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in the presence of fixed fields

Gébor Zsolt Téth”

Institute for Particle and Nuclear Physics, Wigner RCP, MTA Lendiilet Holographic QFT Group,
Konkoly Thege Miklos it 29-33, 1121 Budapest, Hungary
(Received 2 November 2016; published 24 July 2017)

We extend the standard construction of conserved currents for matter fields in general relativity to
general gauge theories. In the original construction, the conserved current associated with a spacetime
symmetry generated by a Killing field #* is given by /=gT*"h,, where T*" is the energy-momentum tensor
of the matter. We show that if in a Lagrangian field theory that has gauge symmetry in the general
Noetherian sense some of the elementary fields are fixed and are invariant under a particular infinitesimal
gauge transformation, then there is a current 5* that is analogous to /=gT**h, and is conserved if the
nonfixed fields satisfy their Euler-Lagrange equations. The conservation of 53# can be seen as a
consequence of an identity that is a generalization of V,7# =0 and is a consequence of the gauge
symmetry of the Lagrangian. This identity holds in any configuration of the fixed fields if the nonfixed
fields satisfy their Euler-Lagrange equations. We also show that B* differs from the relevant canonical
Noether current by the sum of an identically conserved current and a term that vanishes if the nonfixed
fields are on shell. For an example, we discuss the case of general, possibly fermionic, matter fields
propagating in fixed gravitational and Yang-Mills background. We find that in this case the generalization
of V,T" =0 is the Lorentz law V,T* — F @l 7 ., = 0, which holds as a consequence of the diffeo-
morphism, local Lorentz and Yang-Mills gauge symmetry of the matter Lagrangian. For a second simple
example, we consider the case of general fields propagating in a background that consists of a gravitational

and a real scalar field.

DOI: 10.1103/PhysRevD.96.025018

I. INTRODUCTION

In general relativity, the most usual way to construct
conserved currents associated with spacetime symmetries
for matter fields is to contract the Einstein-Hilbert energy-
momentum tensor 7# with the Killing vector field i# that
generates the relevant symmetry. It is easy to verify that
the current j* = |/=gT""h, (where g denotes the determi-
nant of the metric) obtained in this way is conserved
(i.e. 0,j* = 0) as a consequence of the Killing equation
V,h,+V,h, =0 and of the divergencelessness of T**
(V,T" = 0). The latter property of 7#* is ensured if the
matter Lagrangian density transforms as a scalar density
under diffeomorphisms and the matter fields satisfy their
equations of motion (see e.g. Sec. E. 1 of Ref. [1]). The
metric does not need to satisfy its field equations; i.e. it can
be a fixed, external field. On the other hand, Noether’s first
theorem can also be used to construct a conserved current
associated with h#, if the matter fields admit a Lagrangian
description. This current generally differs from /=gT**h,,
and its construction is also apparently completely different.
Nevertheless, it can be shown that if the matter fields satisfy
their Euler-Lagrange (EL) equations, then the difference
between the two currents is an identically conserved
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current, i.e. a current of the form 8,;/”’, where Z* is
antisymmetric [2,3].

To some extent similarly, in electrodynamics, the electric
current is usually defined as the Euler-Lagrange derivative
of the Lagrangian function with respect to the vector
potential, i.e. as the source of the electromagnetic field,
but it can also be obtained as the Noether current corre-
sponding to global U(1) gauge transformations.

The primary aim of the present paper is to generalize
the construction described above to any gauge theory that
can be formulated in the framework applied in Noether’s
classic paper [4,5] on symmetries and conservation laws in
Lagrangian field theory. This is a very general framework
that allows one to study various special kinds of gauge
theories, for example diffeomorphism covariant theories
and Yang-Mills (YM) type gauge theories, on the same
footing.

Our main motivation, besides general interest in con-
servation laws in gauge theories, to look for a generaliza-
tion of the above construction is that recent developments
[6-9] appear to indicate that such a generalization is
possible and would be useful for better understanding
these developments, for answering certain open questions
and for possible further applications.

In Ref. [6], it was proposed that in the case when some
matter propagates in fixed electrically charged black hole
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background, its energy and angular momentum can be
obtained using the conserved currents
J = G+ WAT), (1.1)
where A, is the vector potential of the background
electromagnetic field, J* is the electric current, T# is
the Einstein-Hilbert energy-momentum tensor of the mat-
ter, and A* is the Killing field generating time translations
[10] or rotations. It is also assumed here that not only the
background electromagnetic field but also A, is invariant
under time translations or rotations. Equation (1.1) was
very useful in Ref. [6] because, together with a suitable
energy condition on 7+, it allowed the authors to derive
general results for charged black holes without more
detailed information on the nature of the matter. To justify
(1.1), it was shown in Ref. [6] that the conservation of (1.1)
can be derived from the generalized Lorentz law
v, " = F4J,, (1.2)
the Killing equation, the symmetry of 7, the invariance of
A, and the conservation of the electric current. In (1.2), F**
denotes the electromagnetic field. A justification of the
validity of (1.2) was also given in Ref. [6], although it is not
analogous to the derivation of V, 7#¥ = 0 mentioned in the
first paragraph, and it uses the Maxwell equation V, F** =0
for the background electromagnetic field. Nevertheless, a
derivation of (1.2) that is analogous to the derivation of
Vﬂ T* = 0 is possible; moreover, it can be extended to the
case of fixed gravitational + YM background [11].

In Ref. [12], we also found the current (1.1) for the
complex Klein-Gordon field by applying Noether’s first
theorem, and in Ref. [13], we found that in the case of the
Dirac field as a matter field the current (1.1) can be obtained
by adding a certain identically conserved current to the
Noether current, if the Dirac equation is satisfied. The only
information on the background metric (or tetrad) and vector
potential that was needed for these results was their
invariance under time translation or rotation.

An identity and a current similar to (1.2) and (1.1) also
appear in Refs. [7,8]. In these works, Eq. (1.2) takes a more
general form, since some of the currents associated with the
fixed covector fields are not conserved. Further comments
concerning the formulas appearing in Refs. [7,8] will be
made at the end of Sec. III A. A construction of currents in a
general setting that is partly similar to the one in the present
paper was given in Sec. II of Ref. [9]. This will be discussed
further at the end of Sec. I E.

We note that there is a well-known derivation of the
generalized Lorentz law in the case when electromagnetic
field and matter propagate, interacting with one another,
in a fixed gravitational background (see Sec. 22.4 of
Ref. [14]). In this derivation, one obtains the generalized
Lorentz law from the Maxwell equations and from the

PHYSICAL REVIEW D 96, 025018 (2017)

divergencelessness of the matter 4 electromagnetic total
energy-momentum tensor. The derivation can also be
extended to non-Abelian gauge theory in a straightforward
way. Nevertheless, in this paper, we are interested in the
more general situation when the electromagnetic (or YM)
field is also part of the background.

Regarding the results mentioned above, several ques-
tions can also be raised. Since in Ref. [11] fermionic matter
fields were not considered, one would like to derive (1.2)
also for the case when some matter fields are fermionic.
Equation (1.1) should also be extended to the case of
gravitational + YM background. One can ask what form
(1.1) will take if the vector potential is invariant under the
diffeomorphisms generated by A#* only up to YM gauge
transformation, since the latter is a more natural symmetry
requirement on the vector potential. The difference between
(1.1) and the Noether current that one obtains by Noether’s
first theorem should be investigated as well.

The generalization of the construction described in the
first paragraph that we present is closely related to
Noether’s theorems and is relatively easy to find once
one has thoroughly understood these theorems; therefore,
we review them briefly in a way that is suitable for the
purpose of this paper. This review is intended to be quite
general but mathematically elementary. For expositions of
Noether’s theorems in the literature and for related results,
see e.g. Refs. [2,15-43], and references therein. Many
references can be found in Ref. [5] as well.

As an application and illustration of the general con-
struction, we discuss first the example of matter fields
coupled to external gravitational and YM gauge fields
(allowing the electromagnetic field as a special case). The
type of the matter fields and the precise form of their
Lagrangian are left unspecified. For deriving the general-
ized Lorentz law and the related currents, only the
symmetry properties of the gravitational and YM gauge
fields and of the matter Lagrangian are needed, but in other
parts, for simplicity, we make some assumptions on the
nature of the matter fields and on the form of the matter
Lagrangian. We allow fermionic matter fields; therefore,
we use tetrad fields as elementary gravitational field
variables. We discuss the cases of the Dirac field and
the scalar field as matter field more explicitly, since these
are interesting special cases. The aim of this example is also
to answer the questions mentioned above. The second
example, which is included on account of its simplicity, is
the case of arbitrary fields propagating in the presence of
external scalar and gravitational fields.

The paper is organized as follows. Section II contains the
review of Noether’s theorems and the generalization of the
construction described in the first paragraph. The latter can
be found in Sec. II E, which is the central part of the paper.
In Sec. 111, the details of the first example introduced above
are given. In particular, the generalized Lorentz law and the
currents (1.1) are discussed in Sec. III A. The second
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example is described in Sec. IV. A summary is given in
Sec. V. Appendix A contains definitions and comments
related to the examples.

The signature of metric tensors is (+,—,—,—). The
brackets () and [] applied to indices are used to denote
symmetrization and antisymmetrization, and these opera-
tions are understood to include division by the number of
permutations. A coordinate based formalism is employed,
and the notions of fiber bundles and differential forms are
mostly avoided in order to keep the exposition as elemen-
tary as possible. The terms ‘“gauge theory” and ‘“gauge
symmetry” are used in the general sense described in
Sec. II C, and it is stated explicitly when a special kind of
gauge symmetry is meant. The coordinate independent YM
gauge transformations are called global.

II. NOETHER’S THEOREMS AND THE
CONSTRUCTION OF CONSERVED CURRENTS
IN THE PRESENCE OF FIXED FIELDS

In order to describe the situation when some of the fields
are fixed, i.e. do not necessarily satisfy their field equations,
we divide the complete set of elementary fields into two
sets. The fields in these sets are denoted as ®; and y;, where
i and j are general indices labeling the fields and their
components. Any of the two sets may be empty. Generally,
x; will be the fixed fields, but @;, which may be called
dynamical fields, are also not assumed to satisfy their field
equations unless explicitly stated. The physical role of ®;
and y;, i.e. whether they are matter or another type of fields,
is not restricted. In particular, the presence of a metric
tensor is not required. Commuting and anticommuting
fields are both allowed. For simplicity, the fields are
assumed to be real (self-conjugate) in this section. This
does not cause any loss of generality, since any complex
field is equivalent to two real fields. For derivatives with
respect to anticommuting variables, the following sign
convention is used: if € is an anticommuting variable
and E is an expression of the form FE,0FE,, then
g—g = (=1)"E|E,, where n =0 if E, is even and n =1
if £, is odd.

The Lagrangian density function L(x*,y; 0.,
Ol j v @y, 0,®;,0,@;, ...) is assumed to be an even
local function of ®@; and y;, but otherwise it is allowed to
depend on arbitrarily high derivatives. Further assumptions
on the Lagrangian are not made in this section, and it is
not specified what kind of physical system it describes.
A local function of some fields ¢;(x*) is defined in this
paper to be a function of the form f(x*, ¢;(x*), 0 ,¢;(x*),
0,,¢:(x*), ...), that depends on the fields and on finitely
many derivatives of them and may depend explicitly on the
coordinates x* as well [44]. Although the action integral
will not be used, it should be noted that the contribution to
it from the domain U on which x* are defined is f U dPxL,
where D denotes the dimension of the base manifold M on
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which the fields are defined. The integration measure used
here is the measure determined by the coordinate chart. It is
not necessary to specify the behavior of ®; and y; under
coordinate changes for the purpose of this section.

It is known that higher derivative theories generally have
various undesirable features, particularly instabilities and
unphysical degrees of freedom, but they have better
renormalizability properties than low derivative theories,
and the difficulties caused by the mentioned features may
be surmountable (see e.g. Ref. [45-53]). As far as sym-
metries are concerned, there is no major reason to restrict
the order of the derivatives that may appear in the
Lagrangian.

We distinguish three theorems of Noether, and within the
third theorem, we distinguish two parts. The first theorem,
which is the most well known, is not specific to gauge
theories. In the literature, the third theorem is often
included in the second one, but it seems useful to separate
them. In Noether’s paper [4,5], the statement of the second
theorem does not include the third theorem, but the third
theorem does not appear as a separate theorem either.

We do not follow rigorously the original formulation of
Noether’s theorems. In particular, we are interested only in
the consequences of symmetries and do not consider
reverse statements. For the latter, we refer the reader to
the literature, e.g. Ref. [15].

The content of the three theorems can be summarized
very briefly as follows. The first theorem states that if the
Lagrangian has a symmetry, then there exists a current J*
(the Noether current) that is conserved (i.e. 8},]” = 0)if the
fields satisfy their EL equations. The second theorem states
that if the Lagrangian has a gauge symmetry, then the EL
derivatives of the Lagrangian with respect to the fields
satisfy a differential identity, and thus the EL equations are
not independent. The third theorem states that if the
Lagrangian has a gauge symmetry, then the Noether
currents associated with these symmetries coincide with
certain identically conserved currents up to some terms that
vanish if all fields satisfy their EL equations.

In Sec. II B, we present the first theorem in a form that is
adapted to the situation when fixed fields are present. The
distinction between ®; and y; is irrelevant in the second and
third theorems, but we keep it for later use in the
construction in Sec. II E. The definition of gauge symmetry
in the general sense can be found in Sec. II C.

After Noether’s three theorems, we present the gener-
alization of the construction described in the first para-
graph of Sec. I. This generalized construction can also be
regarded as an extension of Noether’s theorems. The
construction described in Sec. I has three parts: the first
one is the construction of the energy-momentum tensor
and the derivation of its divergencelessness, the second
one is the construction of the current from the energy-
momentum tensor and from the Killing field and the
derivation of its conservation, and the third one is the

025018-3



GABOR ZSOLT TOTH

result that the current constructed in this way differs from
the Noether current associated with the Killing field in an
identically conserved current if the matter fields satisfy
their EL equations. Each part is generalized in Sec. I E.

In general relativity, the divergencelessness of the
energy-momentum tensor can also be seen as a conse-
quence of the Einstein equation if the metric is not fixed.
Similarly, in electrodynamics, the conservation of the
electric current can be seen as a consequence of the
Maxwell equation. These observations are also generalized
in Sec. II E.

In the next subsection, an auxiliary formula is described,
which is of central importance in the subsequent
derivations.

A. Partial integration formula

Let G be a quantity that can be written as

G = Gue* + G0, + GD,¢" + ..., (2.1)

where ¢” is a function with several components indexed
by a; the functions G%, G4, ... are completely symmetric
in the upper indices; and the sum on the right-hand side
contains only finitely many terms. By straightforward
application of the basic differentiation rule (uv) =
u'v + uv', one can show that

G =G+ 0,6, (2.2)
where
G,=G,—0,G4%+0,,G%— ... (2.3)
and
G = G%e® + (G¥0,e* — 0,G%'e”)
+ (Gzﬂﬂaﬂﬂea - a/IG;Maﬂea + aﬂ/)Gzﬂpea) +oe
(2.4)

The (n 4 1)th term of the sum on the right-hand side of
(2.3)is (=1)"9,,,, ., Ga""*"*". The nth group of terms on
the right-hand side of (2.4) is

VA Ay » VAR A a
Ga "0y 0, €0 — 0y, Ga "0y iy €

n—1
I

-1 a
+ a}”11—2&’1—1 a ! a/Ilj'2'~~j'rx—3€ e

_ Ay
+(_1)n 18/1]22..4& GMI 2 /1;;71611.

n-1 =&

Since the sum on the right-hand side of (2.1) is finite, the
sums in (2.3) and (2.4) are also finite. Moreover, if G,, G4,
GY, ... do not depend on €” (and on its derivatives), then if
all terms beyond the first n terms are zero on the right-hand
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side of (2.1), then G¥ does not depend on higher than
(n — 2)th derivatives of ¢*.

We call (2.2) the partial integration formula, since it
can be regarded as a generalization of the differentiation
rule (uv) =u'v+uv’ on which partial integration is
based. It is clear that adding an arbitrary conserved
current to G¥ preserves (2.2), but we always use the
definition (2.4).

B. First theorem

A one-parameter transformation of the fields can be
written after linearization in the parameter, denoted by s,
as

D, > D, + 560;, Xj =X+ sy (2.5)
s is assumed to be real number valued, and 5®; and Jy;
are assumed to have the same commutation character as
®; and y;, respectively. Generally, both 6®; and Jy; may
depend on ®; and y; and on their derivatives. Such a
transformation may be induced by a transformation in the
base manifold or in the target space of the fields, but may
be more general. Supersymmetry transformations, for
example, also fit in this framework. The associated first
order variation of L is defined as 6L =9E| _; = 6Lq +
oL, with

OL OL OL
L= 5P b G D e D -
oLo =50, %% T 0,0, 0% T @,y P T
(2.6)
OL OL OL
L. =5, 9 g5, 19 5 5.,
= a0, 0 80) i T 50, i T
(2.7)

Applying the partial integration formula (2.2) to (2.6)
with a = i, €* = 6®,;, and G — ﬁ gives

SLo = (%i(s@i + 0,/ (2.8)
where
oL oL oL OL
50, 00, 310,07 T O 58,00
= O % +e (2.9)
and
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oL OL OL
= s, < 8,60, — ayacpl)
® 8(8uq)1) a(a;wq)i) 8(8;41/(1)1')
oL oL oL
(T 9,60, -0, 9,60, + 0, 75<1>,.>+--- 2.10
<a<aﬂ,,ﬂ>i> i Oy ®r) 30,0, (2.10)

SL has the role of G,, and f, has the role of G*. 2L is the

Euler-Lagrange derivative of L with respect to <I),, and
the Euler-Lagrange equations for ®@; are g = 0. We call

Ji the Euler-Lagrange current correspondlng to @;, be-
cause it is the counterpart of the Euler-Lagrange derivative
in (2.8). We note that a closely related quantity is called a
symplectic potential form in Ref. [2]. Formulas similar to
(2.8), (2.9), and (2.10) can also be obtained for y; by
applying (2.2) to (2.7).

Let us consider now a specific transformation and
assume that y; are in a configuration that is invariant under
this transformation, i.e. 6y; = 0. If in addition

oLy = 0,K* (2.11)
holds with some K*, then this transformation is called a
symmetry transformation, and (2.8) implies that

oL
0Tl + 55 0% =0, (2.12)
where Ji, is defined as
T = i — K (2.13)

and is called Noether current. In particular, if ®; satisfy
their EL equations, then from (2.12), it follows that the
current Ji, is conserved: 9,Jy, = 0. These statements for Ji,
constitute the first theorem, extended to the situation when
some of the elementary fields are fixed but their configu-
ration is invariant under the symmetry that is considered.

Usually, 6@; are local functions of ®@;, K is also required
to be a local function of ®;, and (2.11) is understood to be
an identity for ®@;. In the rest of the paper, these properties
will be assumed.

Although (2.11) is required above to hold only for a
specific configuration of y;, in practice, one often has an
identity 6L = d,K* without any restriction on y; and with
K*, 6y j, 6®; that are local functions of both ®; and y;, and
then this identity reduces to (2.11) if ; is such that 5y; = 0.

It is clear that K* is not uniquely determined in (2.11);
therefore, the application of the above theorem involves
making a suitable choice. The simplest possibility, which is
suitable for many cases, is K¥ =0 (see Sec. III for
examples).

The local conservation law 8ﬂJ” = 0 can be rewritten
in integral form by applying Stokes’s theorem. Let U/ be a

|
D-dimensional domain within U. By using Stokes’s theo-

rem, one obtains
Ho_
/ nMJq, =0,
ou

where OU is the boundary of ¢/ and n,, is the normal vector
field of OU. n,, is normalized using the flat Euclidean metric
0y, determined by the coordinate system, i.e. 8“n,n, = 1.
By restricting this metric to 0l/, one gets a Riemannian
metric on dU, and the corresponding measure is the one
that is used for the integration over Ol/. By choosing U/ to
be a cylindrical domain U = [t;,1,] x Q, where Q is a
D — 1-dimensional domain, one obtains from (2.14) the
charge conservation law

/J%|x4112 _/J%|x”t1 :—/ nﬂ.lé, (215)
Q Q [t1.15]x0Q

where 0Q is the boundary of Q and n,
pointing normal vector of dQ. [, Jg|,0_, and [o Jg|0_,,

(2.14)

is the outward

are the charges in Q at x° = ¢, and x° = t,, respectively,
and f[t] B]xo0 " ,J'p is the charge that flows out of Q during

the x° interval [¢;,,]. The index of x* runs from zero
to D —1.

C. Second theorem

Let us consider a transformation of the fields specified by
0®; and Jy; of the form

5D; = 5@;p€” + 5V, 0, € + Bhy D, + -+ (2.16)
8Y; = O™ + 5)(’;0,8”6“ + )(Jaa,,,,e + - (2.17)

where € is a function that can have several components
indexed by a and may be commuting or anticommuting,
and there are finitely many terms in the sums on the right-
hand sides. It is assumed that 6®;,, 5@’,‘(1, 5@7:, s Y jas
'ia» 'jags -~ are local functions of ®; and y; and do not
depend on € nor on its derivatives. Transformations of this
form are called (infinitesimal) gauge transformations, para-
metrized by €. We do not assume any group property of
these transformations.

The partial integration formula (2.2) can be applied to

2L -5®; and to 2& 5)(J, giving
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oL
Fq)lﬁq)l = B(I)ae + (9”3/&) (218)
oL

8y = B,e" + 0,8y, (2.19)

3;

J

where

SL SL SL
By = —6®, — 9, | — 50" TE 5P — ...
P 5(1),4‘s ia = Oy (5@5 '“) +8””<5q>i5 '“)

(2.20)
oL oL oL
= S e 8D, 6% — 0, | —— 5D ) e
B 5, o €F + |:5<Di " 0,€ Gy(éq)i m)e]
4+ (2.21)

and similar formulas can also be written for y ;. Using (2.18)
and (2.19), one gets

oL oL . .
= Bou€” + 0,Bg + 0, jip + Bo€” + 0,85 + 0,.J.

(2.22)

Let us assume that the transformation specified by (2.16)
and (2.17) is a symmetry for arbitrary ¢* functions (and
without any assumption on y;), i.e.

SL = 8,k (2.23)

with some K*. K* is also assumed to be a homogeneous
linear local function of €%, i.e.

K" = Khe® + K" 0,6 + K¥'0,,6" + -, (2.24)
where K*, K. K", ... do not depend on € nor on its
derivatives and K% are symmetric in the upper indices
vA... following u. K%, K4, K" ... are also local functions

of ®; and y;. In this case, L is said to have a gauge
symmetry, and it follows from (2.22) that

(Boy + Byo)e* = —0,(By + By +J¥),  (2.25)

where
JH = jo + Jy — KV, (2.26)
If €* and sufficiently many of its derivatives vanish on

the boundary of an open domain Q, then by applying
Stokes’s theorem, we get

PHYSICAL REVIEW D 96, 025018 (2017)

/ P x(Boy + B)e = 0 (2.27)
Q

from (2.25). Since (2.23) holds for arbitrary €%, Eq. (2.27)
implies that

Bog + Bya = 0. (2.28)

This result is the second theorem. From (2.20), it can be
seen that (2.28) is a differential identity for the EL
derivatives of L with respect to ®; and y;.

Equation (2.28) applied to the Einstein-Hilbert
Lagrangian with the diffeomorphism symmetry as the gauge
symmetry gives V,G* =0, where G* is the Einstein
tensor. This is the twice contracted Bianchi identity; there-
fore, Eq. (2.28) can be called the generalized Bianchi
identity. By, and B,, will be called Bianchi expressions.

Since By, and By are the counterparts of Bg,, and B,, in
(2.18) and (2.19), we call them Bianchi currents. Note that
B, = 0 if ®; satisfy their EL equations, and obviously the
same is true for y; and Bj. Moreover, By, = 0 also if the
coefficients of all derivatives of ¢* on the right-hand side of
(2.16) are zero, and the same can be said of B.

If L has a gauge symmetry, then the corresponding
variation 6L of L is also a homogeneous linear local
function of ¢* with some coefficients 5L, 6L%, 5L, . ...,
and (2.23) holds for arbitrary ¢*; therefore, the coefficients
of €%, 0,€%, 0,,€%, ... on the two sides of (2.23) have to be
equal, i.e.

L, = 0,Kh (2.29)

LY = K+ 9,KY! (2.30)
SLE = KiY + 0,K4"

(2.31)

These equations are known as Klein-Noether identities.

D. Third theorem

In this section, we continue to consider Lagrangian
systems with gauge symmetry. The current J# introduced
in (2.26) is the standard Noether current corresponding to
the symmetry transformation (2.16), (2.17) in the absence
of any fixed field; thus, it is conserved if both @; and y;
satisfy their EL equations. On the other hand, from (2.25)
and (2.28), it follows that the current

I" = By + By + J* (2.32)
is also conserved, regardless of the EL equations.
Nevertheless, if ®; and y; satisfy their EL equations, then
I# = J*. Thus, by adding Bj, + By to J¥, we get a current
which is conserved regardless of the EL equations but
which nevertheless coincides with J* if the EL equations of
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all fields are satisfied. This is the first part of the third
theorem.

The second part is the following: since /# is a homo-
geneous linear local function of ¢* and is conserved for
arbitrary €“, it can be written as

=

N =

3
4

with the nth group of terms on the right-hand side being

& n+1-—i
Z(_1>i+l +1 8ﬂn—i+1---ln—1 (Iﬁ’y/l].”/ln_l - IZM]”.A”_I)
=1 n
X 0;2,..0, €% (2.35)

The I“** appearing in these formulas are the coefficients
in the expansion

1P =T 4+ 10,6 + I°9,,¢" + . (2.36)

1"“* are symmetric in the upper indices vA... following y.
The two conditions mentioned above (2.33) are sufficient
for (2.33) and (2.34); i.e. no more details on the properties
of I* are needed. This second part of the third theorem is
proved, for example, in Refs. [16,54].

It should be noted that, although from the Poincaré
lemma it follows that in any simply connected domain there
exists some antisymmetric X** for which (2.33) holds, the
statement that the X given by (2.34) satisfies (2.33) is
stronger. Equation (2.34) implies that 2** is also a local
function of the fields, and therefore by applying Stokes’s
theorem, the total charge corresponding to /# in a D — 1-
dimensional domain Q can be expressed as an integral of a
local expression of the fields over the boundary of Q.

Currents of the form 0,2#, where ¥ is antisymmetric,
are identically conserved because of the antisymmetry of
2. Moreover, from Stokes’s theorem, it follows that if >/
falls off sufficiently fast at infinity then the total charge
associated with the current 9,2 is zero. Due to these facts,
the currents that have the form 9, X/ are often called trivial.
Nevertheless, the 2** introduced above does not always fall
off very fast at infinity, and the associated charge can be
different from zero. For further discussion of the definition
of total charges in gauge theories, especially in general
relativity, the reader is referred to the literature, e.g.,
Refs. [1-3,14,18,22-24,26,32,36,40-42].

2 1
+ [_ ( Iﬁéﬂ/)ﬂ _ I;ﬂﬂi) apl e — Z 9, ( IZZ//»1 _ IZM/M) 8p €+ Z 8/),1 ( I/(;vpfl _ IZAW) e"’} 4+
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" =0,3m, (2.33)

where 2, which is called the superpotential, is antisym-
metric, and is given by the formula

v v, a 2 v, Y, a 1 Y Y a
(I = I¥)e + [g(lﬁf’— )0, ~ 30, (16" - ,;”’)e]

(2.34)

[

E. Conserved currents in gauge theories
in the presence of fixed fields

In this section, the generalization of the construction
mentioned at the beginning of Sec. I is described. It is
assumed that L has a gauge symmetry in the general sense
described in Sec. II C. This means that L is assumed to have
a gauge symmetry with respect to the complete set of fields,
but with respect to the actual dynamical fields, it does not
necessarily have any gauge symmetry.

If @; satisfy their EL equations, then Bg,, = 0, as can be
seen from (2.20), and thus from the generalized Bianchi
identity (2.28), it follows that

(2.37)

without any assumption on y;. This is the first part of the
construction. We call (2.37) a partial Bianchi identity.
Next, let us consider the situation in which oy = 0 for
some particular €%, i.e. the configuration of y; is invariant
with respect to a particular infinitesimal gauge transforma-
tion. In this case, it follows from (2.19) that
0 = B,,e" +0,8B,. (2.38)
Moreover, if ®; satisfy their EL equations, then B,,, = 0, as
we have seen; thus, Eq. (2.38) reduces to
0=20,8,. (2.39)
This means that, in addition to the standard Noether current
Ji, there is another conserved current, BBy. This is the
second part of the construction.
If 6y; = 0, then j; = 0, and thus J* = Ji,. From (2.32)
and (2.33), it follows then that
=By =Jy + By — 1" = Jiy + By — 0,24 (2.40)
therefore, the difference of —B} and J%, is the sum of the

terms BY, and —0, X+, the first of which vanishes when ®,
satisfy their EL equations and the second of which is the
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divergence of an antisymmetric matrix. This is the third part
of the construction.

Equation (2.40) shows that, although J% and B, are
defined completely differently, they are equivalent in the
usual sense of the equivalence of conserved currents. It is
also worth mentioning that J%, depends on the choice of K*,
whereas Bl does not.

Until now, it has been assumed that L is the total
Lagrangian of the system under consideration, but it is
clear that if L takes the form L = L, + L,, where L, does
not depend on ®; and their derivatives and L, has gauge
symmetry in itself, then the above construction can also be
applied to L,. For example, in the standard case in general
relativity, one constructs /=g7**h, from the matter
Lagrangian rather than from the total Lagrangian, and
the same will be done in the examples in Secs. III and IV
as well.

If L, has a gauge symmetry in itself and y; satisfy their
EL equations % + % = 0, then the generalized Bianchi
identity for L, together with the EL equations of y; imply
an equation that formally coincides with the partial Bianchi
identity (2.37) obtained from L,. In order to see this, one
should consider that the expression that appears on the left-
hand side of the generalized Bianchi identity is given in the
present case by the formula (2.20) for Bianchi expressions,

with L - L, and ® — y. In this expression, %
7

replaced by — % as a consequence of the EL equations of
7

can be

X j» and the resulting expression is just —1 times the one that
appears in (2.37); thus, indeed (2.37) is obtained. In this
argument, it is not necessary to use any symmetry property
of L,, and ®; do not have to satisfy their EL equations.
The example in Sec. III shows that the observations that the
Einstein equation implies the divergencelessness of the
energy-momentum tensor and the Maxwell equation
implies the conservation of the electric current are special
cases of the result described in this paragraph.

We note that the second part of the construction is not
used in the derivation of (2.40), and (2.40) also implies the
conservation of ;. On the other hand, it is the derivation
given in the second part that is the generalization of the
usual derivation of the conservation of /=gT*“h, in
general relativity.

The results in Sec. II of Ref. [9] are similar to (2.40), but
they are less explicit and are restricted to the special case
when the particular infinitesimal gauge transformation
under which y; are invariant is rigid, i.e. is such that ”
is a constant function. In principle, it is not a severe
restriction to consider only rigid transformations, since a
nonrigid gauge transformation can be transformed into a
rigid one by suitable reparametrization. For example, let us
choose n different functions €, k =1,...,n, so that €
corresponds to the particular transformation under which
dy; = 0, and introduce the new parameter functions & via
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€* = &ke?. In terms of &, the transformation specified by
€* = €f is rigid, since it corresponds to 51 =1, <§k =0,
k =2,...,n. Nevertheless, one can deal with nonrigid
transformations directly, as we have seen in this section.

III. MATTER FIELDS IN THE PRESENCE
OF FIXED GRAVITATIONAL AND
YANG-MILLS GAUGE FIELDS

In this section, the case of matter fields in the presence of
gravitational and YM gauge fields is discussed. Since
fermionic fields are also considered, the basic gravitational
field variable is taken to be an orthonormal tetrad field
Vﬁ . The metric can be expressed in terms of V,’Z as g, =

VZVﬁgﬁl—,, where g, = diag(1,—1,—1,—1). Here and in
the following, an overbar is used to distinguish internal
Lorentz vector indices. Such indices can be raised and
lowered by g;; and its inverse, and V), and its inverse can be
used to turn spacetime vector indices into internal Lorentz
vector indices and vice versa. For a detailed introduction to
the tetrad formalism and its use for including half-integer
spin fields in general relativity, see, e.g., Ref. [55]. A
different formalism is described, e.g., in Ref. [56].

The Lie algebra of the global YM gauge group is taken to
be a direct sum of compact simple and u(1) algebras. It
would be straightforward to consider several YM gauge
groups with distinct coupling constants, but for simplicity,
only one is taken. The structure constants of the Lie algebra
of the global YM gauge group are denoted by f,,¢. The
basis of the Lie algebra is chosen so that §%° is invariant
under the adjoint action; therefore, there is no significant
difference between upper and lower Lie algebra indices.
Nevertheless, upper and lower indices will be distin-
guished, and 5%° will be used to raise and lower them.
fe¢ is completely antisymmetric and real. The YM field
strength is defined as F&, = 0,A¢ — 0,A% + kf*, ALAS,
where « is the YM coupling constant and Ay is the YM
vector potential.

The Lagrangian density function L of the matter fields is
assumed to be an even real local function of the tetrad field,
the YM vector potential, and the matter fields, and it is
assumed to have diffeomorphism, local Lorentz, and YM
gauge symmetry in the sense described in Sec. II C. The
precise form of L and of the Lagrangian of the gravitational
and YM gauge fields does not need to be specified. For
fermionic fields, Lorentz transformations mean SL(2,C)
transformations.

The application of the first two parts of the construction
described in Sec. IIE is discussed in Sec. III A, and the
third part is discussed in Sec. III B. The matter fields will
take the role of ®;, whereas the tetrad and YM gauge fields
together will take the role of y;. As was mentioned in
Sec. IIE, the construction will be applied to the matter
Lagrangian described above, rather than to the total
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Lagrangian. The total gauge symmetry group that will be
considered is the group generated by the symmetries
mentioned above.

A. Bianchi currents and partial Bianchi identities

For the application of the first two parts of the con-
struction described in Sec. I E, it is necessary to know the
transformation properties of the tetrad and of the YM gauge
fields. The K* quantities in the symmetry condition (2.23)
and the transformation properties of the matter fields are
not needed.

About the Bianchi currents, the following general
preliminary remarks can be made: since the first order
variations of each field that we consider depend only on €*
and d,¢e* and not on higher derivatives, the corresponding
Bianchi currents do not depend on the derivatives of e* at
all. Specifically, the first term on the right-hand side of
(2.21) gives the Bianchi currents. Furthermore, if the first
order variation of a field does not depend on 8”6“, then the
corresponding Bianchi current is zero.

The first order variation of the tetrad and the YM vector
potential under a YM gauge transformation parametrized
by € which takes the role of ¢* and has values in the
coadjoint representation of the global gauge group, is

(3.1)
(3.2)

sVE=0
5AG = D,

D,, denotes the covariant differential operator for the whole
gauge group—for more detail on its definition, see
Appendix A. In (3.2), D,e* = 0,° + kf“, Abe
In the case of local Lorentz transformations, the role of
€“ is taken by @”?, which is antisymmetric. The first order
variation of the tetrad and the YM vector potential is
SV =

~w'?(Ly;) PV (3.3)

A% = 0. (3.4)

The (L;;).F gM(Sp 9p5%; appearing in (3.3) are the
generators of the Lorentz group in the Minkowski
representation.

In the case of diffeomorphisms, the role of ¢* is taken
by the vector fields A#*, which generate diffeomorphisms.
The first order variation of the tetrad and the YM vector
potential is

8V = —h*0,Vj — 0,h*V} (3.5)
SAY = — 10, A% — O, hYAL. (3.6)
Equation (3.5) implies that 8g,, = —h*9,9,, — 9,,0,h* —
Gu0,h* = =V, h,—V,h,. Here and in subsequent
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formulas, Vﬂ denotes the usual Levi-Civita covariant
differential operator associated with the metric g,,. V,
acts only on the spacetime vector and covector indices.
Equations (3.5) and (3.6) can also be written as
8V = —h*V, Vi, =V, i*V}, A% = ="V, A% =V, h*A¢L.

Using these transformation properties, one finds that in
the case of the YM gauge symmetry the partial Bianchi
identity (2.37) takes the form

Byo = /=9D,Ja =0, (3.7)
where J% is defined as
oL
—gJh = — 3.8
V=9J 5AT (3.8)

and g denotes the determinant of the metric. By, is
obviously zero in this case. We note that (3.7) was also
obtained, e.g., in Ref. [11]. Asis well known, Eq. (3.7) also
follows from the YM equation, if the YM field is not fixed.
The Bianchi currents 5} and B}, corresponding to the YM
gauge field and to the tetrad, are found to be

By = —/=ge* T4, B, =0; (3.9)
thus, B, = B} + B}, is
B, = —\/=ge* T4. (3.10)

B} is conserved if the first order variation of A¢ corre-
sponding to € is zero, i.e. if D,e“ = 0, and the matter fields
satisfy their EL equations. It is easy to see that this is a
consequence of the partial Bianchi identity (3.7),

9,Bs = —/=gV,(eT4) = —/=g(D,e" T + ¢*D, T4);
thus in virtue of (3.7), 9,8, = —\/=gD,€"J4, and this is
zero if D,e“ = 0. This derivation is a specialization of the
general derivation of (2.39) in Sec. Il E. For flat spacetime
and in a slightly different context, it can also be found
in Ref. [57].

In the case of the local Lorentz symmetry, the partial
Bianchi identity (2.37) takes the form

(3.11)

where T is the antisymmetric part in the decomposition

oL

V;lpé—vgz \/—g(—T;“—)-l-—ﬂ—zﬁ) (3.12)

of —= \/_ Vi 5v/’ into symmetric and antisymmetric parts. The

Bianchi currents B), and B, are obviously zero for local
Lorentz symmetry; thus, also B, = 0.

It is well known that (3.11) holds if all fields except the
tetrad satisfy their EL equations [55], but as we have seen,
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due to A7 = 0, Eq. (3.11) holds even when the YM vector
potential is also fixed. It is clear that (3.11) holds generally
if the fixed fields, with the exception of the tetrad, are scalar
under local Lorentz transformations.

For the diffeomorphism symmetry, the Bianchi expres-
sions By, and By, are

By, = =g(-V,T%, + V,T", + T*V,,V, Vi) (3.13)

By, = ,/—g(—j‘;FﬁM —DijAﬁ). (3.14)
The partial Bianchi identity (2.37) is By, + By, =0,
which can nevertheless be simplified to the form

B, = \/—9(-V,T%, = J4F},) =0 (3.15)
by using (3.7) and (3.11). 7%, defined in (3.12), is the
Einstein-Hilbert energy-momentum tensor.
The Bianchi currents B}, and B are
By, = /=g(T*, - T* )", By = \/=gh*ALT,.
(3.16)

If the matter fields satisfy their EL equations, then B, =
B}, + B can be simplified to the form
Bt = \/=g(T+,h* + h*ALT%) (3.17)
by using (3.11). B* is conserved if the matter fields satisfy
their EL equations, /* is a Killing vector field, and Ay is
also invariant under the diffeomorphisms generated by A*.
It should be noted that the invariance of the tetrad field is
not necessary for the conservation of B#; the invariance of
the metric (and of the vector potential) is sufficient. The
reason for this is explained in the paragraph below (3.19).
The conservation of 3# can again be seen as a conse-
quence of (3.15) and of the symmetry properties of the
metric and the vector potential. Equation (3.7) is also
needed, because it was also used to bring B, to the form
(3.15). The first step of the derivation is to take the
divergence of B': 9,B' = ,/=g¢(V, TV ,h* +T',V, h" +
D, JuALR + TaD,ALh + TeAINV,RY). If R is  a
Killing vector field, then 7#,V,h* = 0. In virtue of the
partial Bianchi identity (3.7), also D,J4A¢h* =0.
According to (3.15), V,T#,h* can be replaced by
-JhF h”. Thus, the expression for J,B* can be written
as /=g(=TaFi,h" + TuD, AR + T4ALV hY). Using
the equation r*V, A7 4V h*Aj =0, which expresses
the invariance of the vector potential, 7' ZAZ‘jVMh” can be
replaced by — 74V, A4h"; thus, 0,B" = \/=g(=TaFi,h* +
TaD, ALK — TaV,Agh¥). This is clearly zero, since
Fy,, = D,Aj -V, Aj.
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More generally, it is interesting to consider the situation
when #* is a Killing vector field but the vector potential is
invariant under the generated diffeomorphisms only up to a
YM gauge transformation (see, e.g., Ref. [58] regarding
such invariance conditions). This means that there exists a
gauge transformation parameter ¢ so that the vector
potential is invariant under the joint infinitesimal diffeo-
morphism and YM gauge transformation corresponding to
(h#,e*):

0Ay = —h"0,A] — 0,h*Aj, + D,e* = 0. (3.18)
The corresponding Bianchi current
Bt = \/=g[T+ h* + (h*A% — ") T4] (3.19)

is the combination of (3.10) and (3.17). The conservation of
(3.19) can be derived in a similar way, using (3.18), as the
conservation of (3.10) and (3.17). In this derivation, the
equivalent form O6A] = —h*V,Aj —V W'AS + D,e* =0
of (3.18) is useful.

In principle, the cases when the tetrad field is invariant
under the diffeomorphisms generated by ## and when it is
invariant only up to local Lorentz transformations are also
different, but since the Bianchi current corresponding to
local Lorentz transformations is zero, the Bianchi currents
(3.17) or (3.19) are the same in both cases. This is not true
for the Noether currents; see Secs. III B3 and III B 5.

In the case when the YM gauge field is the electromag-
netic field, the Bianchi current (3.17) is precisely the
current (1.1) proposed in Ref. [6], and the partial
Bianchi identity (3.15) is the Lorentz law (1.2). It should
be noted that in the (charged black hole) configurations
considered in Ref. [6] the background electromagnetic field
satisfies the Maxwell equation V,F** = 0, and this prop-
erty was used in Ref. [6] in the derivation of the Lorentz
law, but in the present derivation, this is not needed.

Making a small digression, we mention that if the YM
symmetry of the Lagrangian is not required and Ay are
merely some fixed covector fields, then D, 7% = 0 does not
necessarily hold, and from (3.13), (3.14), and (3.11), one
obtains the partial Bianchi identity
Bﬂ = \/_—g(_vuTyﬂ - le;Fgﬂ - DVJZAZ) =0, (320)
where D, and Fj, are defined in the same way as in
Abelian gauge theory. This is the identity that appears, e.g.,
in Refs. [7,8]. The formula (3.17) for the Bianchi current
for a diffeomorphism symmetry of the metric and Aj
remains unchanged.

B. Noether currents and superpotentials

In this section, we discuss the Noether currents and the
superpotentials for the diffeomorphism, local Lorentz, and
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YM gauge symmetries, concentrating on the third part of
the construction in Sec. I E.

For simplicity, we assume that the Lagrangian density of
the matter fields takes the form

L= \/:_gl:(VZ’WD'bak’l/_/DﬁakvD,ul//i/i)ak’DylZ/Dpak)’ (3.21)
where ;7 is a complex matter field and ;"% is its
(generalized) Dirac conjugate. We take only one matter
field, but it is completely straightforward to include more of
them. The above form of L implies that the matter field is
coupled minimally to the gravitational and YM fields and
that L does not depend on higher than first derivatives of
the matter field. Matter fields can be real as well; in this
case, the Dirac conjugate field is not needed. y;”,;, has n
covector indices and m vector indices, denoted collectively
as U and p, i.e. U =vv;...v, and p = pi1py...Pp-

Under the global YM gauge group, ;. trans-
forms according to a not necessarily irreducible finite-
dimensional unitary representation R; the corresponding
index is denoted by k. The basis in this representation is
chosen to be orthogonal and normalized to 1. The gen-
erators of the global YM Lie algebra in the representation
R are denoted, after they are multiplied by i, by (7,),"
These matrices satisfy the commutation relations [z, #,] =
if ., t. of the Lie algebra of the global gauge group and are
self-adjoint (i.e. 1= ty)-

Under Lorentz transformations, ,;”, transforms
according to a not necessarily irreducible finite-
dimensional real representation; the corresponding index
is denoted by a. A real representation is a direct sum of the
irreducible real representations (%‘,%) @ (%,%‘), L #1y, 1,
I, €N, and (%%) [ € N, where (%‘%) [, I, € N, denote
the finite-dimensional irreducible representations of the
Lorentz group. The simplest examples of these irreducible
real representations are the Dirac spinor representation
(3,0) @ (0,3) and the Minkowski representation (5,3). A

b

representation (%,%) is fermionic if /, 4/, is odd and

bosonic if /; + I, is even. (3,0) and (0,1) are the Weyl
spinor representations. y;”,, can be taken to be number
valued, but if it transforms according to a fermionic
representation, then it is also reasonable to take it to be

PHY ok — oL _
r 8Dﬂl//ipak
a1 oL

g NG

PHYSICAL REVIEW D 96, 025018 (2017)

anticommuting. The formulas written in this section are
valid for both options.
The generalized Dirac conjugation is defined as i,/

P =yl e (3.22)

where * denotes complex conjugation [59] and €? is a
nondegenerate matrix with the properties e¢?* = ¢/ and
(Liz)s™e® + (Lzp)’e®® = 0. The latter property is
needed for the Lorentz covariance of the Dirac conjugation,
and the L;; appearing in it denote the generators of the
Lorentz group in the representation according to which
WP o transforms. An €* matrix with these properties can
be found for any finite-dimensional real representation of
the Lorentz group. If y;” ,; transforms as a Dirac spinor and
one uses, e.g., the Weyl basis for Dirac spinors, then €% can
be taken to be the Dirac gamma matrix y°. For the purpose
of the present paper, it is not necessary to specify %
explicitly for the other representations. In general, it would
be necessary to insert into (3.22) a matrix similar to e’ for
the YM indices as well, but with the special choice of basis
in R mentioned above, this matrix is the unit matrix.

The restrictions on the possible indices of the matter field
above are done in order to avoid writing large formulas.
Nevertheless, it is straightforward to extend the various
formulas to the cases when y transforms under Lorentz
transformations according to a nonreal representation (e.g.,
according to the Weyl spinor representations), or when y has
several indices corresponding to Lorentz transformations.

We also assume for simplicity that . is invariant under
YM gauge transformations and local Lorentz transforma-
tions and transforms as a scalar function under diffeo-
morphisms. In this case, the simplest and most natural
choice for K* in the symmetry condition (2.23) is K¥ =0
for YM gauge transformations and local Lorentz trans-
formations and K* = —h*L for diffeomorphisms.

It should be noted that in the literature the matter
fields are often regarded as sections of suitable vector
bundles over M. In a coordinate based formalism, it is
usually assumed that a trivialization is fixed for these
vector bundles over the coordinate patch U that is under
consideration.

It is useful to introduce the following notation:

Pﬂiﬁak - 7vv (323)

Ey/\jak —_ Y 7 (324)

(3.25)
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In (3.25), for example, P**-;* at the beginning of the
right-hand side means Pr1%2-vimiWisi-u 0k “and similar
notation is used subsequently.

Qo s antisymmetric in the last two indices. The reality
of L implies that P* /v,”" is the Dirac conjugate of P*” ak and
E”;% is the Dirac conjugate of E”;,; if w;”4 is an even
field and P+ ;,”k is —1 times the Dirac conjugate of P* ok
and E”;% is —1 times the Dirac conjugate of E” . if w;” o
is anticommuting.

1. Euler-Lagrange currents

For a preliminary step, one determines the currents ji,
/4 and ji, for arbitrary variations of the tetrad, the Yang-
Mills vector potential, and the matter field. One finds

=0, (3.28)
T = =9(P* 3% 8y o + imiﬁak&/_/iﬁak)v (3.29)

and
= J5+ i (3.30)

. I quer) | IR gl
G BRI AR T2
i=1 i=1
(3.31)

I = /=9 Wy, (3.32)
Vi = G = 2W (s Wy = V,;6V). The quantities A,
B v and Q! “in (3.31) and (3.32) come from the variation
of the connection.

With the above formulas at hand, one can proceed to
determine the Noether currents and the superpotentials for
the various gauge symmetries. For this, it is also necessary
to know the variation of the matter field under the gauge
transformations. The Noether currents J# are obtained as
JH = i+ jlu — K*, specializing 6A%, 6V%, and Sy, in
the above formulas for j, and i, according to the particular
transformation rules (3.1)-(3.6), (3.34), (3.36), and (3.38).
Jiy = 7., is ji, — K*. Using (3.34), (3.36), or (3.38) one can
calculate Bj,; then, I is obtained as I* = JV + B} +
B), + By, and finally 3 is given by (2.34). This general
procedure for determining /# and X** can be simplified
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(3.26)

(3.27)

further in the present example in the following way:
I* does not depend on higher than first derivatives
of €%, i.e. I* = €*Ily + 0,€°I}y; thus, according to (2.34),
SHY — e“lg‘ Y| This shows that I/ completely determines
3 and I*. In particular, from I = 0,2", we get Iy =
6,,1%’ Y and I = I([;’,' 4, Furthermore, since the Bianchi
currents and K* do not depend on the derivatives of €%,
I =Ja = jya+tjya ie.

I = € (i + Jira)- (3.33)
The notation J%, i/, /i« is understood in the same way as

1YY and the index « is used here in the same sense as
in Sec. II.

2. Yang-Mills gauge symmetry

The first order variation of the matter field under a YM
gauge transformation parametrized by € is

Sy ke = ke (1a) Wi - (3.34)
One finds that for YM gauge transformations the Noether
current is

JH = \/=ge’ Th. (3.35)
which is obtained by specializing dy; in (3.29) according
to (3.34). Since K = j, = j, = 0,J* = J}, = ji,. J#* does
not depend on the derivatives of ¢, I* and Z*¥ are zero, and
the Bianchi current B is identical to —J* even if the matter
field does not satisfy its EL equation. The Bianchi currents
B, and By, are given in (3.9), and B}, = 0.

3. Local Lorentz symmetry
The first order variation of the matter field under a local

Lorentz transformation is

Sy e = wﬁf/(l‘ﬁi)aﬁl//z?pﬁk- (3.36)
B{,’, is obviously zero, and in Sec. III A, we saw that
also By, = B} = 0. After some calculation, one finds that
J# = 0 as well; thus, /# = 0. On the other hand, J{,‘, is not
Zero,

T = 2/=gQ" ;. (3.37)
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A nonzero tetrad is not invariant under any Lorentz transformation; therefore, J{,‘, is generally not conserved.
Nevertheless, J{,’, has an important role when the tetrad and the vector potential are invariant under a combined

transformation (see Sec. III B 5).

4. Diffeomorphism symmetry

The first order variation of the matter field under a diffeomorphism generated by /#* is the Lie derivative

5‘/&7 ak = —h”a,ﬂl'iﬁ ak

— I 2 H oo H »
al’lh l///ll/z-“l/n ak al/zh Wl/lﬂl/3~~l/n ak al/nh WU1~~~VH—1M ak

+ aﬂhpll/]lv/ﬂpz.”pm[lk + 8}4hpzwbplﬂp3'”pmak + e + 8Mhpmwi,/pl”-pm—l/4ak.

(3.38)

It is straightforward to obtain explicit expressions for J# and Ji,, but we do not write them out here, since they are not

enlightening. The Bianchi currents are (3.16) and

Bl =

+ Eilﬂzﬂzn-
+ [E]).

o[ Fuvavs... akpl P _ FUViMvs... ok A P _
\Y4 g[ Erats P hl//ﬁyztg... ak E¥iHys 14 hl//I/]ﬂlzg... ak

ak 1,1 U ak 1,1
h Wbﬂﬂzpz ak + E piips... h WDPI,MPS ak 4.

(3.39)

where [E | represents the complex conjugate of the previous terms. I/ is found to be

1= =GV, R(QU = Q) - @i

1
+§ZVD[P/4/1 akwmu'
i=1
1 n
+EZVD[PA...M...pakW“.V.
i=1
1 m . " h
— U aky,. ...
2IZ:;VP[P" Py
1"
voA aky, ...
+§;VP[PMD ...... @ Yy ?
1<
52 VPP Sy
i=1
+ [Py,

where [INJ ] represents the complex conjugate of the Py
type terms in the previous six lines. X#* is obtained by
omitting the V operators in (3.40) and changing the p index
to v where necessary.

It is interesting to note that if the matter field is scalar

with respect to diffeomorphisms and local Lorentz trans-
formations, then B}, = 0 and I# = 0; therefore, the Bianchi
current BB coincides with —J# even if the matter field does
not satisfy its EL equations. /3, = 0 holds even if the matter
field is scalar only with respect to diffeomorphisms.

akhi]

ak hi]

(3.40)

5. Mixed symmetries

A general infinitesimal gauge transformation is a com-
bination of the special transformations discussed in the
previous subsections and is characterized by a triple
(h*,@"?,€"). For such transformations, 6V}, 6A{, and
Sy :” 4, the Bianchi currents, the Noether currents, I*,
and X* are just the sums of the relevant expressions for the
special transformations.

A common case when combined transformations are
important is when a spacetime has complete rotation
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symmetry [SO(3)]. Since it is not possible to choose a
tetrad that is invariant under the entire rotation group
(understood as a subgroup of the group of diffeomor-
phisms), some of the rotation symmetry transformations of
the tetrad necessarily involve local Lorentz transforma-
tions, and this has to be taken into account when one
calculates Noether currents.

6. Dirac field

An important example of a matter Lagrangian is the
Dirac Lagrangian

I . _
L =v=g|59*Wir,Doy = Diy,p) —mpy | (3.41)

where y denotes the Dirac field. As usual, the Dirac
spinor indices are omitted, and the indices related to
YM gauge group representations are also suppressed. y*
are defined as y* = V4y*, where y* are the standard Dirac
gamma matrices in Minkowski space (see, e.g., Ref. [60]).

The generators of the Lorentz group L? % in the Dirac
representation are LF? = 1677, where o7 = 1 [y#, y"].

I* [see (3.40)] takes a relatively simple form for the
Dirac field. Since the Dirac field does not have vector and
covector indices, only the Q terms are present in (3.40). The
quantities A** and B** introduced in (3.25) and (3.26)
are also absent. The quantity Q% introduced in (3.27)
is QO =¢ iyt ly + o tipty).  pro + oyt =
vr*y® — yoy*y*; therefore, Q#% can also be written as

1._
@t = (Y =y (3:42)
It is not difficult to see that Q¥ = 0 thus,
" = —/=gV,(Q*h)) (3.43)

in the case of the Dirac field. This result for /# was also
found in Ref. [16] in the special case of the electromagnetic
field as YM gauge field. In Ref. [16], the approach to
treating spinor fields was different from the one applied in
this paper.

For a diffeomorphism symmetry under which the
tetrad and the vector potential are invariant, the canonical
Noether current J}, is found to be —\/—_g%(l;‘/iy“vvy/—
V. piy*y)h* — h*L. For the Einstein-Hilbert energy-
momentum tensor, one finds the expression T =
Hwiy* D"y + iy D"y — D*piy*y — DYipiy"y), and Tl =
—Kyyrt.y.

In Ref. [13], it was found in an ad hoc manner that
subtracting /=gV,(Q**h,) from the canonical Noether
current —J4, gives (1.1), if the Dirac equation is satisfied.
Here, we have been able to derive this within a general
formalism. (Note that in Ref. [13] the YM gauge field was

PHYSICAL REVIEW D 96, 025018 (2017)

the electromagnetic field and a factor —1 was included in
the definition of the Noether currents.)

IV. MATTER FIELDS IN THE PRESENCE OF
FIXED GRAVITATIONAL AND SCALAR FIELDS

In this example, we discuss only the partial Bianchi
identity and the Bianchi current. The matter Lagrangian is
again assumed to have the standard form L = \/—_gf,, and
L is assumed to be a local function of the tetrad, the real
scalar field ¢, and the other fields. [ is also assumed to be
invariant under local Lorentz transformations and to trans-
form as a scalar function under diffeomorphisms. The total
gauge symmetry group in this example is thus the group
generated by diffeomorphisms and local Lorentz trans-
formations. The nature of the matter fields does not need to
be specified.

The first order variation of ¢ under a diffeomorphism is
o¢p = —h*0,¢. Using this property, one obtains B, =
—/—9J 40,4 for the Bianchi expression B, with
Ty = \/%_g%. By, is given by (3.13). Taking into consid-
eration T;; =0 [see (3.11)], the partial Bianchi identity
By, + By, =0 is thus

B, = \/=9(-V,T%, = J 40,¢) = 0.

The Bianchi current Bf;) is obviously zero; therefore, the
Bianchi current B, is V/—gT#, h"; i.e. it takes the same form
as in the absence of the fixed scalar field. B, is conserved if
h* is a Killing field, the first order variation of ¢ with
respect to the diffeomorphisms generated by /* is also zero,
and the matter fields satisfy their EL equations. The
conservation of B, can be derived from (4.1) and from
the symmetry properties of the metric and the scalar
field: V,(T#,h*) =V, T#,h* + T+, V h*, and here on the
right-hand side, the second term is zero in virtue of the
Killing equation, whereas the first term can be rewritten as
V,T' W =~T,h"0,¢ using (4.1). J4h*0,¢ is indeed
zero if 6¢p = 0.

It is interesting to note that if only the scalar field is
fixed, then the partial Bianchi identity becomes B, =
V=9(=T 40,¢) =0 (and now J, is obtained from the
total Lagrangian), as is also found in Ref. [31]. This identity
has the remarkable consequence that ¢ either is constant or
it also satisfies its EL equation.

(4.1)

V. CONCLUSION

In this paper, we extended the standard construction of
conserved currents associated with spacetime symmetries
for matter fields propagating in fixed curved spacetime to
general gauge theories, without any restriction on the order
of the derivatives of the fields that may appear in the
Lagrangian. In particular, we showed that if in a Lagrangian
field theory that has gauge symmetry in the general
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Noetherian sense some of the elementary fields are fixed
and are invariant under an infinitesimal gauge trans-
formation then there exists a current, which we called
the Bianchi current, that is analogous to the current
/—9T",h* used in general relativity and is conserved if
the nonfixed fields satisfy their Euler-Lagrange equations.
The conservation of this current can be seen as a
consequence of the symmetry of the fixed fields and of
an identity, which we called partial Bianchi identity, that is
analogous to V,T* =0 and follows from the gauge
symmetry of the Lagrangian. We also showed that the
Noether current associated with the symmetry of the fixed
fields obtained by applying Noether’s first theorem differs
from the Bianchi current by the sum of an identically
conserved current and a term that vanishes if the nonfixed
fields satisfy their Euler-Lagrange equations. We gave
explicit formulas for the Bianchi current and for the other
quantities appearing in these results, so they can be
calculated in any particular model. If the total
Lagrangian can be split in the same way as in general
relativity to a “matter” and a “gravitational” part, so that
the latter depends only on the fixed fields, then the
construction can be applied to the matter part separately,
as is done in general relativity in the standard case.

For an example, we discussed first the case of general
matter fields propagating in backgrounds consisting of a
gravitational and a Yang-Mills field. We found (3.17) as
the generalization of the current \/=gT* h*. The extension
of (3.17) to the case when the Yang-Mills part of the
background, i.e. the vector potential, is invariant under the
diffeomorphisms generated by /## only up to (Yang-Mills)
gauge transformations is (3.19). For the generalization of
the property V, 7# = 0, we found the Lorentz law (3.15).
This means that the Lorentz law is found to hold in
arbitrary gravitational and Yang-Mills background, if the
matter fields satisfy their Euler-Lagrange equations and
the matter Lagrangian has diffeomorphism, local Lorentz,
and Yang-Mills gauge symmetry. For local Lorentz trans-
formations and Yang-Mills gauge transformations, we
found the partial Bianchi identities (3.11) and (3.7).
The Bianchi current for a Yang-Mills gauge symmetry
of the fixed fields is (3.10). Under not very restrictive
assumptions on the type of the matter fields and on the
form of the matter Lagrangian, we investigated the differ-
ence between the Bianchi currents and the Noether
currents. In the case of Yang-Mills gauge symmetries,
these currents coincide even if the dynamical fields do not
satisfy their Euler-Lagrange equations. In the case of
diffeomorphism symmetries, the Bianchi currents are
generally not identical with the Noether currents, except
if the matter fields are scalar fields, as the known results
for zero fixed Yang-Mills field also indicate. We obtained
the formulas (3.39) and (3.40) for the characterization of
the difference between the Bianchi and Noether currents.
In the case of the Dirac field, Eq. (3.40) reduces to (3.43).

PHYSICAL REVIEW D 96, 025018 (2017)

If the requirement of the Yang-Mills symmetry of the
Lagrangian is omitted but fixed covector fields are never-
theless present, then the generalization of V, 7" =0
becomes (3.20) instead of (3.15), whereas the Bianchi
current for a diffeomorphism symmetry has the unchanged
form (3.17).

The second example was the case of fields propagating in
backgrounds consisting of a gravitational and a real scalar
field. For the generalization of V” T" =0, we found (4.1),
whereas the Bianchi current turned out to have the same
form, \/=gT*,h*, as in the absence of the fixed scalar field.

The construction presented in this paper can be applied
in a very wide variety of models, for example, in metric-
affine gravitation theory or in other extended models of
gravitation coupled with Yang-Mills type gauge fields and
matter fields. It would be interesting to see if the Bianchi
currents that can be constructed in these models can be used
to obtain results similar to those in Ref. [6]. p-form field
theory and other higher spin gauge theories are further
examples that could be investigated.

Although in the examples that we discussed one of
the fixed fields was the gravitational field, one can
also apply the construction in cases when the gravitational
field is not among the fixed fields. Examples of partial
Bianchi identities for such cases have already been given
in Ref. [31].
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APPENDIX: AUXILIARY FORMULAS AND
REMARKS

In Sec. III, the complete gauge group is the group
generated by the diffeomorphisms, the local Lorentz trans-
formations, and the YM gauge transformations. The
covariant derivative of the matter field y;” ,,—introduced
at the beginning of Sec. III B—for this gauge group is given
by the formula

D/Jl//Dﬁak = VMWDbak + Saﬁﬂvlizﬁﬂk - iKAZ(fa)klll/b’}ah

(A1)
where V, denotes the Levi-Civita covariant differentiation
corresponding to g,, and S/, =% (L") /S5, S84 =
—VV, Vi (L4, and (1,),! are the generators of the
Lorentz group and of the global YM gauge group,
respectively, in the representations according to which
the matter field transforms. The second term on the
right-hand side of (Al) describes the action of D, on
the Lorentz group related indices, and the third term gives
the action of D, on the YM indices. More details
concerning the second term can be found, e.g., in
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Ref. [55]. One also applies D, as an operator to other fields
that have the same types of indices as the matter field, even
if they transform somewhat differently, as the vector
potential A%, for example.

The local Lorentz transformations and the YM gauge
transformations form two normal subgroups in the com-
plete gauge group, but the group of diffeomorphisms is not
a normal subgroup either with respect to YM gauge
transformations or with respect to local Lorentz trans-
formations. In accordance with this situation, the Lie
derivatives of those fields that are not scalar with respect

PHYSICAL REVIEW D 96, 025018 (2017)

to local Lorentz transformations or YM gauge transforma-
tions generally transform in a noncovariant manner under
these transformations.

Since the subgroup of diffeomorphisms is not a normal
subgroup in the complete gauge group, from a purely group
theoretical point of view, the complete gauge group does
not have a unique diffeomorphism subgroup; rather, it has
many diffeomorphism subgroups conjugate to one another.
Nevertheless, in a coordinate based formalism, a definite
diffeomorphism subgroup becomes distinguished implic-
itly, which can be called the subgroup of diffeomorphisms.
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