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We extend the standard construction of conserved currents for matter fields in general relativity to
general gauge theories. In the original construction, the conserved current associated with a spacetime
symmetry generated by a Killing field hμ is given by

ffiffiffiffiffiffi−gp
Tμνhν, where Tμν is the energy-momentum tensor

of the matter. We show that if in a Lagrangian field theory that has gauge symmetry in the general
Noetherian sense some of the elementary fields are fixed and are invariant under a particular infinitesimal
gauge transformation, then there is a current Bμ that is analogous to

ffiffiffiffiffiffi−gp
Tμνhν and is conserved if the

nonfixed fields satisfy their Euler-Lagrange equations. The conservation of Bμ can be seen as a
consequence of an identity that is a generalization of ∇μTμν ¼ 0 and is a consequence of the gauge
symmetry of the Lagrangian. This identity holds in any configuration of the fixed fields if the nonfixed
fields satisfy their Euler-Lagrange equations. We also show that Bμ differs from the relevant canonical
Noether current by the sum of an identically conserved current and a term that vanishes if the nonfixed
fields are on shell. For an example, we discuss the case of general, possibly fermionic, matter fields
propagating in fixed gravitational and Yang-Mills background. We find that in this case the generalization
of ∇μTμν ¼ 0 is the Lorentz law ∇μTμν − FaνλJ aλ ¼ 0, which holds as a consequence of the diffeo-
morphism, local Lorentz and Yang-Mills gauge symmetry of the matter Lagrangian. For a second simple
example, we consider the case of general fields propagating in a background that consists of a gravitational
and a real scalar field.

DOI: 10.1103/PhysRevD.96.025018

I. INTRODUCTION

In general relativity, the most usual way to construct
conserved currents associated with spacetime symmetries
for matter fields is to contract the Einstein-Hilbert energy-
momentum tensor Tμν with the Killing vector field hμ that
generates the relevant symmetry. It is easy to verify that
the current jμ ¼ ffiffiffiffiffiffi−gp

Tμνhν (where g denotes the determi-
nant of the metric) obtained in this way is conserved
(i.e. ∂μjμ ¼ 0) as a consequence of the Killing equation
∇μhν þ∇νhμ ¼ 0 and of the divergencelessness of Tμν

(∇μTμν ¼ 0). The latter property of Tμν is ensured if the
matter Lagrangian density transforms as a scalar density
under diffeomorphisms and the matter fields satisfy their
equations of motion (see e.g. Sec. E. 1 of Ref. [1]). The
metric does not need to satisfy its field equations; i.e. it can
be a fixed, external field. On the other hand, Noether’s first
theorem can also be used to construct a conserved current
associated with hμ, if the matter fields admit a Lagrangian
description. This current generally differs from

ffiffiffiffiffiffi−gp
Tμνhν,

and its construction is also apparently completely different.
Nevertheless, it can be shown that if the matter fields satisfy
their Euler-Lagrange (EL) equations, then the difference
between the two currents is an identically conserved

current, i.e. a current of the form ∂μΣμν, where Σμν is
antisymmetric [2,3].
To some extent similarly, in electrodynamics, the electric

current is usually defined as the Euler-Lagrange derivative
of the Lagrangian function with respect to the vector
potential, i.e. as the source of the electromagnetic field,
but it can also be obtained as the Noether current corre-
sponding to global Uð1Þ gauge transformations.
The primary aim of the present paper is to generalize

the construction described above to any gauge theory that
can be formulated in the framework applied in Noether’s
classic paper [4,5] on symmetries and conservation laws in
Lagrangian field theory. This is a very general framework
that allows one to study various special kinds of gauge
theories, for example diffeomorphism covariant theories
and Yang-Mills (YM) type gauge theories, on the same
footing.
Our main motivation, besides general interest in con-

servation laws in gauge theories, to look for a generaliza-
tion of the above construction is that recent developments
[6–9] appear to indicate that such a generalization is
possible and would be useful for better understanding
these developments, for answering certain open questions
and for possible further applications.
In Ref. [6], it was proposed that in the case when some
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background, its energy and angular momentum can be
obtained using the conserved currents

jμ ¼ ffiffiffiffiffiffi
−g

p ðTμ
νhν þ hνAνJ μÞ; ð1:1Þ

where Aμ is the vector potential of the background
electromagnetic field, J μ is the electric current, Tμν is
the Einstein-Hilbert energy-momentum tensor of the mat-
ter, and hμ is the Killing field generating time translations
[10] or rotations. It is also assumed here that not only the
background electromagnetic field but also Aμ is invariant
under time translations or rotations. Equation (1.1) was
very useful in Ref. [6] because, together with a suitable
energy condition on Tμν, it allowed the authors to derive
general results for charged black holes without more
detailed information on the nature of the matter. To justify
(1.1), it was shown in Ref. [6] that the conservation of (1.1)
can be derived from the generalized Lorentz law

∇μTμν ¼ FνλJ λ; ð1:2Þ

the Killing equation, the symmetry of Tμν, the invariance of
Aμ, and the conservation of the electric current. In (1.2), Fμν

denotes the electromagnetic field. A justification of the
validity of (1.2) was also given in Ref. [6], although it is not
analogous to the derivation of ∇μTμν ¼ 0 mentioned in the
first paragraph, and it uses the Maxwell equation∇μFμν¼0

for the background electromagnetic field. Nevertheless, a
derivation of (1.2) that is analogous to the derivation of
∇μTμν ¼ 0 is possible; moreover, it can be extended to the
case of fixed gravitationalþ YM background [11].
In Ref. [12], we also found the current (1.1) for the

complex Klein-Gordon field by applying Noether’s first
theorem, and in Ref. [13], we found that in the case of the
Dirac field as a matter field the current (1.1) can be obtained
by adding a certain identically conserved current to the
Noether current, if the Dirac equation is satisfied. The only
information on the background metric (or tetrad) and vector
potential that was needed for these results was their
invariance under time translation or rotation.
An identity and a current similar to (1.2) and (1.1) also

appear in Refs. [7,8]. In these works, Eq. (1.2) takes a more
general form, since some of the currents associated with the
fixed covector fields are not conserved. Further comments
concerning the formulas appearing in Refs. [7,8] will be
made at the end of Sec. III A. A construction of currents in a
general setting that is partly similar to the one in the present
paper was given in Sec. II of Ref. [9]. This will be discussed
further at the end of Sec. II E.
We note that there is a well-known derivation of the

generalized Lorentz law in the case when electromagnetic
field and matter propagate, interacting with one another,
in a fixed gravitational background (see Sec. 22.4 of
Ref. [14]). In this derivation, one obtains the generalized
Lorentz law from the Maxwell equations and from the

divergencelessness of the matter þ electromagnetic total
energy-momentum tensor. The derivation can also be
extended to non-Abelian gauge theory in a straightforward
way. Nevertheless, in this paper, we are interested in the
more general situation when the electromagnetic (or YM)
field is also part of the background.
Regarding the results mentioned above, several ques-

tions can also be raised. Since in Ref. [11] fermionic matter
fields were not considered, one would like to derive (1.2)
also for the case when some matter fields are fermionic.
Equation (1.1) should also be extended to the case of
gravitationalþ YM background. One can ask what form
(1.1) will take if the vector potential is invariant under the
diffeomorphisms generated by hμ only up to YM gauge
transformation, since the latter is a more natural symmetry
requirement on the vector potential. The difference between
(1.1) and the Noether current that one obtains by Noether’s
first theorem should be investigated as well.
The generalization of the construction described in the

first paragraph that we present is closely related to
Noether’s theorems and is relatively easy to find once
one has thoroughly understood these theorems; therefore,
we review them briefly in a way that is suitable for the
purpose of this paper. This review is intended to be quite
general but mathematically elementary. For expositions of
Noether’s theorems in the literature and for related results,
see e.g. Refs. [2,15–43], and references therein. Many
references can be found in Ref. [5] as well.
As an application and illustration of the general con-

struction, we discuss first the example of matter fields
coupled to external gravitational and YM gauge fields
(allowing the electromagnetic field as a special case). The
type of the matter fields and the precise form of their
Lagrangian are left unspecified. For deriving the general-
ized Lorentz law and the related currents, only the
symmetry properties of the gravitational and YM gauge
fields and of the matter Lagrangian are needed, but in other
parts, for simplicity, we make some assumptions on the
nature of the matter fields and on the form of the matter
Lagrangian. We allow fermionic matter fields; therefore,
we use tetrad fields as elementary gravitational field
variables. We discuss the cases of the Dirac field and
the scalar field as matter field more explicitly, since these
are interesting special cases. The aim of this example is also
to answer the questions mentioned above. The second
example, which is included on account of its simplicity, is
the case of arbitrary fields propagating in the presence of
external scalar and gravitational fields.
The paper is organized as follows. Section II contains the

review of Noether’s theorems and the generalization of the
construction described in the first paragraph. The latter can
be found in Sec. II E, which is the central part of the paper.
In Sec. III, the details of the first example introduced above
are given. In particular, the generalized Lorentz law and the
currents (1.1) are discussed in Sec. III A. The second
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example is described in Sec. IV. A summary is given in
Sec. V. Appendix A contains definitions and comments
related to the examples.
The signature of metric tensors is ðþ;−;−;−Þ. The

brackets () and ½� applied to indices are used to denote
symmetrization and antisymmetrization, and these opera-
tions are understood to include division by the number of
permutations. A coordinate based formalism is employed,
and the notions of fiber bundles and differential forms are
mostly avoided in order to keep the exposition as elemen-
tary as possible. The terms “gauge theory” and “gauge
symmetry” are used in the general sense described in
Sec. II C, and it is stated explicitly when a special kind of
gauge symmetry is meant. The coordinate independent YM
gauge transformations are called global.

II. NOETHER’S THEOREMS AND THE
CONSTRUCTION OF CONSERVED CURRENTS

IN THE PRESENCE OF FIXED FIELDS

In order to describe the situation when some of the fields
are fixed, i.e. do not necessarily satisfy their field equations,
we divide the complete set of elementary fields into two
sets. The fields in these sets are denoted asΦi and χj, where
i and j are general indices labeling the fields and their
components. Any of the two sets may be empty. Generally,
χj will be the fixed fields, but Φi, which may be called
dynamical fields, are also not assumed to satisfy their field
equations unless explicitly stated. The physical role of Φi
and χj, i.e. whether they are matter or another type of fields,
is not restricted. In particular, the presence of a metric
tensor is not required. Commuting and anticommuting
fields are both allowed. For simplicity, the fields are
assumed to be real (self-conjugate) in this section. This
does not cause any loss of generality, since any complex
field is equivalent to two real fields. For derivatives with
respect to anticommuting variables, the following sign
convention is used: if θ is an anticommuting variable
and E is an expression of the form E1θE2, then
∂E
∂θ ¼ ð−1ÞnE1E2, where n ¼ 0 if E2 is even and n ¼ 1

if E2 is odd.
The Lagrangian density function Lðxμ; χj; ∂μχj;∂μνχj;…;Φi; ∂μΦi; ∂μνΦi;…Þ is assumed to be an even

local function of Φi and χj, but otherwise it is allowed to
depend on arbitrarily high derivatives. Further assumptions
on the Lagrangian are not made in this section, and it is
not specified what kind of physical system it describes.
A local function of some fields ϕiðxμÞ is defined in this
paper to be a function of the form fðxμ;ϕiðxμÞ; ∂νϕiðxμÞ;∂νλϕiðxμÞ;…Þ, that depends on the fields and on finitely
many derivatives of them and may depend explicitly on the
coordinates xμ as well [44]. Although the action integral
will not be used, it should be noted that the contribution to
it from the domain U on which xμ are defined is

R
U dDxL,

where D denotes the dimension of the base manifold M on

which the fields are defined. The integration measure used
here is the measure determined by the coordinate chart. It is
not necessary to specify the behavior of Φi and χj under
coordinate changes for the purpose of this section.
It is known that higher derivative theories generally have

various undesirable features, particularly instabilities and
unphysical degrees of freedom, but they have better
renormalizability properties than low derivative theories,
and the difficulties caused by the mentioned features may
be surmountable (see e.g. Ref. [45–53]). As far as sym-
metries are concerned, there is no major reason to restrict
the order of the derivatives that may appear in the
Lagrangian.
We distinguish three theorems of Noether, and within the

third theorem, we distinguish two parts. The first theorem,
which is the most well known, is not specific to gauge
theories. In the literature, the third theorem is often
included in the second one, but it seems useful to separate
them. In Noether’s paper [4,5], the statement of the second
theorem does not include the third theorem, but the third
theorem does not appear as a separate theorem either.
We do not follow rigorously the original formulation of

Noether’s theorems. In particular, we are interested only in
the consequences of symmetries and do not consider
reverse statements. For the latter, we refer the reader to
the literature, e.g. Ref. [15].
The content of the three theorems can be summarized

very briefly as follows. The first theorem states that if the
Lagrangian has a symmetry, then there exists a current Jμ

(the Noether current) that is conserved (i.e. ∂μJμ ¼ 0) if the
fields satisfy their EL equations. The second theorem states
that if the Lagrangian has a gauge symmetry, then the EL
derivatives of the Lagrangian with respect to the fields
satisfy a differential identity, and thus the EL equations are
not independent. The third theorem states that if the
Lagrangian has a gauge symmetry, then the Noether
currents associated with these symmetries coincide with
certain identically conserved currents up to some terms that
vanish if all fields satisfy their EL equations.
In Sec. II B, we present the first theorem in a form that is

adapted to the situation when fixed fields are present. The
distinction betweenΦi and χj is irrelevant in the second and
third theorems, but we keep it for later use in the
construction in Sec. II E. The definition of gauge symmetry
in the general sense can be found in Sec. II C.
After Noether’s three theorems, we present the gener-

alization of the construction described in the first para-
graph of Sec. I. This generalized construction can also be
regarded as an extension of Noether’s theorems. The
construction described in Sec. I has three parts: the first
one is the construction of the energy-momentum tensor
and the derivation of its divergencelessness, the second
one is the construction of the current from the energy-
momentum tensor and from the Killing field and the
derivation of its conservation, and the third one is the

NOETHER’S THEOREMS AND CONSERVED CURRENTS IN … PHYSICAL REVIEW D 96, 025018 (2017)

025018-3



result that the current constructed in this way differs from
the Noether current associated with the Killing field in an
identically conserved current if the matter fields satisfy
their EL equations. Each part is generalized in Sec. II E.
In general relativity, the divergencelessness of the

energy-momentum tensor can also be seen as a conse-
quence of the Einstein equation if the metric is not fixed.
Similarly, in electrodynamics, the conservation of the
electric current can be seen as a consequence of the
Maxwell equation. These observations are also generalized
in Sec. II E.
In the next subsection, an auxiliary formula is described,

which is of central importance in the subsequent
derivations.

A. Partial integration formula

Let G be a quantity that can be written as

G ¼ Gαϵ
α þ Gν

α∂νϵ
α þ Gνλ

α ∂νλϵ
α þ…; ð2:1Þ

where ϵα is a function with several components indexed
by α; the functions Gνλ

α , G
νλρ
α ;… are completely symmetric

in the upper indices; and the sum on the right-hand side
contains only finitely many terms. By straightforward
application of the basic differentiation rule ðuvÞ0 ¼
u0vþ uv0, one can show that

G ¼ Ĝαϵ
α þ ∂νGν; ð2:2Þ

where

Ĝα ¼ Gα − ∂νGν
α þ ∂νλGνλ

α −… ð2:3Þ

and

Gν ¼ Gν
αϵ

α þ ðGνλ
α ∂λϵ

α − ∂λGνλ
α ϵ

αÞ
þ ðGνλρ

α ∂λρϵ
α − ∂ρG

νλρ
α ∂λϵ

α þ ∂λρG
νλρ
α ϵαÞ þ � � �

ð2:4Þ

The (nþ 1)th term of the sum on the right-hand side of
(2.3) is ð−1Þn∂ν1ν2…νnG

ν1ν2…νn
α . The nth group of terms on

the right-hand side of (2.4) is

Gνλ1λ2…λn−1
α ∂λ1λ2…λn−1ϵ

α − ∂λn−1G
νλ1λ2…λn−1
α ∂λ1λ2…λn−2ϵ

α

þ ∂λn−2λn−1G
νλ1λ2…λn−1
α ∂λ1λ2…λn−3ϵ

α −…

þ ð−1Þn−1∂λ1λ2…λn−1G
νλ1λ2…λn−1
α ϵα:

Since the sum on the right-hand side of (2.1) is finite, the
sums in (2.3) and (2.4) are also finite. Moreover, if Gα, Gν

α,
Gνλ

α ;… do not depend on ϵα (and on its derivatives), then if
all terms beyond the first n terms are zero on the right-hand

side of (2.1), then Gν does not depend on higher than
(n − 2)th derivatives of ϵα.
We call (2.2) the partial integration formula, since it

can be regarded as a generalization of the differentiation
rule ðuvÞ0 ¼ u0vþ uv0 on which partial integration is
based. It is clear that adding an arbitrary conserved
current to Gν preserves (2.2), but we always use the
definition (2.4).

B. First theorem

A one-parameter transformation of the fields can be
written after linearization in the parameter, denoted by s,
as

Φi → Φi þ sδΦi; χj → χj þ sδχj: ð2:5Þ

s is assumed to be real number valued, and δΦi and δχj
are assumed to have the same commutation character as
Φi and χj, respectively. Generally, both δΦi and δχj may
depend on Φi and χj and on their derivatives. Such a
transformation may be induced by a transformation in the
base manifold or in the target space of the fields, but may
be more general. Supersymmetry transformations, for
example, also fit in this framework. The associated first
order variation of L is defined as δL ¼ dL

ds js¼0 ¼ δLΦ þ
δLχ with

δLΦ ¼ ∂L
∂Φi

δΦiþ
∂L

∂ð∂μΦiÞ
∂μδΦiþ

∂L
∂ð∂μνΦiÞ

∂μνδΦiþ� � �

ð2:6Þ

δLχ ¼
∂L
∂χj δχj þ

∂L
∂ð∂μχjÞ

∂μδχj þ
∂L

∂ð∂μνχjÞ
∂μνδχj þ � � �

ð2:7Þ

Applying the partial integration formula (2.2) to (2.6)
with α → i, ϵα → δΦi, and Gμν…

α → ∂L
∂ð∂μν…ΦiÞ gives

δLΦ ¼ δL
δΦi

δΦi þ ∂μj
μ
Φ; ð2:8Þ

where

δL
δΦi

¼ ∂L
∂Φi

− ∂μ
∂L

∂ð∂μΦiÞ
þ ∂μν

∂L
∂ð∂μνΦiÞ

− ∂μνλ
∂L

∂ð∂μνλΦiÞ
þ � � � ð2:9Þ

and
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jμΦ ¼ ∂L
∂ð∂μΦiÞ

δΦi þ
� ∂L
∂ð∂μνΦiÞ

∂νδΦi − ∂ν
∂L

∂ð∂μνΦiÞ
δΦi

�

þ
� ∂L
∂ð∂μνλΦiÞ

∂νλδΦi − ∂ν
∂L

∂ð∂μνλΦiÞ
∂λδΦi þ ∂νλ

∂L
∂ð∂μνλΦiÞ

δΦi

�
þ � � � ð2:10Þ

δL
δΦi

has the role of Ĝα, and jμΦ has the role of Gν. δL
δΦi

is the
Euler-Lagrange derivative of L with respect to Φi, and
the Euler-Lagrange equations for Φi are

δL
δΦi

¼ 0. We call

jμΦ the Euler-Lagrange current corresponding to Φi, be-
cause it is the counterpart of the Euler-Lagrange derivative
in (2.8). We note that a closely related quantity is called a
symplectic potential form in Ref. [2]. Formulas similar to
(2.8), (2.9), and (2.10) can also be obtained for χj by
applying (2.2) to (2.7).
Let us consider now a specific transformation and

assume that χj are in a configuration that is invariant under
this transformation, i.e. δχj ¼ 0. If in addition

δLΦ ¼ ∂μKμ ð2:11Þ

holds with some Kμ, then this transformation is called a
symmetry transformation, and (2.8) implies that

∂μJ
μ
Φ þ δL

δΦi
δΦi ¼ 0; ð2:12Þ

where JμΦ is defined as

JμΦ ¼ jμΦ − Kμ ð2:13Þ

and is called Noether current. In particular, if Φi satisfy
their EL equations, then from (2.12), it follows that the
current JμΦ is conserved: ∂μJ

μ
Φ ¼ 0. These statements for JμΦ

constitute the first theorem, extended to the situation when
some of the elementary fields are fixed but their configu-
ration is invariant under the symmetry that is considered.
Usually, δΦi are local functions ofΦi,Kμ is also required

to be a local function of Φi, and (2.11) is understood to be
an identity for Φi. In the rest of the paper, these properties
will be assumed.
Although (2.11) is required above to hold only for a

specific configuration of χj, in practice, one often has an
identity δL ¼ ∂μKμ without any restriction on χj and with
Kμ, δχj, δΦi that are local functions of both Φi and χj, and
then this identity reduces to (2.11) if χj is such that δχj ¼ 0.
It is clear that Kμ is not uniquely determined in (2.11);

therefore, the application of the above theorem involves
making a suitable choice. The simplest possibility, which is
suitable for many cases, is Kμ ¼ 0 (see Sec. III for
examples).
The local conservation law ∂μJ

μ
Φ ¼ 0 can be rewritten

in integral form by applying Stokes’s theorem. Let U be a

D-dimensional domain within U. By using Stokes’s theo-
rem, one obtains

Z
∂U

nμJ
μ
Φ ¼ 0; ð2:14Þ

where ∂U is the boundary of U and nμ is the normal vector
field of ∂U. nμ is normalized using the flat Euclidean metric
δμν determined by the coordinate system, i.e. δμνnμnν ¼ 1.
By restricting this metric to ∂U, one gets a Riemannian
metric on ∂U, and the corresponding measure is the one
that is used for the integration over ∂U. By choosing U to
be a cylindrical domain U ¼ ½t1; t2� ×Ω, where Ω is a
D − 1-dimensional domain, one obtains from (2.14) the
charge conservation law

Z
Ω
J0Φjx0¼t2 −

Z
Ω
J0Φjx0¼t1 ¼ −

Z
½t1;t2�×∂Ω

nμJ
μ
Φ; ð2:15Þ

where ∂Ω is the boundary of Ω and nμ is the outward
pointing normal vector of ∂Ω. RΩ J0Φjx0¼t1 and

R
Ω J0Φjx0¼t2

are the charges in Ω at x0 ¼ t1 and x0 ¼ t2, respectively,
and

R
½t1;t2�×∂Ω nμJ

μ
Φ is the charge that flows out of Ω during

the x0 interval ½t1; t2�. The index of xμ runs from zero
to D − 1.

C. Second theorem

Let us consider a transformation of the fields specified by
δΦi and δχj of the form

δΦi ¼ δΦiαϵ
α þ δΦμ

iα∂μϵ
α þ δΦμν

iα∂μνϵ
α þ � � � ð2:16Þ

δχj ¼ δχjαϵ
α þ δχμjα∂μϵ

α þ δχμνjα∂μνϵ
α þ � � � ; ð2:17Þ

where ϵα is a function that can have several components
indexed by α and may be commuting or anticommuting,
and there are finitely many terms in the sums on the right-
hand sides. It is assumed that δΦiα, δΦ

μ
iα, δΦ

μν
iα ;…; δχjα,

δχμjα, δχ
μν
jα;… are local functions of Φi and χj and do not

depend on ϵα nor on its derivatives. Transformations of this
form are called (infinitesimal) gauge transformations, para-
metrized by ϵα. We do not assume any group property of
these transformations.
The partial integration formula (2.2) can be applied to

δL
δΦi

δΦi and to δL
δχj

δχj, giving
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δL
δΦi

δΦi ¼ BΦαϵ
α þ ∂μB

μ
Φ ð2:18Þ

δL
δχj

δχj ¼ Bχαϵ
α þ ∂μB

μ
χ ; ð2:19Þ

where

BΦα ¼
δL
δΦi

δΦiα − ∂μ

�
δL
δΦi

δΦμ
iα

�
þ ∂μν

�
δL
δΦi

δΦμν
iα

�
− � � �

ð2:20Þ

Bμ
Φ ¼ δL

δΦi
δΦμ

iαϵ
α þ

�
δL
δΦi

δΦμν
iα∂νϵ

α − ∂ν

�
δL
δΦi

δΦμν
iα

�
ϵα
�

þ � � � ; ð2:21Þ

and similar formulas can also be written for χj. Using (2.18)
and (2.19), one gets

δL ¼ δLΦ þ δLχ ¼
δL
δΦi

δΦi þ
δL
δχj

δχj þ ∂μj
μ
Φ þ ∂μj

μ
χ

¼ BΦαϵ
α þ ∂μB

μ
Φ þ ∂μj

μ
Φ þ Bχαϵ

α þ ∂μB
μ
χ þ ∂μj

μ
χ :

ð2:22Þ

Let us assume that the transformation specified by (2.16)
and (2.17) is a symmetry for arbitrary ϵα functions (and
without any assumption on χj), i.e.

δL ¼ ∂μKμ; ð2:23Þ

with some Kμ. Kμ is also assumed to be a homogeneous
linear local function of ϵα, i.e.

Kμ ¼ Kμ
αϵα þ Kμν

α ∂νϵ
α þ Kμνλ

α ∂νλϵ
α þ � � � ; ð2:24Þ

where Kμ
α, K

μν
α , Kμνλ

α ;… do not depend on ϵα nor on its
derivatives and Kμνλ…

α are symmetric in the upper indices
νλ… following μ. Kμ

α, K
μν
α , Kμνλ

α ;… are also local functions
of Φi and χj. In this case, L is said to have a gauge
symmetry, and it follows from (2.22) that

ðBΦα þ BχαÞϵα ¼ −∂μðBμ
Φ þ Bμ

χ þ JμÞ; ð2:25Þ

where

Jμ ¼ jμΦ þ jμχ − Kμ: ð2:26Þ

If ϵα and sufficiently many of its derivatives vanish on
the boundary of an open domain Ω, then by applying
Stokes’s theorem, we get

Z
Ω
dDxðBΦα þ BχαÞϵα ¼ 0 ð2:27Þ

from (2.25). Since (2.23) holds for arbitrary ϵα, Eq. (2.27)
implies that

BΦα þ Bχα ¼ 0: ð2:28Þ
This result is the second theorem. From (2.20), it can be
seen that (2.28) is a differential identity for the EL
derivatives of L with respect to Φi and χj.
Equation (2.28) applied to the Einstein-Hilbert

Lagrangian with the diffeomorphism symmetry as the gauge
symmetry gives ∇μGμν ¼ 0, where Gμν is the Einstein
tensor. This is the twice contracted Bianchi identity; there-
fore, Eq. (2.28) can be called the generalized Bianchi
identity. BΦα and Bχα will be called Bianchi expressions.
Since Bμ

Φ and Bμ
χ are the counterparts of BΦα and Bχα in

(2.18) and (2.19), we call them Bianchi currents. Note that
Bμ
Φ ¼ 0 if Φi satisfy their EL equations, and obviously the

same is true for χj and Bμ
χ . Moreover, Bμ

Φ ¼ 0 also if the
coefficients of all derivatives of ϵα on the right-hand side of
(2.16) are zero, and the same can be said of Bμ

χ .
If L has a gauge symmetry, then the corresponding

variation δL of L is also a homogeneous linear local
function of ϵα with some coefficients δLα, δL

μ
α, δL

μν
α ;…,

and (2.23) holds for arbitrary ϵα; therefore, the coefficients
of ϵα, ∂μϵ

α, ∂μνϵ
α;… on the two sides of (2.23) have to be

equal, i.e.

δLα ¼ ∂μK
μ
α ð2:29Þ

δLμ
α ¼ Kμ

α þ ∂νK
νμ
α ð2:30Þ

δLμν
α ¼ Kμν

α þ ∂λK
λμν
α

� � � ð2:31Þ

These equations are known as Klein-Noether identities.

D. Third theorem

In this section, we continue to consider Lagrangian
systems with gauge symmetry. The current Jμ introduced
in (2.26) is the standard Noether current corresponding to
the symmetry transformation (2.16), (2.17) in the absence
of any fixed field; thus, it is conserved if both Φi and χj
satisfy their EL equations. On the other hand, from (2.25)
and (2.28), it follows that the current

Iμ ¼ Bμ
Φ þ Bμ

χ þ Jμ ð2:32Þ

is also conserved, regardless of the EL equations.
Nevertheless, if Φi and χj satisfy their EL equations, then
Iμ ¼ Jμ. Thus, by adding Bμ

Φ þ Bμ
χ to Jμ, we get a current

which is conserved regardless of the EL equations but
which nevertheless coincides with Jμ if the EL equations of
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all fields are satisfied. This is the first part of the third
theorem.
The second part is the following: since Iμ is a homo-

geneous linear local function of ϵα and is conserved for
arbitrary ϵα, it can be written as

Iμ ¼ ∂νΣμν; ð2:33Þ

where Σμν, which is called the superpotential, is antisym-
metric, and is given by the formula

Σμν ¼ 1

2
ðIμνα − Iνμα Þϵα þ

�
2

3
ðIμνρα − Iνμρα Þ∂ρϵ

α −
1

3
∂ρðIμνρα − Iνμρα Þϵα

�

þ
�
3

4
ðIμνρλα − Iνμρλα Þ∂ρλϵ

α −
2

4
∂λðIμνρλα − Iνμρλα Þ∂ρϵ

α þ 1

4
∂ρλðIμνρλα − Iνμρλα Þϵα

�
þ � � � ð2:34Þ

with the nth group of terms on the right-hand side being

Xn
i¼1

ð−1Þiþ1
nþ 1 − i
nþ 1

∂λn−iþ1…λn−1ðIμνλ1…λn−1
α − Iνμλ1…λn−1

α Þ

× ∂λ1λ2…λn−iϵ
α: ð2:35Þ

The Iμνλ…α appearing in these formulas are the coefficients
in the expansion

Iμ ¼ Iμαϵα þ Iμνα ∂νϵ
α þ Iμνλα ∂νλϵ

α þ � � � : ð2:36Þ

Iμνλ…α are symmetric in the upper indices νλ… following μ.
The two conditions mentioned above (2.33) are sufficient
for (2.33) and (2.34); i.e. no more details on the properties
of Iμ are needed. This second part of the third theorem is
proved, for example, in Refs. [16,54].
It should be noted that, although from the Poincaré

lemma it follows that in any simply connected domain there
exists some antisymmetric Σμν for which (2.33) holds, the
statement that the Σμν given by (2.34) satisfies (2.33) is
stronger. Equation (2.34) implies that Σμν is also a local
function of the fields, and therefore by applying Stokes’s
theorem, the total charge corresponding to Iμ in a D − 1-
dimensional domain Ω can be expressed as an integral of a
local expression of the fields over the boundary of Ω.
Currents of the form ∂νΣμν, where Σμν is antisymmetric,

are identically conserved because of the antisymmetry of
Σμν. Moreover, from Stokes’s theorem, it follows that if Σμν

falls off sufficiently fast at infinity then the total charge
associated with the current ∂νΣμν is zero. Due to these facts,
the currents that have the form ∂νΣμν are often called trivial.
Nevertheless, the Σμν introduced above does not always fall
off very fast at infinity, and the associated charge can be
different from zero. For further discussion of the definition
of total charges in gauge theories, especially in general
relativity, the reader is referred to the literature, e.g.,
Refs. [1–3,14,18,22–24,26,32,36,40–42].

E. Conserved currents in gauge theories
in the presence of fixed fields

In this section, the generalization of the construction
mentioned at the beginning of Sec. I is described. It is
assumed that L has a gauge symmetry in the general sense
described in Sec. II C. This means that L is assumed to have
a gauge symmetry with respect to the complete set of fields,
but with respect to the actual dynamical fields, it does not
necessarily have any gauge symmetry.
If Φi satisfy their EL equations, then BΦα ¼ 0, as can be

seen from (2.20), and thus from the generalized Bianchi
identity (2.28), it follows that

Bχα ¼ 0; ð2:37Þ

without any assumption on χj. This is the first part of the
construction. We call (2.37) a partial Bianchi identity.
Next, let us consider the situation in which δχj ¼ 0 for

some particular ϵα, i.e. the configuration of χj is invariant
with respect to a particular infinitesimal gauge transforma-
tion. In this case, it follows from (2.19) that

0 ¼ Bχαϵ
α þ ∂μB

μ
χ : ð2:38Þ

Moreover, ifΦi satisfy their EL equations, then Bχα ¼ 0, as
we have seen; thus, Eq. (2.38) reduces to

0 ¼ ∂μB
μ
χ : ð2:39Þ

This means that, in addition to the standard Noether current
JμΦ, there is another conserved current, Bμ

χ . This is the
second part of the construction.
If δχj ¼ 0, then jμχ ¼ 0, and thus Jμ ¼ JμΦ. From (2.32)

and (2.33), it follows then that

−Bμ
χ ¼ JμΦ þ Bμ

Φ − Iμ ¼ JμΦ þ Bμ
Φ − ∂νΣμν; ð2:40Þ

therefore, the difference of −Bμ
χ and JμΦ is the sum of the

terms Bμ
Φ and −∂νΣμν, the first of which vanishes when Φi

satisfy their EL equations and the second of which is the
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divergence of an antisymmetric matrix. This is the third part
of the construction.
Equation (2.40) shows that, although JμΦ and Bμ

χ are
defined completely differently, they are equivalent in the
usual sense of the equivalence of conserved currents. It is
also worth mentioning that JμΦ depends on the choice ofKμ,
whereas Bμ

χ does not.
Until now, it has been assumed that L is the total

Lagrangian of the system under consideration, but it is
clear that if L takes the form L ¼ L1 þ L2, where L1 does
not depend on Φi and their derivatives and L2 has gauge
symmetry in itself, then the above construction can also be
applied to L2. For example, in the standard case in general
relativity, one constructs

ffiffiffiffiffiffi−gp
Tμνhν from the matter

Lagrangian rather than from the total Lagrangian, and
the same will be done in the examples in Secs. III and IV
as well.
If L1 has a gauge symmetry in itself and χj satisfy their

EL equations δL1

δχj
þ δL2

δχj
¼ 0, then the generalized Bianchi

identity for L1 together with the EL equations of χj imply
an equation that formally coincides with the partial Bianchi
identity (2.37) obtained from L2. In order to see this, one
should consider that the expression that appears on the left-
hand side of the generalized Bianchi identity is given in the
present case by the formula (2.20) for Bianchi expressions,
with L → L1 and Φ → χ. In this expression, δL1

δχj
can be

replaced by − δL2

δχj
as a consequence of the EL equations of

χj, and the resulting expression is just −1 times the one that
appears in (2.37); thus, indeed (2.37) is obtained. In this
argument, it is not necessary to use any symmetry property
of L2, and Φi do not have to satisfy their EL equations.
The example in Sec. III shows that the observations that the
Einstein equation implies the divergencelessness of the
energy-momentum tensor and the Maxwell equation
implies the conservation of the electric current are special
cases of the result described in this paragraph.
We note that the second part of the construction is not

used in the derivation of (2.40), and (2.40) also implies the
conservation of Bμ

χ . On the other hand, it is the derivation
given in the second part that is the generalization of the
usual derivation of the conservation of

ffiffiffiffiffiffi−gp
Tμνhν in

general relativity.
The results in Sec. II of Ref. [9] are similar to (2.40), but

they are less explicit and are restricted to the special case
when the particular infinitesimal gauge transformation
under which χj are invariant is rigid, i.e. is such that ϵα

is a constant function. In principle, it is not a severe
restriction to consider only rigid transformations, since a
nonrigid gauge transformation can be transformed into a
rigid one by suitable reparametrization. For example, let us
choose n different functions ϵαk , k ¼ 1;…; n, so that ϵα1
corresponds to the particular transformation under which
δχj ¼ 0, and introduce the new parameter functions ξk via

ϵα ¼ ξkϵαk . In terms of ξk, the transformation specified by
ϵα ¼ ϵα1 is rigid, since it corresponds to ξ1 ¼ 1, ξk ¼ 0,
k ¼ 2;…; n. Nevertheless, one can deal with nonrigid
transformations directly, as we have seen in this section.

III. MATTER FIELDS IN THE PRESENCE
OF FIXED GRAVITATIONAL AND
YANG-MILLS GAUGE FIELDS

In this section, the case of matter fields in the presence of
gravitational and YM gauge fields is discussed. Since
fermionic fields are also considered, the basic gravitational
field variable is taken to be an orthonormal tetrad field
V μ̄
μ. The metric can be expressed in terms of V μ̄

μ as gμν ¼
V μ̄
μV ν̄

νgμ̄ ν̄, where gμ̄ ν̄ ¼ diagð1;−1;−1;−1Þ. Here and in
the following, an overbar is used to distinguish internal
Lorentz vector indices. Such indices can be raised and
lowered by gμ̄ ν̄ and its inverse, and V

μ̄
μ and its inverse can be

used to turn spacetime vector indices into internal Lorentz
vector indices and vice versa. For a detailed introduction to
the tetrad formalism and its use for including half-integer
spin fields in general relativity, see, e.g., Ref. [55]. A
different formalism is described, e.g., in Ref. [56].
The Lie algebra of the global YM gauge group is taken to

be a direct sum of compact simple and uð1Þ algebras. It
would be straightforward to consider several YM gauge
groups with distinct coupling constants, but for simplicity,
only one is taken. The structure constants of the Lie algebra
of the global YM gauge group are denoted by fabc. The
basis of the Lie algebra is chosen so that δab is invariant
under the adjoint action; therefore, there is no significant
difference between upper and lower Lie algebra indices.
Nevertheless, upper and lower indices will be distin-
guished, and δab will be used to raise and lower them.
fabc is completely antisymmetric and real. The YM field
strength is defined as Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ κfabcAb
μAc

ν,
where κ is the YM coupling constant and Aa

μ is the YM
vector potential.
The Lagrangian density function L of the matter fields is

assumed to be an even real local function of the tetrad field,
the YM vector potential, and the matter fields, and it is
assumed to have diffeomorphism, local Lorentz, and YM
gauge symmetry in the sense described in Sec. II C. The
precise form of L and of the Lagrangian of the gravitational
and YM gauge fields does not need to be specified. For
fermionic fields, Lorentz transformations mean SLð2;CÞ
transformations.
The application of the first two parts of the construction

described in Sec. II E is discussed in Sec. III A, and the
third part is discussed in Sec. III B. The matter fields will
take the role of Φi, whereas the tetrad and YM gauge fields
together will take the role of χj. As was mentioned in
Sec. II E, the construction will be applied to the matter
Lagrangian described above, rather than to the total
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Lagrangian. The total gauge symmetry group that will be
considered is the group generated by the symmetries
mentioned above.

A. Bianchi currents and partial Bianchi identities

For the application of the first two parts of the con-
struction described in Sec. II E, it is necessary to know the
transformation properties of the tetrad and of the YM gauge
fields. The Kμ quantities in the symmetry condition (2.23)
and the transformation properties of the matter fields are
not needed.
About the Bianchi currents, the following general

preliminary remarks can be made: since the first order
variations of each field that we consider depend only on ϵα

and ∂μϵ
α and not on higher derivatives, the corresponding

Bianchi currents do not depend on the derivatives of ϵα at
all. Specifically, the first term on the right-hand side of
(2.21) gives the Bianchi currents. Furthermore, if the first
order variation of a field does not depend on ∂μϵ

α, then the
corresponding Bianchi current is zero.
The first order variation of the tetrad and the YM vector

potential under a YM gauge transformation parametrized
by ϵa, which takes the role of ϵα and has values in the
coadjoint representation of the global gauge group, is

δV μ̄
μ ¼ 0 ð3:1Þ

δAa
μ ¼ Dμϵ

a: ð3:2Þ

Dμ denotes the covariant differential operator for the whole
gauge group—for more detail on its definition, see
Appendix A. In (3.2), Dμϵ

a ¼ ∂μϵ
a þ κfabcAb

μϵ
c.

In the case of local Lorentz transformations, the role of
ϵα is taken by ωμ̄ ν̄, which is antisymmetric. The first order
variation of the tetrad and the YM vector potential is

δV μ̄
μ ¼ −ωλ̄ ρ̄ðLλ̄ ρ̄Þν̄μ̄V ν̄

μ ð3:3Þ

δAa
μ ¼ 0: ð3:4Þ

The ðLλ̄ ρ̄Þν̄μ̄ ¼ gλ̄ ν̄δ
μ̄
ρ̄ − gρ̄ ν̄δ

μ̄
λ̄
appearing in (3.3) are the

generators of the Lorentz group in the Minkowski
representation.
In the case of diffeomorphisms, the role of ϵα is taken

by the vector fields hμ, which generate diffeomorphisms.
The first order variation of the tetrad and the YM vector
potential is

δV μ̄
μ ¼ −hν∂νV

μ̄
μ − ∂μhνV

μ̄
ν ð3:5Þ

δAa
μ ¼ − hν∂νAa

μ − ∂μhνAa
ν : ð3:6Þ

Equation (3.5) implies that δgμν ¼ −hλ∂λgμν − gνλ∂μhλ −
gμλ∂νhλ ¼ −∇μhν −∇νhμ. Here and in subsequent

formulas, ∇μ denotes the usual Levi-Cività covariant
differential operator associated with the metric gμν. ∇μ

acts only on the spacetime vector and covector indices.
Equations (3.5) and (3.6) can also be written as
δV μ̄

μ ¼ −hν∇νV
μ̄
μ −∇μhνV

μ̄
ν , δAa

μ ¼ −hν∇νAa
μ −∇μhνAa

ν .
Using these transformation properties, one finds that in

the case of the YM gauge symmetry the partial Bianchi
identity (2.37) takes the form

BAa ¼
ffiffiffiffiffiffi
−g

p
DμJ

μ
a ¼ 0; ð3:7Þ

where J μ
a is defined as

ffiffiffiffiffiffi
−g

p
J μ

a ¼ −
δL
δAa

μ
ð3:8Þ

and g denotes the determinant of the metric. BVa is
obviously zero in this case. We note that (3.7) was also
obtained, e.g., in Ref. [11]. As is well known, Eq. (3.7) also
follows from the YM equation, if the YM field is not fixed.
The Bianchi currents Bμ

A and Bμ
V , corresponding to the YM

gauge field and to the tetrad, are found to be

Bμ
A ¼ −

ffiffiffiffiffiffi
−g

p
ϵaJ μ

a; Bμ
V ¼ 0; ð3:9Þ

thus, Bμ
χ ¼ Bμ

A þ Bμ
V is

Bμ
χ ¼ −

ffiffiffiffiffiffi
−g

p
ϵaJ μ

a: ð3:10Þ

Bμ
χ is conserved if the first order variation of Aa

μ corre-
sponding to ϵa is zero, i.e. ifDμϵ

a ¼ 0, and the matter fields
satisfy their EL equations. It is easy to see that this is a
consequence of the partial Bianchi identity (3.7),
∂μB

μ
χ ¼ − ffiffiffiffiffiffi−gp ∇μðϵaJ μ

aÞ ¼ − ffiffiffiffiffiffi−gp ðDμϵ
aJ μ

a þ ϵaDμJ
μ
aÞ;

thus, in virtue of (3.7), ∂μB
μ
χ ¼ − ffiffiffiffiffiffi−gp

Dμϵ
aJ μ

a, and this is
zero if Dμϵ

a ¼ 0. This derivation is a specialization of the
general derivation of (2.39) in Sec. II E. For flat spacetime
and in a slightly different context, it can also be found
in Ref. [57].
In the case of the local Lorentz symmetry, the partial

Bianchi identity (2.37) takes the form

Bλ̄ ρ̄ ¼ BV;λ̄ ρ̄ ¼ −2
ffiffiffiffiffiffi
−g

p
T λ̄ ρ̄ ¼ 0; ð3:11Þ

where T λ̄ ρ̄ is the antisymmetric part in the decomposition

V λ̄ρ
δL

δV ρ̄
ρ
¼ ffiffiffiffiffiffi

−g
p ð−T λ̄ ρ̄ þ T λ̄ ρ̄Þ ð3:12Þ

of 1ffiffiffiffi−gp V λ̄ρ
δL
δV ρ̄

ρ
into symmetric and antisymmetric parts. The

Bianchi currents Bμ
V and Bμ

A are obviously zero for local
Lorentz symmetry; thus, also Bμ

χ ¼ 0.
It is well known that (3.11) holds if all fields except the

tetrad satisfy their EL equations [55], but as we have seen,
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due to δAa
μ ¼ 0, Eq. (3.11) holds even when the YM vector

potential is also fixed. It is clear that (3.11) holds generally
if the fixed fields, with the exception of the tetrad, are scalar
under local Lorentz transformations.
For the diffeomorphism symmetry, the Bianchi expres-

sions BVμ and BAμ are

BVμ ¼
ffiffiffiffiffiffi
−g

p ð−∇νTν
μ þ∇νT ν

μ þ T λνVλμ̄∇μV
μ̄
νÞ ð3:13Þ

BAμ ¼
ffiffiffiffiffiffi
−g

p ð−J ν
aFa

νμ −DνJ ν
aAa

μÞ: ð3:14Þ

The partial Bianchi identity (2.37) is BVμ þ BAμ ¼ 0,
which can nevertheless be simplified to the form

Bμ ¼
ffiffiffiffiffiffi
−g

p ð−∇νTν
μ − J ν

aFa
νμÞ ¼ 0 ð3:15Þ

by using (3.7) and (3.11). Tνμ, defined in (3.12), is the
Einstein-Hilbert energy-momentum tensor.
The Bianchi currents Bμ

V and Bμ
A are

Bμ
V ¼ ffiffiffiffiffiffi

−g
p ðTμ

ν − Tμ
νÞhν; Bμ

A ¼ ffiffiffiffiffiffi
−g

p
hνAa

νJ
μ
a:

ð3:16Þ

If the matter fields satisfy their EL equations, then Bμ
χ ¼

Bμ
V þ Bμ

A can be simplified to the form

Bμ ¼ ffiffiffiffiffiffi
−g

p ðTμ
νhν þ hνAa

νJ
μ
aÞ ð3:17Þ

by using (3.11). Bμ is conserved if the matter fields satisfy
their EL equations, hμ is a Killing vector field, and Aa

μ is
also invariant under the diffeomorphisms generated by hμ.
It should be noted that the invariance of the tetrad field is
not necessary for the conservation of Bμ; the invariance of
the metric (and of the vector potential) is sufficient. The
reason for this is explained in the paragraph below (3.19).
The conservation of Bμ can again be seen as a conse-

quence of (3.15) and of the symmetry properties of the
metric and the vector potential. Equation (3.7) is also
needed, because it was also used to bring Bμ to the form
(3.15). The first step of the derivation is to take the
divergence of Bμ: ∂μBμ ¼ ffiffiffiffiffiffi−gp ð∇μTμ

νhν þ Tμ
ν∇μhν þ

DμJ
μ
aAa

νhν þ J μ
aDμAa

νhν þ J μ
aAa

ν∇μhνÞ. If hμ is a
Killing vector field, then Tμ

ν∇μhν ¼ 0. In virtue of the
partial Bianchi identity (3.7), also DμJ

μ
aAa

νhν ¼ 0.
According to (3.15), ∇μTμ

νhν can be replaced by
−J μ

aFa
μνhν. Thus, the expression for ∂μBμ can be written

as
ffiffiffiffiffiffi−gp ð−J μ

aFa
μνhν þ J μ

aDμAa
νhν þ J μ

aAa
ν∇μhνÞ. Using

the equation hμ∇μAa
ν þ∇νhμAa

μ ¼ 0, which expresses
the invariance of the vector potential, J μ

aAa
ν∇μhν can be

replaced by −J μ
a∇νAa

μhν; thus, ∂μBμ ¼ ffiffiffiffiffiffi−gp ð−J μ
aFa

μνhν þ
J μ

aDμAa
νhν − J μ

a∇νAa
μhνÞ. This is clearly zero, since

Fa
μν ¼ DμAa

ν −∇νAa
μ.

More generally, it is interesting to consider the situation
when hμ is a Killing vector field but the vector potential is
invariant under the generated diffeomorphisms only up to a
YM gauge transformation (see, e.g., Ref. [58] regarding
such invariance conditions). This means that there exists a
gauge transformation parameter ϵa so that the vector
potential is invariant under the joint infinitesimal diffeo-
morphism and YM gauge transformation corresponding to
ðhμ; ϵaÞ:

δAa
ν ¼ −hμ∂μAa

ν − ∂νhμAa
μ þDνϵ

a ¼ 0: ð3:18Þ

The corresponding Bianchi current

Bμ ¼ ffiffiffiffiffiffi
−g

p ½Tμ
νhν þ ðhνAa

ν − ϵaÞJ μ
a� ð3:19Þ

is the combination of (3.10) and (3.17). The conservation of
(3.19) can be derived in a similar way, using (3.18), as the
conservation of (3.10) and (3.17). In this derivation, the
equivalent form δAa

ν ¼ −hμ∇μAa
ν −∇νhμAa

μ þDνϵ
a ¼ 0

of (3.18) is useful.
In principle, the cases when the tetrad field is invariant

under the diffeomorphisms generated by hμ and when it is
invariant only up to local Lorentz transformations are also
different, but since the Bianchi current corresponding to
local Lorentz transformations is zero, the Bianchi currents
(3.17) or (3.19) are the same in both cases. This is not true
for the Noether currents; see Secs. III B 3 and III B 5.
In the case when the YM gauge field is the electromag-

netic field, the Bianchi current (3.17) is precisely the
current (1.1) proposed in Ref. [6], and the partial
Bianchi identity (3.15) is the Lorentz law (1.2). It should
be noted that in the (charged black hole) configurations
considered in Ref. [6] the background electromagnetic field
satisfies the Maxwell equation ∇μFμν ¼ 0, and this prop-
erty was used in Ref. [6] in the derivation of the Lorentz
law, but in the present derivation, this is not needed.
Making a small digression, we mention that if the YM

symmetry of the Lagrangian is not required and Aa
μ are

merely some fixed covector fields, thenDνJ ν
a ¼ 0 does not

necessarily hold, and from (3.13), (3.14), and (3.11), one
obtains the partial Bianchi identity

Bμ ¼
ffiffiffiffiffiffi
−g

p ð−∇νTν
μ − J ν

aFa
νμ −DνJ ν

aAa
μÞ ¼ 0; ð3:20Þ

where Dμ and Fa
νμ are defined in the same way as in

Abelian gauge theory. This is the identity that appears, e.g.,
in Refs. [7,8]. The formula (3.17) for the Bianchi current
for a diffeomorphism symmetry of the metric and Aa

μ

remains unchanged.

B. Noether currents and superpotentials

In this section, we discuss the Noether currents and the
superpotentials for the diffeomorphism, local Lorentz, and
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YM gauge symmetries, concentrating on the third part of
the construction in Sec. II E.
For simplicity, we assume that the Lagrangian density of

the matter fields takes the form

L ¼ ffiffiffiffiffiffi
−g

p
L̂ðV μ̄

μ;ψν̌
ρ̌
αk; ψ̄ ν̌

ρ̌αk; Dμψν̌
ρ̌
αk; Dμψ̄ ν̌

ρ̌αkÞ; ð3:21Þ

where ψν̌
ρ̌
αk is a complex matter field and ψ̄ ν̌

ρ̌αk is its
(generalized) Dirac conjugate. We take only one matter
field, but it is completely straightforward to include more of
them. The above form of L implies that the matter field is
coupled minimally to the gravitational and YM fields and
that L does not depend on higher than first derivatives of
the matter field. Matter fields can be real as well; in this
case, the Dirac conjugate field is not needed. ψν̌

ρ̌
αk has n

covector indices and m vector indices, denoted collectively
as ν̌ and ρ̌, i.e. ν̌≡ ν1ν2…νn and ρ̌≡ ρ1ρ2…ρm.
Under the global YM gauge group, ψν̌

ρ̌
αk trans-

forms according to a not necessarily irreducible finite-
dimensional unitary representation R; the corresponding
index is denoted by k. The basis in this representation is
chosen to be orthogonal and normalized to 1. The gen-
erators of the global YM Lie algebra in the representation
R are denoted, after they are multiplied by i, by ðtaÞkl.
These matrices satisfy the commutation relations ½ta; tb� ¼
ifabctc of the Lie algebra of the global gauge group and are
self-adjoint (i.e. t†a ¼ ta).
Under Lorentz transformations, ψν̌

ρ̌
αk transforms

according to a not necessarily irreducible finite-
dimensional real representation; the corresponding index
is denoted by α. A real representation is a direct sum of the
irreducible real representations ðl1

2
; l2
2
Þ ⊕ ðl2

2
; l1
2
Þ, l1 ≠ l2, l1,

l2 ∈ N, and ðl
2
; l
2
Þ, l ∈ N, where ðl1

2
; l2
2
Þ, l1, l2 ∈ N, denote

the finite-dimensional irreducible representations of the
Lorentz group. The simplest examples of these irreducible
real representations are the Dirac spinor representation
ð1
2
; 0Þ ⊕ ð0; 1

2
Þ and the Minkowski representation ð1

2
; 1
2
Þ. A

representation ðl1
2
; l2
2
Þ is fermionic if l1 þ l2 is odd and

bosonic if l1 þ l2 is even. ð1
2
; 0Þ and ð0; 1

2
Þ are the Weyl

spinor representations. ψν̌
ρ̌
αk can be taken to be number

valued, but if it transforms according to a fermionic
representation, then it is also reasonable to take it to be

anticommuting. The formulas written in this section are
valid for both options.
The generalized Dirac conjugation is defined as ψ̄ ν̌

ρ̌βk

ψ̄ ν̌
ρ̌βk ¼ ψν̌

ρ̌
αk

�ϵαβ; ð3:22Þ

where � denotes complex conjugation [59] and ϵαβ is a
nondegenerate matrix with the properties ϵαβ� ¼ ϵβα and
ðLμ̄ ν̄Þδα�ϵδβ þ ðLμ̄ ν̄Þδβϵαδ ¼ 0. The latter property is
needed for the Lorentz covariance of the Dirac conjugation,
and the Lμ̄ ν̄ appearing in it denote the generators of the
Lorentz group in the representation according to which
ψν̌

ρ̌
αk transforms. An ϵαβ matrix with these properties can

be found for any finite-dimensional real representation of
the Lorentz group. If ψν̌

ρ̌
αk transforms as a Dirac spinor and

one uses, e.g., theWeyl basis for Dirac spinors, then ϵαβ can
be taken to be the Dirac gamma matrix γ0̄. For the purpose
of the present paper, it is not necessary to specify ϵαβ

explicitly for the other representations. In general, it would
be necessary to insert into (3.22) a matrix similar to ϵαβ for
the YM indices as well, but with the special choice of basis
in R mentioned above, this matrix is the unit matrix.
The restrictions on the possible indices of the matter field

above are done in order to avoid writing large formulas.
Nevertheless, it is straightforward to extend the various
formulas to the cases when ψ transforms under Lorentz
transformations according to a nonreal representation (e.g.,
according to the Weyl spinor representations), or when ψ has
several indices corresponding to Lorentz transformations.
We also assume for simplicity that L̂ is invariant under

YM gauge transformations and local Lorentz transforma-
tions and transforms as a scalar function under diffeo-
morphisms. In this case, the simplest and most natural
choice for Kμ in the symmetry condition (2.23) is Kμ ¼ 0
for YM gauge transformations and local Lorentz trans-
formations and Kμ ¼ −hμL for diffeomorphisms.
It should be noted that in the literature the matter

fields are often regarded as sections of suitable vector
bundles over M. In a coordinate based formalism, it is
usually assumed that a trivialization is fixed for these
vector bundles over the coordinate patch U that is under
consideration.
It is useful to introduce the following notation:

Pμν̌
ρ̌
αk ¼ ∂L̂

∂Dμψν̌
ρ̌
αk

~Pμν̌
ρ̌αk ¼

∂L̂
∂Dμψ̄ ν̌

ρ̌αk ð3:23Þ

Eν̌
ρ̌
αk ¼ 1ffiffiffiffiffiffi−gp δL

δψν̌
ρ̌
αk

~Eν̌
ρ̌αk ¼

1ffiffiffiffiffiffi−gp δL
δψ̄ ν̌

ρ̌αk ð3:24Þ

Aμλν
i ¼ ðPμ…λ…

ρ̌
αk þ Pλ…μ…

ρ̌
αkÞψ…

ν
…

ρ̌
αk − Pν…λ…

ρ̌
αkψ…

μ
…

ρ̌
αk

þ ð ~Pμ…λ…
ρ̌αk þ ~Pλ…μ…

ρ̌αkÞψ̄…
ν
…

ρ̌αk − ~Pν…λ…
ρ̌αkψ̄…

μ
…

ρ̌αk ð3:25Þ

NOETHER’S THEOREMS AND CONSERVED CURRENTS IN … PHYSICAL REVIEW D 96, 025018 (2017)

025018-11



Bμλν
i ¼ ðPμν̌

…
λ
…

αk − Pλν̌
…

μ
…

αkÞψν̌
…ν…

αk þ Pνν̌
…

λ
…

αkψν̌
…μ…

αk

þ ð ~Pμν̌
…

λ
…αk − ~Pλν̌

…
μ
…αkÞψ̄ ν̌

…ν…αk þ ~Pνν̌
…

λ
…αkψ̄ ν̌

…μ…αk ð3:26Þ

Qμδ̄ λ̄ ¼ 1

2
Pμν̌

ρ̌
αkψν̌

ρ̌
βkðLδ̄ λ̄Þαβ −

1

2
~Pμν̌

ρ̌αkψ̄ ν̌
ρ̌βkðLδ̄ λ̄Þβα ð3:27Þ

In (3.25), for example, Pμ…λ…
ρ̌
αk at the beginning of the

right-hand side means Pμν1ν2…νi−1λνiþ1…νn
ρ̌
αk, and similar

notation is used subsequently.
Qμδ̄ λ̄ is antisymmetric in the last two indices. The reality

of L implies that Pμν̌
ρ̌
αk is the Dirac conjugate of ~Pμν̌

ρ̌αk and
Eν̌

ρ̌
αk is the Dirac conjugate of ~Eν̌

ρ̌αk if ψν̌
ρ̌
αk is an even

field and Pμν̌
ρ̌
αk is −1 times the Dirac conjugate of ~Pμν̌

ρ̌αk

and Eν̌
ρ̌
αk is −1 times the Dirac conjugate of ~Eν̌

ρ̌αk if ψν̌
ρ̌
αk

is anticommuting.

1. Euler-Lagrange currents

For a preliminary step, one determines the currents jμV ,
jμA, and jμψ for arbitrary variations of the tetrad, the Yang-
Mills vector potential, and the matter field. One finds

jμA ¼ 0; ð3:28Þ

jμψ ¼ ffiffiffiffiffiffi
−g

p ðPμν̌
ρ̌
αkδψν̌

ρ̌
αk þ ~Pμν̌

ρ̌αkδψ̄ ν̌
ρ̌αkÞ; ð3:29Þ

and

jμV ¼ jμg þ jμw ð3:30Þ

jμg ¼ ffiffiffiffiffiffi
−g

p �
−
1

2

Xn
i¼1

AμðνλÞ
i þ 1

2

Xm
i¼1

BμðνλÞ
i þQðνλÞμ

�
γνλ

ð3:31Þ

jμw ¼ ffiffiffiffiffiffi
−g

p
Qμνλw½νλ�: ð3:32Þ

γμν ¼ δgμν ¼ 2wðμνÞ, wμν ¼ Vνμ̄δV
μ̄
μ. The quantities Aμνλ

i ,

Bμνλ
i , and Qμνλ

i in (3.31) and (3.32) come from the variation
of the connection.
With the above formulas at hand, one can proceed to

determine the Noether currents and the superpotentials for
the various gauge symmetries. For this, it is also necessary
to know the variation of the matter field under the gauge
transformations. The Noether currents Jμ are obtained as
Jμ ¼ jμV þ jμψ − Kμ, specializing δAa

μ, δV
μ̄
μ, and δψν̌

ρ̌
αk in

the above formulas for jμV and jμψ according to the particular
transformation rules (3.1)–(3.6), (3.34), (3.36), and (3.38).
JμΦ ≡ Jμψ is jμψ − Kμ. Using (3.34), (3.36), or (3.38) one can
calculate Bμ

ψ ; then, Iμ is obtained as Iμ ¼ Jμ þ Bμ
A þ

Bμ
V þ Bμ

ψ , and finally Σμν is given by (2.34). This general
procedure for determining Iμ and Σμν can be simplified

further in the present example in the following way:
Iμ does not depend on higher than first derivatives
of ϵα, i.e. Iμ ¼ ϵαIμα þ ∂νϵ

αIμνα ; thus, according to (2.34),

Σμν ¼ ϵαI½μν�α . This shows that Iμνα completely determines

Σμν and Iμ. In particular, from Iμ ¼ ∂νΣμν, we get Iμα ¼
∂νI

½μν�
α and Iμνα ¼ I½μν�α . Furthermore, since the Bianchi

currents and Kμ do not depend on the derivatives of ϵα,
Iμνα ¼ Jμνα ¼ jμνV;α þ jμνψ ;α, i.e.

Σμν ¼ ϵαðjμνV;α þ jμνψ ;αÞ: ð3:33Þ
The notation Jμνα , jμνV;α, j

μν
ψ ;α is understood in the sameway as

Iμνα and the index α is used here in the same sense as
in Sec. II.

2. Yang-Mills gauge symmetry

The first order variation of the matter field under a YM
gauge transformation parametrized by ϵa is

δψν̌
ρ̌
αk ¼ iκϵaðtaÞklψν̌

ρ̌
αl: ð3:34Þ

One finds that for YM gauge transformations the Noether
current is

Jμ ¼ ffiffiffiffiffiffi
−g

p
ϵaJ μ

a; ð3:35Þ

which is obtained by specializing δψk in (3.29) according
to (3.34). Since Kμ ¼ jμA ¼ jμV ¼ 0, Jμ ¼ Jμψ ¼ jμψ . Jμ does
not depend on the derivatives of ϵa, Iμ and Σμν are zero, and
the Bianchi current Bμ

χ is identical to −Jμ even if the matter
field does not satisfy its EL equation. The Bianchi currents
Bμ
A and Bμ

V are given in (3.9), and Bμ
ψ ¼ 0.

3. Local Lorentz symmetry

The first order variation of the matter field under a local
Lorentz transformation is

δψν̌
ρ̌
αk ¼ ωμ̄ ν̄ðLμ̄ ν̄Þαβψν̌

ρ̌
βk: ð3:36Þ

Bμ
ψ is obviously zero, and in Sec. III A, we saw that

also Bμ
V ¼ Bμ

A ¼ 0. After some calculation, one finds that
Jμ ¼ 0 as well; thus, Iμ ¼ 0. On the other hand, Jμψ is not
zero,

Jμψ ¼ 2
ffiffiffiffiffiffi
−g

p
Qμν̄ η̄ων̄ η̄: ð3:37Þ
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A nonzero tetrad is not invariant under any Lorentz transformation; therefore, Jμψ is generally not conserved.
Nevertheless, Jμψ has an important role when the tetrad and the vector potential are invariant under a combined
transformation (see Sec. III B 5).

4. Diffeomorphism symmetry

The first order variation of the matter field under a diffeomorphism generated by hμ is the Lie derivative

δψν̌
ρ̌
αk ¼ −hμ∂μψν̌

ρ̌
αk

− ∂ν1h
μψμν2…νn

ρ̌
αk − ∂ν2h

μψν1μν3…νn
ρ̌
αk − � � � − ∂νnh

μψν1…νn−1μ
ρ̌
αk

þ ∂μhρ1ψν̌
μρ2…ρm

αk þ ∂μhρ2ψν̌
ρ1μρ3…ρm

αk þ � � � þ ∂μhρmψν̌
ρ1…ρm−1μ

αk: ð3:38Þ

It is straightforward to obtain explicit expressions for Jμ and Jμψ , but we do not write them out here, since they are not
enlightening. The Bianchi currents are (3.16) and

Bμ
ψ ¼ ffiffiffiffiffiffi

−g
p ½−Eμν2ν3…

ρ̌
αkhλψλν2ν3…

ρ̌
αk − Eν1μν3…

ρ̌
αkhλψν1λν3…

ρ̌
αk − � � �

þ Eν̌
λρ2ρ3…

αkhλψ ν̌
μρ2ρ3…

αk þ Eν̌
ρ1λρ3…

αkhλψ ν̌
ρ1μρ3…

αk þ � � �
þ ½ ~E ψ̄ ��; ð3:39Þ

where ½ ~E ψ̄ � represents the complex conjugate of the previous terms. Iμ is found to be

Iμ ¼ ffiffiffiffiffiffi
−g

p ½∇ν½2ðQðμλÞνhλ −QðνλÞμhλÞ −Qλμνhλ�

−
1

2

Xn
i¼1

∇ν½Pμ…ν…
ρ̌
αkψ…

λ
…

ρ̌
αkhλ − Pν…μ…

ρ̌
αkψ…

λ
…

ρ̌
αkhλ�

þ 1

2

Xn
i¼1

∇ν½Pμ…λ…
ρ̌
αkψ…

ν
…

ρ̌
αkhλ − Pν…λ…

ρ̌
αkψ…

μ
…

ρ̌
αkhλ�

þ 1

2

Xn
i¼1

∇ν½Pλ…μ…
ρ̌
αkψ…

ν
…

ρ̌
αkhλ − Pλ…ν…

ρ̌
αkψ…

μ
…

ρ̌
αkhλ�

−
1

2

Xm
i¼1

∇ρ½Pμν̌���ρ���αkψν̌
…λ…

αkhλ − Pρν̌���μ���αkψν̌
…λ…

αkhλ�

þ 1

2

Xm
i¼1

∇ρ½Pμν̌���λ���αkψν̌
…ρ…

αkhλ − Pρν̌���λ���αkψν̌
…μ…

αkhλ�

þ 1

2

Xm
i¼1

∇ρ½Pλν̌���μ���αkψν̌
…ρ…

αkhλ − Pλν̌���ρ���αkψν̌
…μ…

αkhλ�

þ ½ ~P ψ̄ ��; ð3:40Þ

where ½ ~P ψ̄ � represents the complex conjugate of the Pψ
type terms in the previous six lines. Σμν is obtained by
omitting the∇ operators in (3.40) and changing the ρ index
to ν where necessary.
It is interesting to note that if the matter field is scalar

with respect to diffeomorphisms and local Lorentz trans-
formations, then Bμ

ψ ¼ 0 and Iμ ¼ 0; therefore, the Bianchi
current Bμ

χ coincides with −Jμ even if the matter field does
not satisfy its EL equations. Bμ

ψ ¼ 0 holds even if the matter
field is scalar only with respect to diffeomorphisms.

5. Mixed symmetries

A general infinitesimal gauge transformation is a com-
bination of the special transformations discussed in the
previous subsections and is characterized by a triple
ðhμ;ωμ̄ ν̄; ϵaÞ. For such transformations, δV μ̄

μ, δAa
μ, and

δψν̌
ρ̌
αk, the Bianchi currents, the Noether currents, Iμ,

and Σμν are just the sums of the relevant expressions for the
special transformations.
A common case when combined transformations are

important is when a spacetime has complete rotation
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symmetry [SOð3Þ]. Since it is not possible to choose a
tetrad that is invariant under the entire rotation group
(understood as a subgroup of the group of diffeomor-
phisms), some of the rotation symmetry transformations of
the tetrad necessarily involve local Lorentz transforma-
tions, and this has to be taken into account when one
calculates Noether currents.

6. Dirac field

An important example of a matter Lagrangian is the
Dirac Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
gμνðψ̄ iγμDνψ −Dνψ̄ iγμψÞ −mψ̄ψ

�
; ð3:41Þ

where ψ denotes the Dirac field. As usual, the Dirac
spinor indices are omitted, and the indices related to
YM gauge group representations are also suppressed. γμ

are defined as γμ ¼ Vμ
μ̄γ

μ̄, where γμ̄ are the standard Dirac
gamma matrices in Minkowski space (see, e.g., Ref. [60]).
The generators of the Lorentz group Lν̄ λ̄ in the Dirac
representation are Lμ̄ ν̄ ¼ 1

2
σμ̄ ν̄, where σμ̄ ν̄ ¼ 1

2
½γμ̄; γν̄�.

Iμ [see (3.40)] takes a relatively simple form for the
Dirac field. Since the Dirac field does not have vector and
covector indices, only theQ terms are present in (3.40). The
quantities Aμλν and Bμλν introduced in (3.25) and (3.26)
are also absent. The quantity Qμδ̄ λ̄ introduced in (3.27)
is Qμδ̄ λ̄ ¼ 1

8
ðψ̄ iγμσδ̄ λ̄ψ þ ψ̄σδ̄ λ̄iγμψÞ. γμσδλ þ σδλγμ ¼

γλγμγδ − γδγμγλ; therefore, Qμδλ can also be written as

Qμδλ ¼ 1

8
iψ̄ðγλγμγδ − γδγμγλÞψ : ð3:42Þ

It is not difficult to see that QðνλÞμ ¼ 0; thus,

Iμ ¼ −
ffiffiffiffiffiffi
−g

p ∇νðQλμνhλÞ ð3:43Þ

in the case of the Dirac field. This result for Iμ was also
found in Ref. [16] in the special case of the electromagnetic
field as YM gauge field. In Ref. [16], the approach to
treating spinor fields was different from the one applied in
this paper.
For a diffeomorphism symmetry under which the

tetrad and the vector potential are invariant, the canonical
Noether current Jμψ is found to be − ffiffiffiffiffiffi−gp 1

2
ðψ̄ iγμ∇νψ −

∇νψ̄ iγμψÞhν − hμL. For the Einstein-Hilbert energy-
momentum tensor, one finds the expression Tμν ¼
1
4
ðψ̄ iγμDνψþ ψ̄ iγνDμψ −Dμψ̄ iγνψ −Dνψ̄ iγμψÞ, and J μ

a ¼
−κψ̄γμtaψ .
In Ref. [13], it was found in an ad hoc manner that

subtracting
ffiffiffiffiffiffi−gp ∇νðQλμνhλÞ from the canonical Noether

current −Jμψ gives (1.1), if the Dirac equation is satisfied.
Here, we have been able to derive this within a general
formalism. (Note that in Ref. [13] the YM gauge field was

the electromagnetic field and a factor −1 was included in
the definition of the Noether currents.)

IV. MATTER FIELDS IN THE PRESENCE OF
FIXED GRAVITATIONAL AND SCALAR FIELDS

In this example, we discuss only the partial Bianchi
identity and the Bianchi current. The matter Lagrangian is
again assumed to have the standard form L ¼ ffiffiffiffiffiffi−gp

L̂, and
L̂ is assumed to be a local function of the tetrad, the real
scalar field ϕ, and the other fields. L̂ is also assumed to be
invariant under local Lorentz transformations and to trans-
form as a scalar function under diffeomorphisms. The total
gauge symmetry group in this example is thus the group
generated by diffeomorphisms and local Lorentz trans-
formations. The nature of the matter fields does not need to
be specified.
The first order variation of ϕ under a diffeomorphism is

δϕ ¼ −hμ∂μϕ. Using this property, one obtains Bϕμ ¼
− ffiffiffiffiffiffi−gp

J ϕ∂μϕ for the Bianchi expression Bϕμ, with
J ϕ ¼ 1ffiffiffiffi−gp δL

δϕ. BVμ is given by (3.13). Taking into consid-

eration T μ̄ ν̄ ¼ 0 [see (3.11)], the partial Bianchi identity
BVμ þ Bϕμ ¼ 0 is thus

Bμ ¼
ffiffiffiffiffiffi
−g

p ð−∇νTν
μ − J ϕ∂μϕÞ ¼ 0: ð4:1Þ

The Bianchi current Bμ
ϕ is obviously zero; therefore, the

Bianchi current Bμ
χ is

ffiffiffiffiffiffi−gp
Tμ

νhν; i.e. it takes the same form
as in the absence of the fixed scalar field. Bμ

χ is conserved if
hμ is a Killing field, the first order variation of ϕ with
respect to the diffeomorphisms generated by hμ is also zero,
and the matter fields satisfy their EL equations. The
conservation of Bμ

χ can be derived from (4.1) and from
the symmetry properties of the metric and the scalar
field: ∇μðTμ

νhνÞ ¼ ∇μTμ
νhν þ Tμ

ν∇μhν, and here on the
right-hand side, the second term is zero in virtue of the
Killing equation, whereas the first term can be rewritten as
∇μTμ

νhν ¼ −J ϕhν∂νϕ using (4.1). J ϕhν∂νϕ is indeed
zero if δϕ ¼ 0.
It is interesting to note that if only the scalar field is

fixed, then the partial Bianchi identity becomes Bμ ¼ffiffiffiffiffiffi−gp ð−J ϕ∂μϕÞ ¼ 0 (and now J ϕ is obtained from the
total Lagrangian), as is also found in Ref. [31]. This identity
has the remarkable consequence that ϕ either is constant or
it also satisfies its EL equation.

V. CONCLUSION

In this paper, we extended the standard construction of
conserved currents associated with spacetime symmetries
for matter fields propagating in fixed curved spacetime to
general gauge theories, without any restriction on the order
of the derivatives of the fields that may appear in the
Lagrangian. In particular, we showed that if in a Lagrangian
field theory that has gauge symmetry in the general
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Noetherian sense some of the elementary fields are fixed
and are invariant under an infinitesimal gauge trans-
formation then there exists a current, which we called
the Bianchi current, that is analogous to the currentffiffiffiffiffiffi−gp

Tμ
νhν used in general relativity and is conserved if

the nonfixed fields satisfy their Euler-Lagrange equations.
The conservation of this current can be seen as a
consequence of the symmetry of the fixed fields and of
an identity, which we called partial Bianchi identity, that is
analogous to ∇μTμν ¼ 0 and follows from the gauge
symmetry of the Lagrangian. We also showed that the
Noether current associated with the symmetry of the fixed
fields obtained by applying Noether’s first theorem differs
from the Bianchi current by the sum of an identically
conserved current and a term that vanishes if the nonfixed
fields satisfy their Euler-Lagrange equations. We gave
explicit formulas for the Bianchi current and for the other
quantities appearing in these results, so they can be
calculated in any particular model. If the total
Lagrangian can be split in the same way as in general
relativity to a “matter” and a “gravitational” part, so that
the latter depends only on the fixed fields, then the
construction can be applied to the matter part separately,
as is done in general relativity in the standard case.
For an example, we discussed first the case of general

matter fields propagating in backgrounds consisting of a
gravitational and a Yang-Mills field. We found (3.17) as
the generalization of the current

ffiffiffiffiffiffi−gp
Tμ

νhν. The extension
of (3.17) to the case when the Yang-Mills part of the
background, i.e. the vector potential, is invariant under the
diffeomorphisms generated by hμ only up to (Yang-Mills)
gauge transformations is (3.19). For the generalization of
the property ∇μTμν ¼ 0, we found the Lorentz law (3.15).
This means that the Lorentz law is found to hold in
arbitrary gravitational and Yang-Mills background, if the
matter fields satisfy their Euler-Lagrange equations and
the matter Lagrangian has diffeomorphism, local Lorentz,
and Yang-Mills gauge symmetry. For local Lorentz trans-
formations and Yang-Mills gauge transformations, we
found the partial Bianchi identities (3.11) and (3.7).
The Bianchi current for a Yang-Mills gauge symmetry
of the fixed fields is (3.10). Under not very restrictive
assumptions on the type of the matter fields and on the
form of the matter Lagrangian, we investigated the differ-
ence between the Bianchi currents and the Noether
currents. In the case of Yang-Mills gauge symmetries,
these currents coincide even if the dynamical fields do not
satisfy their Euler-Lagrange equations. In the case of
diffeomorphism symmetries, the Bianchi currents are
generally not identical with the Noether currents, except
if the matter fields are scalar fields, as the known results
for zero fixed Yang-Mills field also indicate. We obtained
the formulas (3.39) and (3.40) for the characterization of
the difference between the Bianchi and Noether currents.
In the case of the Dirac field, Eq. (3.40) reduces to (3.43).

If the requirement of the Yang-Mills symmetry of the
Lagrangian is omitted but fixed covector fields are never-
theless present, then the generalization of ∇μTμν ¼ 0
becomes (3.20) instead of (3.15), whereas the Bianchi
current for a diffeomorphism symmetry has the unchanged
form (3.17).
The second example was the case of fields propagating in

backgrounds consisting of a gravitational and a real scalar
field. For the generalization of ∇μTμν ¼ 0, we found (4.1),
whereas the Bianchi current turned out to have the same
form,

ffiffiffiffiffiffi−gp
Tμ

νhν, as in the absence of the fixed scalar field.
The construction presented in this paper can be applied

in a very wide variety of models, for example, in metric-
affine gravitation theory or in other extended models of
gravitation coupled with Yang-Mills type gauge fields and
matter fields. It would be interesting to see if the Bianchi
currents that can be constructed in these models can be used
to obtain results similar to those in Ref. [6]. p-form field
theory and other higher spin gauge theories are further
examples that could be investigated.
Although in the examples that we discussed one of

the fixed fields was the gravitational field, one can
also apply the construction in cases when the gravitational
field is not among the fixed fields. Examples of partial
Bianchi identities for such cases have already been given
in Ref. [31].
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APPENDIX: AUXILIARY FORMULAS AND
REMARKS

In Sec. III, the complete gauge group is the group
generated by the diffeomorphisms, the local Lorentz trans-
formations, and the YM gauge transformations. The
covariant derivative of the matter field ψν̌

ρ̌
αk—introduced

at the beginning of Sec. III B—for this gauge group is given
by the formula

Dμψ ν̌
ρ̌
αk ¼ ∇μψν̌

ρ̌
αk þ Sαβμψν̌

ρ̌
βk − iκAa

μðtaÞklψν̌
ρ̌
αl;

ðA1Þ

where ∇μ denotes the Levi-Cività covariant differentiation

corresponding to gμν and Sαβμ ¼ 1
2
ðLν̄ λ̄ÞαβSν̄ λ̄ μ, Sλ̄

η̄μ ¼
−Vν

η̄∇μV λ̄
ν. ðLν̄ λ̄Þαβ and ðtaÞkl are the generators of the

Lorentz group and of the global YM gauge group,
respectively, in the representations according to which
the matter field transforms. The second term on the
right-hand side of (A1) describes the action of Dμ on
the Lorentz group related indices, and the third term gives
the action of Dμ on the YM indices. More details
concerning the second term can be found, e.g., in
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Ref. [55]. One also appliesDμ as an operator to other fields
that have the same types of indices as the matter field, even
if they transform somewhat differently, as the vector
potential Aa

μ, for example.
The local Lorentz transformations and the YM gauge

transformations form two normal subgroups in the com-
plete gauge group, but the group of diffeomorphisms is not
a normal subgroup either with respect to YM gauge
transformations or with respect to local Lorentz trans-
formations. In accordance with this situation, the Lie
derivatives of those fields that are not scalar with respect

to local Lorentz transformations or YM gauge transforma-
tions generally transform in a noncovariant manner under
these transformations.
Since the subgroup of diffeomorphisms is not a normal

subgroup in the complete gauge group, from a purely group
theoretical point of view, the complete gauge group does
not have a unique diffeomorphism subgroup; rather, it has
many diffeomorphism subgroups conjugate to one another.
Nevertheless, in a coordinate based formalism, a definite
diffeomorphism subgroup becomes distinguished implic-
itly, which can be called the subgroup of diffeomorphisms.
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