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We study the excess of (Renyi) entanglement entropy in various free field theories for the locally excited
states defined by acting with local operators on the ground state. It is defined by subtracting the entropy
for the ground state from the one for the excited state. Here the spacetime dimension is greater than or
equal to 4. We find a correspondence between entanglement and a probability. The probability with which a
quasiparticle exists in a subregion gives the excess of the entropy. We also propose a toy model which
reproduces the excess in the replica method. In this model, a quasiparticle created by a local operator
propagates freely and its probability distribution gives the excess.
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I. INTRODUCTION AND SUMMARY

(Rényi) entanglement entropy is expected to be a useful
tool to diagnose the nonequilibrium physics such as
thermalization, creation, and evaporation of the black hole
[1-9]. Currently many researchers try to construct quantum
gravity by using entanglement in the theory living on the
boundary [10-19].

It is important that the fundamental properties of
quantum entanglement is studied in this trial. In this paper,
we study its dynamical property. Before explaining our
results in summary, we explain the results which has been
obtained in various protocol. The dynamics of entangle-
ment has been studied by measuring (Rényi) entanglement
entropy in various protocols. One of the protocol is called
global quenches where a parameter of Hamiltonian is
suddenly changed [1,2]. The time evolution of entangle-
ment entropy in 2 dimensional conformal field theories
(CFTs) is well known. We assume that Hamiltonian is
changed at r = 0 and entanglement entropy is measured at
#(>0). Here I(> 0) is the subsystem size. If ¢ < /2,
entanglement entropy linearly increases with ¢. If ¥/ > 1/2
entanglement entropy stops to increase and is proportional
to the subsystem size / (volume law). Its time evolution in
' < 1/2 is interpreted in terms of the relativistic propaga-
tion of quasiparticles which are entangled. Its volume law
in ¢ >1/2 comes from entanglement between quasipar-
ticles. Recently the time evolution of entanglement entropy
for global quenches is studied in higher dimensional CFTs
and holographic field theories [4-9,20].

Another protocol is called local quenches. Hamiltonian
is deformed locally at . A well-known result in these
quenches is the time evolution of entanglement entropy in
the 2-dimensional CFTs [21]. The time evolution of
entanglement entropy can be interpreted in terms of the
relativistic propagation of quasiparticles even in local
quenches. A holographic model of these quenches is
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proposed in [22-24] and the author in [25] discusses the
relation between global and local quenches.

Recently, entanglement entropy has been studied in more
general quenches where the state is not suddenly excited
but continuously excited with respect to ¢ [26-28].

In a simpler protocol, locally excited states are defined
not by deforming Hamiltonian but by acting with local
operators on the ground state. In the articles [29-31] the
time evolution of (Rényi) entanglement entropy for those
states in various free field theories has been studied. The

excess of (Rényi) entanglement entropy ASE‘") is defined by
subtracting the entropy for the ground state from the one for
the excited state because the ground-state entropy is static

quantity. The author in [32] studied ASX’) in a nonrelativ-

istic system. The time evolution of AS&") can be qualita-

tively interpreted in terms of the relativistic propagation of
the quasiparticles created by a local operator. Furthermore,
the late-time value of the entropy can be quantitatively
interpreted in terms of quasiparticles. Its reduced density
matrix can be given by their probability distribution. Even
in the interacting and holographic CFTs [31,33-41], the
time evolution of these entropies can be qualitatively
interpreted in terms of their relativistic propagation.
However in the late time limit which will be precisely
explained later, their behavior depends on the theory. In the
solvable theories such as minimal models, they are given
by the quantum dimension of an inserted local operator.
On the other hand, in the holographic theories, the entropy
increases logarithmically with 7.

A. Summary

In this paper we study ASﬁ{') in the various free field
theories (in particular, free massless scalar theories and free
Maxwell theories). We find that its time evolution for any ¢
is given by (Rényi) entanglement entropy whose reduced
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density matrix is given by the probability distribution of the
quasi-particle created by the local operator. Here we assume
that the spacetime dimension is greater than or equal to 4. If
the subsystem A is given by the half of the total system, a
kind of quasiparticle is included in A with the probability P,
which can be given by a propagator. Not only the late time
values but also the whole time evolution of ASX') can be
equal to (Rényi) entanglement entropy whose reduced
density matrix is given by the probability distribution of
the quasiparticle created by the local operator.

We propose a toy model where quasiparticles created by

local operators freely propagate at the speed of light. ASX”
is given by an “entropy” with their probability distribution.

In Sec. IV, we will explain its definition. By using this

model, we estimate AS&”) for a more complicated shaped

subregion than the ones discussed previously. The excess of
mutual information Al, 5 in some cases is estimated.

B. Organization

This paper is organized as follows. In Sec. II, we explain
how to compute ASE\") in the replica method. In Sec. III, we
explain the correspondence between the existence proba-
bility and propagators in the replica method. In Sec. IV,

we propose a toy model, in which an operator creates a
quasiparticle. We show that AS&") is given by the entropy
with its probability distribution. AS{"
cases are estimated by this entropy.

and Al, p in some

II. ENTANGLEMENT ENTROPY IN THE
REPLICA METHOD

A. The space decomposition

Here we are dealing with quantum field theories (QFTs)
with d + 1 dimensional Lorentzian spacetime.

A definition of (Rényi) entanglement entropy Sg") in
QFTs is as follows. The total Hilbert space is geometrically
divided into A and B. Here it is done at = 0 in order to

measure SE‘") at t = 0. In this paper A is defined by x; > 0
and B is its complement as in Fig. 1. A reduced density
matrix p, for A is defined by tracing out the degrees of
freedom in B:

pa = Trpp, (2.1)
where p is a given density matrix. Its (Rényi) entanglement
entropy is defined by

w1
sy =+

— (2.2)

log [Try (pa)"]-

"The theories are put on even dimensional Minkowski space-
time with signature g,, = diag(—1,1,1,...) in the following
section.
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FIG. 1. The total Space divided into two subspaces A and B
att = 0.

B. Locally excited state and AS,

Our interest is to study the dynamics of quantum
entanglement. We define the excess of (Rényi) entangle-

ment entropy ASX’) by subtracting the entropy for the

ground state SE‘")’G from the one for an excited state SE‘")’EX

since the ground-state entropy does not depend on time:

AS{) = s{EX 50 (2.3)

A given excited state in this paper is a locally exited state:

|¥) = NO(-t,—1,x)|0), (2.4)
where the local operator is located at (z, x|, X) = (—t, =1, X)
and N is a normalization constant (Fig. 1). The coordinate
in Mikowski spacetime is written by (7, x;,X), where
X = (x,...,x4). In the following subsection, we will

explain how to compute ASE‘”) for the locally excited state
in the replica method.

C. The replica method

Let us explain how to compute the excess of (Rényi)
entanglement entropy in the replica method. A given
density matrix in d 4+ 1 dimensional Euclidean space is

p* = N?O(z,,—1,x)|0) (0|0 (z;, =1, x),  (2.5)
where A\ is a normalization constant and the coordinate in
the space is (7, x;, X). X = {x,, ..., x4}. The density matrix
can be schematically interpreted as in Fig. 2. In the figure, a
local operator QO is located at (z,, —/, x) and its “‘conjugate”
operator O is at (z;, -1, X).

Even in Euclidean space, the excess of (Rényi) entan-
glement entropy is defined by

n n),EX n),G
ASy G = S\Ee — Suke (26)

where SX;)EM is (Rényi) entanglement entropy defined in
Euclidean space. S|, and SX%MG are the entropies for p°
and the ground state, respectively. The entropy in Euclidean

space is just written by SX” in the following. The replica
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FIG. 2. Operator insertion points before taking the analytic continuation in (a) (z,x') and (b) (r,0).

method is well known, and we recommend [42] for further
reading. For convenience we give here a brief description.
Let us compute Sg") for the ground state in the replica
method. In Euclidian QFTs, the wave functional at 7 = 0 of

a vacuum state P¥*[¢y(x)] can be described in the path-

integral form as
1 / B(r=0.x)=do () Depe51)
¢

2P oo 27)

Wby (x)] =

where x is the space coordinate x = {x;,x} and Z}* is the
partition function of the vacuum (on the spacetime R*1).
With this expression, we can rewrite the density matrix of

vacuum p*<[g_(x). ¢, (y)] as

Pl (x). 1 ()] = [ ()] [y (v)]

1 $1(z=0_x)=¢_(x)

= D Slg]
Z\lzac 1 (1=—c0) ¢1€

o« /¢2(t=oo) D¢2(3_S[¢2],
$2(7=0,.y)=¢ ()

(2.8)
|

i=2n
TialP*)" = ey / [H Dz/b] 1. 4208(¢2 = 43)P3 3.l -

=— 'D e_Sn [¢]
vy |

where the integrals in the first line are performed over the
region A of each Riemann sheet. X, is a n-sheeted Riemann
sheet described in Fig. 3 and §,, is an action defined on XZ,.

Let us compute (Rényi) entanglement entropy for the
state in (2.5). The matrix in (2.5) can be written by

where ¢, are the boundary conditions at 7 = 0,(0, =
0£6(x1).).

The reduced density matrix p}* is defined by tracing out
the degrees of freedom in the region B. Since A is the half
of total space, the degrees in A and B can be defined by

)C]>0,

d(z,x) = {¢ (z,%) (2.9)

¢ (z.x)

x1<0.

Then the matrix p3*[¢” (x), ¢ (v)] is given by

vac [ (

/ oy / DPBS(PE (x

= §2(x))p" (- (x). 4 (¥)]

(2.10)
Finally, Tr, (p}*) is
anc [¢2n—1 s ¢2n]5(¢2n—1 - ¢2n>
(2.11)
P = Ol ~DI0) (0O (e, =) (2.12)

ZGX

We rewrite the coordinates (z,x') into polar coordinates
(r,0) as in Fig. 2. Tryp$* gives
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(@ (b)

FIG. 3. Sketch of (a) n-sheeted Riemann surface, (b) n-sheeted
Riemann surface with operator insertions.

ex\n _ 1 - I (i)
T3 = e L PRTL©' 60

X O(ry, 05)) =511 (2.13)

where (] 5, 9§’>2) are the insertion points of local operators
O" and O on the ith Riemann sheet as it is described
in Fig. 3(b). Z{* = [;, DP(O'(r1,6,))O(r2,6,))e™ is
introduced for the normalization.

After substituting (2.11) and (2.13) into (2.6), ASE‘") in
the replica method is

ASXl) — S{(L‘n).ex _ S{(qn),vac

1
=1, (ogtra(pi)" —log Ty (pj)")

[ (O 670, 6)))s,
I—n'® (O'(r1,6,)O(r2,601))s, )" ,

(2.14)

where (O(x)O"(y) - - )y, is the correlation function on the
n-sheeted Riemann surface.

D. Analytic continuation to the real time

In this method, the 2n-point function of O in X, and

the 2-point function of O in X; give AS&") in Euclidean

spacetime. In order to study the dynamics of entanglement
in Minkowski spacetime, we perform the analytic continu-
ation to the real time as in the articles [29-31,34-36,43].
The analytic continuation to the real time is done by
=€—it T,=—€—it (2.15)
where € acts as a smearing parameter which keeps the norm
of the locally excited state finite. During the calculation,
we keep e finite, but in the end we take the limit ¢ — O.
Note that in Maxwell theory, the fields also change as

PHYSICAL REVIEW D 96, 025019 (2017)
A, =iA, 0,=i0, (2.16)

due to covariance.

III. PROBABILITY AND PROPAGATOR

In this section, we study ASX’) for locally excited states
in the replica method. The spacetime dimensions are
assumed to be more than or equal to 4. We explain the
correspondence between an analytic-continued propagator
and a probability.

A. AS!" in free field theories

In [29-31,34-36,43], the time evolution of AS'" in the
limit € — 0 is studied. In free field theories, the leading

term of ASX” does not depend on € and it is finite. If the late

time limit (r — oo0) is taken, AS&") is given by (Rényi)

entanglement entropy whose reduced density matrix is
given by an effective reduced density matrix p:

ASY) = ——log[Tr(p})"], (3.1)

I —n
where Trp§ = 1. The density matrix is evaluated by
quasiparticles which obey the late time algebra as explained
in the following subsection. Therefore, the late time values

of ASE‘") are given by entanglement of quasiparticles.

1. p¢ in the late time limit

Let us explain a quasiparticle picture in the late time limit
and the late time algebra which the particle obeys in a
simple case. For simplicity, we consider 4 dimensional
massless free scalar field theory. The given local state is

W) = Np(~=t.—1.x)]0). (3.2)
where N is determined so that (¥|¥,) =1 and the
operator ¢ is included in B.

Before explaining the particle picture in the late time

limit and the late time algebra, we explain the time

evolution of AS{". The time evolution of AS{" for (3.2)

can be qualitatively interpreted in terms of the relativistic
propagation of quasiparticle.

The time evolution of ASX') has three processes. In r </,

AS&") vanishes. It increases in ¢ > [. After taking the limit

t - oo, ASXZ) approaches a constant.

In a quasiparticle picture, an entangled group is created
at (t,x,x) = (—t,—1,x) and spherically propagates at the
speed of light. The group is constructed of the quasipar-
ticles entangled each other. In ¢ < [ the group is included in
B [Fig. 4(a)]. Then the entanglement between the particles

can not contribute to AS/(;'). If + > [, some of them are
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(a) I >t>0. (b) t >1>0. (c) The late time limit.

FIG. 4. A quasiparticle picture. At t = —t, quasiparticles appear at the point where ¢ is located. (a) shows that all of them are included

in Binl > t > 0. Therefore entanglement between them can not contribute to ASX”. (b) shows that their entanglement can contribute to

ASX’) int > [ > 0 because some of them are included in A. In the late time, it can be interpreted in terms of entanglement between two

quasiparticles.

included in B and entanglement between them can con-

tribute to AS/(L,"). In the late time limit, the particles included
in A can not come out of A. Their entanglement can
be interpreted in terms of entanglement between two

quasiparticles, which keeps to contribute to ASﬁ\"> and it
approaches a constant:

ASUZY = 10g2. (3.3)

As explained above, the late time value of AS&") for (3.2)
comes from entanglement between an entanglement pair.
Then we assume that ¢ can be decomposed into the right
and left moving modes (¢", ¢R), respectively:

¢ =t + 5 + ¢ + ¢, (34)

where they obey the following late time algebra:
(@M. V] = Sun. (NNM=R.L) [p¥.¢"]=0.
(3.5)

The ground state is decomposed into the ground states for
the right and left moving modes:

0) =00k ®[0)., (3.6)

where

¢*10),, = ¢*|0)g = 0. (3.7)

In this picture, the excited state can be represented by

_ b
V2

In the late time limit, the right and left moving modes are
included in A and B, respectively in this case. Then the right
and left moving modes can be identified with the physical

¥y)

16")110) & + 10) . [#%) &]. (3.8)

degrees of freedom in A and B, respectively. Therefore the
effective density matrix p§ is given by

= Trgl ) (0, =Tr 19, (%, | =3 1) (e + ) (]
(3.9)

where |¢F) = ¢*7]0),, |pR) = ¢$R7|0)x. (Rényi) entangle-
ment entropy whose reduced density matrix is given by
(3.9) is the same as (3.3).

B. p4 without taking the late time limit
As in the previous subsection, the late time value of
ASX’) comes from the entanglement between quasipar-

ticles. In other words, it can be given by Sg") whose reduced
density matrix is given by the probability distribution of
quasiparticles as follows. Here we assume that if a
composite operator :¢*: is inserted, each ¢ creates one
quasiparticle. k is an integer number.

1. Reduced density matrix and probability

Equation (3.9) shows that reduced density matrix can be
thought as the probability distribution of the quasi-particle.
If we assume that a quasiparticle is created by ¢(—¢, —/, x),
it is included in A or B with the probabilities P, (¢) and
Ppg(t) at t = 0. In this case, the particle should propagate
spherically at the speed of light. Then in the late time,
it is included in A or B with lim,_P,(r) =3 and
lim,_,,Pp(f) = 3. They are the same as the components
(PR 1pal@®), (P |pal@pF)) of the effective reduced density
matrix.

Even if the late time limit is not taken, the effective
density matrix p¢(7) (the probability distribution of qua-
siparticles) is assumed to be applicable. The decomposition
in (3.5) is generalized as follows:

d(—t,—1,x) = p*T (=1, =1, x) + & (=1, =1, %)

+ @t (—t, =1, x) + pR(-1,-1,x),  (3.10)
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where they obey the following algebra:

[ (=1, =1,%), p"' (1. =1, x)]
= SunfM(~t,-1,x), (N,M =R,L)

[pM (=1, =1, x), p" (=1, =1, x)] = 0. (3.11)

Without taking the late time limit, the ground state is
assumed to be decomposed in the same manner as in (3.6).
However, the definition of the ground states for the left and
right moving modes are generalized as follows:

P (=t~ x)[0), = $R(~1.~1X)[0)g =0.  (3.12)

Here the norm of ¢*7(—1, =1, x)|0 >, %7 (=1, =1, x)|0 >,
is given by

(O™ (=t. =1 x)pM" (=1, =1.%)[0)yy = f¥ (=1, =1, x),
(3.13)
where M = L, R. (0|, ¢* (=1, —=1,x)¢p*T(~1, -1, x)|0), and
(0|gpR (=1, =1, x)pR"(—=t,—1,x)|0)x correspond to the
probabilities with which a quasiparticle is included in B

and A respectively. Under the decomposition in (3.10), the
state in (3.2) is represented by

(=) = N[\/f%—r, L)l (=t~ %)) [0V

+ AR =L X)[0) R (=1, =1 X)) |

PHYSICAL REVIEW D 96, 025019 (2017)

If the effective reduced density matrix p¢(7) is defined by

Pi(1) = Trp|¥Ws(=1)) (¥, (-1)]
= Tr [W (=) (¥s(=1)]
= P1(1)[0)£(0]g + Po ()" (1. = 1. X))

X (R (=1, =1, %), (3.15)

where Py (1) = N2 (—1,—1.X), P5(t) = N2 fR(~1,-1.x),
then ASX!) for p¢(7) is given by

1

1—-n

1 1 log (P ()" + (P5(1)"].

ASy) = log Trg(p4)"

(3.16)

2. Diagrams

In the limit e — 0, AS" in the replica method can be
computed by a few diagrams. Green’s functions used in the
following are the leading orders in a small ¢ expansion. In
t < I, the diagram constructed of Green’s function on the

same sheet [Fig. 5(a)] can contribute to AS&"):

m_ 1 [(C"0 - 0,)"
A T (Carer L

where G (0, — 6,) and G (6, — 6,) are Green’s func-
tions on X, and X, respectively. Green’s functions for any

(3.14)  nhave the property G"(®) = G")(-®). The quasiparticle
which is created by ¢ is included in B. Then P,(¢) has to
h Mt —1.x)) = i M (—g —1.x)]0 vanish because P, () is the probability with which the
where - [¢"( )= o X0 article is included in A. If (3.16) is identified with (3.17),
and N2 = fL(—=t,—1,x) + fR(=t, =1, x). P,(t) is given by
/ — —— / K..I.Gw(el U /
/ — ——— / / —_ / .................. /
GD (6, - 6,) : G (0 - 0,) e s
P A
7\-: — 7\# """
\\ Zn \\
¥
b
© o) ® o0y

FIG. 5. The ratios of diagrams. The diagram constructed of G (6, — 8,) is called DE">. The diagram constructed of G (6, —
0, + 2x) and G™ (0, — 0, — 2(n — 1)z) is D\"). The one constructed of G (0, — 6,) is D\"). (a) is the ratio of D\") to (D\")". (b) is the

ratio of D" to (D{")".
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G (6, - 0,)

i) = G0, -6,)

(3.18)

In ¢ > [ the other diagram [Fig. 5(b)] constructed of
G"(0, -0, +2x) and G (0, —60,-2(n—1)x) can
contribute to AS”, but G (6, -6, +27) =G (0, —0,—
2(n—1)x). Then P,(r) can be identified with the ratio of
G (0 -0, +27) to G (0 —6,):

G"(6, — 6, + 2x)

Py(1) = 3.19
2( ) G(1>(91 _ 92) ( )

The ratio of P,(¢) to P,(¢) is given by
P1<t> _ fL(_t’ _17 X) _ G(n) (61 B 62) (3 20)

Py(t)  fR(-t,-L,x)  GW(6, -0, +27)
Then Green’s functions can be chosen as f¥ as follows™:

fE(=t. =1, x) = 32226*G" (6, — 0,),

fR(=t,=1,x) = 32222 G (6, — 6, + 2n), (3.21)

where G()(9 —0,) is given by the sum of Green’s

functions on X,

G0, - 6,) = G (6, —0,) + G (0, — 0, + 2x).
(3.22)

Equation (3.21) satisfies (3.18) and ([15]). The sum of P;(¢)

is equal to 1. Then the algebra which quasiparticles obey is

given by

[ (—t,—1,x), " (—t,—1,x)] = 3222€>G" (0, — 6,),

(PR (=1, =1, %), pFT(—1,—1,x)] = 322%> G (0, — 0, + 27),

[P (=t,—1,x), N (=1, -1,x)] =0. (3.23)

|

PHYSICAL REVIEW D 96, 025019 (2017)

Equation (3.23) shows the commutation relation for ¢*
(¢®) are given by the Green’s function on the same sheet
(Green'’s function on the different sheet) if ¢ is located in B’
In the late time limit, the algebra in (3.23) satisfies the late
time algebra in (3.11). This relation between the commu-
tation relation and Green’s function holds in free Maxwell
theory and they are summarized in the Appendix.*

Using the analytic continued Green’s functions summa-
rized in the Appendix, (3.21) shows that P () and P,(7) in
4 dimensional massless free scalar theory is given by

1 < 0 <,
Pl (t) =N 4 PZ(I) =N =

> t>l, 5 t>1.

(3.24)

3. A simple example

Here we compute ASE‘") for a simple example by using
the algebra in (3.23). The given state is

|¥) = N :gpk: (=1, -1, x)|0). (3.25)
where N is given by
N = 1
CK(32222)HGM (0, - 0;) + G (6, — 6, + 27))F
(3.26)

Its effective reduced density matrix is given by’

pa=Trp
_ f (Co (G (0 — 0,)) (G (6, - 0, + 2x))"
=0 (G™(0, — 6,) + G (0, — 0, +27))k

x| (@F))((#5)°]-

(3.27)

Then SI(L‘") for this density matrix in (3.27) is given by

ASY =
5s=0

L g [i <kCS<G<">(91 ~ 027G (0, =0, + 2m))
I-n (G (6, = 6,) + G (6, - 6, +27))

)] = s [Scrmioreinr]

s=0

(3.28)

*We do not claim that this choice is unique. There is an ambiguity of the overall factor of Green’s functions. Here their factors are chosen so

that (3.23) in the late time limit satisfies (3.11).

’If the subregion A is given by x; <0, the commutation relation for ¢~ (¢*) are given by G (60—0,+27) (G™ (6 — 65)).
*Although it is expected that the relation holds even in free fermionic theories, we did not check it.

3 «C, 1s a binomial coefficient defined by ,C; := %
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where we use the identity in (3.22). The entropy in the late

time limit is given by

1 1n10g [i (k;;)n]'

s=0

ASY =

(3.29)

These results in (3.28)) and (3.29) are consistent with the
results in the replica method [29,30].

IV. PARTICLE PROPAGATING MODEL

Here we consider a toy model where we can explain

what ASXO measures in free field theories. For simplicity,
the theory we consider is 4 dimensional free massless
scalar field theory. In this toy model, a local operator
creates quasiparticles and their probability changes with
respect to time. As an example, consider the case that a
local operator ¢ is acting on the ground state at
(t,x1,x5,x3) = (0,=1,0,0). It creates a quasiparticle at
(t,x1,%x,,x3) = (0,-1,0,0). The particle propagates
spherically at the speed of light without any interactions.
The total system is divided into A and B. A (B) is given by
X1 > 0 (.X'l < O)

At t = T(L ), the particle is necessarily included in B.
The probability P,(T), with which the quasiparticle is
included in A, should vanish. On the other hand, Py(T),
with which the quasiparticle is included in B, is equal to 1.
Then the probability distribution p is defined by

p = Py(T)[0,1)(0. 1

+ PA(T)

1,0)(1,0], (4.1)

where |/, n) is the state where [ (n) particles are included in
A (B) with P4(T) (Pg(T)). We defined (Rényi) entropy
S=1) for p by
1 n
S = { = log Tr(p?) n 22 (4.2)

—Trplogp n=1.

Att = T, the particle stays somewhere on the sphere whose
radius is 7 as in Fig. 6. S® for p vanishes for T < I. For
T > [, a part of the spherical surface of the quasiparticles’

(E2

FIG. 6. Free particle propagation.
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propagation is included in region A. The area S, of the part
of surface which is included in the region A is

a !
Su(T)= [ dO2zT?*sin0d0=2xT*| 1—— | =2xT(T-1),
0 T

(4.3)

where cosa = L. P,(T) (P(T)) is given by the ratio of

S4(T) (Sp(T)) to the area S,;(T) of the surface with the
radius 7"

Sa(T)
Sau(T)’

Py(T) = (4.4)

Thus the probabilities with which the particle is included in
region A and B in T > [ are

_2aT(T-1) (T-1)
- 4xT? 2T

PA(T) . PR(T) =

(4.5)

The probabilities in (4.5) are consistent with the ones in

(3.24). S for p is consistent with AS&") in the replica
method.

Thus, with this toy model, AS&") for ¢ in 4d can be
reproduced. Here we implicitly assume that particles
propagate isotropically. For the particle with spin, it is
expected that the weight is changed from 1 to W(z,x),
which depends on the particle’s spin. For the particle with
spin, the integration in (4.3) might be changed to

S,(T) = A AVW(T.0). (4.6)

where the integration at t = T is performed for the part
of spherical surface, which is included in A as in Fig. 6.
The definition of probabilities in (4.4) changes to

A
Sizll(T) ’

_ Sp(T)
- Su(T)

PA(T) Py(T) (4.7)

(n)

Let us compute AS A” and Al, p with our model.

A. Example.1: O =: ¢*:(0,-1x)

Here the local operator :¢*: which is located at
(t,x1,%5,x3) = (0,—1,0,0) acts on the ground state. The
following assumption is taken. The k same-kind particles
are created at the point where the local composite operator
is inserted since it is constructed of only ¢. Thenin T > [,
the [ particles and k — [ particles are included in A and B
with the probability ,C,(P4(T))*"!(P(T))". Thus the
probability distribution p is given by
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Lk—=I{Lk-1

p= Z «Ci(PA(T)) ! (P(T))! ; (4.8)

where |1, k — [) is the state where [ and k — [ particles are included in A and B, respectively. S for (4.8) is consistent
with (3.28).

B. Example.2: O=¢(-T,-L.x{)p(-t,-1.x;)

The given state is
W) = Np(=T, —L.x;)p(—t, =1, %5)|0), (4.9)

where [, L, t, T > 0. Here we assume that a particle created by ¢(—T,—L,X,) is a different kind particle from the one
created by ¢(—t, —I,X,). The distribution p at t = 0 is defined by

P = ZPa,c‘pb,d

ab,c.d
=PioPio
+ Py Po

a,b;c,d)(a,b;c,d|

1,1,0,0)(1,1,0,0] 4 Py, Py 0[0,1,1,0)(0,1,1,0] 4 Py, Py4]1,0,0,1)(1,0,0, 1|
0,0,1,1)(0,0,1,1], (4.10)

where |a, b; ¢, d) is the state where a (b) and ¢ (d) particles created by ¢(—T,—L,x;) (¢(—t,—1,%,)) are included in A
and B, respectively. Each probability at t = 0 is given by

0 T<L, 1 T<L, . 0 <l N 1 r<l,
Pl.OZ{(TZ_TL) T>L’ PO,IZ{(T;TL) T>L. Pl,O:{(t—l) P> PO,l:{(H»l) i>1 (4.11)

2(1)

S for (4.10) is given by

1 D n D n D n D n
S(">'):mlog[(P,’OP1,0) +(Po,1P1o)" +(P1oPo1)" +(Po1Poy)"].

S=80=D=—(P,oP, )1log(P P o) = (Po,P19)log(Po1 Py ) = (P1oPo1)log (P oPo1) = (Po1Po)log(Po,Poy).
(4.12)

In the late time limit, they are given by S"2!) = log4 which is consistent with the result in [30].

C. Example.3: A finite interval

nxl1)

The local operator ¢ is located at (¢, x;, x) = (0,0, 0) and the given subsystemis 0 < [ < x; < L. s is measured at 7.

A quasiparticle is included in A (B) with the probability P,(¢) (Pg(t)). They are given by

0 0<Lr<l, 1 0<r<l,
Put)=4%5 0<I<t<lL,, Py(t)=4 % 0<Ii<i<L, (4.13)
L=l 1 <y, Ll 1 <1,

2t

n>1)

whose S are given by
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s

04|

02

FIG. 7. The plot of S. The parallel axis is ¢. The vertical axis is
S. (I,L) = (10,30).

0 0<t<l,
st = ¢ log[(58)" + ("] 0<I<t<L,
alog (1= + (59" L<t,
0 0<r<l,
S=1q —(5)log(5) = (5)log(5) O<i<t<L,
—(1-Lh1og (1 -5 — (LD log (L) L<t.
(4.14)

The plot of S shows that S increases after =/ and
decreases after r=L (Fig. 7). P,(¢) increases in [ <t<L

Since the particle created by ¢ can stay at A;, or B in the
late time limit, the entropies in the limit are finite:

g [+ @ n>2,
(n) _ ) I 4 7
S™(p1) {—ilog&]_%logg] I
g ()" + @) n22,
(M) () —
S (p2) { ~ogll] ~Tlogll] n=1 (4.19)

S(pi—1,) are smaller than the entropy for an EPR state.

E. Mutual information

The mutual information /(A, B) measures the correlation
between A and B [44-49]. Here the excess of mutual
information Al, 5 is defined by subtracting the mutual

PHYSICAL REVIEW D 96, 025019 (2017)

but it decreases before it approaches % Therefore, it does
not approach S for the maximally entangled state and
vanishes at the late time.

D. Example.4: Infinite subsystems

Here the given subsystem is infinite but its shape is more
complicated than the one discussed previously. The follow-
ing subsystems are considered:

Ay ={x; > 1,x, >0}, Ay ={x; > 1x, >0,x3 >0}

(4.15)

The subsystem B is defined by the remnant of the total
space. The probability distribution in this case is defined by

pi = Py(T)[0. 1)(0. 1] + P (T)|1.0){1,0]. (i = 1 ~2)

(4.16)
where the probabilities are given by
1 l 1 l
A Py =—|1—- Py =- -
10 Py, 4< t)’ B 4<3+t),
1 l 1 l
Ay Py, == 1--], Pp=-(7+-). 4.17
2t Py, 8< t) B 8<+t) (4.17)

[, k — 1) is the state where [ and k — [ particles are included
in A; and B respectively. Their entropies in ¢ < [ vanish.
They in ¢ > [ are given by

G+ nz2,
~1G+h10glG+Y] n=1,
(7+ %))”j : izl (4.18)

information for the ground state /§ ; from for the locally
excited state 75%:

AIA,B = If?; — IS,B = ASA + ASB —_ ASAUB’ (420)

where AS,p is the excess of mutual entanglement entropy

for A or B. In our toy model, AS&”) for a locally excited

state is evaluated by computing S for a probability
distribution p.

1. Al ; between a finite interval and infinite interval

The total space is divided into the three regions A, B
and C. They are shown in Fig. 8, and given by.
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T2,T3 B

—Lg —1lg 0 4

X1

FIG. 8. A schematic explanation of the subsystems A, B, and C.
A is an infinite strip. B is a finite strip.

A:0<IASX1, B: —LBSX1S—ZB<O,

C: the remnant of the total space. (4.21)

The local operator ¢ is located at (7, x;,x) = (0,0,0). We
compute Al, p in order to measures the time evolution of
the correlation between the subregion A and B at t. The
excess of the mutual information AI(A, B) is given by

AIA,B — ASA + ASB - ASAUB’ (422)

As explained earlier, AS), is evaluated by S(py). Thus,
Al, p is evaluated by 7, p which is defined by

Zap = S(pa) + S(ps) — S(paus) (4.23)

where S(p,,) are given by

S(pa) = —Pa(t)log P5(t) — Ppuc(t) log Ppuc(1),

S(pp) = —Pp(t)1og Pp(1) — Pyuc(1) log Pauc(1),

S(paus) = —Paus(t) log Paup(t) — Pc(t) log Pe(1),
(4.24)

(i) 0 < Iy <lp < Lzp.—Here the parameters satisfy the
following relation:
0<l,<lp<Lyg. (4.25)
Since the particle created by ¢ stays at —Ip < x; < 4 in
0<t<ly, Pc=1and Z,p vanishes. In [, <t < [, it
can be included in B. The probabilities are given by

t—1 r+1
Py(t) = 2tA’ Pyuc = ZtA’
Py(t) =0, Pauc(t) =1,
t—1 t+1
Pup(t) = 2[A’ Pe(t) = 2tA- (4.26)

Then Z 4 » vanishes because S(p,) cancels with S(p4p). It
is expected that the correlation disappears because the
particle is included in only A.

The particle can stay in Aand Bin 0 < [z <t < L. The
probabilities are given by

PHYSICAL REVIEW D 96, 025019 (2017)

P =(50) e = (S52),
P =(5") Pt = (S5

Pual) = (2E2). e - (B10).
(4.27)

The correlation between A and B increases because the
particle can stay in both A and B.
The probabilities in Ly > t are given by

P =(54) Pweto = (5

Lp—1 2t—Lg+1
PB(I)=< le B>, Pauc(t) = (%)

t+Lg—1,-1
Paug(t) = (%)

f—Lp+ Ly 41
pc(t):<$>_

Pp(1) decreases because the particle tends to come out of
B in this region. In the late time limit, the particle is outside
B. Then Z 4 p vanishes. The time evolution of Z 4 3 is plotted
in Fig. 9.

(4.28)

(ii) 0 < Iz < Iy < Lg.—Here the parameters considered
obey that

0<lg<lIy<Lg. (4.29)
In0<t<I,, ZT,p vanishes. In /[, <t < L, the prob-
abilities are the same as (4.27). Those in t > Ly are the

same as (4.28). In ¢ < Ly the time evolution of Z,  does
not depend on whether [, is greater or smaller than /5. It

IA.B

04

03+

0.1

1 ! [ L Lot
20 40 60 80 100

FIG. 9. The Plot of 7, 5. The horizontal axis is . The vertical
axis is IA,B' (ZA, lB,LB) = (5, 10, 15)
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IA.E

04l
03l
02l

o1l

L n n 1 r
20 40 60 80 100

FIG. 10. The Plot of 74 . The horizontal axis is . The vertical
axis is IA.B‘ (lA, lB’LB) = (10,5, 15).

depends on the relation between /, and [z only if # > Lp.
The time evolution of Z, p is plotted in Fig. 10.

2. AI(A,B) between two finite intervals

Here we evaluate Al, p for the two finite intervals by
computing 7 4 . The subsystems are shown in Fig. 11, and
they are given by
A:0<ZAS)C1SLA, B:

—LB<)C1 _lB <0

C: the remnant of the total space. (4.30)

(i) Iy < lp < Ly < Lg.—Here we assume that [, < [z <
L, < L. AI(A, B) vanishes because the particle is nec-
essarily included in C in ¢ <I[,. Since the particle is
necessarily outside B, the probabilities in I, <t < [y are

given by
= (5) Pact = ("5),
Py(t) =0, Pauc(t) =1,
Paus(t) = <t ;tl’“>, P(t) = <t J;tl*‘) (4.31)

It is expected that Z, p vanishes because the particle can
stay in A but cannot stay in B.

Lg —ig 0 4

Z2,T3

FIG. 11. A schematic explanation of the subsystems A, B, and
C. A and B are finite strips.
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It can stay in both A and B in [z <t<L, and
probabilities are given by

Pa(t) = (t ;tlf‘>,
Pylt) = (’ ;:B),

Pual) = (2=G) 0 pety

t+1
Ppuc(t) = < ZtA)’

t+1
Payc(t) = ( 2 B)v

1y + I
2t )

(4.32)

2t

14 p increases in this region.
In L, <t < Lg, the particle can come out of A. The
probabilities are given by

PA(t>—( _ZA>, PBUc<r)=(W),

t— 1y i+

( )’ PAUC(I)_< 2t >’

t+L l +1
Paus() ( a— (s B)>’

t—Ly+ (lA + lB)>

(4.33)

In0 < Ly < t, it comes out of A and B. They are given by

P = (M51) Pactn = (FT5),

Py (1) = (LBZ_[ ZB>, Pauc(t) = (W)
Pualt) = (P,

pet) - (Ao =Ly 1)) -

Z,p decreases in this region. If we assume that the
correlation between A and B comes from probabilities in
A and B, this behavior is reasonable. 7, 5 eventually
vanishes. Its plot is shown in Fig. 12.

(i) Iy <lg <Lp < Ly—Here  we assume that
Iy <lp <Lp <Ly Before t=1Ip, Z,p vanishes. The
probabilities P; in [z <t < Lp is the same as (4.32). P;
inLg<t<Ly,is
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IA.E
04l

03l

01l

L L L L L L L L L L L 1 L 1
20 40 60 80 100

FIG. 12. The plot of Z . The horizontal axis is t. The vertical
axis is Ty p. (4,1, Ly, L) = (5,10, 15,20).

P =(52) Pwetn = (S5).

Pal = (M151). pacel = (2=5),

Palt) = (t + Ly —2EZA + lB)>,

t—LB+lA+lB
2t ’

Pc(t) = ( (4.35)

Those in L, <t are the same as (4.34).

The time evolution of 7, p is plotted in Fig. 13. Z, 5
eventually vanishes.

The results in this section seem to show that the non-
trivial time evolution of Z 4 » appears if the particle can stay
in A and B with the probabilities P,(¢) and Pg(1).

Here we assume 4 dimensional massless free scalar
theory. We expect that our toy model can be generalized to
higher dimensional cases and to other theories.

IA,E
04}
osf
02|
01}

L 1 L " n 1 n " n 1 L n n 1 n n n 1 t

20 40 60 80 100
FIG. 13. The plot of Z 4 g. The horizontal axis is z. The vertical

axis is IA.B' (lA* lB’LAVLB) = (5, 10, 20, 15)
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V. SUMMARY AND DISCUSSION

In this paper, we have shown that ASX’> for locally
excited states can be quantitatively interpreted in terms of

quasiparticles even if the late time limit is not taken. ASE\")
is given by (Rényi) entanglement entropy whose reduced
density matrix is given by probability distribution of the
quasiparticles. The commutation relations which the qua-
siparticles obey are related with Green’s functions.

We have proposed a toy model and checked that it can
reproduce the results in the replica method in 4 dimensional
free massless scalar field theory. The assumptions taken
are:

1. A local operator which is not a composite operator
creates a particle which propagates spherically
without any interactions. For example, ¢ creates a
quasiparticle which propagates spherically at the
speed of light.

2. The composite operator constructed of only one
species of operator creates one kind of quasiparticle.
For example, :¢*: creates k quasiparticles of the
same kind.

3. If an operator is inserted at a different point from the
point where another is located, it creates a different
kind of particle.

4. AS A") can be evaluated by computing the entropies
in (4.2) for the probability distribution p of the
particles created by local operators.

In this paper, we have studied what ASX‘) measures in a
simple system. In this case, it is the distribution of
quasiparticles. The authors in [4] proposed a model which
explains dynamics of entanglement in the global quenches.
In that model, it is explained by the collective motion of
quasiparticles. We expect that there is a relation between
our model and theirs. It is one of the interesting future
problems.

In the global quenches, if the massive theory with the
mass m is suddenly changed to CFT, there is a scale
& =1/m. We assumed that entanglement entropy is mea-
sured at 7. If # > £, the quasiparticle picture can be applied,
even though & corresponds to € in our case, € can be taken 0.
In a holographic theory, the limit ¢ — 0 can not be taken.
Therefore, it is interesting to study what e(¢) is physically.
It is also interesting to study whether the limit can be taken
in a weakly interacting theory which is not integrable.

A generalization of our toy model to higher dimensional
theories and other theories is not difficult and it is

interesting. It is important that one computes ASE\”> and
Al p in the replica method and check they are consistent
with the results by our toy model.

Our model can not explain the result in the minimal
model [34] and holographic theory [43] quantitatively. We
expect that there is some mechanism which explains their
results qualitatively. It will show what is the fundamental
object which carries quantum entanglement. We hope that
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the object will clarify the fundamental mechanism beyond
the AdS/CFT correspondence more.
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APPENDIX: COMMUTATIONS AND
PROPAGATORS

Here we summarize the commutation relation for the
quasi-particles and propagators in 4 and 6 dimensional free
Maxwell theories and 4 dimensional free massless theory.

1. 4 dimensional free massless scalar theory
a. Propagators

If the limit ¢ — O is taken, the leading term of the
analytic continued Green’s functions for n = 1 are given by

1

Mg, - 0,) = —— Al
() 2) 167%¢2 (A1)
The functions for any n in 0 < ¢t < [ are the same as (Al).

Those for any n in 0 < [ < ¢ are given by

t+1
G" (9, -0 0 .
(6= 0:) = G (0, = 0)) = 53
G"(0, — 0, +27) = G (0, - 0, — 2x)
(9, — 60, +2(n— 1)x)
(0, — 6, =2(n— 1))
t—1
=— A2
32n%te?’ (A2)
where there is an identity:
GG, —0,) = G (0, —0,) + G" (0, — 0, + 2x).
(A3)

b. The commutation relation

The commutation relation is given in the main text.

2. 4 dimensional Maxwell Theory
a. Propagators
The electric and magnetic fields E;, B; are defined by

Ei=Fy, By=-Fy. By=F;3 By=—Fp. (A4)

The analytic continued Green’s functions are defined by

PHYSICAL REVIEW D 96, 025019 (2017)

(E1(0)E\(0')) = Frip (0 -0,

(E2(0)Ex(0')) = (E5(0)E5(0)) = Frapa (6 — 6)
(B1(0)B1(¢)) = Fpip (0 -0,

(B2(0)B,(0')) = (B3(0)B3(6')) = Fpapa (60— &)
(E2(0)B3(0')) = Fraps(60 - 0).

(B3(0)E(0')) = Fpspa(0—0),

(E5(0)By(0')) = Frspa(0—0),

(B2(0)E5(0)) = Frops(60 - 0). (A5)

If the limit € — 0O is taken, the leading term of them for
n =1 are given by

1
1
Filp (6, - 6,) ~ 62
1
1
L R
1
1
F1(91>Bl(91 - 92) va
) 1
FBsz(el - 92) ~ m- (A6)

The propagators for n > 2 in 0 < ¢t < [ are the same as
in (A6).
The propagators for arbitrary n in 0 < [ < t are given by

(I=20)(1+1)?

FI(;I)EI (91 - 92) = Fgl1>E1 (92 - 91) == 642834
3 2 3
(n) (n) P+ 30t + 4t
F 0,—-0,) =F 0, —0 _—
E2E2< 1 2) E2E2( 1) 1287’[ [3 4 ’
(n) _ ) =2+
F3131<91 - 92) - FBlBl(92 - ‘91) - 64283 e*
3 2 3
(n) ) P4 3lF +4r
F3232(91 —0,) = F3232(92 -0)) = 1282283
. " 3(t=0D)(1+1)
F1(52)33(91 —0,) = F(Ez>33(92 —-0)) = 1282282
. " 3(r=0)(1+1)
F1(93>E2(91 - 92) = F1<B3>E2(92 - ‘91) = 12872124
n (n 3(l_t)<l+t>
F(E3)32<91 _92> = FE3>BZ(02 _91) = 1287224
n n 3(l_t)(l+l)
FE?Z)EB(QI —0,) = F%2E3(92 - 91) = 12872282

(A7)
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Fgll)m (0, =0, +27) = F<Enl)E1 (0, — 6, —2x)

= Pl 6, ~ 02 =20 = 1)) = Fily (02— 0, +2(n - 1) = L= UEZ0
Fiey (01 = 05+ 21) = Fiypy (0, — 0, — 27)

= Fglz)Ez(el —0,-2(n-1)m) = Fglz)Ez(ez -0, +2(n-1)m) = _%
Fylg) 0y — 0, +21) = Fiily (0, — 0, — 27)

= F1<9n1)31(91 —0,=2(n-1)x) = ngnl)m(az -0, +2(n-1)x) = (1_62-)71'22(1‘13_6‘;20’
F;;n2>32(‘91 — 0, +2n) = Fgan2>32(02 — 0, —2x)

= FE;Lz)Bz(Hl —0,-2(n-1)m) = Fglz)Bz(az -0, +2(n-1)m) = _%
Fglz)m(‘gl — 0,4 27) = ng)m(ez — 0, —2n)

= F9ps(0) = 0, = 2(n = 1)1) = Fyaps(0, = 0, +2(n — 1)) = %
F%)Ez(el -0, +2n) = F%@Ez(ez — 0, —2x)

= Fa (01 = 02 =200 = 1)5) = Fila (03 = 01 4+ 2(n — 1)) = - DUAD,
Fi3py (01 = 0y + 21) = Fi3py (0, — 0, — 27)

= Fgg)Bz(el —0,-2(n-1)m) = Fgg)Bz(ez -0, +2(n-1)m) = %,
F1('3’12)E3(€1 -0, +2n) = F53’12)E3(62 — 6, —2n)
36— 1)1 + 1)

= Fip (0 = 0, = 2(n = 1)7) = Figly (02 = 01 +2(n = 1)) = = 5555

(A8)

The contribution of the other propagators is much smaller than those in (A7) and (A8). They satisfy the following identities:

1

FEi)Ei(Hl —0,) = ngsi(‘gl —0,) + Fiff}s,(@l — 6, +27),
Fy (6, —6,) = Fy (0, —0,) + Fy s (6, — 6, +27),
FU, (01— 02) + FYy (0, — 0, +21) = 0,
FU. 0y = 02) + F3, (0, — 0, +21) = 0, (A9)

b. The commutation relation

The electric and magnetic operators E;(—t, —1, X), B;(—t,—1, x) are decomposed into the left and right moving modes as
follows:

E;(—t,—1,x) = E"(—t,—1,x) + Eﬁ”(—t, —1,x) + EF(=t,—=1,x) + ER(-t, -1, x),

1 1 1

B;(—t,—1,x) = B*"(=t, =1, x) + BX" (=1, 1. x) + BX (=1, -1, x) + BR (-1, -1,x), (A10)

1 1 1

where the subsystem A is x' > 0. The ground states for the left and light moving modes are defined by
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EiL’R(_L —1,x)|0), g = BiL'R(_ts —1,x)|0), =0,

10) =10} ® [0)- (A11)

The algebra which quasiparticles obey can be given by

PHYSICAL REVIEW D 96, 025019 (2017)
3. 6 dimensional Maxwell theory
a. The propagators

The analytic continued Green’s functions on X, are
defined by

(n)
[E}(~t, —Z»X)»E?T(—f’ =1,X)] = Fig; (01 — 02)6y, .
o (Fiy(0)F1n(@) = Fi)p, (0-6)  (Al3)
[Ef(—t.=1,x), E}" (=1, =1, X)] = E,El( — 0, + 27)5;;,
[BE(—t, -1, x), BJL-T(—t, —1,x)] = Bsz (0, — 0,)8;;, In the € — O limit, their l.eadlng terms are as follows.
For the case of n =1 1in ¢t > 0,
B (—t, —l,x),BfT(—t, —1.x)] = FBle(el 0, + 21)5;;,
n 1 1
(B (1. ~1%). BY (=1.~1.%)] = Fi353(6) = 65). Frun(01=02) = 1o
ER(=t,=1,x), BX (=1, =1.x)] = F)..(0, — 0, + 21), 1
[ 2( ) 3 ( )] EZB3< 1 2 ) F(l) ( 1_92) o 2 6(1 ‘];éO) (A14)
[E5 (=1, ~1.%), BY (=1.~1.%)] = Fi5p(61 = 65),
[Eg(—t, ~1,x), Béﬁ(—t, 1, X)] _ Fgng(el — 0, +27), Forthecaseof n > 2,if[ >t >0 the.y are the same as in
(A14). In t > [, they are as follows, with i, j =2, 3,4, 5
(A12)  andi#j:
|
(n) B 1 (Z‘ + 1)3(312 -9l + 8t2)
FF01F01 (61 - 62) - 25673 Sed ’
() 1 (=133 491t +82)
FF01F01 (91 — 60, + 27[) - 25673 b ’
F) 0, - 0,) 1 (I+1)%(326 = 191 + 61°t — 31°)
FoiFo; 1024723 5¢0 ’
n 1 328 —451t* + 1081 + 3P
Fiie, (01 =0 4+27) = 10 z5+e6 =
n 1 168 +151t* + 108 - 9P
Frin, (01 =) = 102473 e ’
0 1 16 — 15141 — 1021 + 9P
Fl(?‘"leu(gl - 92 + 2”) = 10243 £ ’
" 1 (t+ 1332 -9t +8:%)
(n) B 1 (t - 1)3(8t2 + 9lt + 3]2)
FFijFij(al =0, +27) = 51242 56 ’
(n) _ _ 15 (#-P)
FFOiFli(el —0,) = FFIiFOi(el —0,) = 102473 46
(n) _ _ 15 (#-ry
FFOiFli(gl - 92 + 27'[) = FFliFOi(Hl - 92 + 271') = —WT (AIS)

They have the property F %)(9)
satisfy F 1(, J) @) = F )(6’ + 27zn).
They are related as
(n)
FijFy;
(n)

FFOiFli

£

(01— 0y) + F{)p, (0, =0, +21) =

(01— 0,) + F;fZF”(al —0,+2m) =0,

where n > 2,1, j =2, 3,4, 5.

Fr,r,

=F 5'})(—9), and due to the periodicity of n-sheeted Riemann surface, they all

(0, —65).

ij

FPp (6, 0,) + FY)y (6, — 6, +272) =0, (A16)
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b. The commutation relation

The operators F;;(—t,—1,x) are decomposed into left
and right moving modes as

Fij(=t,=1,x) = Fif (=t,=1.x) + F& (=1, =1,%)
L R
+ FE(—t,—1,x) + F&(-1.-1.x) (A17)

where the subsystem A is x' > 0. The ground state for left
and right moving modes are defined as

PHYSICAL REVIEW D 96, 025019 (2017)
FiLj(—t, -1,x)|0), = FS(—t, —-1,x)|0)x =0,

|0) =10}, ® [O)g- (A18)

The algebra which the quasiparticles obey are

(Fh(=t, =L x), F (=1, =1 %)] = (6, = 02),

[F3

F(=t.=LX), Fi (=1, =LX)] = F{p (01 = 0, + 27),

(A19)

where the ones not on the list (A15) are zero.
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