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Mixing transformations for a uniformly accelerated observer (Rindler observer) are analyzed within the
quantum field theory framework as a basis for investigating gravitational effects on flavor oscillations.
In particular, the case of two charged boson fields with different masses is discussed. In spite of such a
minimal setting, the standard Unruh radiation is found to lose its characteristic thermal interpretation due
to the interplay between the Bogoliubov transformation hiding in field mixing and the one arising from
the Rindler spacetime structure. The modified spectrum detected by the Rindler observer is explicitly
calculated in the limit of the small mass difference.
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I. INTRODUCTION

Since Pontecorvo’s revolutionary idea [1], the theoretical
basis of flavor mixing has been widely investigated.
Although years of effort have been devoted to providing
evidence for flavor oscillations, intriguing questions still
remain open. Among these, for instance, the origin of this
phenomenon within the Standard Model and the nontrivial
condensate structure exhibited by the vacuum for mixed
fields are the most puzzling problems. The latter aspect, in
particular, has burst into the spotlight after the unitary
inequivalence between mass and flavor vacua in the
quantum field theory framework (QFT) was high-
lighted [2,3].
Flavor mixing in QFT is notoriously a nontrivial issue

[4], since it is related with the problem of inequivalent
representations of the canonical commutation relations [5].
The origin of this result lies in the fact that mixing
transformations, which act as pure rotations on massive
particle states in quantum mechanics (QM), have a more
complicated structure at level of field operators. Indeed,
they include both rotations and Bogoliubov transformations
[6], thereby inducing a condensate of particle/antiparticle
pairs into the flavor vacuum. This has been pointed out first
for Dirac fermions [2] and later for other fields [3,7,8],
showing in both cases the limits of the quantum mechanical
approach in the treatment of flavor mixing. In particular, the
QFT formulation of boson mixing, which is the object of
the present paper, has shown to have phenomenological
consequences for the case of mixed mesons, such as the
K0 − K̄0, B0 − B̄0, or η − η0 systems [9].
All of the previous work has been carried out only in

Minkowski spacetime. The existing literature on mixing
and flavor oscillations in a curved background, indeed,

deals with this issue by using several other approaches, e.g.
the Wentzel–Kramers–Brillouin (WKB) approximation
[10–12], plane-wave method [13,14], or geometric treat-
ments [15], and in various metrics, such as Schwarzschild
[13,16–18], Kerr [11,14], Kerr-Newman, Friedmann-
Robertson-Walker [12], Hartle-Thorne [19], and Lense-
Thirring [20] metrics. Thus the question arises how the
above formalism gets modified in the presence of gravity.
In the present work, a first step along this direction is

taken by analyzing the QFT of two mixed scalar fields in a
uniformly accelerated frame (Rindler metric). Despite such
a minimal setting, a rich mathematical framework arises
due to the combination of the Bogoliubov transformation
associated with mixing and the one related to the Rindler
spacetime structure [21–27]. The extension of these results
to the fermionic case, and in particular to neutrino fields,
could provide new insights into the controversial problem
of flavor oscillations in curved spacetime. In this con-
nection, we remark that the results of the present paper,
although obtained for bosons, have general validity, being
largely independent of the spin structure.
Mixing transformations in a noninertial frame may serve

as a tool for analyzing a number of other current questions
dealing with such a topic: the spin-down of a rotating star
by neutrino emission [28] and the disagreement between
the inverse β-decay rates of accelerated protons in comov-
ing and inertial frames [29], for instance, are some of the
most relevant problems appearing in this framework. The
latter aspect, in particular, is discussed, providing a possible
resolution for the above incompatibility.
The paper is structured as follows: in the next section, as

a basis for extending mixing transformations to the Rindler
frame, we introduce in Minkowski spacetime the hyper-
bolic field quantization, that is, the scheme which diago-
nalizes the Lorentz boost generator. The results obtained
within such a framework are compared with the more
familiar ones in the plane-wave basis, thereby showing
their equivalence for an inertial observer. In Sec. III the
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Rindler-Fulling quantization and the related Unruh effect
are reviewed. Mixing transformations for the Rindler
observer are derived in Sec. IV; the modified spectrum
of Unruh radiation is explicitly calculated in the limit of a
small mass difference, thus showing its nonthermal nature
when mixed fields are involved. Conclusions are briefly
discussed in Sec. V. The paper is completed with three
appendixes.
Throughout all the work, the metric ημν ¼

diagðþ1;−1;−1;−1Þ and natural units ℏ ¼ c ¼ 1 will
be used. In addition, the following notation for 4-, 3-,
and 2-vectors will be adopted:

x ¼ ft;xg; x ¼ fx1; x⃗g; x⃗ ¼ fx2; x3g: ð1Þ

II. QUANTIZED SCALAR FIELD
IN HYPERBOLIC REPRESENTATION

Let us consider a free complex scalar field ϕwith massm
in a four-dimensional Minkowski spacetime. In the stan-
dard plane-wave representation, the field expansion reads

ϕðxÞ ¼
Z

d3kfakUkðxÞ þ āk†U�
kðxÞg; ð2Þ

where

UkðxÞ ¼ ½2ωkð2πÞ3�−1
2eiðk·x−ωktÞ: ð3Þ

As known, the field quanta created by the application of the
ladder operators a†k (ā†k) on the Minkowski vacuum j0Mi
carry well defined momentum k and frequency ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkj2

p
with respect to the Minkowski time t (see

Appendix A). We will refer to these quanta as Minkowski
particles (antiparticles), in contrast to the Rindler quanta to
be later defined.
In order to extend the field–quantization scheme to

the Rindler framework, let us introduce the so-called
hyperbolic representation, that is, the representation which
diagonalizes the Lorentz boost operator. To check this, we
look at the expression of the Lorentz-group generators,

Mðα;βÞ ¼
Z

d3xðxαTð0;βÞ − xβTð0;αÞÞ: ð4Þ

The boost operator (for example along the x1 axis) is the
(1,0) component of Mðα;βÞ. Using the standard expression
of the stress tensor Tμν and replacing the field expansion
Eq. (2), we obtain [30]

Mð1;0Þ ¼ i
Z

d3k
2ωk

�
c†kωk

∂
∂k1 ck þ c̄†kωk

∂
∂k1 c̄k

�
; ð5Þ

where ck ≡ ffiffiffiffiffiffiffiffiffi
2ωk

p
ak. The result in Eq. (5) shows that

Mð1;0Þ has a nondiagonal structure in the plane-wave

representation. With a straightforward calculation, how-
ever, it can be verified that such a task is carried out by the
following operators [26]:

dðσÞκ ¼
Z þ∞

−∞
dk1p

ðσÞ
Ω ðk1Þak; d̄ðσÞκ ¼

Z þ∞

−∞
dk1p

ðσÞ
Ω ðk1Þāk;

ð6Þ

where the subscript κ stands for ðΩ; k⃗Þ, σ ¼ �1, Ω is a
positive parameter, and1

pðσÞ
Ω ðk1Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2πωk

p
�
ωk þ k1
ωk − k1

�
iσΩ=2

: ð7Þ

In terms of these operators, indeed, the boost generator
Mð1;0Þ takes the form

Mð1;0Þ ¼
Z

d3κ
X
σ

σΩðdðσÞ†κ dðσÞκ þ d̄ðσÞ†κ d̄ðσÞκ Þ; ð8Þ

which is clearly diagonal.2 For later use, it is worth

noting that the functions pðσÞ
Ω in Eq. (7) form a complete

orthonormal set, i.e.

X
σ;Ω

pðσÞ
Ω ðk1ÞpðσÞ�

Ω ðk10Þ ¼ δðk1 − k10Þ; ð10Þ

Z þ∞

−∞
dk1p

ðσÞ�
Ω ðk1Þpðσ0Þ

Ω0 ðk1Þ ¼ δσσ0δðΩ −Ω0Þ; ð11Þ

where the following shorthand notation has been
introduced:

X
σ;Ω

≡X
σ

Z þ∞

0

dΩ: ð12Þ

1The physical meaning of σ andΩ will be explained in the next
section, where the quantization procedure is analyzed in a
uniformly accelerated frame.

2We remark that the time independence of Mð1;0Þ, and more
generally of the spatial-temporal components Mðk;0Þ of the
relativistic total angular momentum, accounts for the inertial
motion of the center of energy [31]. This can be readily seen by
writing such an operator in the form

M ¼ tP −mXt;

Xt ¼
1

2m

Z
d3xx∶Π2ðxÞ þ∇ϕðxÞ ·∇ϕðxÞ þm2ϕ2ðxÞ∶;

ð9Þ

where P and Xt correspond to the momentum and position
operators of the center of energy, respectively. It follows that the
Nöther theorem yields P

:
¼ M

:
¼ 0 ⇔ X

:
¼ P

m ⇔ Ẍ ¼ 0, which
indicates the inertial motion of the center of energy operator.
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Since the operators dðσÞκ (d̄ðσÞκ ) in Eq. (6) are linear
combinations of the Minkowski annihilators ak (āk)
alone, they also annihilate the Minkowski vacuum j0Mi
in Eq. (A8),

dðσÞκ j0Mi ¼ d̄ðσÞκ j0Mi ¼ 0; ∀ σ; κ: ð13Þ

In addition, by exploiting Eqs. (10) and (11) and the
commutation relations of ak and āk in Eq. (A7), it is
immediate to verify that the transformations Eq. (6) are
canonical, i.e.

½dðσÞκ ; dðσ
0Þ†

κ0 � ¼ ½d̄ðσÞκ ; d̄ðσ
0Þ†

κ0 � ¼ δσσ0δ
3ðκ − κ0Þ; ð14Þ

with all other commutators vanishing. Therefore, Eqs. (13)
and (14) allow us to state that, from the viewpoint of an
inertial observer, the hyperbolic and plane-wave quantiza-
tions are equivalent at the level of ladder operators.
The hyperbolic wave functions associated with the

operators dðσÞκ can now be derived by inverting Eq. (6)
with respect to ak and āk and substituting the resulting
expressions into the field expansion Eq. (2). It follows that

ϕðxÞ ¼
X
σ;Ω

Z
d2kfdðσÞκ ~UðσÞ

κ ðxÞ þ d̄ðσÞ†κ ~UðσÞ�
κ ðxÞg; ð15Þ

where

~UðσÞ
κ ðxÞ ¼

Z þ∞

−∞
dk1p

ðσÞ�
Ω ðk1ÞUkðxÞ: ð16Þ

The integral Eq. (16) can be more directly solved by
introducing the Rindler coordinates ðη; ξÞ, related to the
Minkowski ones by the following expressions:

t ¼ ξ sinh η; x1 ¼ ξ cosh η; ð17Þ

with −∞ < η, ξ < ∞ (note that x2 and x3 are common to
both sets of coordinates). We have3 (see Ref. [32])

~UðσÞ
κ ðxÞ ¼ eσπΩ=2

2
ffiffiffi
2

p
π2

KiσΩðμkξÞeiðk⃗·x⃗−σΩηÞ; ð18Þ

where KiσΩðμkξÞ is the modified Bessel function of the
second kind and μk is the reduced frequency,

μk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jk⃗j2

q
; ð19Þ

with k⃗≡ fk2; k3g as introduced in Eq. (1).

It is not difficult to show that the hyperbolic modes in
Eq. (16) form a complete orthonormal set with respect to
the Klein-Gordon (KG) inner product Eq. (A5); i.e.

ð ~Uðσ0Þ
κ0 ; ~UðσÞ

κ Þ ¼ −ð ~Uðσ0Þ�
κ0 ; ~UðσÞ�

κ Þ ¼ δσσ0δ
3ðκ − κ0Þ;

ð ~Uðσ0Þ
κ0 ; ~UðσÞ�

κ Þ ¼ 0: ð20Þ

Before turning to discuss the quantization procedure for
an accelerated observer, it should be emphasized that,
although the plane-wave expansion Eq. (2) applies to all
the points of spacetime, the hyperbolic representation
Eq. (15) is valid only on the Rindler manifolds
x1 > jtj ∪ x1 < −jtj. By analytically continuing the solu-
tions (18) across x1 ¼ �t, one obtains the correct global
functions, i.e. the Gerlach’s Minkowski Bessel modes (see
Ref. [33]). For our purpose, nevertheless, it is enough to
consider the modes as above defined.

III. FIELD QUANTIZATION IN A UNIFORMLY
ACCELERATED FRAME: UNRUH EFFECT

The above-discussed hyperbolic representation provides
a springboard for analyzing the Rindler-Fulling quantiza-
tion in a uniformly accelerated frame [23]. As a first step for
such an extension, by exploiting the Rindler coordinates
ðη; ξ; x2; x3Þ in Eq. (17), let us rewrite the line element
ds2 ¼ ημνdxμdxν in the form

ds2 ¼ ðdtÞ2 − ðdx1Þ2 −
X3
j¼2

ðdxjÞ2 !
Rindler coord:

ds2

¼ ξ2dη2 − dξ2 −
X3
j¼2

ðdxjÞ2: ð21Þ

Since the metric does not depend on η, the vector B ¼ ∂
∂η is

a timelike Killing vector. By exploiting Eq. (17), one can
verify that B coincides with the boost Killing vector along
the x1 axis.
The physical relevance of the Rindler coordinates can

readily be explained by considering the following world
line:

ξðτÞ ¼ const≡ a−1; x2ðτÞ ¼ const; x3ðτÞ ¼ const;

ð22Þ

where τ is the proper time measured along the line. By
inserting Eq. (22) into the metric Eq. (21), we find that

ηðτÞ ¼ aτ: ð23Þ

Therefore, the proper time τ of an observer along the line
(22) is the same as the Rindler time η, up to the scale factor
a. We will refer to such an observer as the Rindler observer.

3The set of coordinates ðη; ξ; x⃗Þ in Eq. (18) is denoted by x, as
well as the corresponding set of Minkowski coordinates ðt; x1; x⃗Þ
in Eq. (3). Therefore, according to our convention, the symbol x
refers to a spacetime point, rather than its representation in a
particular coordinate system.
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Equation (23) plays a striking role; according to the
above discussion on the Killing vector ∂

∂η, indeed, it shows
that the time evolution for the Rindler observer is properly
an infinite succession of infinitesimal Minkowski boost
transformations. This is the reason why in the first section
we deeply insisted on the hyperbolic representation as
opposed to the more familiar plane-wave field expansion.
In the Minkowski coordinates ðt; x1; x2; x3Þ, the world

line Eq. (22) takes the form

tðτÞ ¼ a−1 sinh aτ; x1ðτÞ ¼ a−1 cosh aτ;

x2ðτÞ ¼ const; x3ðτÞ ¼ const: ð24Þ

Equation (24) describes a hyperbola in the ðt; x1Þ plane
with asymptotes t ¼ �x1 (Fig. 1). It is not difficult to see
that it represents the world line of a uniformly accelerated
observer with proper acceleration jaj [24]; for a > 0, in
particular, the observer is confined within the right wedge
Rþ ¼ fxjx1 > jtjg, and for a < 0, conversely, his motion
occurs in the left wedge R− ¼ fxjx1 < −jtjg. On this basis,
the physical difference between the Minkowski and Rindler
metrics can be pointed out; as shown in Fig. 1, a uniformly
accelerated observer in Rþ is causally separated from one
in R−. Indeed, he cannot receive (send) any signal from the
future (past) wedge t > jx1j ðt < −jx1jÞ. Therefore, the
null hyperplane t ¼ jx1j (t ¼ −jx1j) appears to him as a
future (past) event horizon. The above considerations,
however, do not apply to the Minkowski (inertial) observer,
whose signals, sent or received, can reach every point of
spacetime.

We are now ready to describe the field-quantization
procedure from the viewpoint of a uniformly accelerated
observer. In Appendix B the solutions of the Klein-Gordon
equation in Rindler coordinates are explicitly derived,

uðσÞκ ðxÞ ¼ θðσξÞ½2Ωð2πÞ2�−1
2hðσÞκ ðξÞeiðk⃗·x⃗−σΩηÞ; ð25Þ

where σ ¼ �1 refers to the right/left wedges R�, Ω is the

frequency with respect to the Rindler time η, and hðσÞκ is the
modified Bessel function of the second kind, up to a
normalization factor [see Eq. (B5)]. The Heaviside step
function θðσξÞ has been inserted in Eq. (25) in order to

restrict the Rindler modes uðσÞκ to only one of the two
causally separated wedges R�.
Exploiting the completeness and orthonormality proper-

ties of the set fuðσÞκ ; uðσÞ�κ g, we can expand the field in the
Rindler framework as follows:

ϕðxÞ ¼
X
σ;Ω

Z
d2kfbðσÞκ uðσÞκ ðxÞ þ b̄ðσÞ†κ uðσÞ�κ ðxÞg; ð26Þ

where κ ≡ ðΩ; k⃗Þ as already defined. The ladder operators

bðσÞκ and b̄ðσÞκ are assumed to obey the canonical commu-
tation relations,

½bðσÞκ ; bðσ
0Þ†

κ0 � ¼ ½b̄κðσÞ; b̄κ0 ðσ0Þ†� ¼ δσσ0δ
3ðκ − κ0Þ; ð27Þ

with all other commutators vanishing. They can be inter-
preted as annihilation operators of Rindler-Fulling particles
and antiparticles, respectively. The Rindler-Fulling vac-
uum, denoted with j0Ri, is accordingly defined by

bðσÞκ j0Ri ¼ b̄ðσÞκ j0Ri ¼ 0; ∀ σ; κ: ð28Þ

In order to figure out the connection between the
Minkowski and Rindler quantizations, let us now compare
the two alternative field expansions on a spacelike hyper-
surface Σ lying in the Rindler manifolds R� (for instance,
we may consider a hyperplane of constant η). Because of
the equivalence of plane-wave and hyperbolic representa-
tions within the Minkowski framework, we could equally
consider the relations Eqs. (2) and (15) for the inertial
observer. To simplify the calculations, we opt for the latter.
Therefore, by equating Eqs. (15) and (26) on the hyper-
surface Σ and forming the KG inner product of both sides

with the Rindler mode uðσÞκ , we have

bðσÞκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞ

p
dðσÞκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p
d̄ð−σÞ†~κ ; ð29Þ

where ~κ ≡ ðΩ;−k⃗Þ and

NRðΩÞ ¼
1

e2πΩ − 1
ð30Þ

x1

x0

a
1

const.

R
R

P

F 0 ,

0 ,

FIG. 1. The proper coordinate system of a uniformly accelerated
observer in the Minkowski spacetime. The hyperbola represents
the world line of an observer with proper acceleration a.

M. BLASONE, G. LAMBIASE, and G. G. LUCIANO PHYSICAL REVIEW D 96, 025023 (2017)

025023-4



is the Bose-Einstein distribution function. We will refer to
Eq. (29) as the “thermal” Bogoliubov transformation.
To be complete, let us observe that, if we used the plane-

wave expansion Eq. (2) instead of the hyperbolic scheme,
the transformation Eq. (29) would take the far less
“manageable” form

bðσÞκ ¼
Z

d3k0fak0αðσÞ�κk0 þ āk0†βðσÞ�κk0 g; ð31Þ

with ak0 and āk0 introduced in Eq. (2) and

αðσÞκk0 ¼ eπΩ=2jΓðiΩÞj
2π

�
Ω
ωk0

�
1=2

�
ωk0 þ k10

ωk0 − k10

�
−iσΩ=2

δ2ðk⃗− k⃗ 0Þ;

ð32Þ

βðσÞκk0 ¼e−πΩ=2jΓðiΩÞj
2π

�
Ω
ωk0

�
1=2

�
ωk0 þk10

ωk0 −k10

�
−iσΩ=2

δ2ðk⃗þ k⃗ 0Þ:

ð33Þ

The distribution of Rindler particles in the Minkowski
vacuum can now readily be calculated by exploiting
Eqs. (13) and (29). It follows that

h0MjbðσÞ†κ bðσÞκ0 j0Mi ¼ NRðΩÞδ3ðκ − κ0Þ; ð34Þ

which is clearly nonvanishing. Moreover, by noting from
Eq. (23) that the proper energy of the particles seen by a
Rindler observer with acceleration a is aΩ, it can be
verified that the condensate Eq. (34) has a thermal
spectrum, with temperature T given by

T ¼ a
2π

: ð35Þ

One can easily recognize in Eqs. (34) and (35) the well-
known Unruh effect, which states that, from the viewpoint
of the Rindler observer, the inertial vacuum appears as a
thermal bath with temperature proportional to the magni-
tude of his acceleration.

IV. FLAVOR MIXING TRANSFORMATIONS
FOR AN ACCELERATED OBSERVER

In the past two decades mixing transformations in QFT
have been widely investigated first for fermions [2] and
then for bosons [3], showing in both cases the presence of
nontrivial vacuum structure for the flavor fields. However,
these studies have been carried out only for an inertial
observer in the plane-wave and hyperbolic representations
[34]. Thus the question arises how the above structure
appears in a general frame and, in particular, from the
viewpoint of the Rindler observer. To this end, starting from
the review in Appendix C, let us consider mixing relations
in a simplified two-flavor model,

ϕAðxÞ ¼ ϕ1ðxÞ cos θ þ ϕ2ðxÞ sin θ; ð36Þ

ϕBðxÞ ¼ −ϕ1ðxÞ sin θ þ ϕ2ðxÞ cos θ; ð37Þ

where ϕi, i ¼ 1, 2 are two free complex scalar fields with
masses mi, ϕχ , χ ¼ A, B are the mixed fields, and θ is the
mixing angle. Following the same approach as in Sec. III,
in the Rindler framework we adopt the following free
fieldslike expansions for mixed fields4:

ϕAðxÞ ¼
X
σ;Ω

Z
d2kfbðσÞκ;Au

ðσÞ
κ;1ðxÞ þ b̄ðσÞ†κ;A uðσÞ�κ;1 ðxÞg; ð38Þ

ϕBðxÞ ¼
X
σ;Ω

Z
d2kfbðσÞκ;Bu

ðσÞ
κ;2ðxÞ þ b̄ðσÞ†κ;B uðσÞ�κ;2 ðxÞg; ð39Þ

where bðσÞκ;χ , b̄
ðσÞ
κ;χ , and their respective adjoints (χ ¼ A, B) are

the flavor operators for the Rindler observer.
As pointed out in Appendix C, mixing relations in QFT

inherently hide a Bogoliubov transformation relating the
ladder operators for flavor fields with the corresponding
ones for definite mass fields [see Eq. (C10)]. Therefore, by

virtue of Eq. (29), we expect that bðσÞκ;χ and b̄ðσÞκ;χ in Eqs. (38)
and (39) are related to the “mass” operators for an inertial
observer by the combination of two Bogoliubov trans-
formations, the one arising from the Rindler spacetime
structure, the other associated with flavor mixing.
In order to analyze such an interplay, let us equate the

(hyperbolic) Minkowski representation of ϕA in Eq. (20)
with the corresponding Rindler expansion Eq. (38),

X
σ;Ω

Z
d2kfbðσÞκ;Au

ðσÞ
κ;1ðxÞ þ b̄ðσÞ†κ;A uðσÞ�κ;1 ðxÞg

¼
X
σ;Ω

Z
d2kfdðσÞκ;A

~UðσÞ
κ;1ðxÞ þ d̄ðσÞ†κ;A

~UðσÞ�
κ;1 ðxÞg; ð40Þ

where we emphasize that dðσÞκ;A and d̄ðσÞκ;A are the flavor
operators for an inertial observer within the hyperbolic
scheme. By multiplying both sides for the Rindler mode

uðσÞκ;1 and using the orthonormality condition Eq. (B8), we
have

bðσÞκ;A ¼
X
σ0;Ω0

Z
d2k0fdðσ0Þκ0;A ~α

ðσ;σ0Þ�
κκ0 þ d̄ð−σ

0Þ†
~κ0;A

~βðσ;σ
0Þ

κ ~κ0 g; ð41Þ

where

~αðσ;σ
0Þ

κκ0 ¼ ðuðσÞκ;1 ; ~U
ðσ0Þ
κ0;1Þ; ~βðσ;σ

0Þ
κ ~κ0 ¼ ð ~Uð−σ0Þ�

~κ0;1 ; uðσÞκ;1Þ: ð42Þ

4For simplicity, the time dependence of the flavor operators
will be omitted when there is no ambiguity.
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The Bogoliubov coefficients ~αðσ;σ
0Þ

κκ0 and ~βðσ;σ
0Þ

κ ~κ0 in Eq. (42)
are clearly independent of the mixing angle θ: therefore, by
noting that the transformation Eq. (41) must reduce to

Eq. (29) for θ → 0 (since bðσÞκ;Ajθ¼0 → bðσÞκ;1 , d
ðσÞ
κ;Ajθ¼0 → dðσÞκ;1

and dð−σÞ~κ;A jθ¼0 → dð−σÞ~κ;1 ), we readily obtain (up to an irrel-
evant global phase factor5)

bðσÞκ;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞ

p
dðσÞκ;A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p
d̄ð−σÞ†~κ;A : ð43Þ

Similarly, for b̄ðσÞκ;A we have

b̄ðσÞκ;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞ

p
d̄ðσÞκ;A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p
dð−σÞ†~κ;A : ð44Þ

The corresponding relation between bðσÞκ;B and dðσÞκ;B can
be derived by equating the expansions of ϕB in Eqs. (39)
and (C21) and forming the inner product of both sides with

uðσÞκ;2 . A straightforward calculation leads to

bðσÞκ;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞ

p
dðσÞκ;B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p
d̄ð−σÞ†~κ;B : ð45Þ

Similarly, for b̄ðσÞκ;B we have

b̄ðσÞκ;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞ

p
d̄ðσÞκ;B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p
dð−σÞ†~κ;B : ð46Þ

Using the transformations Eq. (43) and (45), we can
now calculate the Rindler spectrum of mixed particles in
the inertial vacuum. To this purpose, however, the explicit

expressions of dðσÞκ;χ and d̄ðσÞκ;χ in Eqs. (C22)–(C25) are
required:

dðσÞκ;A ¼ cos θdðσÞκ;1

þ sin θ
X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�
;

ð47Þ

d̄ðσÞκ;A ¼ cos θd̄ðσÞκ;1

þ sin θ
X
σ0;Ω0

�
d̄ðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ dðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�
;

ð48Þ

dðσÞκ;B ¼ cos θdðσÞκ;2

− sin θ
X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;1A

ðσ0;σÞ�
ðΩ0;ΩÞ;k⃗ − d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;1B

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗

�
;

ð49Þ

d̄ðσÞκ;B ¼ cos θd̄ðσÞκ;2

− sin θ
X
σ0;Ω0

�
d̄ðσ

0Þ
ðΩ0;k⃗Þ;1A

ðσ0;σÞ�
ðΩ0;ΩÞ;k⃗ − dðσ

0Þ†
ðΩ0;−k⃗Þ;1B

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗

�
;

ð50Þ

where the mixing Bogoliubov coefficients Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ and

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ are given by Eqs. (C27) and (C28)

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;1
þ 1

ωk;2

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1−ωk;2Þt; ð51Þ

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;2
−

1

ωk;1

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1þωk;2Þt: ð52Þ

As discussed in Appendix C, the analytical resolution of
these integrals is nontrivial. Further developments in the
calculation of the modified Unruh distribution, however,
can be obtained for t ¼ η ¼ 0; indeed, in this case, by
exploiting the relations Eqs. (C29) and (C30), the
Bogoliubov transformation Eq. (43) can be recast in the
form

bðσÞκ;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩÞ

p �
cos θdðσÞκ;1

þ sin θ
X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

��

ð53Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p �
cos θd̄ð−σÞ†~κ;1

þ sin θ
X
σ0;Ω0

ðd̄ð−σ0Þ†ðΩ0;−k⃗Þ;2A
ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ dð−σ

0Þ
ðΩ0;k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗Þ

�
;

ð54Þ

where, to simplify the notation, the subscript t ¼ 0 has
been omitted. Therefore, the spectrum of mixed particles
detected by the Rindler observer in the inertial vacuum
takes the form

5In our treatment the phase factor turns out to be
irrelevant since we want to calculate the expectation value
h0MjbðσÞ†κ;A bðσ

0Þ
κ0;Aj0Mi.
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N RðθÞj0 ≡ h0MjbðσÞ†κ;χ bðσÞκ0;χ j0Mi
¼ NRðΩÞcos2θδ3ðκ − κ0Þ þ sin2θ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩ0Þ

p
NAA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩ0Þ

p
NBB

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩ0Þ

p
NBA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩ0Þ

p
NAB�δ2ðk⃗ − k⃗0Þ; χ ¼ A;B; ð55Þ

where NRðΩÞ is the standard Unruh condensate Eq. (30)
and the following notation has been introduced:

NAA ≡ X
σ0;Ω00

Aðσ;σ0Þ�
ðΩ;Ω00Þ;k⃗A

ðσ;σ0Þ
ðΩ0;Ω00Þ;k⃗0 ;

NBB ≡ X
σ0;Ω00

Bðσ;σ0Þ�
ðΩ;Ω00Þ;k⃗B

ðσ;σ0Þ
ðΩ0;Ω00Þ;k⃗0 ; ð56Þ

NAB ≡ X
σ0;Ω00

Aðσ;σ0Þ�
ðΩ;Ω00Þ;k⃗B

ðσ;−σ0Þ
ðΩ0;Ω00Þ;k⃗0 ;

NBA ≡ X
σ0;Ω00

Bðσ;σ0Þ�
ðΩ;Ω00Þ;k⃗A

ðσ;−σ0Þ
ðΩ0;Ω00Þ;k⃗0 : ð57Þ

From Eq. (55), by using the relations Eqs. (C38) and (39)
and defining

FðΩ;Ω0Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞNRðΩ0Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ NRðΩÞÞð1þ NRðΩ0ÞÞ

p
; ð58Þ

GðΩ;Ω0Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩ0Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRðΩÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NRðΩ0Þ

p
; ð59Þ

it follows that

N RðθÞj0 ¼NRðΩÞδ3ðκ− κ0Þ
þ sin2θ½FðΩ;Ω0ÞNBBþGðΩ;Ω0ÞNAB�δ2ðk⃗− k⃗0Þ;

ð60Þ

which coincides with the result obtained in Ref. [34] by
directly expressing the flavor d operators in Eqs. (C20) and
(C21) in terms of the corresponding ones in plane-wave
representation Eqs. (C7) and (C8).
Therefore, because of the interplay between mixing and

thermal Bogoliubov transformations, the radiation detected
by the Rindler observer gets significantly modified, result-
ing in the sum of the conventional Unruh density plus
nondiagonal corrections arising from flavor mixing. Let us
separately evaluate these additional terms; to this end, by
exploiting Eqs. (10) and (11), the densities NBB and NAB in
Eq. (60) can be rewritten as

NBB ¼ −
1

2
δðΩ−Ω0Þ þ Jð−Ω;Ω0Þ

�
1

ωk;2

�
þKð−Ω;Ω0Þ

�
ωk;2

ω2
k;1

�
;

ð61Þ

NAB ¼ Jð−Ω;−Ω0Þ
�

1

ωk;2

�
− Kð−Ω;−Ω0Þ

�
ωk;2

ω2
k;1

�
; ð62Þ

where

Jð−Ω;Ω0Þ
�

1

ωk;2

�
≡

Z þ∞

−∞

dk1
8πωk;2

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

×

�
ωk;1 þ k1
ωk;1 − k1

�
iσΩ0=2

; ð63Þ

Kð−Ω;Ω0Þ
�
ωk;2

ω2
k;1

�
≡

Z þ∞

−∞

dk1
8π

ωk;2

ω2
k;1

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

×

�
ωk;1 þ k1
ωk;1 − k1

�
iσΩ0=2

: ð64Þ

We focus on NBB; the calculation of NAB is obviously
similar. In the reasonable limit of small mass difference
Δm2

m2
i
≪ 1, i ¼ 1, 2, by using the approximations Eqs. (C31)

and (32), the integrals in Eqs. (63) and (64) take the form

Jð−Ω;Ω0Þ ¼ 1

4
δðΩ −Ω0Þ −

Z þ∞

−∞

dk1
8π

�
1

2

Δm2

ω3
k;1

−
3

8

ðΔm2Þ2
ω5
k;1

�

×

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

�
ωk;1 þ k1
ωk;1 − k1

�
iσΩ0=2

þO
��

Δm2

μ2k;1

�
3
�
;

Kð−Ω;Ω0Þ ¼ 1

4
δðΩ −Ω0Þ þ

Z þ∞

−∞

dk1
8π

�
1

2

Δm2

ω3
k;1

−
1

8

ðΔm2Þ2
ω5
k;1

�

×

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

�
ωk;1 þ k1
ωk;1 − k1

�
iσΩ0=2

þO
��

Δm2

μ2k;1

�
3
�
;

where μk;1 is defined in Eq. (19). Therefore, for NBB we
obtain
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NBB ¼ 1

4

Z þ∞

−∞

dk1
8π

ðΔm2Þ2
ω5
k;1

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

×

�
ωk;1 þ k1
ωk;1 − k1

�
iσΩ0=2

þO
��

Δm2

μ2k;1

�
3
�

¼ 1

192

ðΔm2Þ2
μ4k;1

σðΩ0 − ΩÞ
sinh½π

2
σðΩ0 −ΩÞ� ½4þ ðΩ0 −ΩÞ2�

þO
��

Δm2

μ2k;1

�
3
�
; ð65Þ

where in the last step we used the formula (see
Ref. [35])

Z þ∞

−∞

dy
cosh4 y

cos ½σðΩ0 −ΩÞy�

¼ 1

6

πσðΩ0 −ΩÞ
sinh ½π

2
σðΩ0 − ΩÞ� ½4þ ðΩ0 −ΩÞ2�: ð66Þ

Similarly, for NAB it can be verified that

NAB ¼
Z þ∞

−∞

dk1
8π

�
−
Δm2

ω3
k;1

þ 1

2

ðΔm2Þ2
ω5
k;1

��
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ=2

�
ωk;1 þ k1
ωk;1 − k1

�
−iσΩ0=2

þO
��

Δm2

μ2k;1

�
3
�

¼ −
1

8

Δm2

μ2k;1

σðΩ0 þ ΩÞ
sinh ½π

2
σðΩ0 þ ΩÞ� þ

1

96

ðΔm2Þ2
μ4k;1

σðΩ0 þ ΩÞ
sinh ½π

2
σðΩ0 þ ΩÞ� ½4þ ðΩ0 þ ΩÞ2� þO

��
Δm2

μ2k;1

�
3
�
; ð67Þ

where the formula Eq. (C33) has been used. In definitive, by inserting Eqs. (65) and (67) in Eq. (60), it follows that

N RðθÞj0 ¼ NRðΩÞδ3ðκ − κ0Þ − sin2θ

	
Δm2

8μ2k;1
GðΩ;Ω0Þ σðΩ0 þΩÞ

sinh ½π
2
σðΩ0 þΩÞ�

þ ðΔm2Þ2
96μ4k;1

�
FðΩ;Ω0Þ

2

σðΩ0 −ΩÞ
sinh ½π

2
σðΩ0 −ΩÞ� ½4þ ðΩ0 − ΩÞ2� þ GðΩ;Ω0Þ σðΩ0 þ ΩÞ

sinh ½π
2
σðΩ0 þΩÞ� ½4þ ðΩ0 þ ΩÞ2�

�

þO
��

Δm2

μ2k;1

�
3
�


δðk⃗ − k⃗Þ; ð68Þ

with FðΩ;Ω0Þ and GðΩ;Ω0Þ defined in Eqs. (63) and (64),
respectively.
Three comments are in order here. First, for θ → 0

Eq. (68) correctly reduces to the Bose-Einstein distribution
in Eq. (34), as one would expect in the absence of mixing.
Similar considerations hold for m1 → m2 and in the
relativistic limit jk⃗j2 ≫ m2

1 þm2
2, since the parameter Δm2

μ2k;i

approaches zero.
Second, the total number of mixed particles with

frequency Ω and 2-momentum k⃗ can be obtained by
integrating Eq. (68) over κ0. It is not difficult to verify that
the higher the frequency, the more relevant the contribution
of the mixing corrections becomes.
Third, we emphasize that although the characteristic

Unruh distribution Eq. (30) does not depend on the mass
of the field detected by the Rindler observer, the modified
spectrum Eq. (68) turns out to be proportional to the
squared mass difference of the two mixed fields. Therefore,
flavor mixing breaks the mass-scale invariance of the
Unruh effect; as a consequence, vacuum-radiation loses
its original thermal interpretation. Of course, the extension
of such a result to the neutrino case can be potentially
exploited to fix new constraints on the squared mass
differences of these fields.

Borrowing Hawking’s idea about black hole evaporation,
here we sketch a heuristic interpretation of the above
modification: in the absence of mixing, as shown, inertial
vacuum appears as a condensate of Rindler particle/
antiparticle pairs all of the same type. Normally, these
pairs exist for an extremely short time before annihilating.
Nevertheless, just outside the event horizon, it is possible
for an antiparticle to fall back into the Rindler inaccessible
region before the annihilation occurs, in which case its
partner can escape, observed as Unruh radiation. In other
terms, for free fields we can state that the thermal bath
detected by the accelerated observer in the inertial vacuum
originates from the corresponding flux of one-type anti-
particles crossing the horizon.
The above considerations, however, get modified when

mixed fields are involved. In this case, indeed, we stress
that the vacuum is populated by particle/antiparticle pairs of
both the same and different flavors (see Refs. [2,3] for
details). Therefore, Unruh radiation can be generated by
both types of antiparticles crossing the horizon. In other
words, if a B-flavor particle escapes, it could correspond
to a B-flavor antiparticle fallen back into the horizon, as
well as to an A-flavor antiparticle (see Fig. 2). Such an
ambiguity, of course, will increase the entropy of the
system, thus modifying the spectrum of Unruh radiation.
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V. CONCLUSIONS

In this paper the topic of flavor mixing from the view-
point of a uniformly accelerated observer has been analyzed
within the quantum field theory framework. In particular,
the case of two charged scalar fields with different masses
has been discussed. Because of the combination of the two
Bogoliubov transformations involved—the one hiding in
flavor mixing, the other associated with the Rindler
spacetime structure—the spectrum of Unruh radiation is
found to be significantly modified, resulting in the sum of
the standard Bose-Einstein distribution plus nontrivial
corrections arising from mixing [see Eq. (60)]. The explicit
calculation of these additional terms has been performed in
the limit of a small mass difference, thereby showing that
Unruh radiation loses its characteristic thermality when
mixed fields are involved [Eq. (68)].
In spite of its minimal setting, we stress that the

quantization formalism developed in this paper provides
a convenient starting point for analyzing flavor oscillations
in the QFT on a curved background. Our approach, indeed,
once extended to the fermionic case, and in particular to
neutrino fields, may give new insights into the existing
formalisms dealing with this topic [10,12,14,15]. Moreover,
the problems of the phase shift between two neutrino mass
eigenstates [12,16,36] and neutrino spin oscillations in
gravitational fields [37] could be investigated. A prelimi-
nary analysis [38] of the fermionic case confirms the general
validity of the results obtained for bosons, although with
some minor complications due to the spin structure and, of
course, the modification of the statistics of the thermal part
of the Rindler spectrum (fromBose-Einstein to Fermi-Dirac
distribution).
Analyzing field mixing in an accelerated frame may

serve as a basis for studying a number of other theoretical
problems appearing in such a framework. For instance, it

has been recently shown [29] that the inverse β-decay rates
of accelerated protons in the inertial and comoving frames
disagree in the context of neutrino flavor mixing. As
pointed out in Ref. [29], this can be seen as the price of
maintaining the Kubo-Martin-Schwinger condition of ther-
mal state for the accelerated neutrino vacuum. Actually
such an incompatibility does not seem to be a paradox, but
a consequence of the fact that flavor mixing and oscillations
are an effective field theory that breaks down in noninertial
frames, in particular for accelerations, which are of the
order of the mass difference between the mixed fields. A
similar situation is indeed discussed in Ref. [39], where the
two-point function along the Rindler trajectory is found to
lose its thermal interpretation within the loop quantization
method, due to non-Lorentz invariance of polymer correc-
tion terms. In this context, it would also be interesting to
consider a similar setting as the one of Ref. [29] involving
mixed mesons rather than neutrinos, and thus allowing one
to directly test the results of the present work.
Along this line, a further interesting question to be

potentially investigated is Lorentz invariance violation in
the context of mixed neutrinos (see Ref. [40] for a more
detailed treatment). Up to now, indeed, flavor mixing in the
quantum field theory framework has been analyzed only
within the usual plane-wave representation. Exploiting the
hyperbolic scheme discussed in Sec. II, one could explore
more efficiently such an issue.
It is our purpose to investigate this and other aspects

in forthcoming papers. More work, indeed, is inevitably
required along these lines.

APPENDIX A: PLANE-WAVE REPRESENTATION
IN MINKOWSKI SPACETIME

In this appendix the standard plane-wave quantization
of a free scalar field in Minkowski spacetime is briefly
reviewed. As a starting point for such an analysis, by using
the Minkowski coordinates ft;xg≡ ft; x1; x2; x3g, we
expand the field in the familiar form

ϕðxÞ ¼
Z

d3kfakUkðxÞ þ āk†U�
kðxÞg; ðA1Þ

where

UkðxÞ ¼ ½2ωkð2πÞ3�−1
2eiðk·x−ωktÞ ðA2Þ

are the plane waves of frequency

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkj2

q
: ðA3Þ

The modes Uk in Eq. (A2) are solutions of the Klein-
Gordon equation,

FIG. 2. Pictorial interpretation of the modified spectrum of
mixed particles in j0Mi for a Rindler observer. Different colors of
dots correspond to different particle/antiparticle flavors. Contrary
to the case of absence of mixing, the vacuum is populated by
particle-antiparticle pairs, both of the same (blue-blue, red-red)
and different (blue-red) types.
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	� ∂
∂t
�

2

−
X3
j¼1

� ∂
∂xj

�
2

þm2



ϕðxÞ ¼ 0: ðA4Þ

They are normalized with respect to the Klein-Gordon
(KG) inner product,

ðϕ1;ϕ2Þ ¼ i
Z

d3x½ϕ�
2ðxÞ∂t

↔
ϕ1ðxÞ�; ðA5Þ

where the integration is assumed to be performed on a
hypersurface of constant t. Indeed, we have

ðUk;Uk0 Þ ¼ −ðU�
k;U

�
k0 Þ ¼ δ3ðk− k0Þ; ðUk;U�

k0 Þ ¼ 0:

ðA6Þ

The operators ak and āk in the field expansion Eq. (A1) are
assumed to satisfy the canonical commutation relations,

½ak; a†k0 � ¼ ½āk; ā†k0 � ¼ δ3ðk − k0Þ; ðA7Þ

with all other commutators vanishing. As is well known,
they can be interpreted as annihilation operators of
Minkowski particles and antiparticles, respectively. The
Minkowski vacuum j0Mi is accordingly defined by

akj0Mi ¼ ākj0Mi ¼ 0; ∀ k: ðA8Þ

In terms of ak, āk, and their respective adjoints, it is easy to
show that the (normal ordered) Hamiltonian and momen-
tum operator have a diagonal structure [41],

H ¼
Z

d3kωkða†kak þ ā†kākÞ;

P ¼
Z

d3kkða†kak þ ā†kākÞ: ðA9Þ

Therefore, in the plane-wave representation, field quanta
are characterized by well-defined momentum and energy
with respect to the time t.

APPENDIX B: KLEIN-GORDON EQUATION
FOR THE RINDLER OBSERVER

In order to extend the field-quantization formalism to an
accelerated frame, it is useful to rewrite the Klein-Gordon
Eq. (A4) in terms of the Rindler coordinates fη; ξ; x2; x3g
given in Eq. (17),

	� ∂
∂t
�

2

−
X3
j¼1

� ∂
∂xj

�
2

þm2



ϕðxÞ ¼ 0

!
Rindler coord:

	
1

ξ2
∂2

∂η2 −
∂2

∂ξ2 −
1

ξ

∂
∂ξ−

X3
j¼2

� ∂
∂xj

�
2

þm2



ϕðxÞ

¼ 0: ðB1Þ

Solutions of positive frequency Ω with respect to the
Rindler time η can be written in the form (see Ref. [26])

uðσÞκ ðxÞ ¼ θðσξÞ½2Ωð2πÞ2�−1
2hðσÞκ ðξÞeiðk⃗·x⃗−σΩηÞ; ðB2Þ

where σ ¼ þ refers to the right wedge Rþ ¼ fxjx1 > jtjg,
while σ ¼ − refers to the left wedge R− ¼ fxjx1 < −jtjg.
We will refer to these functions as Rindler modes. Since the
Rindler regions R� are causally separated from each other,
the Heaviside step function θðσξÞ has been inserted in
Eq. (B2). The time dependence

uðσÞκ ∝ e−iσΩη ðB3Þ

reflects the fact that the boost Killing vector B ¼ ∂
∂η is

future oriented in Rþ, while it is past oriented in R−.

The explicit expression of hðσÞκ can be obtained by
substituting Eq. (B2) into Eq. (B1). This leads to

	
d2

dξ2
þ 1

ξ

d
dξ

þ Ω2

ξ2
− μ2k



hðσÞκ ðξÞ ¼ 0; ðB4Þ

which is solved by the modified Bessel functions of the
second kind. In detail, by requiring that these functions are
delta normalized, one gets

hðσÞκ ¼ ð2=πÞ12AðσÞ
κ ðαμk=2ÞiΩΓðiΩÞ−1KiΩðμkξÞ; ðB5Þ

with

AðσÞ
κ ¼

	
R�
κðαμk=2Þ−iΩΓðiΩÞ=jΓðiΩÞj; for σ¼þ;

Rκðαμk=2ÞiΩΓð−iΩÞ=jΓðiΩÞj; for σ¼−;
ðB6Þ

where Rκ ¼ ½ðαμk=2Þ−iΩΓðiΩÞ=jΓðiΩÞj�2, α is an arbitrary
positive constant of dimension of length, and ΓðiΩÞ is the
Euler Gamma function.
By exploiting Eqs. (B2) and (B5), it is possible to verify

that the Rindler modes defined above form a complete
orthonormal set with respect to the KG inner product in
Rindler coordinates,

ðϕ1;ϕ2Þ ¼ i
Z þ∞

−∞

dξ
jξj

Z
d2xϕ�

2∂
↔

ηϕ1; ðB7Þ

where we have implicitly assumed that the integration is
performed on a hypersurface of constant η. We have
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ðuðσÞκ ; uðσ
0Þ

κ0 Þ ¼ −ðuðσÞ�κ ; uðσÞ�κ0 Þ
¼ δσσ0δ

3ðκ − κ0Þ; ðuðσÞκ ; uðσÞ�κ0 Þ ¼ 0: ðB8Þ

APPENDIX C: BOSON FIELD MIXING
IN MINKOWSKI SPACETIME: PLANE-WAVE

AND HYPERBOLIC MODES

In this appendix flavor mixing transformations within
the QFT framework are reviewed [3]. The background we
consider for our discussion is the usual Minkowski space-
time. The results and definitions reported here provide the
basis for extending such a formalism to the Rindler frame.
Let us start by considering mixing relations for scalar

fields in a simplified model with only two flavors,

ϕAðxÞ ¼ ϕ1ðxÞ cos θ þ ϕ2ðxÞ sin θ; ðC1Þ

ϕBðxÞ ¼ −ϕ1ðxÞ sin θ þ ϕ2ðxÞ cos θ; ðC2Þ

where ϕχ , χ ¼ A, B denote the mixed fields and θ is the
mixing angle. ϕiðxÞ, i ¼ 1, 2, are two free complex scalar
fields with masses mi, whose expansions in the plane-wave
basis are given by Eq. (A1),

ϕ1ðxÞ ¼
Z

d3kfak;1Uk;1ðxÞ þ ā†k;1U
�
k;1ðxÞg; ðC3Þ

ϕ2ðxÞ ¼
Z

d3kfak;2Uk;2ðxÞ þ ā†k;2U
�
k;2ðxÞg: ðC4Þ

The respective conjugate momenta are πiðxÞ ¼ ∂0ϕ
†
i ðxÞ,

and their commutation relations are

½ϕiðxÞ; πjðx0Þ�t¼t0 ¼ ½ϕ†
i ðxÞ; π†jðx0Þ�t¼t0

¼ iδ3ðx − x0Þδij; i; j ¼ 1; 2; ðC5Þ

with the other equal-time commutators vanishing.
Since we are dealing with two free fields, the Minkowski

vacuum is generalized as

j0Mi≡ j0Mi1 ⊗ j0Mi2; ðC6Þ

where j0Mii is the vacuum for the field with mass mi [see
the definition in Eq. (A8) or, equivalently, Eq. (13)].
The completeness of the two sets of plane waves

fUk;i; U�
k;ig, i ¼ 1, 2 allows us to take the following

expansions for the mixed fields:

ϕAðxÞ ¼
Z

d3kfak;AðtÞUk;1ðxÞ þ ā†k;AðtÞU�
k;1ðxÞg; ðC7Þ

ϕBðxÞ ¼
Z

d3kfak;BðtÞUk;2ðxÞ þ ā†k;BðtÞU�
k;2ðxÞg; ðC8Þ

where the flavor operator ak;A is given by the KG product,6

ak;AðtÞ ¼ ðϕA;Uk;1Þ: ðC9Þ

Similar expressions hold for the other flavor operators (see
below). By inserting the expansion Eq. (C1) in the product
Eq. (C9) and exploiting the orthonormality condition of the
plane waves Eq. (A6), we obtain for ak;A

7

ak;A ¼ cos θak;1 þ sin θðρk�12ak;2 þ λk12ā
†
−k;2Þ; ðC10Þ

where the coefficients ~ρk12 and ~λk12 are given by

ρk12 ¼ jρk12jeiðωk;2−ωk;1Þt; λk12 ¼ jλk12jeiðωk;1þωk;2Þt; ðC11Þ

with

jρk12j≡ 1

2

� ffiffiffiffiffiffiffiffiffi
ωk;1

ωk;2

r
þ

ffiffiffiffiffiffiffiffiffi
ωk;2

ωk;1

r �
;

jλk12j≡ 1

2

� ffiffiffiffiffiffiffiffiffi
ωk;1

ωk;2

r
−

ffiffiffiffiffiffiffiffiffi
ωk;2

ωk;1

r �
: ðC12Þ

Similarly, for the other flavor operators we have

āk;A ¼ −ðϕA; U�
k;1Þ†

¼ cos θāk;1 þ sin θðρk�12 āk;2 þ λk12a
†
−k;2Þ; ðC13Þ

ak;B ¼ ðϕB; Uk;2Þ
¼ cos θak;2 − sin θðρk12ak;1 − λk12ā

†
−k;1Þ; ðC14Þ

āk;B ¼ −ðϕB; U�
k;2Þ†

¼ cos θāk;2 − sin θðρk12āk;1 − λk12a
†
−k;1Þ: ðC15Þ

Therefore, from Eqs. (C10), (C13)–(C15), we realize that
mixing relations within the quantum field theory frame-
work arise as a consequence of the nontrivial interplay
between rotations and Bogoliubov transformations at the
level of ladder operators. Such a structure, as known, has no
corresponding result in quantum mechanics, where mixing
transformations take the form of pure rotations operating on
massive-particle states [1].
As can easily be proved, the Bogoliubov coefficients

jρk12j and jλk12j in Eq. (C12) are related by

jρk12j2 − jλk12j2 ¼ 1. ðC16Þ

6In Ref. [3] the flavor operators are derived by means of the
algebraic generator of the mixing relations Eqs. (C1) and (C2).
Here, we use this alternative but completely equivalent
approach.

7To simplify the notation, in what follows the time dependence
of flavor operators will be omitted when not necessary.
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The condition Eq. (C16) guarantees that flavor operators
obey the canonical commutation relations (at equal times).
Flavor vacuum at time t, denoted with j0ðθ; tÞiA;B, is
accordingly defined by

ak;χðtÞj0ðθ; tÞiA;B ¼ āk;χðtÞj0ðθ; tÞiA;B
¼ 0; χ ¼ A;B: ðC17Þ

The crucial point is that, in the infinite volume limit, flavor
and mass vacua are found to be orthogonal to each other,
thus giving rise to inequivalent Hilbert spaces.8 Indeed, we
have

lim
V→∞Mh0j0ðθ; tÞiA;B ¼ 0; ∀ t: ðC18Þ

As shown in Ref. [6], the responsibility for such an
inequivalence is the noncommutativity between rotation
and Bogoliubov transformation in Eq. (C10). The latter
transformation, in particular, induces a drastic change into
the vacuum structure, which becomes a condensate of
particle/antiparticle pairs of density,

A;Bh0ðθ; tÞja†k;iak;ij0ðθ; tÞiA;B ¼ sin2θjλk12j2; i ¼ 1; 2:

ðC19Þ

A more detailed discussion about the flavor vacuum
structure can be found in Ref. [3].
The foregoing studies have been carried out by using

the conventional plane-wave basis. By virtue of Lorentz
covariance, however, field-mixing formalism can be equiv-
alently analyzed within a basis diagonalizing any other
Lorentz-group generator. For our purpose, for instance,
we may wonder how the transformations Eqs. (C10) and
(C13)–(15) appear in the hyperbolic scheme, that is, the
scheme which diagonalizes the boost operator (see Sec. II).
To this end, by exploiting the completeness of the modes

f ~UðσÞ
κ;i ; ~U

ðσÞ�
κ;i g, i ¼ 1, 2 in Eq. (16), let us adopt for mixed

fields the hyperbolic free fieldslike expansions Eq. (15)

ϕAðxÞ ¼
X
σ;Ω

Z
d2kfdðσÞκ;A

~UðσÞ
κ;1ðxÞ þ d̄ðσÞ†κ;A

~UðσÞ�
κ;1 ðxÞg; ðC20Þ

ϕBðxÞ ¼
X
σ;Ω

Z
d2kfdðσÞκ;B

~UðσÞ
κ;2ðxÞ þ d̄ðσÞ†κ;B

~UðσÞ�
κ;2 ðxÞg; ðC21Þ

where the shorthand notation Eq. (12) has been used.
Flavor operators in hyperbolic representation are given by

dðσÞκ;A ¼ ðϕA; ~U
ðσÞ
κ;1Þ

¼ cos θdðσÞκ;1

þ sin θ
X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�
;

ðC22Þ

d̄ðσÞκ;A ¼ −ðϕA; ~U
ðσÞ�
κ;1 Þ†

¼ cos θd̄ðσÞκ;1

þ sin θ
X
σ0;Ω0

�
d̄ðσ

0Þ
ðΩ0;k⃗Þ;2A

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ þ dðσ

0Þ†
ðΩ0;−k⃗Þ;2B

ðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

�
;

ðC23Þ

dðσÞκ;B ¼ ðϕB; ~U
ðσÞ
κ;2Þ

¼ cos θdðσÞκ;2

− sin θ
X
σ0;Ω0

�
dðσ

0Þ
ðΩ0;k⃗Þ;1A

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗ − d̄ðσ

0Þ†
ðΩ0;−k⃗Þ;1B

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗

�
;

ðC24Þ

d̄ðσÞκ;B ¼ −ðϕB; ~U
ðσÞ
κ;2Þ†

¼ cos θd̄ðσÞðΩ;k⃗Þ;2

− sin θ
X
σ0;Ω0

�
d̄ðσ

0Þ
ðΩ0;k⃗Þ;1A

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗ − dðσ

0Þ†
ðΩ0;−k⃗Þ;1B

ðσ0;σÞ
ðΩ0;ΩÞ;k⃗

�
:

ðC25Þ

As in the plane-wave framework, mixing relations exhibit
the structure of a rotation combined with a Bogoliubov

transformation. The Bogoliubov coefficients Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ and

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ are such that

ð ~Uðσ0Þ
ðΩ0;k⃗0Þ;2;

~UðσÞ
ðΩ;k⃗Þ;1Þ ¼ Aðσ;σ0Þ

ðΩ;Ω0Þ;k⃗δ
2ðk⃗ − k⃗0Þ;

ð ~Uðσ0Þ�
ðΩ0;k⃗0Þ;2;

~UðσÞ
ðΩ;k⃗Þ;1Þ ¼ Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗δ
2ðk⃗þ k⃗0Þ: ðC26Þ

They are given by the following expressions:

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;1
þ 1

ωk;2

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1−ωk;2Þt; ðC27Þ

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ ¼

Z þ∞

−∞

dk1
4π

�
1

ωk;2
−

1

ωk;1

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

eiðωk;1þωk;2Þt; ðC28Þ
8The unitary inequivalence between representations of the

canonical commutation relations is a characteristic feature of
QFT,which is absent inQMdue to thevonNeumann theorem [42].
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which are to be compared with the corresponding relations
in plane-wave representation Eqs. (C11) and (C12). For

m1 → m2, it is immediate to verify that Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ correctly

vanishes, as it could be expected from Eqs. (20) and (C26).
Similarly, by exploiting the orthonormality property

of p-functions Eq. (11), one can prove that Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ →

δðσ − σ0ÞδðΩ − Ω0Þ, according to Eqs. (20) and (C26).
The analytical resolution of the integrals Eqs. (C27) and

(C28) is nontrivial.9 In spite of these technical difficulties,
however, a reliable approximation can be obtained for
t ¼ 0; in this case, indeed, Eqs. (C27) and (C28) reduce to

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
¼

Z þ∞

−∞

dk1
4π

�
1

ωk;1
þ 1

ωk;2

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×
�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

; ðC29Þ

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
¼

Z þ∞

−∞

dk1
4π

�
1

ωk;2
−

1

ωk;1

��
ωk;1 þ k1
ωk;1 − k1

�
iσΩ=2

×

�
ωk;2 þ k1
ωk;2 − k1

�
−iσ0Ω0=2

: ðC30Þ

In the realistic limit of small mass difference Δm2

m2
i
≡

m2
2
−m2

1

m2
i

≪ 1, i ¼ 1, 2, by using the expansions

1

ωk;2
¼ 1

ωk;1
−
1

2

Δm2

ω3
k;1

þ 3

8

ðΔm2Þ2
ω5
k;1

þO
�ðΔm2Þ3

ω7
k;1

�
; ðC31Þ

ωk;2

ω2
k;1

¼ 1

ωk;1
þ 1

2

Δm2

ω3
k;1

−
1

8

ðΔm2Þ2
ω5
k;1

þO
�ðΔm2Þ3

ω7
k;1

�
; ðC32Þ

and the formula

Z þ∞

−∞

dy
cosh2 y

cos ½σðΩ0 − ΩÞy� ¼ πσðΩ0 − ΩÞ
sinh ½π

2
σðΩ0 − ΩÞ� ;

ðC33Þ

the following leading-order approximations can be derived

for Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗

���
0
:

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
¼ δσσ0δðκ − κ0Þ − Δm2

8μ2k;1

σΩ − σ0Ω0

sinh½π
2
ðσΩ − σ0Ω0Þ�

þO
��

Δm2

μ2k;1

�
2
�
; ðC34Þ

Bðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
¼ −

Δm2

8μ2k;1

σΩ − σ0Ω0

sinh½π
2
ðσΩ − σ0Ω0Þ� þO

��
Δm2

μ2k;1

�
2
�
:

ðC35Þ

To conclude, let us remark that Eqs. (C22)–(C25) are
canonical transformations (at equal times): indeed, by

exploiting the commutators of dðσÞκ;i and d̄ðσÞκ;i (i ¼ 1, 2) in
Eq. (14) and the relations Eqs. (C27) and (C28), it can be
verified that

½dðσÞκ;χ ðtÞ; dðσ
0Þ†

κ0;χ0 ðt0Þ�jt¼t0 ¼ ½d̄ðσÞκ;AðtÞ; d̄κ0;Aðσ
0Þ†ðt0Þ�jt¼t0

¼ δχχ0δσσ0δ
3ðκ − κ0Þ; χ; χ0 ¼ A;B;

ðC36Þ

with all other commutators vanishing. The crucial point is
that Eq. (C36) holds—and can be explicitly proved—in
spite of the technical difficulties in the evaluation of

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗ and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗. Here, for clarity, we report the

calculation of ½dðσÞκ;AðtÞ; dðσ
0Þ†

κ0;A ðt0Þ� for t ¼ t0 ¼ 0 (similarly

for ½dðσÞκ;BðtÞ; dðσ
0Þ†

κ0;B ðt0Þ�)

½dðσÞκ;A;d
ðσ0Þ†
κ0;A �j0¼

�
cosθdðσÞκ;1þsinθ

X
σ00;Ω00

	
dðσ

00Þ
ðΩ00;k⃗Þ;2

Z
dk1
4π

gþðk1Þ
fðσÞðωk;1;ΩÞ
fðσ00Þðωk;2;Ω00Þþ d̄ðσ

00Þ†
ðΩ00;−k⃗Þ;2

Z
dk1
4π

g−ðk1Þ
fðσÞðωk;1;ΩÞ
fðσ00Þðωk;2;Ω00Þ



;

cosθdðσ
0Þ†

κ0;1 þsinθ
X
σ000;Ω000

	
dðσ

000Þ†
ðΩ000;k⃗0Þ;2

Z
dk01
4π

gþðk01Þ
fðσ000Þðωk0;2;Ω000Þ
fðσ0Þðωk0;1;Ω0Þ þ d̄ðσ

000Þ
ðΩ000;−k⃗0Þ;2

Z
dk01
4π

g−ðk01Þ
fðσ000Þðωk0;2;Ω000Þ
fðσ0Þðωk0;1;Ω0Þ


�
;

where we introduced the shorthand notation in Eq. (12) and adopted the following definitions:

9Note that the factorization of Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗j0 and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗j0 into the product of a Dirac delta function of σΩ and σ0Ω0 with suitable
coefficients adopted in Ref. [32] turns out to be not properly correct.
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g�ðk1Þ ¼
1

ωk;2
� 1

ωk;1
; fðσÞðωk;j;ΩÞ ¼

�
ωk;j þ k1
ωk;j − k1

�
iσΩ=2

; j ¼ 1; 2: ðC37Þ

By exploiting the commutation relations Eq. (14), it follows that

½dðσÞκ;A; d
ðσ0Þ†
κ0;A �j0 ¼ cos2θδσσ0δ3ðκ − κ0Þ þ sin2θ

X
σ00;Ω00

	Z
dk1
4π

gþðk1Þ
fðσÞðωk;1;ΩÞ
fðσ00Þðωk;2;Ω00Þ

Z
dk01
4π

gþðk01Þ
fðσ00Þðωk0;2;Ω00Þ
fðσ0Þðωk0;1;Ω0Þ



δ2ðk⃗ − k⃗0Þ

− sin2θ
X
σ00;Ω00

	Z
dk1
4π

g−ðk1Þ
fðσÞðωk;1;ΩÞ
fðσ00Þðωk;2;Ω00Þ

Z
dk01
4π

g−ðk01Þ
fðσ00Þðωk0;2;Ω00Þ
fðσ0Þðωk0;1;Ω0Þ



δ2ðk⃗ − k⃗0Þ:

In definitive, by means of Eqs. (10) and (11), we have the result

½dðσÞκ;A; d
ðσ0Þ†
κ0;A �j0 ¼ cos2θδσσ0δ3ðκ − κ0Þ þ 1

2
sin2θ

Z
dk1

2πωk;1

	Z
dk01

�
fðσÞðωk;1;ΩÞ
fðσ0Þðωk0;1;Ω0Þ

X
σ00;Ω00

1

2πωk0;2

fðσ00Þðωk0;2;Ω00Þ
fðσ00Þðωk;2;Ω00Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δðk1−k01Þ

�

δ2ðk⃗ − k⃗0Þ

þ 1

2
sin2θ

Z
dk1

	Z
dk01

2πωk0;1

�
fðσÞðωk;1;ΩÞ
fðσ0Þðωk0;1;Ω0Þ

X
σ00;Ω00

1

2πωk;2

fðσ00Þðωk0;2;Ω00Þ
fðσ00Þðωk;2;Ω00Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δðk1−k01Þ

�

δ2ðk⃗ − k⃗0Þ

¼ cos2θδσσ0δ3ðκ − κ0Þ þ sin2θ
Z

dk1
2πωk;1

fðσÞðωk;1;ΩÞ
fðσ0Þðωk0;1;Ω0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δσσ0 δðΩ−Ω0Þ

δ2ðk⃗ − k⃗0Þ ¼ δσσ0δ
3ðκ − κ0Þ:

The canonical commutators Eq. (C36) allow us to derive the following useful conditions for the Bogoliubov coefficients

Aðσ;σ0Þ
ðΩ;Ω0Þ;k⃗

���
0
and Bðσ;σ0Þ

ðΩ;Ω0Þ;k⃗

���
0
:

X
σ00;Ω00

ðAðσ0;−σ00Þ
ðΩ0;Ω00Þ;k⃗0B

ðσ;σ00Þ�
ðΩ;Ω00Þ;k⃗ −Aðσ;σ00Þ�

ðΩ;Ω00Þ;k⃗B
ðσ0;−σ00Þ
ðΩ0;Ω00Þ;k⃗0 Þ

���
0
¼ 0; ðC38Þ

X
σ00;Ω00

ðAðσ;σ00Þ
ðΩ;Ω00Þ;k⃗A

ðσ0;σ00Þ�
ðΩ0;Ω00Þ;k⃗0 − Bðσ;σ00Þ

ðΩ;Ω00Þ;k⃗B
ðσ0;σ00Þ�
ðΩ0;Ω00Þ;k⃗0 Þ

���
0
¼ δσσ0δ

3ðκ − κ0Þ: ðC39Þ

The latter one, in particular, is the hyperbolic representation equivalent of Eq. (C16).
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