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We study the excess of (Renyi) entanglement entropy in various free field theories for the locally excited
states defined by acting with local operators on the ground state. It is defined by subtracting the entropy
for the ground state from the one for the excited state. Here the spacetime dimension is greater than or
equal to 4. We find a correspondence between entanglement and a probability. The probability with which a
quasiparticle exists in a subregion gives the excess of the entropy. We also propose a toy model which
reproduces the excess in the replica method. In this model, a quasiparticle created by a local operator
propagates freely and its probability distribution gives the excess.
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I. INTRODUCTION AND SUMMARY

(Rényi) entanglement entropy is expected to be a useful
tool to diagnose the nonequilibrium physics such as
thermalization, creation, and evaporation of the black hole
[1–9]. Currently many researchers try to construct quantum
gravity by using entanglement in the theory living on the
boundary [10–19].
It is important that the fundamental properties of

quantum entanglement is studied in this trial. In this paper,
we study its dynamical property. Before explaining our
results in summary, we explain the results which has been
obtained in various protocol. The dynamics of entangle-
ment has been studied by measuring (Rényi) entanglement
entropy in various protocols. One of the protocol is called
global quenches where a parameter of Hamiltonian is
suddenly changed [1,2]. The time evolution of entangle-
ment entropy in 2 dimensional conformal field theories
(CFTs) is well known. We assume that Hamiltonian is
changed at t ¼ 0 and entanglement entropy is measured at
t0ð> 0Þ. Here lð> 0Þ is the subsystem size. If t0 < l=2,
entanglement entropy linearly increases with t. If t0 ≥ l=2
entanglement entropy stops to increase and is proportional
to the subsystem size l (volume law). Its time evolution in
t0 < l=2 is interpreted in terms of the relativistic propaga-
tion of quasiparticles which are entangled. Its volume law
in t0 ≥ l=2 comes from entanglement between quasipar-
ticles. Recently the time evolution of entanglement entropy
for global quenches is studied in higher dimensional CFTs
and holographic field theories [4–9,20].
Another protocol is called local quenches. Hamiltonian

is deformed locally at t. A well-known result in these
quenches is the time evolution of entanglement entropy in
the 2-dimensional CFTs [21]. The time evolution of
entanglement entropy can be interpreted in terms of the
relativistic propagation of quasiparticles even in local
quenches. A holographic model of these quenches is

proposed in [22–24] and the author in [25] discusses the
relation between global and local quenches.
Recently, entanglement entropy has been studied in more

general quenches where the state is not suddenly excited
but continuously excited with respect to t [26–28].
In a simpler protocol, locally excited states are defined

not by deforming Hamiltonian but by acting with local
operators on the ground state. In the articles [29–31] the
time evolution of (Rényi) entanglement entropy for those
states in various free field theories has been studied. The

excess of (Rényi) entanglement entropyΔSðnÞA is defined by
subtracting the entropy for the ground state from the one for
the excited state because the ground-state entropy is static

quantity. The author in [32] studied ΔSðnÞA in a nonrelativ-

istic system. The time evolution of ΔSðnÞA can be qualita-
tively interpreted in terms of the relativistic propagation of
the quasiparticles created by a local operator. Furthermore,
the late-time value of the entropy can be quantitatively
interpreted in terms of quasiparticles. Its reduced density
matrix can be given by their probability distribution. Even
in the interacting and holographic CFTs [31,33–41], the
time evolution of these entropies can be qualitatively
interpreted in terms of their relativistic propagation.
However in the late time limit which will be precisely
explained later, their behavior depends on the theory. In the
solvable theories such as minimal models, they are given
by the quantum dimension of an inserted local operator.
On the other hand, in the holographic theories, the entropy
increases logarithmically with t.

A. Summary

In this paper we study ΔSðnÞA in the various free field
theories (in particular, free massless scalar theories and free
Maxwell theories). We find that its time evolution for any t
is given by (Rényi) entanglement entropy whose reduced
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density matrix is given by the probability distribution of the
quasi-particle created by the local operator. Here we assume
that the spacetime dimension is greater than or equal to 4. If
the subsystem A is given by the half of the total system, a
kind of quasiparticle is included in A with the probability PA
which can be given by a propagator. Not only the late time

values but also the whole time evolution of ΔSðnÞA can be
equal to (Rényi) entanglement entropy whose reduced
density matrix is given by the probability distribution of
the quasiparticle created by the local operator.
We propose a toy model where quasiparticles created by

local operators freely propagate at the speed of light. ΔSðnÞA
is given by an “entropy” with their probability distribution.
In Sec. IV, we will explain its definition. By using this

model, we estimate ΔSðnÞA for a more complicated shaped
subregion than the ones discussed previously. The excess of
mutual information ΔIA;B in some cases is estimated.

B. Organization

This paper is organized as follows. In Sec. II, we explain

how to compute ΔSðnÞA in the replica method. In Sec. III, we
explain the correspondence between the existence proba-
bility and propagators in the replica method. In Sec. IV,
we propose a toy model, in which an operator creates a

quasiparticle. We show that ΔSðnÞA is given by the entropy

with its probability distribution. ΔSðnÞA and ΔIA;B in some
cases are estimated by this entropy.

II. ENTANGLEMENT ENTROPY IN THE
REPLICA METHOD

A. The space decomposition

Here we are dealing with quantum field theories (QFTs)
with dþ 1 dimensional Lorentzian spacetime.1

A definition of (Rényi) entanglement entropy SðnÞA in
QFTs is as follows. The total Hilbert space is geometrically
divided into A and B. Here it is done at t ¼ 0 in order to

measure SðnÞA at t ¼ 0. In this paper A is defined by x1 ≥ 0

and B is its complement as in Fig. 1. A reduced density
matrix ρA for A is defined by tracing out the degrees of
freedom in B:

ρA ≔ TrBρ; ð2:1Þ

where ρ is a given density matrix. Its (Rényi) entanglement
entropy is defined by

SðnÞA ¼ 1

1 − n
log ½TrAðρAÞn�: ð2:2Þ

B. Locally excited state and ΔSA
Our interest is to study the dynamics of quantum

entanglement. We define the excess of (Rényi) entangle-

ment entropy ΔSðnÞA by subtracting the entropy for the

ground state SðnÞ;GA from the one for an excited state SðnÞ;EXA
since the ground-state entropy does not depend on time:

ΔSðnÞA ≔ SðnÞ;EXA − SðnÞ;GA : ð2:3Þ
A given excited state in this paper is a locally exited state:

jΨi ¼ NOð−t;−l;xÞj0i; ð2:4Þ
where the local operator is located at ðt; x1;xÞ ¼ ð−t;−l;xÞ
and N is a normalization constant (Fig. 1). The coordinate
in Mikowski spacetime is written by ðt; x1;xÞ, where
x ¼ ðx2;…; xdÞ. In the following subsection, we will

explain how to compute ΔSðnÞA for the locally excited state
in the replica method.

C. The replica method

Let us explain how to compute the excess of (Rényi)
entanglement entropy in the replica method. A given
density matrix in dþ 1 dimensional Euclidean space is

ρex ¼ N 2Oðτe;−l;xÞj0ih0jO†ðτl;−l;xÞ; ð2:5Þ
where N is a normalization constant and the coordinate in
the space is ðτ; x1;xÞ. x ¼ fx2;…; xdg. The density matrix
can be schematically interpreted as in Fig. 2. In the figure, a
local operatorO is located at ðτe;−l;xÞ and its “conjugate”
operator O† is at ðτl;−l;xÞ.
Even in Euclidean space, the excess of (Rényi) entan-

glement entropy is defined by

ΔSðnÞA;Eu ≔ SðnÞ;EXA;Eu − SðnÞ;GA;Eu ; ð2:6Þ

where SðnÞA;Eu is (Rényi) entanglement entropy defined in

Euclidean space. SðnÞ;EXA;Eu and SðnÞ;GA;Eu are the entropies for ρex

and the ground state, respectively. The entropy in Euclidean

space is just written by SðnÞA in the following. The replica

FIG. 1. The total Space divided into two subspaces A and B
at t ¼ 0.

1The theories are put on even dimensional Minkowski space-
time with signature gμν ¼ diagð−1; 1; 1;…Þ in the following
section.
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method is well known, and we recommend [42] for further
reading. For convenience we give here a brief description.

Let us compute SðnÞA for the ground state in the replica
method. In Euclidian QFTs, the wave functional at τ ¼ 0 of
a vacuum state Ψvac½ϕ0ðxÞ� can be described in the path-
integral form as

Ψvac½ϕ0ðxÞ� ¼
1

ðZvac
1 Þ12

Z
ϕðτ¼0;xÞ¼ϕ0ðxÞ

ϕðτ¼−∞Þ
Dϕe−S½ϕ�; ð2:7Þ

where x is the space coordinate x ¼ fx1;xg and Zvac
1 is the

partition function of the vacuum (on the spacetime Rdþ1).
With this expression, we can rewrite the density matrix of
vacuum ρvac½ϕ−ðxÞ;ϕþðyÞ� as

ρvac½ϕ−ðxÞ;ϕþðyÞ� ¼ Ψvac½ϕ−ðxÞ�Ψvac†½ϕþðyÞ�

¼ 1

Zvac
1

Z
ϕ1ðτ¼0−;xÞ¼ϕ−ðxÞ

ϕ1ðt¼−∞Þ
Dϕ1e−S½ϕ1�

×
Z

ϕ2ðt¼∞Þ

ϕ2ðτ¼0þ;yÞ¼ϕþðyÞ
Dϕ2e−S½ϕ2�;

ð2:8Þ

where ϕ� are the boundary conditions at τ ¼ 0�(0� ¼
0� δð≪ 1Þ.).
The reduced density matrix ρvacA is defined by tracing out

the degrees of freedom in the region B. Since A is the half
of total space, the degrees in A and B can be defined by

ϕðτ; xÞ ≔
�
ϕAðτ; xÞ x1 > 0;

ϕBðτ; xÞ x1 < 0:
ð2:9Þ

Then the matrix ρvacA ½ϕA
−ðxÞ;ϕAþðyÞ� is given by

ρvacA ½ϕA
−ðxÞ;ϕAþðyÞ�

¼
Z

DϕBþ

Z
DϕB

−δðϕBþðxÞ − ϕB
−ðxÞÞρvac½ϕ−ðxÞ;ϕþðyÞ�

ð2:10Þ

Finally, TrAðρvacA Þ is

TrAðρvacA Þn ¼ 1

ðZvac
1 Þn

Z
A

�Yi¼2n

i¼1

Dϕi

�
ρvacA ½ϕ1;ϕ2�δðϕ2 − ϕ3ÞρvacA ½ϕ3;ϕ4� � � � ρvacA ½ϕ2n−1;ϕ2n�δðϕ2n−1 − ϕ2nÞ

¼ 1

ðZvac
1 Þn

Z
Σn

Dϕe−Sn½ϕ� ð2:11Þ

where the integrals in the first line are performed over the
region A of each Riemann sheet. Σn is a n-sheeted Riemann
sheet described in Fig. 3 and Sn is an action defined on Σn.
Let us compute (Rényi) entanglement entropy for the

state in (2.5). The matrix in (2.5) can be written by

ρex ¼ 1

Zex
1

Oðτe;−lÞj0ih0jO†ðτl;−lÞ: ð2:12Þ

We rewrite the coordinates ðτ; x1Þ into polar coordinates
ðr; θÞ as in Fig. 2. TrAρexA gives

(a) (b)

FIG. 2. Operator insertion points before taking the analytic continuation in (a) ðτ; x1Þ and (b) ðr; θÞ.
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TrAðρexA Þn ¼
1

ðZex
1 Þn

Z
Σn

Dϕ
Yn
i¼1

ðO†ðr1; θðiÞ1 ÞÞ

×Oðr2; θðiÞ2 ÞÞe−Sn½ϕ� ð2:13Þ

where ðr1;2; θðiÞ1;2Þ are the insertion points of local operators
O† and O on the ith Riemann sheet as it is described
in Fig. 3(b). Zex

1 ¼ R
Σ1
DϕðO†ðr1; θ1ÞÞOðr2; θ2ÞÞe−S is

introduced for the normalization.

After substituting (2.11) and (2.13) into (2.6), ΔSðnÞA in
the replica method is

ΔSðnÞA ≔ SðnÞ;exA − SðnÞ;vacA

¼ 1

1 − n
ðlog trAðρexA Þn − log TrAðρvacA ÞnÞ

¼ 1

1 − n
log

�hQn
i¼1 ðO†ðr1; θðiÞ1 ÞÞOðr2; θðiÞ2 ÞÞiΣn

ðhO†ðr1; θ1ÞOðr2; θ2ÞiΣ1
Þn

�
;

ð2:14Þ

where hOðxÞO†ðyÞ � � �iΣN
is the correlation function on the

n-sheeted Riemann surface.

D. Analytic continuation to the real time

In this method, the 2n-point function of O in Σn and

the 2-point function of O in Σ1 give ΔSðnÞA in Euclidean
spacetime. In order to study the dynamics of entanglement
in Minkowski spacetime, we perform the analytic continu-
ation to the real time as in the articles [29–31,34–36,43].
The analytic continuation to the real time is done by

τl ¼ ϵ − it τe ¼ −ϵ − it ð2:15Þ

where ϵ acts as a smearing parameter which keeps the norm
of the locally excited state finite. During the calculation,
we keep ϵ finite, but in the end we take the limit ϵ → 0.
Note that in Maxwell theory, the fields also change as

Aτ ¼ iAt ∂τ ¼ i∂t ð2:16Þ

due to covariance.

III. PROBABILITY AND PROPAGATOR

In this section, we study ΔSðnÞA for locally excited states
in the replica method. The spacetime dimensions are
assumed to be more than or equal to 4. We explain the
correspondence between an analytic-continued propagator
and a probability.

A. ΔSðnÞA in free field theories

In [29–31,34–36,43], the time evolution of ΔSðnÞA in the
limit ϵ → 0 is studied. In free field theories, the leading

term ofΔSðnÞA does not depend on ϵ and it is finite. If the late

time limit (t → ∞) is taken, ΔSðnÞA is given by (Rényi)
entanglement entropy whose reduced density matrix is
given by an effective reduced density matrix ρeA:

ΔSðnÞA ¼ 1

1 − n
log ½TrðρeAÞn�; ð3:1Þ

where TrρeA ¼ 1. The density matrix is evaluated by
quasiparticles which obey the late time algebra as explained
in the following subsection. Therefore, the late time values

of ΔSðnÞA are given by entanglement of quasiparticles.

1. ρeA in the late time limit

Let us explain a quasiparticle picture in the late time limit
and the late time algebra which the particle obeys in a
simple case. For simplicity, we consider 4 dimensional
massless free scalar field theory. The given local state is

jΨsi ¼ Nϕð−t;−l;xÞj0i; ð3:2Þ

where N is determined so that hΨsjΨsi ¼ 1 and the
operator ϕ is included in B.
Before explaining the particle picture in the late time

limit and the late time algebra, we explain the time

evolution of ΔSðnÞA . The time evolution of ΔSðnÞA for (3.2)
can be qualitatively interpreted in terms of the relativistic
propagation of quasiparticle.

The time evolution of ΔSðnÞA has three processes. In t ≤ l,

ΔSðnÞA vanishes. It increases in t > l. After taking the limit

t → ∞, ΔSðnÞA approaches a constant.
In a quasiparticle picture, an entangled group is created

at ðt; x1;xÞ ¼ ð−t;−l;xÞ and spherically propagates at the
speed of light. The group is constructed of the quasipar-
ticles entangled each other. In t ≤ l the group is included in
B [Fig. 4(a)]. Then the entanglement between the particles

can not contribute to ΔSðnÞA . If t > l, some of them are

(a) (b)

FIG. 3. Sketch of (a) n-sheeted Riemann surface, (b) n-sheeted
Riemann surface with operator insertions.

MASAHIRO NOZAKI and NAOKI WATAMURA PHYSICAL REVIEW D 96, 025019 (2017)

025019-4



included in B and entanglement between them can con-

tribute to ΔSðnÞA . In the late time limit, the particles included
in A can not come out of A. Their entanglement can
be interpreted in terms of entanglement between two

quasiparticles, which keeps to contribute to ΔSðnÞA and it
approaches a constant:

ΔSðn≥1ÞA ¼ log 2: ð3:3Þ

As explained above, the late time value of ΔSðnÞA for (3.2)
comes from entanglement between an entanglement pair.
Then we assume that ϕ can be decomposed into the right
and left moving modes (ϕL;ϕR), respectively:

ϕ ¼ ϕL† þ ϕR† þ ϕL þ ϕR; ð3:4Þ

where they obey the following late time algebra:

½ϕM;ϕN†� ¼ δMN; ðN;M ¼ R;LÞ ½ϕM;ϕN � ¼ 0:

ð3:5Þ

The ground state is decomposed into the ground states for
the right and left moving modes:

j0i ¼ j0iR ⊗ j0iL; ð3:6Þ

where

ϕLj0iL ¼ ϕRj0iR ¼ 0: ð3:7Þ

In this picture, the excited state can be represented by

jΨsi ¼
1ffiffiffi
2

p ½jϕLiLj0iR þ j0iLjϕRiR�: ð3:8Þ

In the late time limit, the right and left moving modes are
included in A and B, respectively in this case. Then the right
and left moving modes can be identified with the physical

degrees of freedom in A and B, respectively. Therefore the
effective density matrix ρeA is given by

ρeA¼TrBjΨsihΨsj¼TrLjΨsihΨsj¼
1

2
½jϕRihϕRjþjϕLihϕLj�;

ð3:9Þ

where jϕLi ¼ ϕL†j0iL, jϕRi ¼ ϕR†j0iR. (Rényi) entangle-
ment entropy whose reduced density matrix is given by
(3.9) is the same as (3.3).

B. ρeA without taking the late time limit

As in the previous subsection, the late time value of

ΔSðnÞA comes from the entanglement between quasipar-

ticles. In other words, it can be given by SðnÞA whose reduced
density matrix is given by the probability distribution of
quasiparticles as follows. Here we assume that if a
composite operator ∶ϕk∶ is inserted, each ϕ creates one
quasiparticle. k is an integer number.

1. Reduced density matrix and probability

Equation (3.9) shows that reduced density matrix can be
thought as the probability distribution of the quasi-particle.
If we assume that a quasiparticle is created by ϕð−t;−l;xÞ,
it is included in A or B with the probabilities PAðtÞ and
PBðtÞ at t ¼ 0. In this case, the particle should propagate
spherically at the speed of light. Then in the late time,
it is included in A or B with limt→∞PAðtÞ ¼ 1

2
and

limt→∞PBðtÞ ¼ 1
2
. They are the same as the components

(hϕRjρAjϕRi, hϕLjρAjϕLi) of the effective reduced density
matrix.
Even if the late time limit is not taken, the effective

density matrix ρeAðtÞ (the probability distribution of qua-
siparticles) is assumed to be applicable. The decomposition
in (3.5) is generalized as follows:

ϕð−t;−l;xÞ ¼ ϕL†ð−t;−l;xÞ þ ϕR†ð−t;−l;xÞ
þ ϕLð−t;−l;xÞ þ ϕRð−t;−l;xÞ; ð3:10Þ

FIG. 4. A quasiparticle picture. At t ¼ −t, quasiparticles appear at the point where ϕ is located. (a) shows that all of them are included

in B in l ≥ t > 0. Therefore entanglement between them can not contribute to ΔSðnÞA . (b) shows that their entanglement can contribute to

ΔSðnÞA in t > l > 0 because some of them are included in A. In the late time, it can be interpreted in terms of entanglement between two
quasiparticles.
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where they obey the following algebra:

½ϕMð−t;−l;xÞ;ϕN†ð−t;−l;xÞ�
¼ δMNfMð−t;−l;xÞ; ðN;M ¼ R;LÞ

½ϕMð−t;−l;xÞ;ϕNð−t;−l;xÞ� ¼ 0: ð3:11Þ

Without taking the late time limit, the ground state is
assumed to be decomposed in the same manner as in (3.6).
However, the definition of the ground states for the left and
right moving modes are generalized as follows:

ϕLð−t;−l;xÞj0iL ¼ ϕRð−t;−l;xÞj0iR ¼ 0: ð3:12Þ

Here the norm of ϕL†ð−t;−l;xÞj0 >L;ϕ
R†ð−t;−l;xÞj0 >R

is given by

h0jMϕMð−t;−l;xÞϕM†ð−t;−l;xÞj0iM ¼ fMð−t;−l;xÞ;
ð3:13Þ

where M ¼ L, R. h0jLϕLð−t;−l;xÞϕL†ð−t;−l;xÞj0iL and
h0jRϕRð−t;−l;xÞϕR†ð−t;−l;xÞj0iR correspond to the
probabilities with which a quasiparticle is included in B
and A respectively. Under the decomposition in (3.10), the
state in (3.2) is represented by

jΨsð−tÞi ¼ N
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fLð−t;−l;xÞ
q

jϕLð−t;−l;xÞiLj0iR

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRð−t;−l;xÞ

q
j0iLjϕRð−t;−l;xÞiR

�
;

ð3:14Þ

where jϕMð−t;−l;xÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fMð−t;−l;xÞ

p ϕM†ð−t;−l;xÞj0iM
and N −2 ¼ fLð−t;−l;xÞ þ fRð−t;−l;xÞ.

If the effective reduced density matrix ρeAðtÞ is defined by

ρeAðtÞ ≔ TrBjΨsð−tÞihΨsð−tÞj
¼ TrLjΨsð−tÞihΨsð−tÞj
¼ P1ðtÞj0iRh0jR þ P2ðtÞjϕRð−t;−l;xÞiR
× hϕRð−t;−l;xÞjR; ð3:15Þ

where P1ðtÞ¼N 2fLð−t;−l;xÞ, P2ðtÞ ¼ N 2fRð−t;−l;xÞ,
then ΔSðnÞA for ρeAðtÞ is given by

ΔSðnÞA ¼ 1

1 − n
log TrRðρeAÞn

¼ 1

1 − n
log ½ðP1ðtÞÞn þ ðP2ðtÞÞn�: ð3:16Þ

2. Diagrams

In the limit ϵ → 0, ΔSðnÞA in the replica method can be
computed by a few diagrams. Green’s functions used in the
following are the leading orders in a small ϵ expansion. In
t ≤ l, the diagram constructed of Green’s function on the

same sheet [Fig. 5(a)] can contribute to ΔSðnÞA :

ΔSðnÞA ¼ 1

1 − n
log

�ðGðnÞðθ1 − θ2ÞÞn
ðGð1Þðθ1 − θ2ÞÞn

�
; ð3:17Þ

where GðnÞðθ1 − θ2Þ and Gð1Þðθ1 − θ2Þ are Green’s func-
tions on Σn and Σ1, respectively. Green’s functions for any
n have the propertyGðnÞðΘÞ ¼ GðnÞð−ΘÞ. The quasiparticle
which is created by ϕ is included in B. Then P2ðtÞ has to
vanish because P2ðtÞ is the probability with which the
particle is included in A. If (3.16) is identified with (3.17),
P1ðtÞ is given by

FIG. 5. The ratios of diagrams. The diagram constructed of GðnÞðθ1 − θ2Þ is called DðnÞ
1 . The diagram constructed of GðnÞðθ1 −

θ2 þ 2πÞ andGðnÞðθ1 − θ2 − 2ðn − 1ÞπÞ isDðnÞ
2 . The one constructed ofGð1Þðθ1 − θ2Þ isDð1Þ

1 . (a) is the ratio ofDðnÞ
1 to ðDð1Þ

1 Þn. (b) is the
ratio of DðnÞ

2 to ðDð1Þ
1 Þn.
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P1ðtÞ ¼
GðnÞðθ1 − θ2Þ
Gð1Þðθ1 − θ2Þ

: ð3:18Þ

In t > l the other diagram [Fig. 5(b)] constructed of
GðnÞðθ1 − θ2 þ 2πÞ and GðnÞðθ1 − θ2 − 2ðn − 1ÞπÞ can

contribute to ΔSðnÞA , but GðnÞðθ1−θ2þ2πÞ¼GðnÞðθ1−θ2−
2ðn−1ÞπÞ. Then P2ðtÞ can be identified with the ratio of
GðnÞðθ − θ2 þ 2πÞ to Gð1Þðθ − θ2Þ:

P2ðtÞ ¼
GðnÞðθ1 − θ2 þ 2πÞ

Gð1Þðθ1 − θ2Þ
: ð3:19Þ

The ratio of P1ðtÞ to P2ðtÞ is given by

P1ðtÞ
P2ðtÞ

¼ fLð−t;−l;xÞ
fRð−t;−l;xÞ ¼

GðnÞðθ1 − θ2Þ
GðnÞðθ1 − θ2 þ 2πÞ : ð3:20Þ

Then Green’s functions can be chosen as fL;R as follows2:

fLð−t;−l;xÞ ¼ 32π2ϵ2GðnÞðθ1 − θ2Þ;
fRð−t;−l;xÞ ¼ 32π2ϵ2GðnÞðθ1 − θ2 þ 2πÞ; ð3:21Þ

where Gð1Þðθ − θ2Þ is given by the sum of Green’s
functions on Σn:

Gð1Þðθ1 − θ2Þ ¼ GðnÞðθ1 − θ2Þ þGðnÞðθ1 − θ2 þ 2πÞ:
ð3:22Þ

Equation (3.21) satisfies (3.18) and ([15]). The sum of PiðtÞ
is equal to 1. Then the algebra which quasiparticles obey is
given by

½ϕLð−t;−l;xÞ;ϕL†ð−t;−l;xÞ� ¼ 32π2ϵ2GðnÞðθ1 − θ2Þ;
½ϕRð−t;−l;xÞ;ϕR†ð−t;−l;xÞ� ¼ 32π2ϵ2GðnÞðθ1 − θ2þ 2πÞ;
½ϕMð−t;−l;xÞ;ϕNð−t;−l;xÞ� ¼ 0: ð3:23Þ

Equation (3.23) shows the commutation relation for ϕL

(ϕR) are given by the Green’s function on the same sheet
(Green’s function on the different sheet) if ϕ is located in B3

In the late time limit, the algebra in (3.23) satisfies the late
time algebra in (3.11). This relation between the commu-
tation relation and Green’s function holds in free Maxwell
theory and they are summarized in the Appendix.4

Using the analytic continued Green’s functions summa-
rized in the Appendix, (3.21) shows that P1ðtÞ and P2ðtÞ in
4 dimensional massless free scalar theory is given by

P1ðtÞ ¼
�
1 t ≤ l;
tþl
2t t > l;

P2ðtÞ ¼
�
0 t ≤ l;
t−l
2t t > l:

ð3:24Þ

3. A simple example

Here we compute ΔSðnÞA for a simple example by using
the algebra in (3.23). The given state is

jΨi ¼ N ∶ϕk∶ð−t;−l;xÞj0i: ð3:25Þ

where N is given by

N ¼ 1

k!ð32π2ϵ2ÞkðGðnÞðθ1 − θ2Þ þGðnÞðθ1 − θ2 þ 2πÞÞk :

ð3:26Þ

Its effective reduced density matrix is given by5

ρA ¼ TrLρ

¼
Xk
s¼0

kCsðGðnÞðθ1 − θ2ÞÞk−sðGðnÞðθ1 − θ2 þ 2πÞÞs
ðGðnÞðθ1 − θ2Þ þ GðnÞðθ1 − θ2 þ 2πÞÞk

× jðϕRÞsihðϕRÞsj: ð3:27Þ

Then SðnÞA for this density matrix in (3.27) is given by

ΔSðnÞA ¼ 1

1 − n
log

�Xk
s¼0

�
kCsðGðnÞðθ1 − θ2ÞÞk−sðGðnÞðθ1 − θ2 þ 2πÞÞs

ðGðnÞðθ1 − θ2Þ þGðnÞðθ1 − θ2 þ 2πÞÞk
�n�

¼ 1

1 − n
log

�Xk
s¼0

ðkCsðP1ðtÞÞsðP2ðtÞÞk−sÞn
�
:

ð3:28Þ

5
kCs is a binomial coefficient defined by kCs ≔

ðkÞ!
s!ðk−sÞ!.

4Although it is expected that the relation holds even in free fermionic theories, we did not check it.

3If the subregion A is given by x1 ≤ 0, the commutation relation for ϕL (ϕR) are given by GðnÞðθ−θ2þ2πÞ (GðnÞðθ − θ2Þ).

2We do not claim that this choice is unique. There is an ambiguity of the overall factor ofGreen’s functions.Here their factors are chosen so
that (3.23) in the late time limit satisfies (3.11).
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where we use the identity in (3.22). The entropy in the late
time limit is given by

ΔSðnÞA ¼ 1

1 − n
log

�Xk
s¼0

ðkCsÞn
2kn

�
: ð3:29Þ

These results in (3.28)) and (3.29) are consistent with the
results in the replica method [29,30].

IV. PARTICLE PROPAGATING MODEL

Here we consider a toy model where we can explain

what ΔSðnÞA measures in free field theories. For simplicity,
the theory we consider is 4 dimensional free massless
scalar field theory. In this toy model, a local operator
creates quasiparticles and their probability changes with
respect to time. As an example, consider the case that a
local operator ϕ is acting on the ground state at
ðt; x1; x2; x3Þ ¼ ð0;−l; 0; 0Þ. It creates a quasiparticle at
ðt; x1; x2; x3Þ ¼ ð0;−l; 0; 0Þ. The particle propagates
spherically at the speed of light without any interactions.
The total system is divided into A and B. A (B) is given by
x1 ≥ 0 ðx1 < 0Þ.
At t ¼ Tð≤ lÞ, the particle is necessarily included in B.

The probability PAðTÞ, with which the quasiparticle is
included in A, should vanish. On the other hand, PBðTÞ,
with which the quasiparticle is included in B, is equal to 1.
Then the probability distribution ρ is defined by

ρ ≔ PBðTÞj0; 1ih0; 1j þ PAðTÞj1; 0ih1; 0j; ð4:1Þ

where jl; ni is the state where l (n) particles are included in
A (B) with PAðTÞ (PBðTÞ). We defined (Rényi) entropy
Sðn≥1Þ for ρ by

SðnÞ ≔
� 1

1−n log TrðρnÞ n ≥ 2;

−Trρ log ρ n ¼ 1:
ð4:2Þ

At t ¼ T, the particle stays somewhere on the sphere whose
radius is T as in Fig. 6. SðnÞ for ρ vanishes for T ≤ l. For
T > l, a part of the spherical surface of the quasiparticles’

propagation is included in region A. The area SA of the part
of surface which is included in the region A is

SAðTÞ¼
Z

α

0

dθ2πT2 sinθdθ¼2πT2

�
1−

l
T

�
¼2πTðT− lÞ;

ð4:3Þ

where cos α ¼ l
T. PAðTÞ (PBðTÞ) is given by the ratio of

SAðTÞ ðSBðTÞÞ to the area SallðTÞ of the surface with the
radius T:

PAðTÞ ¼
SAðTÞ
SallðTÞ

; PBðTÞ ¼
SBðTÞ
SallðTÞ

: ð4:4Þ

Thus the probabilities with which the particle is included in
region A and B in T > l are

PAðTÞ ¼
2πTðT − lÞ

4πT2
¼ ðT − lÞ

2T
; PBðTÞ ¼

ðT þ lÞ
2T

:

ð4:5Þ

The probabilities in (4.5) are consistent with the ones in

(3.24). SðnÞ for ρ is consistent with ΔSðnÞA in the replica
method.

Thus, with this toy model, ΔSðnÞA for ϕ in 4d can be
reproduced. Here we implicitly assume that particles
propagate isotropically. For the particle with spin, it is
expected that the weight is changed from 1 to Wðt; xÞ,
which depends on the particle’s spin. For the particle with
spin, the integration in (4.3) might be changed to

S0
AðTÞ ¼

Z
A
dVWðT; θÞ: ð4:6Þ

where the integration at t ¼ T is performed for the part
of spherical surface, which is included in A as in Fig. 6.
The definition of probabilities in (4.4) changes to

PAðTÞ ¼
S0
AðTÞ

S0
allðTÞ

; PBðTÞ ¼
S0
BðTÞ

S0
allðTÞ

: ð4:7Þ

Let us compute ΔSðnÞA and ΔIA;B with our model.

A. Example.1: O ≕ ϕk∶ð0;− l;xÞ
Here the local operator ∶ϕk∶ which is located at

ðt; x1; x2; x3Þ ¼ ð0;−l; 0; 0Þ acts on the ground state. The
following assumption is taken. The k same-kind particles
are created at the point where the local composite operator
is inserted since it is constructed of only ϕ. Then in T > l,
the l particles and k − l particles are included in A and B
with the probability kClðPAðTÞÞk−lðPBðTÞÞl. Thus the
probability distribution ρ is given byFIG. 6. Free particle propagation.
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ρ ¼
Xk
l¼0

kClðPAðTÞÞk−lðPBðTÞÞljl; k − lihl; k − lj; ð4:8Þ

where jl; k − li is the state where l and k − l particles are included in A and B, respectively. SðnÞ for (4.8) is consistent
with (3.28).

B. Example.2: O=ϕð−T;−L;x1Þϕð − t;− l;x2Þ
The given state is

jΨi ¼ Nϕð−T;−L;x1Þϕð−t;−l;x2Þj0i; ð4:9Þ

where l, L, t, T > 0. Here we assume that a particle created by ϕð−T;−L;x1Þ is a different kind particle from the one
created by ϕð−t;−l;x2Þ. The distribution ρ at t ¼ 0 is defined by

ρ ¼
X
a;b;c;d

Pa;c
~Pb;dja; b; c; diha; b; c; dj

¼ P1;0
~P1;0j1; 1; 0; 0ih1; 1; 0; 0j þ P0;1

~P1;0j0; 1; 1; 0ih0; 1; 1; 0j þ P0;1
~P0;1j1; 0; 0; 1ih1; 0; 0; 1j

þ P0;1
~P0;1j0; 0; 1; 1ih0; 0; 1; 1j; ð4:10Þ

where ja; b; c; di is the state where a (b) and c (d) particles created by ϕð−T;−L;x1Þ (ϕð−t;−l;x2Þ) are included in A
and B, respectively. Each probability at t ¼ 0 is given by

P1;0 ¼
�
0 T <L;
ðT−LÞ
2T T ≥ L;

; P0;1 ¼
�
1 T <L;
ðTþLÞ
2T T ≥ L;

~P1;0 ¼
�0 t < l;

ðt−lÞ
2ðtÞ t≥ l;

; ~P0;1 ¼
�1 t < l;

ðtþlÞ
2ðtÞ t≥ l;

ð4:11Þ

SðnÞ for (4.10) is given by

Sðn>1Þ ¼ 1

1−n
log ½ðP1;0

~P1;0ÞnþðP0;1
~P1;0ÞnþðP1;0

~P0;1ÞnþðP0;1
~P0;1Þn�;

S¼Sðn¼1Þ ¼−ðP1;0
~P1;0Þ logðP1;0

~P1;0Þ−ðP0;1
~P1;0Þ logðP0;1

~P1;0Þ−ðP1;0
~P0;1ÞlogðP1;0

~P0;1Þ−ðP0;1
~P0;1ÞlogðP0;1

~P0;1Þ:
ð4:12Þ

In the late time limit, they are given by Sðn≥1Þ ¼ log 4 which is consistent with the result in [30].

C. Example.3: A finite interval

The local operator ϕ is located at ðt; x1;xÞ ¼ ð0; 0; 0Þ and the given subsystem is 0 < l ≤ x1 < L. Sðn≥1Þ is measured at t.
A quasiparticle is included in A (B) with the probability PAðtÞ ðPBðtÞÞ. They are given by

PAðtÞ ¼

8>><
>>:

0 0 ≤ t < l;
t−l
2t 0 < l ≤ t < L;
L−l
2t L ≤ t;

; PBðtÞ ¼

8>><
>>:

1 0 ≤ t < l;
tþl
2t 0 < l ≤ t < L;
Lþl
2t L ≤ t;

ð4:13Þ

whose Sðn≥1Þ are given by
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Sðn≥1Þ ¼

8>><
>>:
0 0<t<l;
1

1−nlog ½ðt−l2t Þnþðtþl
2t Þn� 0<l≤ t<L;

1
1−nlog ½ð1−L−l

2t ÞnþðL−l
2t Þn� L≤ t;

S¼

8>><
>>:
0 0<t<l;

−ðt−l
2t Þ logðt−l2t Þ−ðtþl

2t Þ logðtþl
2t Þ 0<l≤ t<L;;

−ð1−L−l
2t Þlogð1−L−l

2t Þ−ðL−l
2t Þ logðL−l2t Þ L≤ t:

ð4:14Þ

The plot of S shows that S increases after t ¼ l and
decreases after t¼L (Fig. 7). PAðtÞ increases in l< t<L

but it decreases before it approaches 1
2
. Therefore, it does

not approach S for the maximally entangled state and
vanishes at the late time.

D. Example.4: Infinite subsystems

Here the given subsystem is infinite but its shape is more
complicated than the one discussed previously. The follow-
ing subsystems are considered:

A1 ¼ fx1 ≥ l; x2 ≥ 0g; A2 ¼ fx1 ≥ l; x2 ≥ 0; x3 ≥ 0g:
ð4:15Þ

The subsystem B is defined by the remnant of the total
space. The probability distribution in this case is defined by

ρi ≔ PBðTÞj0; 1ih0; 1j þ PAi
ðTÞj1; 0ih1; 0j; ði ¼ 1 ∼ 2Þ

ð4:16Þ

where the probabilities are given by

A1∶ PA1
¼ 1

4

�
1 −

l
t

�
; PB ¼ 1

4

�
3þ l

t

�
;

A2∶ PA2
¼ 1

8

�
1 −

l
t

�
; PB ¼ 1

8

�
7þ l

t

�
: ð4:17Þ

jl; k − li is the state where l and k − l particles are included
in Ai and B respectively. Their entropies in t ≤ l vanish.
They in t > l are given by

SðnÞðρ1Þ ¼
(

1
1−n log ½ð14 ð1 − l

tÞÞn þ ð1
4
ð3þ l

tÞÞn� n ≥ 2;

− 1
4
ð1 − l

tÞ log ½14 ð1 − l
tÞ� − 1

4
ð3þ l

tÞ log ½14 ð3þ l
tÞ� n ¼ 1;

SðnÞðρ2Þ ¼
(

1
1−n log ½ð18 ð1 − l

tÞÞn þ ð1
8
ð7þ l

tÞÞn� n ≥ 2;

− 1
8
ð1 − l

tÞ log ½18 ð1 − l
tÞ� − 1

8
ð7þ l

tÞ log ½18 ð7þ l
tÞ� n ¼ 1.

ð4:18Þ

Since the particle created by ϕ can stay at A1;2 or B in the
late time limit, the entropies in the limit are finite:

SðnÞðρ1Þ ¼
� 1

1−n log ½ð14Þn þ ð3
4
Þn� n ≥ 2;

− 1
4
log½1

4
� − 3

4
log½3

4
� n ¼ 1;

SðnÞðρ2Þ ¼
� 1

1−n log ½ð18Þn þ ð7
8
Þn� n ≥ 2;

− 1
8
log½1

8
� − 7

8
log½7

8
� n ¼ 1.

ð4:19Þ

Sðρi¼1;2Þ are smaller than the entropy for an EPR state.

E. Mutual information

The mutual information IðA;BÞmeasures the correlation
between A and B [44–49]. Here the excess of mutual
information ΔIA;B is defined by subtracting the mutual

information for the ground state IGA;B from for the locally
excited state IEXA;B:

ΔIA;B ¼ IEXA;B − IGA;B ¼ ΔSA þ ΔSB − ΔSA∪B; ð4:20Þ

where ΔSA∪B is the excess of mutual entanglement entropy

for A or B. In our toy model, ΔSðnÞA for a locally excited
state is evaluated by computing SðnÞ for a probability
distribution ρ.

1. ΔIA;B between a finite interval and infinite interval

The total space is divided into the three regions A, B
and C. They are shown in Fig. 8, and given by.

FIG. 7. The plot of S. The parallel axis is t. The vertical axis is
S. ðl; LÞ ¼ ð10; 30Þ.
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A∶ 0 < lA ≤ x1; B∶ −LB ≤ x1 ≤ −lB < 0;

C∶ the remnant of the total space: ð4:21Þ

The local operator ϕ is located at ðt; x1;xÞ ¼ ð0; 0; 0Þ. We
compute ΔIA;B in order to measures the time evolution of
the correlation between the subregion A and B at t. The
excess of the mutual information ΔIðA; BÞ is given by

ΔIA;B ¼ ΔSA þ ΔSB − ΔSA∪B; ð4:22Þ

As explained earlier, ΔSM is evaluated by SðρMÞ. Thus,
ΔIA;B is evaluated by IA;B which is defined by

IA;B ¼ SðρAÞ þ SðρBÞ − SðρA∪BÞ; ð4:23Þ

where SðρMÞ are given by

SðρAÞ ¼ −PAðtÞ logPAðtÞ − PB∪CðtÞ logPB∪CðtÞ;
SðρBÞ ¼ −PBðtÞ logPBðtÞ − PA∪CðtÞ logPA∪CðtÞ;

SðρA∪BÞ ¼ −PA∪BðtÞ logPA∪BðtÞ − PCðtÞ logPCðtÞ;
ð4:24Þ

ðiÞ 0 < lA < lB < LB.—Here the parameters satisfy the
following relation:

0 < lA < lB < LB: ð4:25Þ

Since the particle created by ϕ stays at −lB < x1 < lA in
0 ≤ t < lA, PC ¼ 1 and IA;B vanishes. In lA ≤ t < lB, it
can be included in B. The probabilities are given by

PAðtÞ ¼
t − lA
2t

; PA∪C ¼ tþ lA
2t

;

PBðtÞ ¼ 0; PA∪CðtÞ ¼ 1;

PA∪BðtÞ ¼
t − lA
2t

; PCðtÞ ¼
tþ lA
2t

: ð4:26Þ

Then IA;B vanishes because SðρAÞ cancels with SðρA∪BÞ. It
is expected that the correlation disappears because the
particle is included in only A.
The particle can stay in A and B in 0 < lB ≤ t ≤ LB. The

probabilities are given by

PAðtÞ ¼
�
t − lA
2t

�
; PB∪CðtÞ ¼

�
tþ lA
2t

�
;

PBðtÞ ¼
�
t − lB
2t

�
; PA∪CðtÞ ¼

�
tþ lB
2t

�
;

PA∪BðtÞ ¼
�
2t − lA − lB

2t

�
; PCðtÞ ¼

�
lA þ lB

2t

�
:

ð4:27Þ

The correlation between A and B increases because the
particle can stay in both A and B.
The probabilities in LB ≥ t are given by

PAðtÞ ¼
�
t − lA
2t

�
; PB∪CðtÞ ¼

�
tþ lA
2t

�
;

PBðtÞ ¼
�
LB − lB

2t

�
; PA∪CðtÞ ¼

�
2t − LB þ lB

2t

�
;

PA∪BðtÞ ¼
�
tþ LB − lA − lB

2t

�
;

PCðtÞ ¼
�
t − LB þ lA þ lB

2t

�
: ð4:28Þ

PBðtÞ decreases because the particle tends to come out of
B in this region. In the late time limit, the particle is outside
B. Then IA;B vanishes. The time evolution of IA;B is plotted
in Fig. 9.

ðiiÞ 0 < lB < lA < LB.—Here the parameters considered
obey that

0 < lB < lA < LB: ð4:29Þ

In 0 < t ≤ lA, IA;B vanishes. In lA < t ≤ LB, the prob-
abilities are the same as (4.27). Those in t > LB are the
same as (4.28). In t < LB the time evolution of IA;B does
not depend on whether lA is greater or smaller than lB. It

FIG. 8. A schematic explanation of the subsystems A, B, and C.
A is an infinite strip. B is a finite strip.

FIG. 9. The Plot of IA;B. The horizontal axis is t. The vertical
axis is IA;B. ðlA; lB; LBÞ ¼ ð5; 10; 15Þ.
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depends on the relation between lA and lB only if t > LB.
The time evolution of IA;B is plotted in Fig. 10.

2. ΔIðA;BÞ between two finite intervals

Here we evaluate ΔIA;B for the two finite intervals by
computing IA;B. The subsystems are shown in Fig. 11, and
they are given by

A∶ 0 < lA ≤ x1 ≤ LA; B∶ −LB ≤ x1 ≤ −lB < 0;

C∶ the remnant of the total space: ð4:30Þ

ðiÞ lA < lB < LA < LB.—Here we assume that lA < lB <
LA < LB. ΔIðA; BÞ vanishes because the particle is nec-
essarily included in C in t ≤ lA. Since the particle is
necessarily outside B, the probabilities in lA ≤ t < lB are
given by

PAðtÞ ¼
�
t − lA
2t

�
; PB∪CðtÞ ¼

�
tþ lA
2t

�
;

PBðtÞ ¼ 0; PA∪CðtÞ ¼ 1;

PA∪BðtÞ ¼
�
t − lA
2t

�
; PCðtÞ ¼

�
tþ lA
2t

�
: ð4:31Þ

It is expected that IA;B vanishes because the particle can
stay in A but cannot stay in B.

It can stay in both A and B in lB ≤ t < LA and
probabilities are given by

PAðtÞ ¼
�
t − lA
2t

�
; PB∪CðtÞ ¼

�
tþ lA
2t

�
;

PBðtÞ ¼
�
t − lB
2t

�
; PA∪CðtÞ ¼

�
tþ lB
2t

�
;

PA∪BðtÞ ¼
�
2t − ðlA þ lBÞ

2t

�
; PCðtÞ ¼

�
lA þ lB

2t

�
:

ð4:32Þ

IA;B increases in this region.
In LA ≤ t < LB, the particle can come out of A. The

probabilities are given by

PAðtÞ ¼
�
LA − lA

2t

�
; PB∪CðtÞ ¼

�
2t − LA þ lA

2t

�
;

PBðtÞ ¼
�
t − lB
2t

�
; PA∪CðtÞ ¼

�
tþ lB
2t

�
;

PA∪BðtÞ ¼
�
tþ LA − ðlA þ lBÞ

2t

�
;

PCðtÞ ¼
�
t − LA þ ðlA þ lBÞ

2t

�
: ð4:33Þ

In 0 < LB < t, it comes out of A and B. They are given by

PAðtÞ ¼
�
LA − lA

2t

�
; PB∪CðtÞ ¼

�
2t− LA þ lA

2t

�
;

PBðtÞ ¼
�
LB − lB

2t

�
; PA∪CðtÞ ¼

�
2t− ðLB − lBÞ

2t

�
;

PA∪BðtÞ ¼
�
LA þ LB − lB − lA

2t

�
;

PCðtÞ ¼
�
2t− LB − LA þ ðlA þ lBÞ

2t

�
: ð4:34Þ

IA;B decreases in this region. If we assume that the
correlation between A and B comes from probabilities in
A and B, this behavior is reasonable. IA;B eventually
vanishes. Its plot is shown in Fig. 12.

ðiiÞ lA < lB < LB < LA.—Here we assume that
lA < lB < LB < LA. Before t ¼ lB, IA;B vanishes. The
probabilities Pi in lB ≤ t < LB is the same as (4.32). Pi
in LB ≤ t < LA is

FIG. 11. A schematic explanation of the subsystems A, B, and
C. A and B are finite strips.

FIG. 10. The Plot of IA;B. The horizontal axis is t. The vertical
axis is IA;B. ðlA; lB; LBÞ ¼ ð10; 5; 15Þ.
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PAðtÞ ¼
�
t − lA
2t

�
; PB∪CðtÞ ¼

�
tþ lA
2t

�
;

PBðtÞ ¼
�
LB − lB

2t

�
; PA∪CðtÞ ¼

�
2t − ðLB − lBÞ

2t

�
;

PA∪BðtÞ ¼
�
tþ LB − ðlA þ lBÞ

2t

�
;

PCðtÞ ¼
�
t − LB þ lA þ lB

2t

�
: ð4:35Þ

Those in LA ≤ t are the same as (4.34).
The time evolution of IA;B is plotted in Fig. 13. IA;B

eventually vanishes.
The results in this section seem to show that the non-

trivial time evolution of IA;B appears if the particle can stay
in A and B with the probabilities PAðtÞ and PBðtÞ.
Here we assume 4 dimensional massless free scalar

theory. We expect that our toy model can be generalized to
higher dimensional cases and to other theories.

V. SUMMARY AND DISCUSSION

In this paper, we have shown that ΔSðnÞA for locally
excited states can be quantitatively interpreted in terms of

quasiparticles even if the late time limit is not taken. ΔSðnÞA
is given by (Rényi) entanglement entropy whose reduced
density matrix is given by probability distribution of the
quasiparticles. The commutation relations which the qua-
siparticles obey are related with Green’s functions.
We have proposed a toy model and checked that it can

reproduce the results in the replica method in 4 dimensional
free massless scalar field theory. The assumptions taken
are:

1. A local operator which is not a composite operator
creates a particle which propagates spherically
without any interactions. For example, ϕ creates a
quasiparticle which propagates spherically at the
speed of light.

2. The composite operator constructed of only one
species of operator creates one kind of quasiparticle.
For example, ∶ϕk∶ creates k quasiparticles of the
same kind.

3. If an operator is inserted at a different point from the
point where another is located, it creates a different
kind of particle.

4. ΔSðnÞA can be evaluated by computing the entropies
in (4.2) for the probability distribution ρ of the
particles created by local operators.

In this paper, we have studied what ΔSðnÞA measures in a
simple system. In this case, it is the distribution of
quasiparticles. The authors in [4] proposed a model which
explains dynamics of entanglement in the global quenches.
In that model, it is explained by the collective motion of
quasiparticles. We expect that there is a relation between
our model and theirs. It is one of the interesting future
problems.
In the global quenches, if the massive theory with the

mass m is suddenly changed to CFT, there is a scale
ξ ¼ 1=m. We assumed that entanglement entropy is mea-
sured at t. If t > ξ, the quasiparticle picture can be applied,
even though ξ corresponds to ϵ in our case, ϵ can be taken 0.
In a holographic theory, the limit ϵ → 0 can not be taken.
Therefore, it is interesting to study what ϵðξÞ is physically.
It is also interesting to study whether the limit can be taken
in a weakly interacting theory which is not integrable.
A generalization of our toy model to higher dimensional

theories and other theories is not difficult and it is

interesting. It is important that one computes ΔSðnÞA and
ΔIA;B in the replica method and check they are consistent
with the results by our toy model.
Our model can not explain the result in the minimal

model [34] and holographic theory [43] quantitatively. We
expect that there is some mechanism which explains their
results qualitatively. It will show what is the fundamental
object which carries quantum entanglement. We hope that

FIG. 12. The plot of IA;B. The horizontal axis is t. The vertical
axis is IA;B. ðlA; lB; LA; LBÞ ¼ ð5; 10; 15; 20Þ.

FIG. 13. The plot of IA;B. The horizontal axis is t. The vertical
axis is IA;B. ðlA; lB; LA; LBÞ ¼ ð5; 10; 20; 15Þ.
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the object will clarify the fundamental mechanism beyond
the AdS/CFT correspondence more.
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APPENDIX: COMMUTATIONS AND
PROPAGATORS

Here we summarize the commutation relation for the
quasi-particles and propagators in 4 and 6 dimensional free
Maxwell theories and 4 dimensional free massless theory.

1. 4 dimensional free massless scalar theory

a. Propagators

If the limit ϵ → 0 is taken, the leading term of the
analytic continued Green’s functions for n ¼ 1 are given by

Gð1Þðθ1 − θ2Þ ¼
1

16π2ϵ2
: ðA1Þ

The functions for any n in 0 < t < l are the same as (A1).
Those for any n in 0 < l ≤ t are given by

GðnÞðθ1 − θ2Þ ¼ GðnÞðθ2 − θ1Þ ¼
tþ l

32π2tϵ2
;

GðnÞðθ1 − θ2 þ 2πÞ ¼ GðnÞðθ2 − θ1 − 2πÞ
¼ GðnÞðθ1 − θ2 þ 2ðn − 1ÞπÞ
¼ GðnÞðθ2 − θ1 − 2ðn − 1ÞπÞ

¼ t − l
32π2tϵ2

; ðA2Þ

where there is an identity:

Gð1Þðθ1 − θ2Þ ¼ GðnÞðθ1 − θ2Þ þGðnÞðθ1 − θ2 þ 2πÞ:
ðA3Þ

b. The commutation relation

The commutation relation is given in the main text.

2. 4 dimensional Maxwell Theory

a. Propagators

The electric and magnetic fields Ei, Bi are defined by

Ei¼F0i; B1¼−F23; B2¼F13; B3¼−F12: ðA4Þ

The analytic continued Green’s functions are defined by

hE1ðθÞE1ðθ0Þi ¼ FE1E1ðθ − θ0Þ;
hE2ðθÞE2ðθ0Þi ¼ hE3ðθÞE3ðθ0Þi ¼ FE2E2ðθ − θ0Þ;
hB1ðθÞB1ðθ0Þi ¼ FB1B1ðθ − θ0Þ;
hB2ðθÞB2ðθ0Þi ¼ hB3ðθÞB3ðθ0Þi ¼ FB2B2ðθ − θ0Þ;
hE2ðθÞB3ðθ0Þi ¼ FE2B3ðθ − θ0Þ;
hB3ðθÞE2ðθ0Þi ¼ FB3E2ðθ − θ0Þ;
hE3ðθÞB2ðθ0Þi ¼ FE3B2ðθ − θ0Þ;
hB2ðθÞE3ðθ0Þi ¼ FB2E3ðθ − θ0Þ; ðA5Þ

If the limit ϵ → 0 is taken, the leading term of them for
n ¼ 1 are given by

Fð1Þ
E1E1ðθ1 − θ2Þ ∼

1

16π2ϵ4
;

Fð1Þ
E2E2ðθ1 − θ2Þ ∼

1

16π2ϵ4
;

Fð1Þ
B1B1ðθ1 − θ2Þ ∼

1

16π2ϵ4
;

Fð1Þ
B2B2ðθ1 − θ2Þ ∼

1

16π2ϵ4
: ðA6Þ

The propagators for n ≥ 2 in 0 < t ≤ l are the same as
in (A6).
The propagators for arbitrary n in 0 < l ≤ t are given by

FðnÞ
E1E1ðθ1 − θ2Þ ¼ FðnÞ

E1E1ðθ2 − θ1Þ ¼ −
ðl − 2tÞðlþ tÞ2

64π2t3ϵ4
;

FðnÞ
E2E2ðθ1 − θ2Þ ¼ FðnÞ

E2E2ðθ2 − θ1Þ ¼
l3 þ 3lt2 þ 4t3

128π2t3ϵ4
;

FðnÞ
B1B1ðθ1 − θ2Þ ¼ FðnÞ

B1B1ðθ2 − θ1Þ ¼ −
ðl − 2tÞðlþ tÞ2

64π2t3ϵ4
;

FðnÞ
B2B2ðθ1 − θ2Þ ¼ FðnÞ

B2B2ðθ2 − θ1Þ ¼
l3 þ 3lt2 þ 4t3

128π2t3ϵ4
;

FðnÞ
E2B3ðθ1 − θ2Þ ¼ FðnÞ

E2B3ðθ2 − θ1Þ ¼
3ðt − lÞðlþ tÞ
128π2t2ϵ4

;

FðnÞ
B3E2ðθ1 − θ2Þ ¼ FðnÞ

B3E2ðθ2 − θ1Þ ¼
3ðt − lÞðlþ tÞ
128π2t2ϵ4

;

FðnÞ
E3B2ðθ1 − θ2Þ ¼ FðnÞ

E3B2ðθ2 − θ1Þ ¼
3ðl − tÞðlþ tÞ
128π2t2ϵ4

;

FðnÞ
B2E3ðθ1 − θ2Þ ¼ Fðn

B2E3ðθ2 − θ1Þ ¼
3ðl − tÞðlþ tÞ
128π2t2ϵ4

;

ðA7Þ
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FðnÞ
E1E1ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

E1E1ðθ2 − θ1 − 2πÞ

¼ FðnÞ
E1E1ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

E1E1ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ ðl − tÞ2ðlþ 2tÞ
64π2t3ϵ4

;

FðnÞ
E2E2ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

E2E2ðθ2 − θ1 − 2πÞ

¼ FðnÞ
E2E2ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

E2E2ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ −
l3 þ 3lt2 − 4t3

128π2t3ϵ4
;

FðnÞ
B1B1ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

B1B1ðθ2 − θ1 − 2πÞ

¼ FðnÞ
B1B1ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

B1B1ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ ðl − tÞ2ðlþ 2tÞ
64π2t3ϵ4

;

FðnÞ
B2B2ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

B2B2ðθ2 − θ1 − 2πÞ

¼ FðnÞ
B2B2ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

B2B2ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ −
l3 þ 3lt2 − 4t3

128π2t3ϵ4
;

FðnÞ
E2B3ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

E2B3ðθ2 − θ1 − 2πÞ

¼ FðnÞ
E2B3ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

E2B3ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ 3ðl − tÞðlþ tÞ
128π2t2ϵ4

FðnÞ
B3E2ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

B3E2ðθ2 − θ1 − 2πÞ

¼ FðnÞ
B3E2ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

B3E2ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ 3ðl − tÞðlþ tÞ
128π2t2ϵ4

;

FðnÞ
E3B2ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

E3B2ðθ2 − θ1 − 2πÞ

¼ FðnÞ
E3B2ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

E3B2ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ 3ðt − lÞðlþ tÞ
128π2t2ϵ4

;

FðnÞ
B2E3ðθ1 − θ2 þ 2πÞ ¼ FðnÞ

B2E3ðθ2 − θ1 − 2πÞ

¼ FðnÞ
B2E3ðθ1 − θ2 − 2ðn − 1ÞπÞ ¼ FðnÞ

B2E3ðθ2 − θ1 þ 2ðn − 1ÞπÞ ¼ 3ðt − lÞðlþ tÞ
128π2t2ϵ4

: ðA8Þ

The contribution of the other propagators is much smaller than those in (A7) and (A8). They satisfy the following identities:

Fð1Þ
EiEi

ðθ1 − θ2Þ ¼ FðnÞ
EiEi

ðθ1 − θ2Þ þ FðnÞ
EiEi

ðθ1 − θ2 þ 2πÞ;
Fð1Þ
BiBi

ðθ1 − θ2Þ ¼ FðnÞ
BiBi

ðθ1 − θ2Þ þ FðnÞ
BiBi

ðθ1 − θ2 þ 2πÞ;
FðnÞ
E2B3

ðθ1 − θ2Þ þ FðnÞ
E2B3

ðθ1 − θ2 þ 2πÞ ¼ 0;

FðnÞ
B2E3

ðθ1 − θ2Þ þ FðnÞ
B2E3

ðθ1 − θ2 þ 2πÞ ¼ 0; ðA9Þ

b. The commutation relation

The electric and magnetic operators Eið−t;−l;xÞ, Bið−t;−l;xÞ are decomposed into the left and right moving modes as
follows:

Eið−t;−l;xÞ ¼ EL†
i ð−t;−l;xÞ þ ER†

i ð−t;−l;xÞ þ EL
i ð−t;−l;xÞ þ ER

i ð−t;−l;xÞ;
Bið−t;−l;xÞ ¼ BL†

i ð−t;−l;xÞ þ BR†
i ð−t;−l;xÞ þ BL

i ð−t;−l;xÞ þ BR
i ð−t;−l;xÞ; ðA10Þ

where the subsystem A is x1 ≥ 0. The ground states for the left and light moving modes are defined by
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EL;R
i ð−t;−l;xÞj0iL;R ¼ BL;R

i ð−t;−l;xÞj0iL;R ¼ 0;

j0i ¼ j0iL ⊗ j0iR: ðA11Þ

The algebra which quasiparticles obey can be given by

½EL
i ð−t;−l;xÞ; EL†

j ð−t;−l;xÞ� ¼ FðnÞ
EiEiðθ1 − θ2Þδij;

½ER
i ð−t;−l;xÞ; ER†

j ð−t;−l;xÞ� ¼ FðnÞ
EiEiðθ1 − θ2 þ 2πÞδij;

½BL
i ð−t;−l;xÞ; BL†

j ð−t;−l;xÞ� ¼ FðnÞ
BiBiðθ1 − θ2Þδij;

½BR
i ð−t;−l;xÞ; BR†

j ð−t;−l;xÞ� ¼ FðnÞ
BiBiðθ1 − θ2 þ 2πÞδij;

½EL
2 ð−t;−l;xÞ; BL†

3 ð−t;−l;xÞ� ¼ FðnÞ
E2B3ðθ1 − θ2Þ;

½ER
2 ð−t;−l;xÞ; BR†

3 ð−t;−l;xÞ� ¼ FðnÞ
E2B3ðθ1 − θ2 þ 2πÞ;

½EL
3 ð−t;−l;xÞ; BL†

2 ð−t;−l;xÞ� ¼ FðnÞ
E3B2ðθ1 − θ2Þ;

½ER
3 ð−t;−l;xÞ; BR†

2 ð−t;−l;xÞ� ¼ FðnÞ
E3B2ðθ1 − θ2 þ 2πÞ;

ðA12Þ

3. 6 dimensional Maxwell theory

a. The propagators

The analytic continued Green’s functions on Σn are
defined by

hFijðθÞFlmðθ0Þi ¼ FðnÞ
FijFlm

ðθ − θ0Þ ðA13Þ

In the ϵ → 0 limit, their leading terms are as follows.
For the case of n ¼ 1 in t > 0,

Fð1Þ
F0iF0i

ðθ1 − θ2Þ ¼
1

16π3ϵ6
;

Fð1Þ
FijFij

ðθ1 − θ2Þ ¼
1

32π3ϵ6
ði; j ≠ 0Þ: ðA14Þ

For the case of n ≥ 2, if l > t > 0 they are the same as in
(A14). In t ≥ l, they are as follows, with i, j ¼ 2, 3, 4, 5
and i ≠ j:

FðnÞ
F01F01

ðθ1 − θ2Þ ¼
1

256π3
ðtþ lÞ3ð3l2 − 9ltþ 8t2Þ

t5ϵ6
;

FðnÞ
F01F01

ðθ1 − θ2 þ 2πÞ ¼ 1

256π3
ðt − lÞ3ð3l2 þ 9ltþ 8t2Þ

t5ϵ6
;

FðnÞ
F0iF0i

ðθ1 − θ2Þ ¼
1

1024π3
ðlþ tÞ2ð32t3 − 19lt2 þ 6l2t − 3l3Þ

t5ϵ6
;

FðnÞ
F0iF0i

ðθ1 − θ2 þ 2πÞ ¼ 1

1024π3
32t5 − 45lt4 þ 10l3t2 þ 3l5

t5ϵ6
;

FðnÞ
F1iF1i

ðθ1 − θ2Þ ¼
1

1024π3
16t5 þ 15lt4 þ 10l3t2 − 9l5

t5ϵ6
;

FðnÞ
F1iF1i

ðθ1 − θ2 þ 2πÞ ¼ 1

1024π3
16t5 − 15t4l − 10t2l3 þ 9l5

t5ϵ6
;

FðnÞ
FijFij

ðθ1 − θ2Þ ¼
1

512π3
ðtþ lÞ3ð3l2 − 9ltþ 8t2Þ

t5ϵ6
;

FðnÞ
FijFij

ðθ1 − θ2 þ 2πÞ ¼ 1

512π3
ðt − lÞ3ð8t2 þ 9ltþ 3l2Þ

t5ϵ6
;

FðnÞ
F0iF1i

ðθ1 − θ2Þ ¼ FðnÞ
F1iF0i

ðθ1 − θ2Þ ¼
15

1024π3
ðt2 − l2Þ2

t4ϵ6
;

FðnÞ
F0iF1i

ðθ1 − θ2 þ 2πÞ ¼ FðnÞ
F1iF0i

ðθ1 − θ2 þ 2πÞ ¼ −
15

1024π3
ðt2 − l2Þ2

t4ϵ6
: ðA15Þ

They have the property FðnÞ
IJ ðθÞ ¼ FðnÞ

IJ ð−θÞ, and due to the periodicity of n-sheeted Riemann surface, they all

satisfy FðnÞ
IJ ðθÞ ¼ FðnÞ

IJ ðθ � 2πnÞ.
They are related as,

FðnÞ
FijFij

ðθ1 − θ2Þ þ FðnÞ
FijFij

ðθ1 − θ2 þ 2πÞ ¼ Fð1Þ
FijFij

ðθ1 − θ2Þ;
FðnÞ
F0iF1i

ðθ1 − θ2Þ þ FðnÞ
F0iF1i

ðθ1 − θ2 þ 2πÞ ¼ 0; FðnÞ
F1iF0i

ðθ1 − θ2Þ þ FðnÞ
F1iF0i

ðθ1 − θ2 þ 2πÞ ¼ 0; ðA16Þ

where n ≥ 2, i, j ¼ 2, 3, 4, 5.
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b. The commutation relation

The operators Fijð−t;−l;xÞ are decomposed into left
and right moving modes as

Fijð−t;−l;xÞ ¼ FL†
ij ð−t;−l;xÞ þ FR†

ij ð−t;−l;xÞ
þ FL

ijð−t;−l;xÞ þ FR
ijð−t;−l;xÞ ðA17Þ

where the subsystem A is x1 ≥ 0. The ground state for left
and right moving modes are defined as

FL
ijð−t;−l;xÞj0iL ¼ FR

ijð−t;−l;xÞj0iR ¼ 0;

j0i ≔ j0iL ⊗ j0iR: ðA18Þ

The algebra which the quasiparticles obey are

½FL
ijð−t;−l;xÞ; FL†

lmð−t;−l;xÞ� ¼ FðnÞ
FijFlm

ðθ1 − θ2Þ;
½FR

ijð−t;−l;xÞ; FR†
lmð−t;−l;xÞ� ¼ FðnÞ

FijFlm
ðθ1 − θ2 þ 2πÞ;

ðA19Þ

where the ones not on the list (A15) are zero.
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