introduced. As an
example we show the dependence of the quark mass and the
θ̄ angle on T0 andCa for the QCD-like potentials I in Fig. 4.
The range of T0 was chosen in the vicinity of the “standard”
zero mass vacuum, which is denoted by the rightmost cross
in Fig. 3 and by the vertical dashed red line in Fig. 2. It can
also be verified analytically that θ̄ is quantized in units of
Nfπ on the Ca ¼ 0 axis, as shown in Fig. 3 (right); see
Appendix C. The uniqueness and stability of the solutions
is discussed in the same appendix.
Notice that there are two types of curves of constant mq

in Fig. 3 (left). First, some of the curves start from the
horizontal axis, circle around some of the nodes, and return
to the axis. Second, some curves start from the horizontal
axis and exit the plot at its upper edge. We plot in Fig. 5
the value of the θ̄ angle at constant mq, i.e., along the
curves, for potentials I. The plots for mq=ΛUV ¼ 0.0001,
mq=ΛUV ¼ 0.01, and mq=ΛUV ¼ 0.025 correspond to con-
tours in Fig. 3 (left) which start from the standard θ̄ ¼ 0
solutions, i.e. on the interval marked with dark blue color,
and return on the horizontal axis on the dark red interval,
having θ̄ ¼ −Nfπ. We will also show in Appendix C why
these curves end exactly at θ̄ ¼ −Nfπ. The remaining plot
at mq=ΛUV ¼ 1 in Fig. 5 corresponds to a curve in Fig. 3
(left) which starts from the dark blue interval and exits the

FIG. 3. Sketch of the dependence of the quark mass (left-hand plot) and the θ̄ angle (right-hand plot) on the parameters T0 and Ca

(with Ca given in IR units). The contours lie at fixed quark mass or θ̄ angle, and the red crosses denote points where the quark mass
vanishes. Solutions exist in the shaded region. The θ̄ angle takes piecewise constant values on the intervals of the horizontal axis between
the crosses as indicated in the right-hand plot.
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plot without returning to the horizontal axis, which leads to
the solutions being found only for a finite8 range of θ̄. We
also show the analytic small mq approximation [given

below in (6.24)] as dashed magenta curves. The value
mq=ΛUV ¼ 1 is so large already that the small mq result
does not work even as a rough approximation. If the value
of mq is increased further the plot will remain essentially
unchanged.
In Fig. 6 we study numerically the holographic RG flow

of the field ā ¼ aþ xξVa which is invariant under the
Uð1ÞA transformation (2.18). The field vanishes in the IR
due to the boundary condition āð∞Þ ¼ að∞Þ ¼ 0, and its

FIG. 4. The behavior of the quark mass (left-hand plot) and the θ̄ angle (right-hand plot) for the “QCD-like” potentials I with x ¼ 2=3
near the rightmost node in Fig. 3 (left), i.e. the standard zero mass vacuum. The solid blue, dashed red, dotted magenta, and dot-dashed
green curves have Ca=Λ4

IR ¼ 0, 0.02, 0.05, and 0.1, respectively.

FIG. 5. The dependence of the (gauge invariant) θ̄ angle on Ca for the QCD-like potentials I at x ¼ 2=3 and for various fixed values of
the quark mass as indicated in the plots. The blue curves are numerical data, and the dotted magenta curves are determined by the
analytic approximation at small mq from (6.24).

8Notice that this is the case only for a single branch of
solutions, which are connected by continuous deformations of the
parameters. As argued in Sec. II, there are also disconnected
branches which realize the 2π periodicity of θ̄, an taking them
into account solutions are found for all values of θ̄.
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boundary value is ā0 ¼ θ̄=Nc. For the left-hand plot we have
picked four points from the curve in the top right plot of
Fig. 5 at mq=ΛUV ¼ 0.01, which have pairwise the values
Ca=Λ4

IR ¼ 0.02 and Ca=Λ4
IR ¼ 0.08 but are on different

branches of the curve. The flow of ā is determined by (6.3).
Whenmq=ΛUV ≪ 1, the two integrals in this equation affect
the flow at different scales of r, which can also be seen from
Fig. 6. The first integral is the only finite term in the probe
limit x → 0. It adds a contribution to the flow at r ∼ 1=ΛUV,
which is roughly proportional to Ca. Indeed the curves
having the same Ca overlap in Fig. 6 (left) when r ∼ 1=ΛUV.
The second integral is the flavor contribution which affects
the flow mostly at r ∼

ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
. This term is dominant at

small r in the plot, and results in a different flow for the
curves which have the same Ca but different branch. We will
see in Sec. VI D that this structure is analytically tractable in
the limit mq → 0. Also, one can show that the flow on the
upper branch of Fig. 5 approaches a step function as Ca → 0

(see Appendix C) and indeed the flow at Ca=Λ4
IR ¼ 0.02

(dot-dashed green curve) in the left-hand plot of Fig. 6 is
already reminiscent of a step function. In the right-hand plot
of Fig. 6 we plot āðrÞ for mq=ΛUV ¼ 1 and for various
values of Ca. In this case the RG flow is significant only for
r ∼ 1=ΛUV. One can check that the first integral in (6.3)
dominates.

B. Free energy and topological susceptibility

We analyzed above the contribution to the free energy
from the CP-odd action Sa. However, the dependence of
the free energy density on ā0 is not fully captured by this
contribution when x is nonzero. This is the case because Sf
depends on the derivative of the phase, ξ0, whose source
varies as ā0 is varied. Therefore, we need to study the full
energy density. This can be done quite simply since we only
allow a variation of ā0 while keeping the other sources (in
particularmq and ΛUV) fixed. In this case we can read from
(3.20) that

δE ¼ −M3N2
cCaδā0 ¼ −M3NcCaδθ̄: ð6:8Þ

Notice that this result is valid for any value of ā0. Since the
integral in (6.7) is positive, ā0 ¼ 0 is the only minimum
of the energy (for the branch of solutions continuously
connected to ā0 ¼ 0).
We may write the relation (6.7) as

−M3Ca ¼ Gχðθ̄Þā0 ¼
Gχðθ̄Þθ̄
Nc

ð6:9Þ

where

Gχðθ̄Þ ¼ M3

�Z
∞

0

dr

�
1

e3AZ
þ xfaVa

��
−1
: ð6:10Þ

The topological susceptibility (generalized to nonzero θ̄)
therefore becomes, in terms of Gχ ,

χðθ̄Þ≡ Ē00ðθ̄Þ ¼ Gχðθ̄Þ þ θ̄G0
χðθ̄Þ ð6:11Þ

where we used (6.8) and (6.10).
For small a0 integrating (6.8) gives

Ēðθ̄Þ− Ēð0Þ¼ 1

2
N2

cχā20þOðā40Þ¼
1

2
χθ̄2þOðθ̄4Þ; ð6:12Þ

where χ ¼ χðθ̄ ¼ 0Þ ¼ Gχðθ̄ ¼ 0Þ. We denote the energy
in (6.12) by Ē rather than E in order to stress that it is the
energy of the configuration obtained from the solution at
θ̄ ¼ 0 by continuously varying θ̄. In order to determine the
final free energy in the dominant vacuum, E, we will need
to take into account the other branches of solutions.
We plot the topological susceptibility for potentials I at

x ¼ 2=3 as a function of the quark mass at θ̄ ¼ 0 in Fig. 7
and as a function of θ̄ at fixed mq in Fig. 8. The magenta
curves are given by the small mq approximation which will

FIG. 6. The holographic RG flow of the gauge invariant field ā for potentials I at x ¼ 2=3. Left: āðrÞ at mq=ΛUV ¼ 0.01. The solid
blue and dot-dashed green curves have Ca=Λ4

IR ¼ 0.02, while the dashed red and dotted magenta curves have Ca=Λ4
IR ¼ 0.08. The solid

blue and dashed red curves are for the lower branch (as denoted by “l.b.” in the legend) in the top right plot of Fig. 5, while the dotted
magenta and dot-dashed green curves are for the upper branch (denoted by “u.b.” in the legend). Right: āðrÞ at mq=ΛUV ¼ 1. The solid
blue, dashed red, dotted magenta, and dot-dashed green curves have Ca=Λ4

IR ¼ 0.2, 0.4, 0.6, and 0.8, respectively.
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be discussed in Sec. VI D and matches with effective field
theory (this curve lies above the range of the plot in the
right-hand plot of Fig. 8). We also notice that the suscep-
tibility in IR units shown in Fig. 7 (left) approaches a
constant value at large mq. This signals the decoupling of
quarks, and the value is that of the YM limit (i.e. IHQCD),
which can be seen as follows. As the quark mass grows, the
tachyon is sizeable except for a short interval up to r≃ 1=mq

in the UV. Outside this interval, the exponential behavior of
the potential Va suppresses the second term in the integrand
in (6.10). Therefore the second term is suppressed, and the
leading contribution arises from the first term, which has the
same functional form as the expression for χ in IHQCD [35].
Because this integral is dominated in the IR where the
background approaches smoothly the YM (or IHQCD)
background as the quark mass grows [55], the result for χ
in this limit agrees with that of YM.
A comparison of the two plots in Fig. 7 at large mass

shows that χ only approaches a constant value when
measured in IR units, which signals the fact that ΛUV
andΛIR are different at large quark mass as we now explain.
The difference between these two scales might be surpris-
ing, since a large mass decouples the quarks so that the low

energy dynamics is that of the YM theory, which only has a
single energy scale. The UV scale ΛUV differs from ΛIR
because it is defined through the running of the ’t Hooft
coupling asymptotically in the UV where the quarks are not
decoupled: the definition (A4) is not directly affected by the
quark mass for any value of mq. This can be seen explicitly
in the UV expansions (A2)–(A3): for r ≪ 1=mq the back-
reaction of the tachyon is suppressed, no matter how large
mq is. The relation between the energy scales can be found
by requiring continuity between the YM and full QCD
behavior of the coupling at r ∼ 1=mq, which leads to [55]

ΛUV

ΛIR
∼
�

mq

ΛUV

�
b0=bYM0 −1

¼
�

mq

ΛUV

�
−2x=11

; ð6:13Þ

where b0 and bYM0 are the leading coefficients of the beta
functions of QCD and YM theory, respectively. It was
observed in [55] that observables such as the glueball
masses and thermodynamic variables similarly approach
their YM values in IR units at largemq, and ΛIR is therefore
identified as the single energy scale of the YM theory.
Using χ ∼ Λ4

IR at large quark mass, together with the
relation (6.13), gives the asymptotic largemq behavior of χ:

FIG. 7. The dependence of the topological susceptibility on the quark mass in IR units (left-hand plot) and in UV units (right-hand
plot) in the standard, dominant vacuum for potentials I with x ¼ 2=3. The units were discussed in Sec. II B and they are defined in terms
of the asymptotic expansions of Appendix A. The blue solid curves are numerical data and the dashed magenta curves follow the
approximation at small mq given in Eq. (6.29).

FIG. 8. The dependence of χ on the θ̄ angle for small (left-hand plot) and relatively large (right-hand plot) quark mass for potentials I
with x ¼ 2=3. On the left-hand plot, the magenta curve is given by (6.28). The dashed red vertical line denotes the limiting value of the θ̄
angle as Ca → −∞ along the curve of the fixed mass value.
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χ

Λ4
UV

∼
�

mq

ΛUV

�
4ð1−b0=bYM0 Þ

¼
�

mq

ΛUV

�
8x=11

;

�
mq

ΛUV
≫ 1

�
:

ð6:14Þ

We also show the mq dependence of the fourth order
coefficient in the expansion of the free energy around θ̄ ¼ 0
in Fig. 9. For mq=ΛUV ≫ 1, the coefficient approaches a
constant in IR units, as was the case for topological
susceptibility in Fig. 7. For smallmq the coefficient vanishes
in accordance with effective field theory [11].

The free energy for solutions at finite ā0 can be obtained
by integrating the differential (6.8) numerically, using the
dependence betweenCa and ā0 (or equivalently θ̄=Nf) given
in Fig. 5.We present the results as a function of θ̄=Nf at fixed
quark mass in Fig. 10. The blue curves are numerical data
and magenta dashed curves are given by the analytic result
(6.26) at smallmq. We notice that the approximation works
slightly better for the integrated energy than for the relation
between the θ̄ angle and Ca of Fig. 5 where there is already
significant deviation between the numerical data and the
analytic approximation at mq=ΛUV ¼ 0.025.

FIG. 9. The dependence of the fourth order derivative of the free energy at θ̄ ¼ 0 as a function of mq for potentials I with x ¼ 2=3.
Left: linear scale. Right: logarithmic scale.

FIG. 10. The dependence of the free energy on the θ̄ angle for potentials I at x ¼ 2=3 and for various fixed values of the quark mass as
indicated in the plots. (Notation as in Fig. 5). The dashed red vertical lines denote the limiting values of the θ̄ angle as Ca → �∞ along
the curve of the fixed mass value.
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The numerical result agrees with the generic argument
presented above: the energy is minimized at θ̄ ¼ 0 for each
value of the quark mass. For very small mq there are also
additional Efimov vacua, which we will discuss more in
Sec. VI E and in Appendix C, and argue that they are also
subleading. The final expression for the energy is then
obtained by taking into account the periodicity of the theta
angle (see Sec. II and [33]):

Eðθ̄Þ ¼ min
k∈Z

Ē
�
θ̄ þ 2πk

Nf

�
: ð6:15Þ

When writing down the last expression we recalled that for
a single branch the free energy is naturally a function of
ā0 ¼ θ̄=Nf. Therefore the derivatives with respect to this
variable are of the same order as the function, OðN2

cÞ. We
have found that the global minimum of Ē is Ēð0Þ, so (6.15)
is minimized for some k which satisfies approximately
k≃ −θ̄=2π. Then the argument of Ē in (6.15) is Oð1=NfÞ:
there is always some value of k such that jθ̄ þ 2πkj ≤ π.
Therefore we may apply Taylor expansion for Ē around the
origin, which gives the final result for the free energy

Eðθ̄Þ ¼ Ēð0Þ þ 1

2
χmin
k∈Z

ðθ̄ þ 2πkÞ2 ð6:16Þ

in the Veneziano limit. Here we recalled that the second
derivative of Ē is the topological susceptibility. The result is
similar in form to that obtained in the ’t Hooft limit [33].

C. Dependence on x and hyperscaling

Above we restricted ourselves to the QCD-like regime
with x ¼ Oð1Þ, but it is also interesting to study the vacua
as a function of x.
It was found [48,55] that there is a BKT-type transition at

some x ¼ xc between the QCD-like phase and the con-
formal window as x varies (at zero temperature). In the
QCD phase, the vacua with nontrivial tachyon and zero

quark mass (corresponding to the crosses of Fig. 3) only
exist in the chirally broken phase where one of them is the
energetically favored vacuum.
On the other hand, in the conformal window

(xc < x < 11=2 ¼ xBZ), the picture is much simpler. At
zero θ̄, there is no spontaneous chiral symmetry breaking
and the quark mass grows monotonically with T0. When θ̄
is nonzero, the situation is similar: in Fig. 3 the nodes on the
horizontal axis are absent and the quark mass grows
monotonically with T0 for fixed Ca.
The topological susceptibility in the conformal window

(x ¼ 4.5) is shown for the QCD-like potentials I in Fig. 11
(left). For large quark mass, mq=ΛUV ≫ 1, the susceptibil-
ity approaches the YM value as was the case in the
QCD-like phase 0 < x < xc ≃ 4.083. Consequently, the
susceptibility in UV units obeys (6.14) in this limit. When
mq=ΛUV → 0 the susceptibility also approaches a finite,
nonzero value in IR units. This is in agreement with earlier
observations that mass gaps and decay constants are of
order ΛIR for smallmq in the conformal window [55]. Note
that the vertical axis of the plot does not start from the
origin, and the UV and IR limiting values are actually
rather close.
Overall, the dependence of CP-odd observables onmq is

weak, when the observables are expressed in units of ΛIR.
For example, the relation between the source θ̄ and the VEV
Ca is similar to that of the bottom-right plot of Fig. 5 for all
values ofmq. The relation is determined by the IR behavior
of the solutions of the various fields which are weakly
dependent on mq. While most observables are therefore
proportional to the scale ΛIR, the ratio ΛUV=ΛIR depends
strongly on the quark mass as shown in Fig. 11 (right). The
ratio obeys different power laws for mq=ΛUV ≪ 1 and
mq=ΛUV ≫ 1, given in (6.17) and (6.13), respectively,
and shown as red dashed lines in Fig. 11 (right).
The hyperscaling relation (see [72]) for χ can be found

by taking into account the dependence of the scales on mq

in the limit of small mq,

FIG. 11. Conformal window, x ¼ 4.5. Left: dependence of the topological susceptibility on the quark mass in IR units for potentials I.
Right: ratio ΛUV=ΛIR as a function of the quark mass (blue solid curve). The red dashed lines show the scaling relations (6.17) and (6.13)
at small and large quark masses, respectively.
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ΛIR

ΛUV
∼
�

mq

ΛUV

� 1
Δ�
; ð6:17Þ

whereΔ� is the dimension of the quark mass at the IR fixed
point [55]. Because χ ∼ Λ4

IR,

χ

Λ4
UV

∼
�

mq

ΛUV

� 4
Δ� ∼

�
mq

ΛUV

� 4
1þγ�

;

�
mq

ΛUV
≪ 1

�
ð6:18Þ

where γ� is the anomalous dimension of the quark mass at
the fixed point.
We then discuss the phase diagram near the conformal

transition and, in particular, in the regime with walking
behavior (xc − x ≪ 1). As we have already pointed out, the
diagram of Fig. 3 has nodes for all x within the interval
0 < x < xc. However, they approach the dashed line where
the solution ceases to exist as x → xc from below.
We demonstrate the approach to x ¼ xc by studying

numerically the topological susceptibility in the dominant
vacuum. It is shown at θ̄ ¼ 0 as a function of the quark
mass in Fig. 12 (left). We chose x ¼ 4, which is close to the
critical value xc ≃ 4.083 for the potentials I used here.
Three separate regimes can be identified as the quark mass
varies. For very small9 mq, the topological susceptibility is
proportional to mq and obeys the relation (6.29) as in the
QCD-like phase. In the intermediate regime, the topologi-
cal susceptibility is close to the constant value associated
with the IR CFT (that is approached in the walking region).
Finally, for large mq, χ=Λ4

IR approaches the constant value
associated with the QCD-like IR regime. In contrast, for
lower values of x, far from the walking regime, the
topological susceptibility (see the left plot in Fig. 7)

contains only the first and third regimes above, while
the intermediate regime is (not surprisingly) absent.
The dependence of the ratio ΛUV=ΛIR on mq=ΛUV is

shown in Fig. 12.We observe that the ratio takes a finitevalue
in the limit mq → 0, as in the QCD-like phase, and shows
similar behavior to the conformalwindow in the intermediate
and largemq regimes. In particular, the scaling relation (6.17)
with Δ� ¼ 2 [55] (shown as the dashed red line at inter-
mediate quark masses), is consistent with the numerical
results. Consequently, we obtain a hyperscaling-like relation

χ=Λ4
UV ∝ ðmq=ΛUVÞ2 ð6:19Þ

in the intermediate regime.
In summary, the dependence of the topological suscep-

tibility (and the CP-odd physics in general) on x and mq is
qualitatively similar to that obtained for other observables
(such as meson masses) at θ̄ ¼ 0; see Fig. 2 in [55].

D. The chiral limit and comparison to
effective field theory

The solutions for the CP-odd fields can be studied
analytically at small mq, i.e. in the vicinity of the nodes
of Fig. 3 (left). As shown in Sec. III B 1, in the UV, the
complex tachyon satisfies the linearized Eq. (3.13), where
Ca does not appear explicitly. In particular, that equation has
the same form as the equation for the (real) tachyon at zero θ̄
angle or equivalently at zero Ca. The UV boundary data for
the complex tachyon (but not necessarily for its absolute
value and its phase) is expected to behave smoothly as the IR
boundary conditions are varied. For small mq (that is for
mq=ΛUV ≪ σ0=Λ3

UV), we may therefore write the asymp-
totic solution as

1

l
τeiξ ≃ eiξ0mqrð− logðΛrÞÞ−ρ þ σ0r3ð− logðΛrÞÞρ;

ð6:20Þ

FIG. 12. Walking regime, x ¼ 4. Left: dependence of the topological susceptibility on the quark mass in IR units for potentials I. The
dashed magenta curve is given by the approximation at small mq given in Eq. (6.29). Right: ratio ΛUV=ΛIR as a function of the quark
mass (blue solid curve). The red dashed lines show the scaling relations (6.17) (with Δ� ¼ 2) and (6.13) at intermediate and large quark
masses, respectively.

9As shown in [55], the boundaries between the three regimes
are roughly at mq ∼ ΛUV exp ð−2K̂= ffiffiffiffiffiffiffiffiffiffiffiffi

xc − x
p Þ with K̂ given in

(2.32), and at mq ∼ ΛUV.
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where σ0 is the real valued VEV for the standard solution
at mq ¼ 0, and we neglected OðmqÞ corrections to the
VEV term.10

Recall that (6.20) is not gauge invariant: in particular
ξ0, or equivalently the phase of the quark mass, trans-
forms under Uð1ÞA. So far we have not worried about
gauge dependence, because we were mostly using gauge
invariant variables, but it is convenient to fix the gauge
now. We do this by requiring that the tachyon phase
vanishes in the IR, ξ → 0 as r → ∞. This makes sense
even when working with the UV expansions, because the
phase ξ only varies significantly in the UV region when
the quark mass is small. That is, the tachyon is real up to
OðmqÞ corrections in the IR region for this gauge choice.
Continuity at r ∼ 1=ΛIR implies the VEV term of the
tachyon and σ0 are real up to OðmqÞ corrections.
Inserting the phase and absolute value from (6.20) in the

phase equation of (3.11) we find that

Ca ¼ −2mqσ0κ0W0l5 sin ξ0 þOðm2
qÞ: ð6:21Þ

Moreover, for the current gauge choice (6.7) implies

ā0 ¼ xξ0 − Ca

Z
∞

0

dr

�
1

e3AZ
þ xfaðVa − 1Þ

�
; ð6:22Þ

where the second term vanishes as mq → 0 [because Ca →
0 in this limit as seen from (6.21)]—the possible singular
contributions from fa near the tachyon nodes are regulated
by the factor 1 − Va which also vanishes at the nodes.
Therefore we find

θ̄ ¼ Ncā0 ¼ Nfξ0 þOðmqÞ: ð6:23Þ

Notice, however, that the first term in (6.22) vanishes as
x → 0—the integral which we dropped is actually much
smaller than the term xξ0 if x ≫ mqσ=Λ4

IR. That is, the
limits x → 0 and mq → 0 do not commute. We will take
x ¼ Oð1Þ first and return to the case of small x below.

1. Limit of small mq for x ¼ Oð1Þ
The relation between the VEV Ca and the source θ̄

becomes

Ca ¼ −2mqσ0κ0W0l5 sin
θ̄

Nf
þOðm2

qÞ: ð6:24Þ

The free energy at small, constant mq can be then
obtained11 by integrating (6.8):

Ēðθ̄Þ − Ēð0Þ ¼ 2NcNfM3mqσ0κ0W0l5

�
1 − cos

θ̄

Nf

�

þOðm2
qÞ ð6:25Þ

¼ −hψ̄ψijmq¼0

�
1 − cos

θ̄

Nf

�
mq þOðm2

qÞ:

ð6:26Þ

Here we recall that the proportionality constant between
the VEV σ0 and the chiral condensate (for the standard
solution at mq ¼ 0) is −2NcNfM3κ0W0l5 [45,55]. The
same result is also found by using chiral effective
Lagrangians in the limit of small mq [10,11] (see also
the review [14]).
The (generalized) topological susceptibility reads

χðθ̄Þ ¼ −M3Nc
dCa

dθ̄
¼ 2M3mqσ0κ0W0l5

x
cos

θ̄

Nf
þOðm2

qÞ

ð6:27Þ

¼ −
hψ̄ψijmq¼0

N2
f

mq cos
θ̄

Nf
þOðm2

qÞ: ð6:28Þ

Taking here θ̄ → 0 we obtain

χ ¼ χðθ̄ ¼ 0Þ ¼ −
hψ̄ψijmq¼0

N2
f

mq þOðm2
qÞ; ð6:29Þ

which agrees with the well-known field theory result [4,18].
The estimates (6.24)–(6.26) were compared to numerical
data in Figs. 5–10 where they give the dotted magenta
curves.

2. Limit of small mq for any x

Notice that because the condensate is OðNfNcÞ, (6.29)
diverges for x → 0. This signals the breakdown of the
small mq approximation. As we pointed out above, the
limits mq → 0 and x → 0 do not commute. This reflects
properties of QCD: when x → 0 the axial anomaly is
effectively suppressed, the η0 meson becomes light, and
must also be taken into account when analyzing the
physics.
From (6.11) and (6.10) we see that the susceptibility

approaches its YM value χYM (defined in IR units as
explained above) as x → 0. Working directly with this
equation we can obtain an improved estimate:10One can check that σ0 is related to σ (which was defined in

terms of the UV expansion of the absolute value τ) as
σ cos ξ0 ¼ σ0 þOðmqÞ, and to the complex VEV defined in
(3.14) as eiξ0 σ̂ ¼ σ0 þOðmqÞ.

11We are working around the standard solution, the rightmost
cross of Fig. 3, so that the integration starts from θ̄ ¼ 0.
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χ−1 ¼ χ−1YM −
N2

f

hψ̄ψijmq¼0mq
ð1þOðmqÞÞ: ð6:30Þ

This expression is valid at small mq but for all values of x
(within the QCD like regime, 0 < x < xc) and agrees with
chiral perturbation theory [78] (see also Sec. V).
We can also derive formulas for the free energy which

are valid for all values of x. Namely, as we pointed out
above, the integral in (6.22) is only relevant when x is
small. But in this regime its second term is suppressed, and
the first term is related to the YM topological susceptibility,
so that we find12

θ̄

Nf
¼ ξ0 −M3Cax−1χ−1YM þOðmqÞ ð6:31Þ

whereas the relation (6.21) is unchanged and therefore
implies

M3NfNcCa ¼ hψ̄ψijmq¼0mq sin ξ0 þOðm2
qÞ

¼ N2
fχYM

�
ξ0 −

θ̄

Nf

�
þOðm2

qÞ: ð6:32Þ

We then compare to effective field theory results [11]
given explicitly in Sec. V. Identifying the phase ϕ and the
coupling a (introduced in Eqs. (5.21) and (5.26) respec-
tively) as ϕ ¼ ξ0 and

a
m2

π
¼ −

NfNcχYM
hψ̄ψijmq¼0mq

; a ¼ NcχYM
f̂2π

; ð6:33Þ

where the latter form follows after the use of Gell-
Mann-Oakes-Renner relation, the above conditions (6.32)
match with (5.1) up to corrections suppressed by mq.
Moreover, imposing these conditions the differential (6.8)
integrates to

Ēðθ̄Þ − Ēð0Þ ¼ −hψ̄ψijmq ¼0mqð1 − cos ξ0Þ
þ χYM

2
ðNfξ0 − θ̄Þ2 þOðm2

qÞ ð6:34Þ

which agrees with the potential (5.33) with the above
identifications.
We also remark that the solutions to the last equality in

(6.32), i.e., ξ0ðθ̄Þ, are unique only when jhψ̄ψijmq ¼0mqj ≤
N2

fχYM. When this condition is violated, ξ0ðθ̄Þ has several
branches, which is the case for x ≪ mq=ΛUV. Because the
condensate is negative these branches first appear near

ξ ¼ ð2nþ 1Þπ ¼ θ̄=Nf as x decreases, where n is an
arbitrary integer.
Finally, while we wrote the above formulas around the

standard vacuum, i.e. the rightmost cross of Fig. 3, they hold
also in the vicinity of other points withmq ¼ 0 (the Efimov
vacua) with minor changes. That is, we need to interpret σ0
and hψ̄ψi as the values of the corresponding mq ¼ 0

solutions. In addition, the value of θ̄ should be chosen as
depicted in Fig. 3 (right), so that the starting point of
integration in (6.26) and (6.28) has also changed. For the
susceptibility this results in a factor ð−1Þn in (6.29) near the
nth Efimov vacuum:

χ−1 ¼ χ−1YM −
ð−1ÞnN2

f

hψ̄ψijn;mq ¼0mq
ð1þOðmqÞÞ; ð6:35Þ

where the chiral condensate is that of thenth Efimov vacuum
at zero quark mass. The sign of the condensate is −ð−1Þn
[48,55], so that both contributions to (the inverse of) χ are
positive.

E. Complex Efimov spirals

It is possible to gain some analytic understanding of the
structure of the solutions as the dashed line in Fig. 3 is
approached where the theory flows closer and closer to the
IR fixed point. That is, we can generalize the approach
detailed in Sec. Vof [55] to the case of nonzeroCa. First we
briefly review the main points of the analysis at Ca ¼ 0.
In the vicinity of the fixed point, when the BF bound is

violated, the tachyon satisfies the linearized equation of
motion, the solution of which can be written as a linear
combination of

τm
l

≃ mq

ΛUV
KmðrΛUVÞ2 sin ½ν log ðrΛUVÞ þ ϕm�;�

1

ΛUV
≪ r ≪

1

ΛIR

�
ð6:36Þ

τσ
l
≃ σ

Λ3
UV

KσðrΛUVÞ2 sin ½ν log ðrΛUVÞ þ ϕσ�;�
1

ΛUV
≪ r ≪

1

ΛIR

�
ð6:37Þ

which have zero VEV and quark mass, respectively [the
value of the quark mass and the VEVare determined by the
continuation of the solutions to the UV boundary where
(A6) holds]. HereΛUV ≫ ΛIR since the flow becomes close
to the fixed point, and the parameters ϕi and Ki are Oð1Þ
real numbers which can be determined by solving the
tachyon equation of motion numerically. The parameter ν is
the imaginary part of the dimension of the quark mass at the
fixed point: ν ¼ ImΔ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

τ�l2� − 4
p

, where mτ� and l�
are the (imaginary) bulk tachyon mass and the AdS radius

12The precise scaling limit which determines which terms we
keep here is that xΛUV=mq is fixed as mq → 0, but the
expressions which we obtain will also remain valid for x ¼
Oð1Þ and mq → 0. Notice that the condensate is OðNfNcÞ.
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at the fixed point, respectively. The IR regular solution can
be written in a similar form

τ

l
≃ KIRðrΛIRÞ2 sin ½ν log ðrΛIRÞ þ ϕIR�;�

1

ΛUV
≪ r ≪

1

ΛIR

�
; ð6:38Þ

but in this case it helps towrite the dimensionful quantities in
IR units—then the Oð1Þ parameters KIR and ϕIR take
constant values as the fixed point is approached (i.e. asT0 →
T0c from above) [55]. Expressing (6.38) as a linear combi-
nation of (6.36) and (6.37), one finds the spiral equations

mq

ΛUV
¼ KIR

Km

sin ðϕIR − ϕσ − νuÞ
sin ðϕm − ϕσÞ

e−2u

σ

Λ3
UV

¼ KIR

Kσ

sin ðϕIR − ϕm − νuÞ
sin ðϕσ − ϕmÞ

e−2u ð6:39Þ

where the spiral is parametrized in terms of

u ¼ log
ΛUV

ΛIR
: ð6:40Þ

This kind of spiral structures is relatively common in
holographic models, and has been studied in detail in a
different context in [79].
There is a simple asymptotic relation between u and T0.

The IR geometry has a well-defined limit as the fixed point
is approached, and the leading perturbation to the geometry
is driven by the minimal distance to the fixed point [55]:

T0−T0c∼λ�−λIR≡λ�−λðr¼ 1=ΛIRÞ∼
�
ΛIR

ΛUV

�
δ

: ð6:41Þ

Here r ¼ 1=ΛIR is roughly the value of the coordinatewhere
the growing tachyon field finally drives the flow away from
the fixed point, and δ is the derivative of the holographic beta
function at the fixed point, given by [48,55]

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

9V2λ
2�

V0

s
− 2: ð6:42Þ

The parameters Vi are defined though the expansion of the
effective potential at the fixed point [48] as

VeffðλÞ≡ VgðλÞ − xVf0ðλÞ
¼ V0 þ V2ðλ − λ�Þ2 þOððλ − λ�Þ3Þ: ð6:43Þ

In terms of u, (6.41) becomes

uδ≃ − logðT0 − T0cÞ þ const ðT0 → T0cÞ: ð6:44Þ

The spiral (6.39) admits a relatively simple generalization
to nonzero θ̄ angle, as wewill now show. It is natural to keep
Ca in the IR units, i.e.Ca=Λ4

IR, fixed as T0 → T0c. Using the
UVexpansions of Sec. III in the tachyon equation of motion
we immediately see that the effect of finiteCa is suppressed
in the UV byOðr4Þ. But one can derive amore general result
which holds for all r ≪ 1=ΛIR and in particular near the
fixed point. Namely, the equations (3.11) and (3.13) actually
hold for all r ≪ 1=ΛIR as can be verified by inserting the
behavior of the tachyon τ ∼ r2 and the metric eA ∼ 1=r near
the fixed point in the generic equations of motion for the
tachyon (3.10).
Since the complex tachyon therefore solves the same

equation as the (real part of the) tachyon at Ca ¼ 0, the
solutions (6.36) and (6.37) are otherwise unchanged for
Ca ≠ 0, but mq and σ should be replaced by their complex
counterparts in (3.14):

mq ↦ mqeiξ0 ; σ ↦ σ̂eiξ0 : ð6:45Þ

Here σ̂ ¼ σ þ iCa=ð2mql5κ0W0Þ, with σ defined as the
coefficient of the UVexpansion of the absolute value of the
tachyon in (3.17). This also means that the coefficients Ki
and ϕi in these equations are real and independent ofCa and
the θ̄ angle.
The flowof the tachyon in the IR (for r ∼ 1=ΛIR), however,

changes in a nontrivialmanner. The tachyon is complex in the
IR for generic Ca, and therefore the coefficients of (6.38)
must be allowed to take complex values:

KIR ↦ KIReikIR ; ϕIR ↦ ϕIR þ iφIR; ð6:46Þ

and T0c also depends on Ca. The result for the tachyon near
the fixed point can be found by applying thesemaps to (6.38)

τeiξ

l
≃ KIReikIRðrΛIRÞ2fcoshφIR sin½ν logðrΛIRÞ þ ϕIR�
þ i sinhφIR cos½ν logðrΛIRÞ þ ϕIR�g: ð6:47Þ

Finally, the spiral equations (6.39) generalize to

mqeiξ0

ΛUV
¼ KIReikIR

Km

sin ðϕIR − ϕσ − νuÞ coshφIR þ i cos ðϕIR − ϕσ − νuÞ sinhφIR

sin ðϕm − ϕσÞ
e−2u

σ̂eiξ0

Λ3
UV

¼ KIReikIR

Kσ

sin ðϕIR − ϕm − νuÞ coshφIR þ i cos ðϕIR − ϕm − νuÞ sinhφIR

sin ðϕσ − ϕmÞ
e−2u: ð6:48Þ
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These equations describe, among other things, the structure
of the Efimov vacua near Ca ¼ 0 as one approaches the
dashed curved of Fig. 3 (left).
The equation for the phase in (3.11), ξ0≃Ca=ðκVf0e3Aτ2Þ,

leads to additional constraints. Inserting here the solution
(6.47) or the combination of (6.36) and (6.37), recalling also
the maps (6.45), gives the identities

Ca

l3�Vf0ðλ�Þκðλ�Þ
¼ −l2K2

IRΛ4
IRν coshφIR sinhφIR

¼ CaKmKσΛ4
UVν sin ðϕm − ϕσÞ
2κ0W0l3

: ð6:49Þ

Here the first identity constrains the Ca dependence of KIR
and φIR. Equating the first and third term proves directly that
sin ðϕm − ϕσÞ > 0, fixing the handedness of the spiral. It was
pointed out in [55] that this sign is also necessary for the
chirally broken vacua to dominate over the chirally sym-
metric vacuum.
We compare the asymptotic formulas (6.48) to numerical

data for potentials I at x ¼ 2.5 in Fig. 13. Since the
formulas hold for small quark mass and the condensate,
we plot a section of the spiral (for the absolute value of both
the source and the VEV) very close to the origin, in the
region where the tachyon solution has two nodes as
Ca → 0, so the solutions are identified as unstable (second)

Efimov vacua. As it turns out, the Ca dependence is
relatively mild, in particular the complex phase factor
φIR remains numerically small for all values of Ca.
Therefore our data and curves almost overlap as seen in
the top-left plot. In order to see the dependence on Ca we
zoom in the region of the top-left plot near the point where
jσ̂j has a node for Ca ¼ 0. The result is shown in the top-
right plot. The data (dots) follows the prediction from the
formulas (curves) well, even if the dependence on Ca is
weak. Notice also that the various parameters of the curves
in these plots were not fitted to the data but extracted
directly from their definitions [e.g., in (6.47)].
The dependence on Ca can be seen more clearly in the

plots on the bottom row of Fig. 13 where we show the
phases of the source and the VEV in the same region as for
the top-right plot. In the bottom-right plot, the curve for
Ca ¼ 0 is not shown because it has shrunk into a set of
discrete points. For this plot, we fitted the value of the phase
factor kIR directly to the data. We did this rather than using
the definition in (6.47) because the value of kIR obtained
from the definition appeared to be clearly shifted with
respect to data—the spirals for these values of the phase are
given by the thin curves in the plot. It is possible that this
offset is a numerical effect—the construction of an IR
regular tachyon solution close enough to the fixed point for
it to properly obey the asymptotic formula (6.47) and the
consequent four parameter fit to extract the numerical

FIG. 13. Sections of the complex spiral compared with data for potentials I with x ¼ 2.5. The thin black, solid blue, dashed red, dotted
magenta, and dot-dashed green curves haveCa=Λ4

IR ¼ 0, 0.1, 0.3, 0.5, and 1, respectively. Top row: the absolute value of the quark mass
and the condensate in two regions close to the origin of the spiral. Bottom row: the phase of the condensate in the same region as the
absolute values in the top-right plot as a function of the absolute value of quark mass (left) and the phase of the quark mass (right).
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values of the parameters is demanding due to limited
numerical precision.

VII. SPECTRA OF SINGLET PSEUDOSCALAR
BOUND STATES AT θ̄ ¼ 0

In order to compute the spectrum of mesons and
glueballs one needs to study the fluctuations of all the
fields of V-QCD. These fluctuations decouple into different
sectors corresponding to glueballs and mesons with
JPC ¼ 0þþ; 0−þ; 1þþ; 1−−; 2þþ, where J stands for the
spin and P and C for the field properties under parity
and charge conjugation respectively. They can be further
classified into two classes according to their transformation
properties under the flavor group: flavor nonsinglet modes
[expanded in terms of the generators of SUðNfÞ] and flavor
singlet modes.
The general analysis of the fluctuations for the model at

vanishing θ̄ angle was carried out in [51]. There the
quadratic action for each sector was computed, and the
spectra for all but one sector were calculated numerically.
In this section we will analyze the one sector left out in
[51]: the flavor singlet pseudoscalar modes at vanishing θ̄
angle.Wewill restrict our study to the case θ̄ ¼ 0—this is the
casewhich is closest to ordinaryQCD, and at finite θ̄ solving
the fluctuation equationswould be technically very involved
because the singlet scalar and pseudoscalar mesons and
glueballs would all mix. This sector is made up of the
pseudoscalar 0−þ flavor singlet meson and the 0−þ glueball
whichmix due to the axial anomaly (realized by theCP-odd
sector). Sincewe are in theVeneziano limit, themixing takes
place at leading order in 1=Nc. In the next section we will
study the spectra for backgrounds at finite θ̄ angle, restrict-
ing the analysis to the flavor nonsinglet sector.
The masses of the singlet pseudoscalar states are particu-

larly important, because they contain the physics of the η0
meson, which is identified as the state with the lowest mass
in this sector at small x. We will demonstrate, both
analytically and numerically, that the mass of the η0 meson
obeys the Witten-Veneziano formula. Because of the back-
reaction, the pseudoscalar glueballs and mesons mix non-
trivially already at small x, which affects the derivation of the
Witten-Veneziano relation. We have not found a trans-
formation (e.g., a rotation in the space of wave functions)
which would remove this mixing, so wewill need to study it
carefully. Therefore our derivation is more involved than the
typical arguments in the literature [40,42–44].

A. Pseudoscalar singlet fluctuations at θ̄ ¼ 0

We now write down the fluctuation equations for the
pseudoscalar singlet sector. First, the vector and axial
vector combinations of the gauge fields are

VM ¼ AL
M þ AR

M

2
; AM ¼ AL

M − AR
M

2
: ð7:1Þ

They contribute to both the singlet and nonsinglet flavor
sectors. Next we write the complex tachyon field as

Tðxμ; rÞ ¼ τðrÞ exp ½iθTðxμ; rÞ�; ð7:2Þ

where τ is the background solution, and θT is the pseu-
doscalar flavor singlet fluctuation.
The flavor singlet pseudoscalar degrees of freedom

correspond to gauge invariant combinations of the longi-

tudinal part of the flavor singlet axial vector fluctuation AjS
μ ,

the pseudoscalar phase of the tachyon θT and the axion
field a.
We split these fields as

AkS
μ ðxμ; rÞ ¼ −φLðrÞ∂μðT ðxμÞÞ;
θTðxμ; rÞ ¼ 2φθðrÞT ðxμÞ;
aðxμ; rÞ ¼ 2φaxðrÞT ðxμÞ: ð7:3Þ

The following combinations of the above fields

PðrÞ≡ φθðrÞ − φLðrÞ;
QðrÞ≡ φaxðrÞ þ xVaðλ; τÞφLðrÞ; ð7:4Þ

are invariant under the residual gauge transformations (2.18).
They correspond to the pseudoscalar glueball (0−þ) and η0
meson towers. They satisfy the coupled differential equations
(see Appendix D and [51] for more details)

∂r

�
VfeAG−1w2

�
−4e2A

Vfκτ
2

Na þ Nb
P0 þ V 0

a

Va

Nb

Na þ Nb
P

þ Nb

xVaðNa þ NbÞ
Q0
��

þ 4Vfe3AGκτ2P − 4e3AZVaQ ¼ 0; ð7:5Þ

∂r

�
e3AZ

�
4xe2A

VaVfκτ
2

NaþNb
P0 þx

V 0
aNa

NaþNb
Pþ Na

NaþNb
Q0
��

þm2e3AZQ¼ 0; ð7:6Þ

where the primes denote derivativeswith respect to r, andNa,
Nb and G are given by the following expressions:

Na ¼ Vfð4e2Aκτ2 −m2w2Þ; Nb ¼ 4xe2AZV2
aG;

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2Aκτ02

p
: ð7:7Þ

Notice that G is just the restriction of ~G defined in (3.5) to
the ξ0 ¼ 0 case.

B. Mass of the η0 meson at small x

We start by discussing the probe limit x → 0 at nonzero
but small quark mass. Because the terms depending on
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flavor are suppressed in the action, the fluctuation equa-
tions (7.5) and (7.6) admit solutions for which P ¼ Oð1Þ,
Q ¼ OðxÞ.13 It is identified as the flavor mode at small x: to
leading order in x, the P component satisfies the same
fluctuation equation as the wave function for the nonsinglet
pseudoscalar fluctuation described in [51]. More precisely,
P is mapped to the difference ψP − ψL of the radial wave
function of the pion field and longitudinal gauge field as
suggested by the definition (7.4), and the variable P̂ defined
in (D13) is mapped to ψ̂P.
Therefore one is led to expect that the flavor singlet and

nonsinglet pseudoscalar mesons become degenerate as
x → 0. This is however not obvious since, as it turns out,
the convergence towards the x ¼ 0 solution is not uniform
in r. In the IR there is no issue because the exponential
suppression of the potentials Vf and Va decouples the glue
from the flavor for all values of x. In the UV, however, glue
and flavor are nontrivially coupled at small r for any
positive x (more precisely, when r ≪

ffiffiffi
x

p
), as seen from

the UVexpansions in Appendix A.14 In principle this could
lead to the flavor singlet and nonsinglet mesons having
different UV boundary conditions in the limit x → 0 and the
masses of the mesons being different. One can check by
using the UV expansions from Appendix A that the
boundary conditions are the same and therefore the singlet
and nonsinglet states do become degenerate. In particular, η0
becomes degenerate with the pions and its mass obeys the
Gell-Mann-Oakes-Renner (GOR) relation as x → 0 as
expected from the fact that the anomaly vanishes when
x → 0. We will discuss this in more detail below.

1. Limit of zero x

Wewish to discuss what happens at small but finite x, but
it is useful to recall first how the GOR relation arises from
the fluctuation equations in the limit of zero x. We rewrite
the fluctuation equations (7.5) and (7.6) as a first order
system (for later convenience first at finite x)

P̂ ¼ e3A

m2
f −HPS

½Vfκτ
2G−1P0 − VaZðQ0 þ xV 0

aPÞ�; ð7:8Þ

Q̂ ¼ e3AZ
m2

fðm2
f −HPSÞ

�
m2

fðQ0 þ xV 0
aPÞ

−
4e2Aκτ2

w2

d
dr

ðQþ xVaPÞ
�
; ð7:9Þ

P̂0 ¼ e3AðVaZQ −GVfκτ
2PÞ; ð7:10Þ

Q̂0 ¼ −e3AZQ; ð7:11Þ

where

HPS ¼
4e2Aκτ2

w2
þ 4e2AxGV2

aZ
Vfw2

; ð7:12Þ

and mf is the mass of the fluctuations.
As x → 0 the fluctuations associated with the mesons

satisfy (7.8) and (7.10)withQ and x set to zero and including
only the first term in (7.12). These equations are the same as
the fluctuation equations for the nonsinglet pseudoscalar
mesons [51], which signals the suppression of the axial
anomaly as x → 0. The GOR relation is found by studying
the fluctuation equations perturbatively at smallm2

f and also
taking mq → 0. When m2

f ¼ 0 there is a solution to the
systemwhich is normalizable in the IR but not in the UV. As
seen from the expansions (F14) and (F15) in Appendix A
both P and P̂ approach finite values at the boundary. It is
convenient to normalize the solution such that P → 1 as
r → 0. Then the boundary value of P̂,

CP ≡ lim
r→0

P̂ðrÞ; ðm2
f ¼ 0Þ ð7:13Þ

can be related to the decay constant of the η0 meson [up to
correctionsOðmqÞ]. The relation is analogous to that for the
pion decay constant, found in Appendix E of [55]. Since we
have taken x ¼ 0 the decay constants of the pion and the η0
are actually equal. After a careful comparison to the analysis
of [55] we find

f2π ¼ f2η0 ¼ M3NfNcCP þOðmqÞ; ðx ¼ 0Þ: ð7:14Þ

To obtain the GOR relation we compute the leading
order perturbation in m2

f and check when the solution
becomes normalizable in the UV. As is always the case for
the GOR relation (and as we will verify below) the relevant
regime is close to the boundary (r ∼

ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
), where the

source and VEV terms of the tachyon are of the same order.
Therefore we can take P̂≃ const and neglect the loga-
rithmic corrections to the potentials in (7.8). We obtain

P0ðrÞ≃ CP

�
−4r

lW0w2
0

þ m2
fr

3

W0κ0l3τ2

�
: ð7:15Þ

Here the constantsw0, κ0, andW0 are the boundary values of
w, κ, and Vf, respectively. We also approximated eA ≃ l=r.
The first term in (7.15) gives the weak r dependence of the
mf ¼ 0 solution which can be neglected, but the second
term is the important perturbation which becomes Oð1Þ
when mq ∼m2

f. Integrating over r and using the fact that
P≃ 1 when m2

f ¼ 0 gives

13There is also another set of solutions which has a different x
dependence and will be identified with the glueballs in the limit
x → 0 as we shall see below.

14Notice that the situation is different from the scalar sector,
where the glue and flavor were decoupled also asymptotically
in the UV and therefore the convergence toward x ¼ 0 was
uniform [51].
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PðrÞ≃ 1 −
CPm2

f

W0κ0l3

Z
∞

r

r̂3dr̂
τðr̂Þ2 ; ð7:16Þ

where the integral is dominated by the regime with r ∼ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
as expected. The solution is normalizable when P

vanishes at the boundary, which determines the mass of the
η0. This leads to the GOR relation in the limit x → 0:

1≃ CPm2
η0

W0κ0l3

Z
∞

0

r̂3dr̂
τðr̂Þ2 ≃

f2η0m
2
η0

2M3NfNcW0κ0l5mqσ

¼ −
f2η0m

2
η0

mqhψ̄ψi
: ð7:17Þ

2. Small but finite x

We then discuss the OðxÞ contributions to the GOR
relation for η0. At this order the coupling between the glue
and the flavor can no longer be neglected and we need to
study the complete system (7.8)–(7.11). But in the IR there
is decoupling and we can unambiguously define the IR
normalizable solutions for the glue and the flavor, denoted
by ψ ðQÞ and ψ ðPÞ, respectively. The leading term of ψ ðPÞ can
be readily identified with the zero x solution discussed
above. In order to determine the η0 mass we need to study
the normalizability of both these solutions in the UV. More
precisely, we would want to find the coefficients C− and C1

of the non-normalizable terms of the UV asymptotic
expressions in (F9) and (F11) for each of these two
solutions. It is, however, easier to expand at x ¼ 0 before
expanding at r ¼ 0 and therefore study the non-normal-
izable terms (F13) and (F15). Indeed by studying the
expansions one sees that the non-normalizable terms in
the two sets of asymptotic expressions are mapped to
(linear combinations of) each other (possibly up to highly
suppressed terms) when the order of limits is changed. We
present here a sketch on how the OðxÞ corrections behave,
and a systematic, precise treatment is done in Appendix G.
We denote the solutions defined by the UV expansions

(F13) and (F15) by ϕðQÞ and ϕðPÞ, respectively. As the
superscripts suggest, ϕðPÞ is the perturbative solution of the
P field with vanishing Q, and ϕðQÞ is obtained by first
solving Q perturbatively, in analogy to the IR normalizable
solutions. We further define

�
ψ ðPÞ

ψ ðQÞ

�
¼
�
CPP CPQ

CQP CQQ

��
ϕðPÞ

ϕðQÞ

�

þ UV normalizable terms: ð7:18Þ

A normalizable mode can be constructed as a linear
combination of ψ ðPÞ and ψ ðQÞ when the determinant of
the coefficient matrix vanishes.

We will sketch here how the coefficient matrix is
computed—a detailed analysis will be given in
Appendix G by performing a systematic expansion in both
x and the (squared) bound state massm2

f. The elements can
be obtained essentially by computing the values ofP andQ
near the boundary for the solutions ψ ðPÞ and ψ ðQÞ: as seen
by comparing to the expressions (F13) and (F15),CIJ is the
value of J for the solution ψ ðIÞ (with I, J taking the values
P, Q).15 The coupling between the glue and the flavor is
irrelevant for the diagonal elements of the matrix. We have
computed ψ ðPÞ at leading order in x above, from which we
readily obtain that CPP ≃ 1 −m2

f=m
2
π . We may normalize

ψ ðQÞ such thatCQQ ¼ 1. The backreaction of flavor on glue
is suppressed by x but not vice versa, which leads to16

CPQ ¼ OðxÞ butCQP ¼ Oðx0Þ. From the fluctuation equa-
tions we see17 that CQP is enhanced asmq → 0, which will
also be proven in Appendix G. Taking stock,

�
CPP CPQ

CQP CQQ

�
≃
0
@ 1 −

m2
f

m2
π

Oðxm0
πÞ

Oðm−2
π x0Þ 1

1
A: ð7:19Þ

The determinant vanishes when mf equals the mass of the
η0, which leads to the expected relation

m2
η0 ¼ m2

π þOðxm0
πÞ: ð7:20Þ

In order to compute the coefficient in the OðxÞ term of
(7.20), we solve the fluctuation equations in a systematic
expansion of the wave functions at small x and mq in
Appendix G. This results in the Witten-Veneziano formula
for the mass of the η0 meson:

m2
η0 ≃m2

π þ x
NfNcχYM

f2π
; ð7:21Þ

where χYM is the topological susceptibility for Yang-Mills
theory. For our conventions f2π ¼ OðNfNcÞ, so that the
second term is indeed OðxÞ.

C. Numerical results

We have computed the spectra of the singlet pseudo-
scalars numerically both for the potentials I and potentials
II defined above in Sec. IV. The numerical study was done
by using the fluctuation equations given in Appendix D as
explained in [51] and in Appendix G of [55].

15Some care is needed because ϕðQÞ also contains a loga-
rithmically divergent term for P.

16This ensures that taking x → 0 the determinant is ∝ CPP and
we will have mη0 ¼ mπ .

17Solving (7.8) for P0 gives P0 ∼Q0=τ2 þ � � � which leads to
this enhancement.
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The spectrum is shown in the logarithmic scale as a
function of x in Fig. 14. The light η0 state is best visible in
the right-hand plot for small x. The third lowest state is a
glueball in the limit x → 0 for both potentials18 whereas the
other states are ψ̄ψ states. In the walking regime all masses
tend to zero obeying the Miransky scaling law. Apart from
the light η0 meson at small x, the dependence of the
spectrum on x is for both potentials very similar to that
found for the singlet scalars in [51]. Notice that there
is an additional interesting level crossing structure for
potentials I.
We study the dependence of the mass of the η0 meson on x

and mq in more detail for potentials II (for which the
numerical computations are much easier then for potentials
I) in Fig. 15. The left-hand plot demonstrates that the
dependence on x at mq¼0 is that predicted by Eq. (7.21).
The right-hand plot shows the data for the η0 and pionmasses
at very small x ¼ 0.0001. The data points overlap perfectly,

as predicted by Eq. (7.21). The dependence on the quark
mass matches with the GOR relation (blue line).

VIII. FLAVOR NONSINGLET SPECTRA
AT FINITE θ̄

A. Fluctuations at finite θ̄

We now study the quadratic fluctuations for the back-
grounds with a nontrivial θ̄ angle studied in Sec. III. In
those backgrounds both the tachyon phase ξ and the QCD
axion a are nonvanishing, which makes the analysis of the
fluctuations, in particular the flavor singlet sector, more
involved. In the following we will restrict ourselves to the
analysis of the flavor nonsinglet sector. This sector consists
of the flavor nonsinglet 1−− vector and 1þþ axial vector
mesons, and the flavor nonsinglet 0−þ pseudoscalar and
0þþ scalar mesons; and these last two get mixed in a parity
breaking19 finite θ̄ vacuum.

FIG. 15. The mass of the η0 meson for potentials II. Left: mass of η0 as a function of x in log-log scale formq ¼ 0. The dashed blue line
is a fit with the expected dependencem2

η0 ∝ x. Right: dependence of the mass of the η0 (red circles) and the pion mass (magenta squares)
on mq at x ¼ 0.0001. The blue line is a fit to the GOR relation.

FIG. 14. Masses of the lowest four singlet pseudoscalar states in the logarithmic scale as a function of x. Left: potentials I. Right:
potentials II.

18The mass of the glueball is actually the same for both
potentials I and II because they only differ in the flavor sector.

19Notice that charge conjugation remains as a good quantum
number, and therefore the vectors and axial vectors do not mix at
finite θ̄.
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1. Flavor nonsinglet sector

This sector involves the SUðNfÞ part of the vector, axial
vector, scalar, and pseudoscalar mesons. The vector and
axial vector fluctuations were defined in Eq. (7.1). The
scalar and pseudoscalar mesons, which will mix in the
presence of a nonzero phase of the tachyon, correspond to
fluctuations of the complex tachyon:

T ¼ ½τðrÞþ sðr;xÞþ ~sðr;xÞ�
×exp ½ξðrÞþθTðr;xÞþ ~πðr;xÞ�;

with ~sðr;xÞ¼ saðr;xÞta; ~πðr;xÞ¼ πaðr;xÞta: ð8:1Þ

Only the DBI piece of the action, i.e. Eq. (2.4), contributes
to the nonsinglet sector fluctuations. In Appendix E we
write the resulting action up to quadratic order in the
fluctuations and derive the equations of motion. We now
summarize them sector by sector.

2. Scalar-pseudoscalar mesons

The fluctuations of the modulus and phase of the
tachyon, and the longitudinal part of the axial vector
contribute to this sector. We shall consider the following
Ansatz for the three coupled fields:

Ajj
μ ¼ −ψLðrÞ∂μPaðxÞta; ~s ¼ ψ sðrÞPaðxÞta;
~π ¼ 2ψpðrÞPaðxÞta; ð8:2Þ

where ∂μ∂μPaðxÞ ¼ m2PaðxÞ. As shown in Appendix E
the equations of motion for these fields can be recombined
into the two coupled equations (E8), (E9) for the two fields
ψ s, and ψ̂ l ¼ eAw2Vf

~G−1ψ 0
L. The normalizable solutions

of those equations will correspond to the scalar and
pseudoscalar mesons, which mix in a parity breaking finite
θ̄ vacuum.

3. Vector mesons

We consider the Ansatz

Vμ ¼ψVðrÞVa
μðxÞta; with ∂ν∂νVa

μðxÞ¼m2
VV

a
μðxÞ; ð8:3Þ

for the transverse part of the vector meson fluctuation (the
longitudinal part can be set to zero). The equation of motion
for Vμ resulting from the Lagrangian (E2) reduces to

1

Vfw2eA ~G
∂r

�
VfeA

w2

~G
∂rψV

�
þm2

VψV ¼ 0: ð8:4Þ

4. Axial vector mesons

We shall take the following Ansatz for the transverse part
of the axial vector mesons:

A⊥
μ ¼ψAðrÞAa

μðxÞta; with ∂ν∂νAa
μðxÞ¼m2

AA
a
μðxÞ; ð8:5Þ

The equation of motion for A⊥
μ follows swiftly from the

Lagrangian (E2), and in terms of this Ansatz takes the form

∂rðVfw2eA ~G−1∂rψAÞ
Vfw2eA ~G

− 4
τ2κe2AG2

w2 ~G2
ψA þm2

AψA ¼ 0:

ð8:6Þ

B. The Gell-Mann-Oakes-Renner relation at finite θ̄

It is possible to compute analytically the θ̄ dependence of
the pion mass at small mq, and to use this to write the
generalization of the GOR relation at finite θ̄. We review
here the key points of the computation and details are given
in Appendix H.
The pion mass is found by analyzing the fluctuation

equations for the pseudoscalar and scalar sectors in the UV
and in the IR, and requiring a match of the results in the
middle, where the regimes of applicability of the two
results overlap when mq is small. In the UV analysis, it is
essential to use the fluctuations of the real and imaginary
parts of the tachyon, in terms of which the fluctuation
equations decouple when r ≪ 1=ΛUV and mq=ΛUV ≪ 1.
The most important difference with respect to the compu-
tation at θ̄ ¼ 0 is that the background tachyon solution is
replaced by the real part of the tachyon (see Appendix H for
details). In the IR, or more precisely when r ≫

ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
, it is

enough to show that the mixing of the scalars and pseudo-
scalars is suppressed by Oðm2

qÞ, and consequently the IR
solutions are the same as at θ̄ ¼ 0.
Matching the UVand IR approximations for

ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
≪

r ≪ 1=ΛUV, where both of them are accurate, then fixes the
pion mass. The only difference with respect to the result at
θ̄ is that mq is replaced by the source for the real part of the
tachyon, i.e., mq cos ξ0 ≃mq cosðθ̄=NfÞ, where we also
recalled the result (6.23). The final result for the generalized
GOR relation is therefore

f2π;0m
2
π ¼ −hψ̄ψijmq ¼0mq cos

θ̄

Nf
þOðm2

qÞ; ð8:7Þ

where fπ;0 is the pion decay constant at θ̄ ¼ 0. The result
agrees with effective field theory (see, e.g., [26]).

C. Numerical analysis

The flavor nonsinglet spectra of vector, axial-vector,
pseudoscalar, and scalar mesons have been calculated for
different values of quark mass, as a function of the θ̄ angle.
The full action of the model, Eqs. (2.4) and (2.15), is
expanded to quadratic order in terms of the excitation fields
defined in Sec. VIII A 1. The quadratic action of the
flavored excitations in a background of nontrivial θ̄ is
presented in Eq. (E2). The vector and axial-vector excita-
tion equations are decoupled and are given by Eqs. (8.4)
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and (8.6), while the pseudoscalars and scalars are coupled
because of the nonzero background θ̄ angle, Eqs. (E4),
(E5), and (E6). The numerical procedure of determining the
mass spectrum, both for coupled and decoupled excitations,
is described in detail in [51]. The computation consists
basically of the solution of the excitation equations in the
bulk spacetime with normalizable boundary conditions
both at the boundary and the bottom of spacetime. The
spectrum is calculated for potentials I, and for different
values of quark masses mq=ΛUV ¼ 0.0001, 0.01, 1. As is
depicted in Fig. 5, in case of small quark mass, for any
value of the integration parameter, Ca, there are two
background solutions, corresponding to two different
values of θ̄. For larger quark mass, only the lower branch
survives, and it does not turn back to the horizontal axis
(mq=ΛUV ¼ 1 case). It has been found numerically that the
spectrum is stable only in the lower branch of the solution.

In the upper branch of solutions, it was found that one mode
from the scalar channel has negative mass squared signal-
ing an instability of the spectrum (see last plot in Fig. 19).
In Fig. 16, we plot the three lowest masses of the vector

and axial-vector mesons. It observed that the vector and
axial-vector masses have a mild dependence on θ̄=Nc. As it
is expected, for larger quark masses the whole spectrum
moves to higher meson masses, even though the difference
in the spectrum for mq=ΛUV ¼ 0.0001 and mq=ΛUV ¼
0.01 is small. The dependence of the pion mass on θ̄=Nf is
depicted in Fig. 17. The pion mass decreases with increas-
ing θ̄ angle. In case of small equal quark masses, the pion
mass as a function of θ̄ is obtained from (8.7)

mπðθ̄Þ ¼ mπð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos
�

θ̄

Nf

�s
: ð8:8Þ

FIG. 17. The lowest mode masses of the pseudoscalar-scalar channel, for quark masses, mq=ΛUV ¼ 0.0001, 0.01 (left plot) and
mq=ΛUV ¼ 1 (right plot), in terms of θ̄=Nc for potentials I. Those modes correspond the pion.

FIG. 16. The vector and axial vector masses for quark masses, mq=ΛUV ¼ 0.0001, 0.01, 1, in terms of θ̄=Nc for potentials I.
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In case of mq=ΛUV ¼ 0.0001, we verified the above
relationship numerically as is seen in Fig. 18. Finally,
the pseudoscalar-scalar masses are presented in Fig. 19. It
is noticed that the states do not mix at finite θ̄. The
lowest state corresponds to the pion, the next two to
scalar excitations, and the highest to a pseudosca-
lar mode.
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APPENDIX A: UV AND IR ASYMPTOTICS
OF THE BACKGROUND

In this section we will present the asymptotic form of the
background fields for the choices of potentials relevant for
the analysis in this work. Most of the expressions turn out
to be independent of θ̄. For a more general analysis of the
asymptotics at θ̄ ¼ 0 we refer the reader to Appendix D
of [51].

FIG. 18. The numerical result of the pion mass in terms of θ̄ in
V-QCD is seen to be in perfect agreement with analytic
formula (8.8).

FIG. 19. The lowest mode masses of the pseudoscalar-scalar channel, for quark masses,mq=ΛUV ¼ 0.0001, 0.01, 1, in terms of θ̄=Nc
for potentials I. The lightest mode corresponds to the pion. In the last plot, it is shown that the pseudoscalar-scalar channel contains a
mode of negative mass squared in the upper branch of solutions. The example which is shown here is for mq=ΛUV ¼ 0.01.
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1. UV asymptotics

As explained in [51], in the UV (r → 0) the tachyon
decouples from the glue fields λ and A, whose asymptotic
form is determined by the effective potential

VeffðλÞ ¼ VgðλÞ − xVfðλ; 0Þ

¼ 12

l2
½1þ V1λþ V2λ

2 þ � � ��; ðA1Þ

resulting in the following solutions:

AðrÞ ¼ − log
r
l
þ 4

9 logðrΛÞ

þ
1
162

h
95 − 64V2

V2
1

i
þ 1

81
log ½− logðrΛÞ�

h
−23þ 64V2

V2
1

i
logðrΛÞ2

þO
�

1

logðrΛÞ3
�
þOðm2

qr2Þ ðA2Þ

V1λðrÞ ¼ −
8

9 logðrΛÞ þ
log ½− logðrΛÞ�

h
46
81
− 128V2

81V2
1

i
logðrΛÞ2

þO
�

1

logðrΛÞ3
�
þOðm2

qr2Þ; ðA3Þ

whereΛ ¼ ΛUV defines the UV scale of the theory. We also
wrote down the size of the leading corrections due to the
tachyon. Notice, in particular, that these results are inde-
pendent of θ̄.
The UV scale may be defined explicitly as

ΛUV ¼ lim
r→0

1

l
exp

�
A −

8

9V1λ
þ
�
23

36
−
16V2

9V2
1

�
log

9V1λ

8

�
:

ðA4Þ

In order to solve for the tachyon one inserts the
asymptotic solutions for λ, and A into the equation of
motion for the tachyon. We also need the UVexpansions of
a and κ, which read

κðλÞ ∼ κ0ð1þ κ1λÞ; aðλÞ ∼ a0ð1þ a1λÞ; with

κ0
a0

¼ 2l2

3
: ðA5Þ

We discuss the asymptotics of the tachyon at finite θ̄ in
Sec. III B 1. We present here for reference the result at
θ̄ ¼ 0, which reads

1

l
τðrÞ ¼ mqrð− logðrΛÞÞ−ρ

�
1þO

�
1

logðrΛÞ
��

þ σr3ð− logðrΛÞÞρ
�
1þO

�
1

logðrΛÞ
��

; ðA6Þ

with

ρ ¼ −
4

3
−

4κ1
3V1

: ðA7Þ

2. IR asymptotics

We will only present here the discussion for the
particular asymptotics of Vg that matches well with the
IR properties of QCD [35].

a. λ and A

For regular potentials, the IR divergence of the tachyon
decouples the tachyon and the axion from λ and A and
therefore their asymptotics is independent of θ̄. For a glue
potential Vg with the following IR asymptotic form20

VgðλÞ ¼ v0

�
λ

8π2

�
4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

λ

8π2

r

×

�
1þ v1

logð λ
8π2

Þ þ
v2

log2ð λ
8π2

Þ þ � � �
�
; ðA8Þ

the asymptotic solution for the background glue fields reads

A ¼ −
r2

R2
þ 1

2
log

r
R
þ Ac þOðr−2Þ; ðA9Þ

log λ ¼ 3

2

r2

R2
þ λc þOðr−2Þ; ðA10Þ

with

Ac ¼ − logR −
1

2
log v0 þ

5

4
log 2þ 3

4
log 3þ 23

24
þ 4v1

3
;

λc ¼ −
23

16
− 2v1 þ logð8π2Þ: ðA11Þ

Here R ¼ 1=ΛIR sets the IR scale of the model. A possible
explicit definition is

ΛIR ¼ lim
r→∞

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
log λ

r
: ðA12Þ

b. The tachyon

We will consider the following asymptotics for the
relevant potentials

κðλÞ ∼ κcλ
−κpðlog λÞ−κl ; aðλÞ ∼ acλapðlog λÞal ;

Vf0ðλÞ ∼ vcλvpðlog λÞ−vl ; ðA13Þ

20The factors of 8π2 were included because this leads to simple
expressions for the coefficients vi for the potentials which we use.
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where κc and ac are assumed to be positive. In particular,
we will focus on the special case vp ¼ 10=3, singled out by
the requirement of having nonsingular θ̄ ≠ 0 backgrounds.
A thorough analysis of the acceptable asymptotics with
vp < 10=3 was presented in Appendix D of [51]. At finite
θ̄, the results for τ there remain unchanged, and the
asymptotics of ξ can be found by substitution to (3.6).
We consider two cases at vp ¼ 10=3 in the following, both
leading to acceptable IR asymptotics.
1. vp ¼ 10=3, κp ¼ 4=3, κl > −3=2, ap ¼ al ¼ 0, and

vl > 1 − κl=2. This case results in the following asymp-
totic solution for the tachyon

τðrÞ ¼ τ0 exp

�
CI

�
r
R

�
3þ2κlð1þOðr−2ÞÞ

�
; ðA14Þ

with

CI ¼
21−κl3κlace2Acþ4

3
λcR2

ð3þ 2κlÞð2vl þ κl − 2Þ : ðA15Þ

Substituting these asymptotics in Eq. (3.6) we obtain for ξ0
in the IR

ξ0 ∼ −Ca

�
3

2

�
vlþκl

2 e−4Ac−8
3
λcffiffiffiffiffi

κc
p

vc

τ0

r2−κl−2vlτ2

¼ −CaR2e−2Ac
21−

3
2
κl−vl3

3
2
κlþvle−

4
3
λcac

τ0ð2vl þ κl − 2Þvcκ3=2c

�
r
R

�
3κlþ2vl

× exp

�
−CI

�
r
R

�
3þ2κl

�
; ðA16Þ

where the prime stands now for the derivative with respect
to the dimensionless variable21 r=R. ξ0 vanishes exponen-
tially, and therefore leads to a regular background in the IR.
Moreover, one can easily check that for such an exponen-
tially vanishing ξ0, all the new terms (proportional to ξ0) in
the tachyon equation of motion (3.10) are exponentially
suppressed, and thus the asymptotic solution (A14) is not
modified by a nonzero ξ0.
2. vp ¼ 10=3, κp ¼ 4=3, κl ¼ −3=2, ap ¼ al ¼ 0, and

vl > 7=4. This case results in a tachyon diverging power
like in the IR, namely

τðrÞ ¼ τ0

�
r
R

�
CIIð1þOðr−2ÞÞ; ðA17Þ

where

CII ¼
8
ffiffiffi
2

p
ace2Acþ4

3
λcR2

3
ffiffiffi
3

p
κcð4vl − 7Þ : ðA18Þ

We now analyze the asymptotics of ξ0. First, the constraint
(3.29), namely e4AVf0

ffiffiffi
κ

p
τ > 0, in terms of the IR asymp-

totics becomes

CII > 2vl − 7=2; ðA19Þ

and therefore we have

7

4
< vl <

7

4
þ CII

2
; ðA20Þ

while the equation (3.6) for ξ0 reduces to

ξ0 ∼ −
Ca

τ0

�
2

3

�3
4
−vl e−4Ac−8

3
λcCII

vc
ffiffiffiffiffi
κc

p
�
r
R

�
−CII−9

2
þ2vl

; ðA21Þ

which vanishes powerlike (as r → ∞) if the constraint
(A19) is satisfied. In addition, the new terms (proportional
to ξ0) in the equation of motion for τ (3.10) are suppressed
by powers of r. Then the leading IR asymptotic form (A17)
for τ is not modified by a nonzero ξ0.

c. Special tachyon asymptotics

We have also found special asymptotic solutions which
are absent at vanishing θ̄ angle. For such special solutions,
the two terms in (3.28) have the same asymptotic behavior:

e4AVf
ffiffiffi
κ

p
τ ∼ jCajVa; ðr → ∞Þ: ðA22Þ

Such solutions are linked to the regular tachyon solutions
discussed above as follows. One may consider what
happens as the single parameter τ0 (the same parameter
as T0 in Fig. 3), which determines the normalization of the
tachyon, decreases. Typically, assuming that the potentials
admit a fixed point, there is a critical value τ0c such that the
background flows closer and closer to the fixed point as
τ0 → τ0c from above (or more precisely, the length of the
interval of the bulk coordinate where the background is
close to the fixed point, increases). Then when τ0 ≤ τ0c, no
solution with regular UV behavior exists. But it may also
happen that there is no lower boundary for τ0 in which case
one can consider the limit τ0 → 0.
Taking τ0 → 0 at vanishing θ̄ angle, one expects that

there is a region with small tachyon, τ ≪ 1, already deep in
the IR, where λ ≫ 1. When there is a fixed point, for small
enough τ0 the tachyon is therefore much smaller than one
when λ > λ�, in the region corresponding to a positive β
function. Consequently the tachyon decouples from the
metric and the flow of the solution from the IR toward the
UV stops without reaching the standard regular UV
boundary. That is, a critical value τ0c exists, below which
the UV regularity is lost. But when the θ̄ angle is nonzero,

21Notice that, as can be seen from Eq. (3.3), Ca has units of R4,
and thus the combinations CaR2e−2Ac in (A16), and Cae−4Ac in
(A21) are dimensionless.
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the situation is different, because the tachyon is complex.
When τ0 is decreased, and τ becomes relatively small deep
in the IR, the dynamics of the phase of the tachyon becomes
important. As it turns out, the phase starts to evolve,
backreacting on the behavior of the absolute value τ.
Instead of approaching smoothly the origin, the value of
the tachyon starts to rotate around it on the complex plane.
The net effect is, as pointed out above, that (A22) holds,
and the tachyon does not decouple. In the limit τ0 → 0 one
obtains a new asymptotic behavior, which is determined
by (A22).
It is straightforward to compute this special tachyon

asymptotics for any of the choices of potentials in the IR
discussed above or in [51]. As an example, we present the
solution for a class of potentials which includes the
potentials I which were used in the numerical analysis in
this article. That is, we take κp ¼ 4=3, κl ¼ 0,aðλÞ ¼ const,
VaðτÞ ¼ expð−aτ2 − aljτjÞ, and restrict to 0 < vp < 10=3,
in which case the regular tachyon asymptotics is an
exponential [51]. The special asymptotics for the tachyon
then reads

τ ¼ 10 − 3vp
2al

r2 þ 2vl − 4

al
logðrÞ þO

��
1

r

�
0
�
: ðA23Þ

The phase of the tachyon behaves as ξ0 ∼ 1=
ffiffiffi
r

p
as

r → ∞, and

e8AV2
fκτ

2

C2
aV2

a
− 1 ∼

1

r
; ðr → ∞Þ; ðA24Þ

so that (A22) is indeed confirmed.
Notice that the special solution does not involve any

additional integration constants (unlike the regular tachyon
solutions which have one constant). Therefore it maps to a
curve on the plane of physical parameters (mq=ΛUV; θ̄). It
may happen though that the solution does not admit a
regular UV boundary—this is not guaranteed even if the
dynamics of the complex tachyon prevents the tachyon
from decoupling. Actually for the numerical values of
parameters used in the numerical analysis of this article, it
turns out that the special solution is always unphysical.
However, if we decreased the value of al in (4.4) from the
chosen value, the solution would be physical.

APPENDIX B: EQUATIONS OF MOTION

In this appendix we present the full equations of motion
arising from the action (3.1), and discuss some of their
consequences. We first write down the equations of motion
for the CP-odd fields a and AM. They read

0 ¼ ∂M½gMN ffiffiffiffiffiffi
−g

p
ZðλÞHN �; ðB1Þ

0 ¼ 2Vaðλ; τÞgMN ffiffiffiffiffiffi
−g

p
ZðλÞHN −

1

2
Vfðλ; τÞκðλÞτ2ð∂Nξþ 2ANÞ

X
k¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAðkÞ

q
ððA−1

ðkÞÞMN þ ðA−1
ðkÞÞNMÞ

þ 1

4
∂N

�
Vfðλ; τÞwðλÞ

X
k¼þ;−

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAðkÞ

q
ððA−1

ðkÞÞMN − ðA−1
ðkÞÞNMÞ

�
; ðB2Þ

where

HM ¼ ∂Maþ xξ∂MVaðλ; τÞ − 2xAMVaðλ; τÞ
¼ ∂Mā − xVaðλ; τÞ∂Mξ − 2xAMVaðλ; τÞ; ðB3Þ

AðkÞ were defined in (3.2), and ā ¼ aþ xξVaðλ; τÞ. Due to
invariance under (2.18), we have22

δS
δξðxÞ ¼ xVa

δS
δaðxÞ −

1

2
∂M

δS
δAMðxÞ

: ðB4Þ

Consequently the equation of motion for ξ follows from
(B1) and (B2).

The Einstein equations take the form

RMN −
1

2
gMNR ¼ Tg

MN þ Tf
MN þ Ta

MN; ðB5Þ

where

Tg
MN ¼ 1

2
gMN

�
Vg −

4

3

ð∂PλÞ2
λ2

�
þ 4

3

∂Mλ∂Nλ

λ2
; ðB6Þ

Tf
MN ¼ −

xVf

8
ffiffiffiffiffiffi−gp

X
k¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detAðkÞ

q
gMP

× ½ðA−1
ðkÞÞPQ þ ðA−1

ðkÞÞQP�gQN; ðB7Þ

Ta
MN ¼ −

1

4
gMNZðHPÞ2 þ

Z
2
HMHN: ðB8Þ

The remaining equations of motions are those of the
scalars λ and τ. It is useful to keep ā, rather thana, fixedwhen
varying the scalar fields. The equations can be written as

22Considering ā as the axion field (rather than a), as we will be
doing below, we obtain otherwise the same equation as (B4), but
without the a term.
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0¼ 8

3λ
∂M

�
gMN ffiffiffiffiffiffi−gp ∂Nλ

λ

�
þ ffiffiffiffiffiffi

−g
p dVg

dλ
−
x
2

∂Vf

∂λ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−detAðþÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAð−Þ

q �
−

ffiffiffiffiffiffi−gp
2

dZ
dλ

ðHMÞ2

þ ffiffiffiffiffiffi
−g

p
Zx

∂Va

∂λ ð∂Mξþ2AMÞgMNHN −
1

4
xVf

∂κ
∂λ ½ð∂MτÞð∂NτÞþ τ2ð∂Mξþ2AMÞð∂Nξþ2ANÞ�

X
k¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAðkÞ

q
ðA−1

ðkÞÞMN

þ1

4
xVf

∂w
∂λ FMN

X
k¼þ;−

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAðkÞ

q
ðA−1

ðkÞÞMN ðB9Þ

and

0¼1

4
∂M

�
Vfκ∂Nτ

X
k¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAðkÞ

q
ððA−1

ðkÞÞMNþðA−1
ðkÞÞNMÞ

�
−
1

2
Vfκτð∂Mξþ2AMÞð∂Nξþ2ANÞ

X
k¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAðkÞ

q
ðA−1

ðkÞÞMN

−
1

2

∂Vf

∂τ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−detAðþÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detAð−Þ

q �
þ ffiffiffiffiffiffi

−g
p

Z
∂Va

∂τ ð∂Mξþ2AMÞgMNHN: ðB10Þ

We will now argue that the gauge field vanishes for the
background solution. To see this, we consider an Ansatz
where all fields depend on r only, and assume the Poincaré
covariant form of the metric (2.3). Since there are other four
vectors than Aμ and no sources which break the Poincaré
symmetry, we expect that Aμ ¼ 0. In order to verify this, we
notice that for the background Ansatz Að�Þ are diagonal up
to terms involving Aμ. Therefore, as only radial derivatives
are nonzero, the equations of motion for Aμ in (B2) are
indeed satisfied for Aμ ¼ 0. Moreover, it is convenient to
choose the gauge where Ar ¼ 0. This still leaves the
freedom of transforming a and ξ by a constant ε in (2.18).
After setting the gauge fields to zero, we notice that

AðþÞ ¼ Að−Þ and bothmatrices are symmetric so that the last
term in (B2) vanishes. Inserting the r-dependent Ansatz, the
only nontrivial equation is obtained for M ¼ r, which
simplifies to

Vaðλ; τÞe3AZðλÞHr −
Vfðλ; τÞκðλÞτ2ξ0e3A

~G
¼ 0 ðB11Þ

with ~G defined in (3.5).

APPENDIX C: ON THE PHASE DIAGRAM
AT FINITE θ̄ ANGLE

We discuss here first the branch structure and/or unique-
ness of the background solutions at finite θ̄ angle. In Fig. 5
and at small quark mass, there are two or zero solutions at
fixedCa andmq, but as functions of the sourcesmq and θ̄ the
solutions are typically unique. One should notice, however,
that these plots do not contain all possible solutions aswe did
not study the solutions near the Efimov vacua, i.e. close to
the leftmost crosses of Fig. 3. The sketch of Fig. 3 suggests
that the mapping from ðT0; CaÞ to (mq; θ̄) is bijective also in
the regime of Efimov vacua. This indeed turns out to be the

case for generic values of x, but (as we demonstrate in
Sec. VI D) for very small values of x the mapping is not
bijective: as x → 0 a nontrivial branch structure as a function
of θ̄ appears in the vicinity of the Efimov vacua.
Even at larger x where the nontrivial branch structure is

absent, one should bear in mind that the θ̄ angle is periodic.
Near different crosses of Fig. 3 we encounter backgrounds
for which θ̄ differs by integer multiples of 2πNf, but the
quark mass is the same: this corresponds to the change of
phase of the tachyon by multiples of 2π and therefore the
backgrounds cannot be distinguished by using UV data.
Consequently, solutions at high mq are unique, but the
solutions which differ by 2π rotations of the tachyon in the
UVappear at small mq and generalize the Efimov vacua to
finite θ̄ angle. The number of Efimov vacua grows with
decreasing mq and becomes infinite for mq ¼ 0.
We argue now that the generalized Efimov vacua at finite

Ca are unstable. For fixedmq=ΛUV ≪ 1, such Efimov vacua
are found on half-rings that encircle the crosses of Fig. 3.We
have shown in [48,51,55] that for Ca ¼ 0 the Efimov vacua
are perturbatively unstable. We remind the reader that in
Fig. 3, the Efimov vacua forCa ¼ 0 andwith fixed (absolute
value of) quark mass are found on the horizontal axis for
various discrete values of T0 and the stable standard vacuum
is found on the horizontal axis to the right of the Efimov
vacua. For these vacua, the free energy decreases with
T0. This was proven analytically for vacua with high n (i.e.
close to the dashed curve in Fig. 3) and numerically for vacua
with low n. For the Efimov vacua at finiteCa, the free energy
on the half-rings around the crosses is typically monotonic,
as is seen from the plots of Fig. 10. When this is the case,
the question of ordering the saddle points at Ca ≠ 0
according to their energies simply boils down to the same
question for the saddle points atCa ¼ 0. There are also cases
(as one can see from the analysis of Sec. V, and the
discussion in Sec. VI D 2), in particular at small x, where
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the energy is not monotonic on the half-rings. Even in this
case, thevariation of the free energy along the half-rings is of
the order ∼mqjhψ̄ψijn;mq¼0 where the chiral condensate is
evaluated at the corresponding Efimov vacua at mq ¼ 0.
Because the condensate at the Efimov vacua are strongly
suppressed with respect to the standard vacuum (see, e.g.,
Fig. 9 in [55], where the Efimov vacua are found near the
origin), this variation is too small to overcome the energy
difference between the Efimov vacua and the standard
vacuum.
In Sec. VIII we will also demonstrate numerically that

even the solutions near the mq ¼ 0 standard vacuum (the
rightmost cross in Fig. 3) are perturbatively unstable if
jθ̄j≳ Nfπ=2. Therefore, all vacua in Fig. 3 left of the
standard vacuum, i.e. for jθ̄j≳ Nfπ=2, are perturbatively
unstable. Moreover, if we take into account all branches of
solutions, which are obtained by shifting θ̄ by multiples of
2π, the dominant solutions are found in the immediate
vicinity of the θ̄ ¼ 0 standard solutions [marked with the
blue line in Fig. 3 (right)], as we argue in Sec. VI B.
As shown on the horizontal axis of Fig. 3 (right), θ̄ takes

values quantized in units of πNf on this axis, corresponding
to phase shifts in units of π of the tachyon. In order to prove
this, we analyze the behavior of the tachyon solution near
the horizontal axis of Fig. 3. As Ca → 0, the solution
approaches smoothly the real valued solution having Ca ¼
0 exactly. Between the rightmost cross on the real axis and
the next cross to the left in Fig. 3 (left), the (real part of the)
tachyon at Ca ¼ 0 has a single node at some r ¼ r0—
notice that indeed such a solution has23 mq < 0 in the plot
of Fig. 2. By definition τ is positive in our analysis at
Ca ≠ 0, so a change of sign in the real part of the tachyon
must be realized through a shift in the tachyon phase ξ.
From (3.6) we see that ξ0 is positive for positive Ca, so the
phase must jump byþπ at the node of the tachyon as Ca →
0 from above: we have

ξ0ðrÞ → πδðr − r0Þ; ðC1Þ

where r0 is the location of the node. By using (3.3) for the
gauge invariant contribution we obtain

ā0 ¼ a0 þxðξVaÞ0 ¼ xξ0VaþOðCaÞ→ xπδðr− r0Þ ðC2Þ

as Ca → 0 from above, where we used the fact that Va ¼ 1
at the tachyon node [as the tachyon vanishes by definition,
τðr0Þ ¼ 0]. Consequently,

θ̄ ¼ Ncā0 → −πNf: ðC3Þ

For solutions with more tachyon oscillations, which can be
found on the horizontal axis of Fig. 3 closer to the dashed
curve, one just needs to sum over the contributions from
separate tachyon nodes. One finds that θ̄ → −nNfπ as
Ca → 0 from above, where n is the number of nodes.
An interesting possibility is that the white region of

Fig. 3 at small T0 is absent at large Ca so that the dashed
curve ends on the vertical axis. Such behavior is observed
for potentials I for some (small) choices of the coefficient al
in the function VaðτÞ ¼ expð−aqτ2 − alτÞ (but not for the
choice of al used in the numerical studies of this article).
This means that solutions exist at arbitrary small T0, so it is
natural to ask what happens in the limit T0 → 0. As it turns
out, the tachyon does not vanish in this limit, but assumes
an asymptotic behavior in the IR, which is different from
the standard regular IR asymptotics (see Appendix A). For
this special asymptotics, the two terms in (3.28) have the
same IR behavior:

e4AVfðλ; τÞ
ffiffiffiffiffiffiffiffiffi
κðλÞ

p
τ≃ jCajVaðτÞ ðr → ∞Þ: ðC4Þ

For potentials I with the above choice of Va the tachyon
diverges as τ ∼ r2, while the phase behaves as∼

ffiffiffi
r

p
at large r

(see the end of Appendix A for precise treatment). This
behavior is enough to decouple the tachyon from the metric,
which consequently follows the usual (Yang-Mills) asymp-
totics. Unlike with the standard asymptotics, this tachyon
asymptotics involves no free parameters, and the only free
parameter for this kind of solutions is Ca. Therefore the
solutions would define a curve on the ðmq; θ̄Þ plane.

APPENDIX D: FLUCTUATION EQUATIONS FOR
THE SINGLET PSEUDOSCALARS AT θ̄ ¼ 0

In [51] the whole set of fluctuations of V-QCD was
studied at θ̄ ¼ 0. Here we will focus on those contributing
to the singlet pseudoscalar sector. We need only consider
the flavor singlet axial vector, the phase of the tachyon, and
the axion field.
The fluctuations of the left and right gauge fields can be

written in terms of the vector and axial combinations

VM ¼ AL
M þ AR

M

2
; AM ¼ AL

M − AR
M

2
; ðD1Þ

with the associated field strengths being VMN , AMN . For the
axial vectors we first need to separate the transverse and
longitudinal parts:

Aμðxμ; rÞ ¼ A⊥
μ ðxμ; rÞ þ A∥

μðxμ; rÞ; ðD2Þ
where ∂νA⊥

ν ðxμ; rÞ ¼ 0, and the longitudinal term is the
divergence of a scalar function.
For the axial vector modes we need to treat the flavor

nonsinglet and flavor singlet terms separately, and therefore
we write

23As we discussed above, in this plot the quark mass is defined
as the real part of the source for the tachyon (whereas at finite θ̄
we define mq as the absolute value of the source). Therefore
negative values are possible.
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A⊥
μ ðxμ; rÞ ¼ A⊥F

μ ðxμ; rÞ þ A⊥S
μ ðxμ; rÞ;

A∥
μðxμ; rÞ ¼ A∥F

μ ðxμ; rÞ þ A∥S
μ ðxμ; rÞ; ðD3Þ

where the superscript S (F) stands for the flavor singlet
(nonsinglet) part of the mode. In the following we will
deal only with the longitudinal flavor singlet part of the
longitudinal axial vector mode A∥S, since only this part
contributes to the action of the singlet pseudoscalar
sector.
On the other hand, the fluctuations of the tachyon are

given by

T ¼ ðτ þ sþ sataÞeiθTþiπata ; ðD4Þ

where ta are the generators of SUðNfÞ. We are mostly
interested in the standard vacuum for 0 < x < xc which
gives rise to a nontrivial spectrum [51]. Therefore, the
background solution τðrÞ is nonzero and the phases θT , πa

in (D4) are well defined.

1. Flavor singlet pseudoscalar mesons

The quadratic action for all the fluctuations of V-QCD
was computed in [51].
Here we will write down the two pieces contributing to

the flavor singlet pseudoscalar sector: S1 coming from the
DBI piece (2.4), and S2 from the CP-odd sector (2.15). We
write each separately:

S1 ¼ −M3N2
c
x
2

Z
d4xdrVfðλ; τÞeAG−1

× ½wðλ; τÞ2ð∂rA
∥S
μ Þ2 þ e2Aκðλ; τÞτ2ð∂rθTÞ2 þ e2AG2κðλ; τÞτ2ð∂μθT þ 2A∥S

μ Þ2�; ðD5Þ

and

S2 ¼ −
M3N2

c

2

Z
d4xdrZðλÞe3A½ð∂μa − 2xVaðλ; τÞA∥S

μ Þ2

þ ð∂raþ x∂rVaðλ; τÞθTÞ2�; ðD6Þ

where

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2AκðλÞτ02

q
ðD7Þ

and we have set Ar ¼ 0.
We split the fields in the action as

A∥S
μ ðxμ; rÞ ¼ −φLðrÞ∂μðT ðxμÞÞ;
θTðxμ; rÞ ¼ 2φθðrÞT ðxμÞ;
aðxμ; rÞ ¼ 2φaxðrÞT ðxμÞ: ðD8Þ

The following combinations of the above fields

PðrÞ≡ φθðrÞ − φLðrÞ;
QðrÞ≡ φaxðrÞ þ xVaðλ; τÞφLðrÞ;
RðrÞ≡ φ0

axðrÞ þ x∂rVaðλ; τÞφθðrÞ ðD9Þ

are invariant under the residual gauge transformations
(2.18). Only two of them are independent, and they realize
the pseudoscalar glueball (0−þ) and η0 meson towers.

Indeed, following [51] R can be eliminated from the
fluctuation equations, which are found by varying
Eqs. (D5) and (D6). The result may be written as

∂r

�
VfeAG−1w2

�
−4e2A

Vfκτ
2

Na þ Nb
P0 þ V 0

a

Va

Nb

Na þ Nb
P

þ Nb

xVaðNa þ NbÞ
Q0
��

þ 4Vfe3AGκτ2P − 4e3AZVaQ ¼ 0; ðD10Þ

∂r

�
e3AZ

�
4xe2A

VaVfκτ
2

NaþNb
P0 þx

V 0
aNa

NaþNb
Pþ Na

NaþNb
Q0
��

þm2e3AZQ¼ 0; ðD11Þ
where Na and Nb are given by the following
expressions:

Na ¼ Vfð4e2Aκτ2 −m2w2Þ; Nb ¼ 4xe2AZV2
aG:

ðD12Þ

a. Change of variables

For the analysis of the mass of the η0meson, it is useful
to define the conjugate variables of P and Q:

Ψ ¼
�
P̂

Q̂

�
¼ 1

Na þ Nb

0
@ VfeAw2

4G ð−Nb − 4e2AVfκτ
2Þ VfeAw2

4G
Nb
xVa

e3AZð4xe2AVaVfκτ
2 − NaxVaÞm−2 e3AZNam−2

1
A� P0

ðQþ xVaPÞ0
�
: ðD13Þ
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Then the terms in the square brackets in (D10) and (D11)
can be expressed in terms of P̂ and Q̂. Taking a suitable
linear combination of these equations, differentiating once,
and after some simplifications, the fluctuation equations
can be written as

Ψ00 þ C−1
1 ∂rC1Ψ0 þMΨ ¼ 0; ðD14Þ

where

C1 ¼ e−3A
 1

GVfκτ
2

Va

GVfκτ
2

Vax
GVfκτ

2
1
Z þ V2

ax
GVfκτ

2

!
;

M ¼
 
G2m2 − 4e2AðGV2

axZþG2Vfκτ
2Þ

Vfw2 e−2Aκτ02m2Va

4e2AGVaxZ
Vfw2 m2

!
:

ðD15Þ

2. Flavor singlet axial vector mesons

It was shown in [51] that the action for the singlet sector
of the (transverse) axial vector modes has an extra term
coming from the CP-odd sector. The action is given by

SA¼−
M3N2

c

2

Z
d4xdr

�
xVfðλ;τÞeAG−1

�
1

2
G2wðλ;τÞ2AμνAμν

þwðλ;τÞ2∂rA⊥S
μ ∂rA⊥Sμþ4κðλ;τÞτ2e2AG2A⊥S

μ A⊥Sμ

�

þ4x2ZðλÞe3AVaðλ;τÞ2A⊥S
μ A⊥Sμ

�
; ðD16Þ

where indeed the last contribution originates from the
CP-odd action (2.15) while all the other terms come

from the flavor sector piece (2.4). Taking the following
Ansatz:

A⊥S
μ ðxμ; rÞ ¼ φAðrÞXμðxμÞ; ðD17Þ

the resulting fluctuation equation takes the form

1

Vfðλ; τÞwðλ; τÞ2eAG
∂rðVfðλ; τÞwðλ; τÞ2eAG−1∂rφAÞ

þm2
VφAþ

− 4

�
xe2A

ZðλÞVaðλ; τÞ2
Vfðλ; τÞGwðλ; τÞ2

þ τ2e2A

wðλ; τÞ2 κðλ; τÞ
�
φA ¼ 0:

ðD18Þ

APPENDIX E: FLUCTUTIONS OF THE θ̄
BACKGROUNDS

In this section we will derive the equations of motion for
the fluctuations in backgrounds corresponding to nonzero θ̄
vacua of the dual theory. As mentioned in Sec. VIII A we
will only consider the flavor nonsinglet sector, which
consists of the vector and axial vector mesons, together
with the scalar and pseudoscalar fluctuations of the com-
plex tachyon which we write as

T ¼ ½τðrÞþ sðr;xÞþ ~sðr;xÞ�
×exp ½ξðrÞþ θTðr;xÞþ ~πðr;xÞ�;

with ~sðr;xÞ ¼ saðr;xÞta; ~πðr;xÞ ¼ πaðr;xÞta: ðE1Þ

Only the DBI piece of the action, given by Eq. (2.4),
contributes to the nonsinglet sector fluctuations. Up to
quadratic order in the fluctuations it reads

S1 ¼ −
1

2
M3NcTr

Z
d4xdrVfðλ; τÞe3A ~G−1

×

��
2κ

∂τVf

Vf
τ0 þ ð∂τκÞτ0ð1þ ~G−2Þ − 2e−2A ~G−2κ2ττ0ξ02

�
~s~s0

þ
�∂2

τVf

Vf
e2A ~G2 þ ∂τVf

Vf
ð∂τκÞðτ02 þ τ2ξ02Þ þ 2

∂τVf

Vf
κτξ02 þ ∂2

τ κ

2
ðτ02 þ τ2ξ02Þ þ ð∂τκÞð1þ ~G−2Þτξ02

−
e−2A

4 ~G2
ð∂τκÞ2ðτ02 þ τ2ξ02Þ2 þ κ ~G−2ð1þ κe−2Aτ02Þξ02

�
~s2 þ ½κ ~G−2ð1þ κe−2Aτ2ξ02Þ�~s02 þ ½κð1þ κe−2Aτ2ξ02Þ�ð∂μ ~sÞ2

þ ½κ ~G−2τ2ð1þ κe−2Aτ02Þ� ~π02 þ ½κτ2ð1þ κe−2Aτ02Þ�ð∂μ ~π þ 2AμÞ2

þ 2ξ0
�∂τVf

Vf
κτ2 þ κτð2 − ~G−2e−2Aκτ2ξ02Þ þ τ2

2
ð∂τκÞð1þ ~G−2Þ

�
~s ~π0

− ½2e−2A ~G−2κ2τ2τ0ξ0�~s0 ~π0 − ½2e−2Aκ2τ2τ0ξ0�ð∂μ ~π þ 2AμÞ∂μ ~sþ w2e−2A
�
~G2

2
ðAμνAμν þ VμνVμνÞ þ A02

μ þ V 02
μ

��
: ðE2Þ

The vector and axial vector mesons correspond to the transverse part of the fields Vμ and Aμ respectively, and their equations
of motion can be readily obtained from the above Lagrangian. They are Eqs. (8.4) and (8.6) in the main text.
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1. Scalar-pseudoscalar mesons

This sector consists of the fluctuations of the modulus and phase of the tachyon, and the longitudinal part of the axial
vector, which we decompose as

AkF
μ ¼ −ψLðrÞ∂μPaðxÞta; ~s ¼ ψ sðrÞPaðxÞta; ~π ¼ 2ψpðrÞPaðxÞta; ðE3Þ

where ∂μ∂μPaðxÞ ¼ m2PaðxÞ. The corresponding equations of motion read:

~G
Vfe3A

∂r

�
Vf

e3A

~G
ð4P2ψ

0
p þM1ψ s þM2ψ

0
sÞ
�
þm2½4P1ðψp − ψLÞ þM3ψ s� ¼ 0; ðE4Þ

~G
Vfe3A

∂r

�
Vf

eA

~G
w2ψ 0

L

�
þ 4P1ðψp − ψLÞ þM3ψ s ¼ 0; ðE5Þ

~G
Vfe3A

∂r

�
Vf

e3A

~G
ð2S3ψ 0

s þ S1ψ s þ 2M2ψ
0
pÞ
�
þ 2m2M3ðψp − ψLÞ þ 2m2S4ψ s − S1ψ 0

s − 2S2ψ s − 2M1ψ
0
p ¼ 0; ðE6Þ

where the different coefficients are given by

P1 ¼ κτ2ð1þ κe−2Aτ02Þ; P2 ¼ κ ~G−2τ2ð1þ κe−2Aτ02Þ;

S1 ¼ 2κ
∂τVf

Vf
τ0 þ ð∂τκÞτ0ð1þ ~G−2Þ − 2e−2A ~G−2κ2ττ0ξ02;

S2 ¼
�∂2

τVf

Vf
e2A ~G2 þ ∂τVf

Vf
ð∂τκÞðτ02 þ τ2ξ02Þ þ 2

∂τVf

Vf
κτξ02 þ ∂2

τ κ

2
ðτ02 þ τ2ξ02Þ þ ð∂τκÞð1þ ~G−2Þτξ02

−
e−2A

4 ~G2
ð∂τκÞ2ðτ02 þ τ2ξ02Þ2 þ κ ~G−2ð1þ κe−2Aτ02Þξ02

�
;

S3 ¼ κ ~G−2ð1þ κe−2Aτ2ξ02Þ; S4 ¼ κð1þ κe−2Aτ2ξ02Þ;

M1 ¼ 2ξ0
�∂τVf

Vf
κτ2 þ κτð2 − ~G−2e−2Aκτ2ξ02Þ þ τ2

2
ð∂τκÞð1þ ~G−2Þ

�
;

M2 ¼ −2e−2A ~G−2κ2τ2τ0ξ0; M3 ¼ −2e−2Aκ2τ2τ0ξ0: ðE7Þ
The equations (E4)–(E6) can be recombined into two equations for two variables. They read

ψ 00
s þ ∂rðlogC1Þψ 0

s þ
1

C1

ðM þ ∂rC3 þm2C2Þψ s þ
m2

2C1

�
∂r

�
M2

P2

�
−
M1

P2

�
ψ̂ l ¼ 0; ðE8Þ

KP2∂r

�
ψ 0
l

KP1

�
− 4e2A

P2

w2
ψ̂ l þm2ψ̂ l þ K

�
P2∂r

�
M3

P1

�
−M1

�
ψ s ¼ 0; ðE9Þ

in terms of

ψ̂ l ¼ eAw2Vf
~G−1ψ 0

L; ðE10Þ

K ¼ e3AVf
~G−1; M ¼ K

�
M2

1

2P2

− 2S2

�
; C1 ¼ 2e3AVfκ ~G

−3; ðE11Þ

C2 ¼ 2κe3AVf

~G
G2

; C3 ¼ K

�
S1 − 2

M1M2

4P2

�
: ðE12Þ

In addition, one can solve for ψp from the equation

ψ 0
p ¼ m2

4

1

KP2

ψ̂ l −
M2

4P2

ψ 0
s −

M1

4P2

ψ s: ðE13Þ
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APPENDIX F: UV ASYMPOTICS OF THE MESON
WAVE FUNCTIONS

In this section we shall study the UV (r → 0) asymptotic
solutions of the system of coupled differential
equations (D10)–(D11) satisfied by the wave functions
of the flavor singlet pseudoscalar modes.
We will first study the system (D10)–(D11) in the UV

(r → 0) region. The UV asymptotics of the background
were presented in Appendix A 1. We will consider the

following UV asymptotics for the remaining potentials
determining the action of the fluctuations:

Vf0ðλÞ ∼W0ð1þW1λÞ; Vaðλ; τÞ ∼ 1 − b0τ2;

ZðλÞ ∼ Z0ð1þ c1λÞ; wðλÞ ∼ w0ð1þ w1λÞ: ðF1Þ

1. Zero quark mass

The UV expansions at mq ¼ 0 are given by

0
BBBBB@

P

Q

P̂

Q̂

1
CCCCCA ¼ Cþ

0
BBBBB@

−rαþð− logðrΛÞÞpþð1þOðlogðrΛÞ−1ÞÞ
xrαþð− logðrΛÞÞpþð1þOðlogðrΛÞ−1ÞÞ
xr−2þαþl3ð− logðrΛÞÞpþZ0

−2þαþ
ð1þOðlogðrΛÞ−1ÞÞ

xr−2þαþl3ð− logðrΛÞÞpþZ0

2−αþ
ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCA ðF2Þ

þC−

0
BBBBB@

−rα−ð− logðrΛÞÞp−ð1þOðlogðrΛÞ−1ÞÞ
xrα−ð− logðrΛÞÞp−ð1þOðlogðrΛÞ−1ÞÞ
xr−2þα−l3ð− logðrΛÞÞp−Z0

−2þα−
ð1þOðlogðrΛÞ−1ÞÞ

xr−2þα−l3ð− logðrΛÞÞp−Z0

2−α−
ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCA ðF3Þ

þ C1

0
BBBBBBBB@

− m2r−2ð− logðrΛÞÞ−2ρ
2l5σ2W0κ0

ð1þOðlogðrΛÞ−1ÞÞ

− m2r4ð−3xb0w2
0
Z0þw2

0
W0κ0þxl2Z0κ0Þ

2l3Z0ð−2w2
0
W0þxl2Z0Þκ0 ð1þOðlogðrΛÞ−1ÞÞ

3m2r2w2
0
ð−xb0Z0þW0κ0Þ

8w2
0
W0κ0−4xl2Z0κ0

ð1þOðlogðrΛÞ−1ÞÞ

1 − m2r2ð−3xb0w2
0
Z0þw2

0
W0κ0þxl2Z0κ0Þ

8w2
0
W0κ0−4xl2Z0κ0

ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCCCCA

ðF4Þ

þ C2

0
BBBBBBBB@

1 − m2r2 logðrΛÞ
8

ð1þOðlogðrΛÞ−1ÞÞ
r6l2ð− logðrΛÞÞ2ρσ2xW0ðl2κ0−6b0w2

0
Þ

xl2Z0−6W0w2
0

ð1þOðlogðrΛÞ−1ÞÞ
r4l5ð− logðrΛÞÞ2ρσ2w2

0
W0ðxb0Z0−W0κ0Þ

12w2
0
W0−2l2xZ0

ð1þOðlogðrΛÞ−1ÞÞ
r4l5ð− logðrΛÞÞ2ρσ2xW0κ0ðl2κ0−6b0w2

0
Þ

−4xl2Z0þ24W0w2
0

ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCCCCA
; ðF5Þ

where we have defined

α� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4xl2Z0

W0w2
0

s
ðF6Þ

and

p� ¼ � 16xl2Z0ðV1 − c1 −W1 − 2w1Þ
9V1W0w2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4xl2Z0

W0w2
0

q : ðF7Þ

The parameter ρ was defined in (A7) and m is the mass of the fluctuation.
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2. Finite quark mass

The UV expansions at finite mq are given by

0
BBBBB@

P

Q

P̂

Q̂

1
CCCCCA ¼ Cþ

0
BBBBB@

−rαþð− logðrΛÞÞpþð1þOðlogðrΛÞ−1ÞÞ
xrαþð− logðrΛÞÞpþð1þOðlogðrΛÞ−1ÞÞ
xr−2þαþl3ð− logðrΛÞÞpþZ0

−2þαþ
ð1þOðlogðrΛÞ−1ÞÞ

xr−2þαþl3ð− logðrΛÞÞpþZ0

2−αþ
ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCA ðF8Þ

þC−

0
BBBBB@

−rα−ð− logðrΛÞÞp−ð1þOðlogðrΛÞ−1ÞÞ
xrα−ð− logðrΛÞÞp−ð1þOðlogðrΛÞ−1ÞÞ
xr−2þα−l3ð− logðrΛÞÞp−Z0

−2þα−
ð1þOðlogðrΛÞ−1ÞÞ

xr−2þα−l3ð− logðrΛÞÞp−Z0

2−α−
ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCA ðF9Þ

þ C1

0
BBBBBBBB@

m2r2ð− logðrΛÞÞ2ρ
2l5m2

qW0κ0
ð1þOðlogðrΛÞ−1ÞÞ

− m2r4ðxb0w2
0
Z0þw2

0
W0κ0−xl2Z0κ0Þ

2l3Z0ð−2w2
0
W0þxl2Z0Þκ0 ð1þOðlogðrΛÞ−1ÞÞ

m2r2w2
0
ðxb0Z0−W0κ0Þ

8w2
0
W0κ0−4xl2Z0κ0

ð1þOðlogðrΛÞ−1ÞÞ

1 − m2r2ðxb0w2
0
Z0þw2

0
W0κ0−xl2Z0κ0Þ

8w2
0
W0κ0−4xl2Z0κ0

ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCCCCA

ðF10Þ

þ C2

0
BBBBBBBB@

1þ m2r2 logðrΛÞ
−2þ4ρ ð1þOðlogðrΛÞ−1ÞÞ

r2l2ð− logðrΛÞÞ−2ρm2
qW0κ0

Z0
ð1þOðlogðrΛÞ−1ÞÞ

l3ð− logðrΛÞÞ−2ρm2
qw2

0
W0ð−xb0Z0þW0κ0Þ

2xZ0
ð1þOðlogðrΛÞ−1ÞÞ

l5ð− logðrΛÞÞ1−2ρm2
qW0κ0

1−2ρ ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCCCCA
: ðF11Þ

If we set x → 0 first the expansions become

0
BBBBB@

P

Q

P̂

Q̂

1
CCCCCA ¼ CðQÞ

1

0
BBBBBB@

2r2

lw2
0
W0

ð1þOðlogðrΛÞ−1ÞÞ
m2r4

4l3Z0
ð1þOðlogðrΛÞ−1ÞÞ

−1þ m2r2
8

ð1þOðlogðrΛÞ−2ÞÞ
1 − m2r2

8
ð1þOðlogðrΛÞ−2ÞÞ

1
CCCCCCA

ðF12Þ

þCðQÞ
2

0
BBBBBBBB@

2l2 logðrΛÞZ0

w2
0
W0

ð1þOðlogðrΛÞ−1ÞÞ
1þ m2r2

4
ð1þOðlogðrΛÞ−1ÞÞ

− l3Z0

2r2 ð1þOðlogðrΛÞ−1ÞÞ
l3Z0

2r2 ð1þOðlogðrΛÞ−1ÞÞ

1
CCCCCCCCA
; ðF13Þ
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�
P

P̂

�
¼ CðPÞ

1

0
B@ m2r2ð− logðrΛÞÞ2ρ

2l5m2
qW0κ0

ð1þOðlogðrΛÞ−1ÞÞ
1 − 1

4
m2r2ð1 − ρ

logðrΛÞ þOðlogðrΛÞ−2ÞÞ

1
CA ðF14Þ

þ CðPÞ
2

0
B@ 1þ m2r2 logðrΛÞ

2ð−1þ2ρÞ ð1þOðlogðrΛÞ−1ÞÞ
l5ð− logðrΛÞÞ1−2ρm2

qW0κ0
1−2ρ ð1þOðlogðrΛÞ−1ÞÞ

1
CA ðF15Þ

where Q ¼ 0 ¼ Q̂ for the last two functions.

APPENDIX G: PROOF OF THE
WITTEN-VENEZIANO FORMULA

In order to prove the Witten-Veneziano formula we
follow the strategy outlined in Sec. VII B 2. We need to
compute the coefficient matrix in (7.18) at leading non-
trivial order by studying the behavior of the IR normal-
izable solutions in the UV. To do this precisely we expand
the IR normalizable solutions ψ ðPÞ and ψ ðQÞ systematically
at small x andm2

f withmf being the mass of the fluctuation
mode. We write the expansions of the various fields as

F ¼
X∞

M;N¼0

FMNm2M
f xN; ðF ¼ P;Q; P̂; m2

fQ̂Þ: ðG1Þ

Notice that in addition to x and m2
f we have another small

parameter mq. Therefore we should study how the compo-
nents FMN behave at small mq. In particular some of the
components are proportional to m−1

q ∼m−2
π (as we have

already seen in Sec. VII B 2) and therefore subleading
terms in the expansion may contribute at leading order in
the η0 mass. We need to identify such terms.
For the ψ ðPÞ solution we expect that Q ¼ OðxÞ ¼ Q̂ and

thereforewe can setQ0M ¼ 0 ¼ Q̂0M for allM. Substituting
the expansions in the fluctuation equations (7.8)–(7.11)
we find

P0
00 ¼ −

4e−AG
Vfw2

P̂00; P̂0
00 ¼ −e3AGVfκτ

2P00: ðG2Þ

Wechoose the IR normalizable solutionwhich is recognized
as the mf ¼ 0 ¼ x solution discussed in Sec. VII B 1, with
the normalization P00 → 1 and P̂00 → CP as r → 0. Recall
thatCPwas related to the pion decay constant in (7.14), up to
corrections suppressed by mq and x. The other components
FMN can be solved iteratively from the fluctuation equations
with the boundary condition that theyvanish in the IR,which
uniquely defines ψ ðPÞ.

Going higher order in m2
f we find that

P0
10 ¼

e−3AGðw2P̂00 − 4e2Aκτ2P̂10Þ
Vfw2κτ2

;

P̂0
10 ¼ −e3AGVfκτ

2P10: ðG3Þ

Here P̂10 is not enhanced as mq → 0, but P10 is. The same
arguments as when discussing (7.15) give24

lim
r→0

P10 ¼ −
CP

W0κ0l3

Z
∞

0

r3dr
τðrÞ2 þOðm0

qÞ ¼ −
1

m2
π
þOðm0

qÞ:

ðG4Þ

The higher order corrections in x in the equations lead to

P0
01 ¼ −

4e−AG
Vfw2

P̂01;

P̂0
01 ¼ −e3AðV2

aZP00 þ GVfκτ
2P01Þ: ðG5Þ

We notice that these terms are not enhanced asmq → 0 and
may be neglected as their contributions are suppressed by
OðxÞ. Summarizing, we obtain the anticipated result

CPP ≃ lim
r→0

ðP00 þm2
fP10Þ ¼ 1 −

m2
f

m2
π
: ðG6Þ

We also obtain the exact solutions

Q̂01 ¼ 0; Q01 ¼ −VaP00: ðG7Þ

This is remarkable since it allows us to compute the leading
contribution to the mixing coefficient CPQ. It is given by

CPQ ≃ xlim
r→0

Q01 ¼ −x; ðG8Þ

where we used the fact that Va → 1 at the boundary as
required by the implementation of the axial anomaly. Again

24To be precise, the corrections to the integral in (G4) are
larger than Oðm0

qÞ because we did not include the logarithmic
corrections to the potentials, but in the final expression the
corrections are indeed Oðm0

qÞ as shown in Appendix D of [55].
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it may be checked that higher order terms in the series
expansion contribute negligibly to CPQ.
We then go on discussing the solution ψ ðQÞ. The solution

is defined by setting

Q̂00 ¼ const ¼ −CQ; ðG9Þ

which leads to

Q00ðrÞ ¼ CQ

Z
∞

r

dr̂
e3AZ

: ðG10Þ

NormalizingQ00 to unity at the boundary (so thatCQQ ≃ 1)

CQ ¼
�Z

∞

0

dr
e3AZ

�
−1

¼ χYM
M3

; ðG11Þ

where χYM is the (Yang-Mills) topological susceptibility.
Again solving the fluctuation equations perturbatively gives

P0
00 ¼ −

e−3AGðCQVaw2 þ 4e2Aκτ2P̂00Þ
Vfw2κτ2

;

P̂0
00 ¼ e3AðVaZQ00 −GVfκτ

2P00Þ: ðG12Þ

As mq → 0 the most important contribution is the term
∝ CQ, and after integration

lim
r→0

P00ðrÞ ¼
CQ

W0κ0l3

Z
∞

0

r3dr
τðrÞ2 þOðm0

qÞ

¼ CQ

CPm2
π
þOðm0

qÞ; ðG13Þ

where we again could set Va to unity near the boundary.
Therefore CQP ≃ CQ=CPm2

π .
Collecting the results,

�
CPP CPQ

CQP CQQ

�
≃
0
B@ 1 −

m2
f

m2
π

−x
CQ

CPm2
π

1

1
CA: ðG14Þ

Requiring the determinant of this matrix to vanish marks
the point mf ¼ mη0 , and results in the Witten-Veneziano
formula

m2
η0 ≃m2

π þ x
CQ

CP
≃m2

π þ x
NfNcχYM

f2π
; ðG15Þ

where we used (7.14) and (G11) in the last step. Recall that
for our normalization conventions f2π ¼ OðNfNcÞ.

APPENDIX H: THE GELL-MANN-OAKES-
RENNER RELATION AT FINITE θ̄

It is possible to compute the dependence of the mass of
the pion on θ̄ in the QCD-like regime [0 < x < xc and
xc − x ¼ Oð1Þ] when the quark mass mq is small. This can
be done by solving the fluctuation equations in different
approximations near the boundary and in the IR and by
requiring that the two results agree.
The general fluctuation equations for the scalar and

pseudoscalar mesons are given in Eqs. (E9) in Appendix E.
However, the (appropriately normalized) pion wave func-
tion is localized near the boundary, for r ∼

ffiffiffiffiffiffiffiffiffiffiffi
mq=σ

p
(see

computation for V-QCD at θ̄ ¼ 0 in Appendices E and F of
[55]). In order to see how the pion wave function behaves
in this neighborhood at finite θ̄, it is useful to rewrite
the fluctuations of the tachyon using a decomposition into
real and imaginary parts rather then the absolute value
and phase.
To make the argument precise, we write

T ¼ τeiξ þ sar ta þ isai t
a ðH1Þ

for the flavor nonsinglet fluctuations instead of (E1).
Moreover we decompose the wave functions of the
fluctuations to radial and spatial parts as in (E3) and denote
the radial wave functions as ψ r and ψ i. When r ≪ 1=ΛUV
and when the squared mass of the fluctuations isOðmqÞ, as
we expect for the lowest mode which will be identified as
the pion below, the tachyon field of (H1), and therefore
also the functions ψ r and ψ i, satisfy the same equa-
tion (3.13) as the background:

ψ 00
r=i þ ∂r log ðe3AκVf0Þψ 0

r=i − e2Am2
τψ r=i

¼ Oðmqψ r=iÞ
�
r ≪

1

ΛUV

�
; ðH2Þ

where the leading correction arises from the terms involv-
ing the (squared) mass of the fluctuations.
We denote the linearly independent non-normalizable

and normalizable solutions of (H2) as τm and τσ , respec-
tively, so that the background solution reads

τðrÞeiξðrÞ ¼ mqeiξ0τmðrÞ þ ðσ0 þOðmqÞÞτσðrÞ�
r ≪

1

ΛUV

�
: ðH3Þ

Here we denoted the value of the VEVat mq ¼ 0 by σ0 and
dropped corrections OðmqÞ to the VEV term as in the
analysis of Sec. VI D. We have chosen the gauge where
ξ → 0 as r → ∞, so that ξ≃ θ̄=Nf [see (6.23)]. The
imaginary part of the pion mode is UV normalizable and
therefore given as
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τ cosðξÞψp ¼ τrψp ¼ ψ i ¼ Cpτσ; ðH4Þ

where

τr ¼ τ cosðξÞ≃mq cosðξ0Þτm þ σ0τσ ðH5Þ

is the real part of the background solution. Now we
find that

ψ 0
p ¼ Cp

τ0στr − τστ
0
r

τ2r
ðH6Þ

and therefore

Vf0κe3Aτ2rψ 0
p ¼ CpVf0κe3Aðτ0στr − τστ

0
rÞ: ðH7Þ

This expression is constant for r ≪ 1=ΛUV, up to correction
suppressed by OðmqÞ, as can be seen analyzing (H2)—
the latter form is proportional to the Wronskian (see also
Appendix D in [55]). The value of the constant can be
computed by taking r → 0 on the right-hand side:

Vf0κe3Aτ2rψ 0
p ¼ Cplim

r→0
ðτ0στr − τστ

0
rÞ

¼ 2CpW0κ0l5mq cos ξ0: ðH8Þ

To complete the computation of the pion mass we need
to make contact with the fluctuations in the IR. We note
that the tachyon background depends on mq smoothly
when written as a complex field:

τeiξ ¼ τ0 þOðmqÞ; ðH9Þ

where τ0 is the (real) background at mq ¼ 0. As τ0 does
not have nodes in the IR, the phase ξ is OðmqÞ. The
phase is the source of parity violation, and therefore
the mixing between the scalar and pseudoscalar fluctua-
tions is controlled by it. That is, all coefficients of the
mixing terms in the fluctuation equations (E4)–(E6) in
Appendix E are OðmqÞ in the IR. Therefore we can
choose a basis with an IR normalizable mode, relevant
for the pion, which has ψp ¼ Oð1Þ and ψ s ¼ OðmqÞ.
Taking stock, the fluctuation equation (E4) for the pion
mode becomes

1

GVfκτ
2e3A

∂r

�
Vfκτ

2e3A

G
ψ 0
p

�
þm2ðψp − ψLÞ

¼ Oðm2
qÞ

�
r ≫

ffiffiffiffiffiffi
mq

σ0

r �
; ðH10Þ

where the precise range of validity can be seen by
inserting the UV expression (H3) into the fluctuation
equations. This implies that in the IR the fluctuation
equation takes the same form as for θ̄ ¼ 0. In particular,
there is not dependence on θ̄, apart from possible
dependence through the mass of the fluctuation m.
Whenm ¼ 0 exactly, the solutions to (H10) are given by

Vfκτ
2e3A

G
ψ 0
p ¼ const; ψp ¼ const: ðH11Þ

The first solution is non-normalizable in the IR, but the
second solution is normalizable (when mq ¼ 0 also it is
identified as the pion mode). For m small but nonzero the
terms mix so that the normalizable mode is constant to
leading order in m but also includes a component ∝ m2

corresponding to the first term which can be computed by
integrating (H10).
When

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mq=σ0

p
≪ r ≪ 1=ΛUV we can match the UV

and IR behavior of the fluctuations, construct the pion
mode, and determine its mass. From the IR analysis we
learned that the pion is dominated by the second solution in
(H11), but there is also a small component corresponding to
the first solution [which can be obtained in principle by
integrating (H10)], which satisfies

Vfκτ
2e3Aψ 0

p ¼ kpm2
πψpþOðm2

qÞ
� ffiffiffiffiffiffi

mq

σ0

r
≪ r≪

1

ΛUV

�
;

ðH12Þ

where the proportionality coefficient kp is independent of
mq and θ̄. Notice that for r ≪ 1=ΛUV we were able to
approximate G ¼ 1 and that (H10) implies that the left-
hand side of (H12) is indeed constant in this regime.
Comparing to the result of the UV analysis in (H8)
(noticing that Cp ≃ ψp and τr ≃ τ) we see that

kpm2
π ¼ 2W0κ0l5mq cos ξ0 þOðm2

qÞ: ðH13Þ
As kp was independent of mq and θ̄, we find that
m2

π ∝ mq cos ξ0. Comparing to the GOR relation at θ̄ ¼ 0

[55], the proportionality constant is found to be kp ¼ f2π;0=
M3NfNcσ0, where fπ;0 is the pion decay constant at θ̄ ¼ 0.
The final result therefore reads

f2π;0m
2
π ¼ −hψ̄ψijmq¼0mq cos

θ̄

Nf
þOðm2

qÞ; ðH14Þ

where we inserted (6.23) and the relation between the
condensate and σ0.
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