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In this work, we study the PT -symmetric (iϕ3) theory using the effective action formalism. To test the
accuracy of the used technique, we apply it first to the PT -symmetric (−ϕ4) theory, where we reproduce
the same results obtained in the literature using the method of Dyson-Schwinger equations. In 0þ 1 space-
time dimensions, the one-loop effective potential prediction for the (iϕ3) theory ought to be more accurate
than WKB results. The effective potential for the massless PT -symmetric (iϕ3) model is shown to be
bounded from below, which is the first analytic result that advocates the vacuum stability of this theory.
Our calculations show that the massless theory possesses only one stable vacuum as in the literature, but for
the massive theory we find that there exist two stable vacua. For a nonzero magnetic field, we show that the
PT -symmetry of the theory is broken for negative imaginary magnetic field, which agrees with the Lee-
Yang theorem. We argue that PT -symmetry breaking is a manifestation of the Yang-Lee edge singularity.
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The study of PT -symmetric theories is growing and
covers different areas in physics [1–10]. The importance of
this trend in research ranges from offering a regime to cure
the ghost states in Lee-Wick theories [11–13] to pushing
certain Hamiltonians that were rejected in the past to play a
role in nature’s description [14]. Another manifestation of
the importance of such theories is that one can find simple
scalar theories possessing the very important asymptotic
freedom property for which QCD has been invented
[7,15–17]. However, these theories have an extra step of
calculations more than those in Hermitian theories. While
the Dirac sense metric operator for Hermitian theories
is unity, it depends on the Hamiltonian model in non-
Hermitian theories, and thus its calculation is necessary for
the prediction of physical amplitudes. In other words, the
inner product in these theories takes a form that differs from
the Dirac sense product used for Hermitian theories. For
non-Hermitian theories with real eigenvalues, the metric
operator is essential in defining the inner product [18].
The metric operator calculation in a closed form is

possible for some PT -symmetric problems [13,19,20], but
for most of PT -symmetric theories perturbative methods
are employed to obtain it. However, quantum field theo-
retical techniques have been shown to implement the metric
operator without a need for its explicit calculations [21].
Such techniques are useful in studying PT -symmetric
quantum field Hamiltonians where explicit calculation of
the metric operator is hard to get. Accordingly, in this work
we will follow the method of the quantum field effective
potential to study the PT -symmetric iϕ3 theory. Although
the calculation will be obtained in d space-time dimen-
sions, we will concentrate on 0þ 1 dimensions (quantum

mechanics) only. The point is that the analytic continuation
of the problem in the complex plane for a quantum field
theory is not an easy task. Thus, if one thinks that a
quantum field approach like the effective potential can do
the job, one has to test its power of prediction first. This can
be accomplished by comparing its results in 0þ 1 space-
time dimensions with the available results in the literature.
Rigorous work in the literature [22–26] has studied the
spectral analysis of the theory at the quantum mechanical
level, which can be used as references of comparisons of
the effective potential results in 0þ 1 space-time dimen-
sions. Then, the more important application of the tech-
nique for theories in higher dimensions is direct where
techniques used in the quantum mechanical case cannot be
applied. However, for higher dimensions one needs to
employ a renormalization scheme which is relevant for the
study of phase transition of the theory in 5þ 1 space-time
dimensions, for instance [27].
The renormalization group functions of the theory under

consideration in this work describe the Yang-Lee edge
singularity of Ising-like models [28]. Since phase transi-
tions are always associated with symmetry breaking, one
may wonder about the symmetry to be broken in the model
under consideration that is associated with the Yang-Lee
edge singularity. The effective potential approach used
in this work can play the role of finding the link between
PT -symmetry breaking and the zeros of the partition
function in statistical models.
The study of phase transitions in higher dimensions is

interesting, and certainly it is our target in a future work
where a link is to be found between existence of more
than one stable vacuum for the theory and the ability to
make phase transitions when the number of degrees of
freedom is infinite (higher dimensions). Our aim in this*amshalab@qu.edu.qa
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work, however, is to test the effective potential by applying
it first to the study of thePT -symmetric iϕ3 theory in 0þ 1
dimensions. As we will see in this work, the massive case
of the iϕ3 theory has a richer vacuum structure than what
is predicted by other quantum field techniques in the
literature, where only one vacuum is always assumed.
Although the two vacua can be related by an equivalent
canonical transformation in 0þ 1 space-time dimensions,
in higher dimensions the same canonical transformation
turns out to be an unitarily inequivalent one, and a roam for
phase transition might exist [29].
The existence of more than one vacuum of a theory is

due to two different analytic continuations of a theory.
In Ref. [30] it has been argued that the number of
available spectra depends on the number of noncontiguous
Stokes wedges. In fact, the effective potential method can
deduce all possible analytic continuations of the theory in
the complex plane. The method has the same spirit of the
methods used in the literature to study the problem in the
quantum mechanical case. For instance, in Refs. [22,23,31]
spectral analysis of the theory has been applied. The
authors followed the main idea of considering the theory
on a contour in the complex plane such that ψðzÞ → 0 as
jzj → ∞ where ψðzÞ is the eigenfunction and zðxÞ is a
complex contour. In fact, making the change of variable
x → zðxÞ is a canonical transformation (point canonical
transformation). Now, the effective potential expands
around the classical field v or equivalently makes the
transformation ϕ → ϕþ v, which is also a point canonical
transformation. Then, the effective potential is subjected to

the stability ∂Veff∂v ¼ 0 and mass renormalization ∂2Veff∂v2 ¼ M2

conditions. Since renormalized mass squared is always
positive, the two conditions select v values (can be
complex) that make the effective potential Veff bounded
from below. In quantum mechanics, potentials bounded
from below are associated with the existence of bound state
wave functions. In other words, the condition ψðzÞ → 0 as
jzj → ∞ applied to quantum mechanical problems shares

the same spirit with the conditions ∂Veff∂v ¼ 0 and ∂2Veff∂v2 ¼ M2

applied to the effective potential in quantum field problems.
However, the effective potential method has two advan-
tages over the other methods. The first advantage is that it
can be extended easily to higher dimensions (quantum field
theories), while the second one is that it implements the
employment of the metric operator in the calculations [21].
The conditions applied to the effective potential might

lead to more than one stable vacuum. However, the massive
PT -symmetric iϕ3 theory has only one pair of Stokes
wedges and thus is supposed to have only one real spectra.
As we will see in this work, while the massless theory has
one stable vacuum, the effective potential predicts two
nondegenerate stable vacua for the massive case. These two
vacua are in fact related by a unitarily equivalent canonical
transformation in 0þ 1 dimensions, but in going to higher

dimensions the canonical transformation is no longer
unitarily equivalent. In the quantum field case (higher
dimensions) the number of degrees of freedom is infinite,
and thus phase transitions between the two vacua might
occur, while, as we will see, it cannot happen in 0þ 1
dimensions between unitarily equivalent vacua. Also, in
this work we will try to resolve the contradiction between
the effective potential results regarding the number of
available vacua for the massive case and the number
predicted from the analysis in Ref. [30].
Phase transitions always exist in theories with a large

number of degrees of freedom (higher dimensions).
However, a kind of critical phenomenon can still be
investigated even in 0þ 1 space-time dimensions. In stat-
istical systems, the zeros of the partition function (Yang-Lee
edge singularity) of magnetic systems exist for imaginary
magnetic fields [28]. Since thePT -symmetric iϕ3 lies in the
same class of universality as the Ising model for that type of
critical behavior, then one can test that critical behavior by
subjecting the theory to an external magnetic field inter-
action term of the form iγϕ. In this case the Hamiltonian
density takes the form

H ¼ 1

2
ðð∇ϕðxÞÞ2 þ π2ðxÞÞ þ iϕ3 þ iγϕ: ð1Þ

The analytic continuation of the problem can lead to
PT -symmetry breaking for negative values for the coupling
γ even in 0þ 1 dimensions. This form allows us to link
the Yang-Lee edge singularity in magnetic systems to the
PT -symmetry breaking of the theory. The idea is that
the PT -symmetry is broken when the effective potential
(vacuum energy) turns out to be complex. Aswewill see at a
critical coupling, the vacuum condensate changes from
being pure imaginary to a complex quantity that turns
the vacuum energy complex, which is a signature of
PT -symmetry breaking. We will argue that level crossing
at PT -symmetry breaking is equivalent to the existence of
the Yang-Lee edge singularity.
The PT -symmetric iϕ3 theory has been studied using

field theory approach in Refs. [27,32–35]. All of these
studies reflect the power of quantum field approach to study
PT -symmetric theories. Out of the field approaches are the
Schwinger-Dyson equations and effective action treatments
of a theory where both stem from the path integral
formulation of the problem. In fact, the vacuum to vacuum
transition amplitude in path integral formulation can mimic
the partition function in statistical systems. Accordingly,
when the effective potential is singular or nonanalytic for
some coupling values, it is a signature of the Yang-Lee
singularity.
To start, let us first introduce the effective action formu-

lation of the problem under consideration. For this, consider
the Hamiltonian density operator (for a zero magnetic field)
of the PT -symmetric iϕ3 field theory in the form
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H ¼ 1

2
ðð∇ϕðxÞÞ2 þ π2ðxÞÞ þ 1

2
m2ϕ2ðxÞ þ i

g
3
ϕ3; ð2Þ

where m is the mass parameter and g is the coupling
constant. Here π ¼ _ϕ is the conjugate momentum field.
The corresponding Lagrangian density is then

L½ϕ� ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2ðxÞ − i

g
3
ϕ3: ð3Þ

The generating functional associated with this Lagrangian is
given by the relation [36]

ZðJÞ ¼
Z

Dϕ exp

�
i
Z

ddxðL½ϕ� þ JϕÞ
�
; ð4Þ

where J represents an external source. In introducing the
energy functional EðJÞ such that ZðJÞ ¼ exp ð−iE½J�Þ, the
effective action ΓðvÞ can be obtained by the Legendre
transform,

ΓðvÞ ¼ −E½J� −
Z

d4yJðyÞvðyÞ;

where v is the vacuum expectation value of the field ϕ.
If the vacuum is translational invariant, one can introduce the

effective potential Veff ¼ − ΓðvÞ
VT , where VT is the volume of

the space-time region over which the functional integral is to
be carried out. Since

δΓðvÞ
δðvÞ ¼ −J;

in the presence of no external source J the effective action

satisfies the relation δΓðvÞ
δðvÞ ¼ 0, which leads to the constraint

∂Veff∂v ¼ 0 on the effective potential. Following the steps in
Ref. [36], one expands the effective action around v and
makes truncation at the one-loop order of approximation
to get

ΓðυÞ ¼
Z

ddxLðvÞ þ i
2
log det

�∂2LðϕÞ
∂ϕ2

�
:

We also can show that

log det

�∂2LðϕÞ
∂ϕ2

�
¼ Tr log

�∂2LðϕÞ
∂ϕ2

�

¼ −VT
�
i
Γð− d

2
Þ

ð4πÞd2
�∂2VðϕÞ

∂ϕ2

�d
2

�
ϕ¼v

:

ð5Þ

VðϕÞ is the classical potential of the theory, and d is the
dimension of the space-time. For a classical potential VðϕÞ

the effective potential up to one-loop of approximation takes
the form

VeffðvÞ ¼
�
VðϕÞ þ i

2

�
i
Γð− d

2
Þ

ð4πÞd2
�∂2VðϕÞ

∂ϕ2

�d
2

��
ϕ¼v

: ð6Þ

Before we apply this formula to the PT -symmetric iϕ3

theory, we need to test its accuracy by first trying to obtain
results that exist in the literature. For instance, the
PT -symmetric ϕ4 theory has been studied in Ref. [21]
using the Schwinger-Dyson equations. Let us consider the
same theory within the effective action formalism. The one-
loop effective potential is then

VeffðvÞ ¼
1

2
m2v2 −

1

4
gv4 þ

�
i
Γð− d

2
Þ

ð4πÞd2 ðM2Þd2
�
;

where M2 ¼ ½∂2VðϕÞ∂ϕ2 �
ϕ¼v

represents the renormalized mass.

Besides this relation, the effective potential has to satisfy the
relation ∂Veff∂v ¼ 0 too, which for d ¼ 1 gives

−
1

2
v
−2m2M þ 2gv2M þ 3g

M
¼ 0:

If v ≠ 0, it can be written as

m2 − gv2 −
3

2M
g ¼ 0;

which is exactly Eq. (39) in Ref. [21], taking into account
that the two-point function there is given by G2ð0Þ ¼ 1

2M.
Moreover, the mass renormalization condition of the form

M2 ¼ ½∂2VðϕÞ∂ϕ2 �
ϕ¼v

leads to the equation

m2 − 3gv2 −
9

2M3
g2v2 −

3

2M
g ¼ M2:

Again when keeping terms linear in g only, we get exactly
Eq. (41) in Ref. [21]. For more tests of the accuracy of
the effective potential method, we consider the massless
PT -symmetric iϕ3 theory in 0þ 1 space-time dimensions.
In this case, the one-loop effective potential takes the form

VeffðvÞ ¼
1

3
igv3 þ

�
i
Γð− d

2
Þ

ð4πÞd2 ðM2Þd2
�
: ð7Þ

When applying the conditions ∂Veff∂v ¼ 0 andM2¼½∂2VðϕÞ∂ϕ2 �
ϕ¼v

,

we get the following equations:

1

4π

i
ffiffiffi
π

p
g
ffiffiffiffiffiffi
4π

p þ 4iπv2g
ffiffiffiffiffiffiffi
M2

p
ffiffiffiffiffiffiffi
M2

p ¼ 0; ð8Þ
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1

4πM4

�
8iπM4vgþ ffiffiffi

π
p

g2
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffi
M2

p �
¼ M2: ð9Þ

For g ¼ 1, we obtain the result v ¼ −0.63538i compared
to its exact value v ¼ −0.64058i from Ref. [33]. When
taking g ¼ 3

2
, we get 2Veff ¼ 1.2555 compared to the exact

value of 1.1562 from Ref. [9] and the WKB result of
1.0942 from the same reference. The massless theory is a
critical one and quantities of the same mass dimension
have the same behavior. For instance, vacuum energy has
the same dimension of mass, while the coupling g has a
mass dimension of 5

2
. Accordingly, one expects that the

vacuum energy behaves as Veff ∝ g
2
5. Our calculations

proved this interesting result of the power-law behavior of
the vacuum energy for the massless case where we
obtained the result Veff ¼ E0 ¼ 0.53376g

2
5. This result

has been obtained in Ref. [24] as a strong coupling limit
which is equivalent to setting m ¼ 0. According to these
results, the one-loop effective potential appears to be a
reliable technique to predict physical amplitudes in
PT -symmetric theories. However, the effective potential
has a property that makes it preferred over the other
techniques. In fact, the shape of the effective potential
can reflect the vacuum stability as the conditions ∂Veff∂v ¼ 0

andM2 ¼ ½∂2VðϕÞ∂ϕ2 �
ϕ¼v

associated with it lead to an effective

potential bounded from below. These conditions can be
considered as the reflections of the quantization condition
ψðxÞ → 0 as jxj → 0, used in PT -symmetric quantum
mechanics, in the effective action formulation. The point
is that a potential bounded from below leads to a localized
wave function. Accordingly, the bounded-from-below
effective potential and the condition ψðxÞ→0 as jxj→0
are two sides of the same coin.
To show vacuum stability, we consider the one-loop

effective potential for PT -symmetric massless iϕ3 that
takes the form

Veff ¼
1

3
igv3 þ 1

2
M: ð10Þ

In applying the condition ∂Veff∂v ¼ 0, we get

M ¼
ffiffiffiffiffiffiffi
1

4v4

r
; ð11Þ

which leads to the result

Veff ¼
1

3
igv3 þ 1

4

ffiffiffiffiffi
1

v4

r
: ð12Þ

This form represents an effective potential bounded from
below for a negative imaginary condensate for positive g.

For negative g, however, the vacuum is stable but for a
positive imaginary condensate as shown in Fig. 1. In this
figure the massless PT -symmetric iϕ3 is shown to have
only one stable vacuum using the effective potential
method above. Moreover, the vacuum condensate has been
shown to be negative imaginary (for positive g) as listed in
the literature using WKB and other methods. In fact, the
number of available real spectra (equivalently, the number
of stable vacua with real energy) has been conjectured in
Ref. [30] to be equal to the number of noncontiguous
PT -symmetric pairs of Stokes wedges in the complex
ϕ-plane. The Stokes wedges in the quantum field approach
are generated from considering the controlling factorR
Γ dϕ exp ð−VðϕÞÞ [30]. Here Γ is a contour in a complex
plane and VðϕÞ is the classical potential in the theory under
consideration. For PT -symmetric iϕ3 (see Fig. 2), we do

g 1g 1

3 2 1 0 1 2 3
0

2

4

6

8

v

V
ef

f

FIG. 1. The effective potential versus vacuum condensate (v=i)
for the masslessPT -symmetric iϕ3 theory. The left part for g ¼ 1
gives a stable vacuum for a negative imaginary condensate, while
the right part represents the effective potential for g ¼ −1 and is
stable for a positive imaginary condensate.
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FIG. 2. The Stokes wedges for the massless PT -symmetric
iϕ3 theory. There exists only one pair of noncontiguous
PT -symmetric wedges, and thus according to the conjecture
in Ref. [30] the theory possesses only one stable vacuum.
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have only one pair, and thus the effective potential plotted
in Fig. 1, which has one stable vacuum, agrees with that
conjecture.
The effective potential of the massivePT -symmetric iϕ3

in 0þ 1 space-time dimensions can be obtained from the
one-loop formula given by

VeffðvÞ ¼
�
VðϕÞ þ i

2

�
i
Γð− 1

2
Þ

ð4πÞ12
�∂2VðϕÞ

∂ϕ2

�d
2

��
ϕ¼v

: ð13Þ

The condition ∂Veff∂v ¼ 0 leads to the gap equation

m2vþ iv2gþ 1

2

i
M

g ¼ 0: ð14Þ

This equation is exactly a Schwinger-Dyson equation for
the theory up to cutting the series at the two-point function
contribution. Note that in 6 − ϵ, our work leads to a gap
equation that can be compared with the one obtained in
Ref. [27] using mean field approach where our result
include an extra term coming from the two-point function
contribution and thus more accurate than the mean field
result. The gap equation in 0þ 1 space-time dimensions
above predicts two vacua since it has the solutions;

v ¼ i
g

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
ðMm4 þ 2g2Þ

r
þ 1

2
m2

�
: ð15Þ

The existence of two vacua has been obtained in Ref. [27]
for 6 − ϵ space-time dimensions but is always overlooked
in 0þ 1 dimensions in the literature. One can realize from
the v solutions above that the two vacua have nonzero
vacuum expectation values. Thus, it would be interesting to
show them in the shape of the effective potential. In fact,
the one-loop effective potential predicts two nondegenerate
stable vacua as shown in Fig. 3. Note that, for positive g,
the effective potential is stable for a negative imaginary
condensate, while the opposite is correct for negative g.
This result is new for the field theoretic predictions in
0þ 1 dimensions, but does this agree with the analysis
of the associated Stokes wedges shown above? The answer
is yes but with careful analysis of the Stokes wedges
structure. For the massive PT -symmetric iϕ3, the classical
potential VðϕÞ has two couplings, and thus the Stokes
wedges have what we can call fine structure. The integralR
Γ dϕ exp ð−VðϕÞÞ does exist if ReðVðϕÞÞ → ∞ as
jϕj → ∞. This can happen in two ways (or modes). The
first possibility is that the real part of the mass term and that
of the interacting part are both positive (the dark gray
wedges in Fig. 4). The other possibility is that the dominant
interacting term has a positive real part too, while the mass
term has a negative real part (the light gray wedges in
Fig. 4). This structure suggests the existence of two stable
vacua (equivalent to the existence of two spectra) for the
massive case. Thus, again the effective potential prediction

in the massive case agrees with the conjecture in Ref. [30].
Note that in 0þ 1 space-time dimensions there are no
phase transitions since there exists one degree of freedom,
but it does exist in higher dimensions where the thermo-
dynamic limit is satisfied.
In 0þ 1 space-time dimensions, one can still investigate a

critical phenomenon of the theory. To see this, we recall that
the zeros of the partition function (Yang-Lee edge singu-
larity) for Ising models are known to exist on the imaginary
magnetic fled axis [28]. The approach we use can mimic
the partition function by considering the vacuum-to-
vacuum transition amplitude ZðJÞ ¼ exp ð−iE½J�Þ. The
zeros of the partition function, or equivalently, a singularity

g 1g 1

3 2 1 0 1 2 3
0

1

2

3

4

5

v

V
ef

f

FIG. 3. The effective potential versus vacuum condensate for
the massive PT -symmetric iϕ3 theory. The left part for g ¼ 1
gives two stable vacua for a negative imaginary condensate, while
the right part represents the effective potential for g ¼ −1 with
stable vacua for a positive imaginary condensate.
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FIG. 4. The Stokes wedges for the massive PT -symmetric iϕ3

theory. The one pair of noncontiguous PT -symmetric wedges for
the massless case is now divided into two pairs. The dark gray
wedges having an opening angle of π

4
represent the case where

real parts of both terms in the potential are positive. The light gray
wedges in the lower half-plane having an opening angle of π

12

represent the case of a positive real part of the dominant term in
the potential, while the massive term has a negative real part.
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or nonanalyticity of the vacuum energy, are a manifestation
of critical points at which models in the same class of
universality behave in a similar way. Accordingly, the
PT -symmetric iϕ3 with an external magnetic field has to
have a critical point at the imaginary magnetic field axis.
To relate the PT -symmetry breaking to the Yang-Lee edge
singularity, consider the Hamiltonian form

H ¼ 1

2
ðð∇ϕðxÞÞ2 þ π2ðxÞÞ þ i

ϕ3

3
þ iγϕ; ð16Þ

where iγ mimics the magnetic field in spin systems. For that
form, the one-loop effective potential takes the form

VeffðvÞ ¼
1

2
m2v2 −

g
α
ðivÞα þ iγvþ i

2

 
i
Γð− d

2
Þ

ð4πÞd2 ðM2Þd2
!
;

ð17Þ

where VeffðvÞ is subjected to the constraints ∂Veff∂v ¼ 0 and
∂2Veff∂v2 ¼ M2. The vacuum energy as a function of the
coupling γ is shown in Fig. 5. As expected from the critical
behavior of Ising models where the zeros of the partition
function exist for imaginary magnetic fields, the model
under consideration behaves very similarly. In fact the zeros
of the partition function are a manifestation of level crossing
since we have the relation

h0j0iJ ¼ ZðJÞ ¼
Z

Dϕ exp

�
i
Z

ddxðL½ϕ� þ JϕÞ
�
;

ð18Þ

where h0j0iJ is the vacuum-vacuum transition amplitude.
Since ZðJÞ ¼ exp ð−iE½J�Þ and the energy functional is
related to the effective action, a zero of the partition function
will be reflected in a singularity or nonanalyticity of the

effective potential, which is equivalent to self orthogonality
of the vacuum state. At the critical point, a singularity in the
vacuum energy represents a zero of the partition function.
In Ref. [26], the same result has been obtained where self-
orthogonality has been verified at the critical coupling.
In other words, the Yang-Lee edge singularity is equivalent
to PT -symmetry breaking.
To conclude, we used the effective action formalism to

study the PT -symmetric iϕ3 for both massive and massless
cases as well as for zero and nonzero external magnetic
fields. As a path integral technique, the effective action
implements the metric operator, and also the spectrum
stability can easily be deduced from the shape of the
associated effective potential. To test its accuracy, we
employed the effective action for the study of the
PT -symmetric (−ϕ4), of which one can find the results
in the literature. We were able to exactly reproduce the
Dyson-Schwinger prediction for this theory. Moreover,
our result for the vacuum condensate of the massless
PT -symmetric iϕ3 is very close to its exact result, while
the vacuum energy has been shown to be more accurate
than the WKB result from the literature.
The effective potential of the massless PT -symmetric iϕ3

has been obtained and plotted. We showed that it is bounded
from below, which is an interesting result as it represents
the first analytic result that shows the vacuum stability for
this theory. Moreover, we found that the effective potential
is stable only for a negative imaginary condensate, which
agrees well with results found in the literature. We have
found only one minimum for the effective potential.
Accordingly, our calculations agree well with the conjecture
from Ref. [30], where the generation of Stokes wedges
of the theory shows only one pair of noncontiguous
PT -symmetric wedges. According to that conjecture, the
existence of one pair means the existence of one real
spectrum (equivalently, one stable vacuum).
For the massivePT -symmetric iϕ3, the effective potential

showed two different shapes where each shape has a
minimum of energy that differs from the other. This means
that the massive case has two stable vacua. To link this result
to the conjecture from Ref. [30], we realized that the Stokes
wedges now divided into two regions that represent two
modes (two vacua). The first mode is where expð−VðϕÞÞ
goes to zero as jϕj → ∞ while the real parts of the two terms
in the potential are positive (dark gray wedges in Fig. 4).
There is another mode (light gray wedges in the lower half of
the complex ϕ-plane in Fig. 4) where the mass term real part
is negative, while the interacting term has a positive real
part. With this analysis of the Stokes wedges of the massive
case, the effective potential prediction agrees again with the
conjecture in Ref. [30].
For nonzero external magnetic fields, we found that the

PT -symmetry is broken for a negative imaginary magnetic
field. Since the Ising model and the theory under consid-
eration are in the same class of universality, this result
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FIG. 5. The effective potential versus the coupling γ for the
PT -symmetric iϕ3 theory. For coupling values smaller than
γ ¼ γc ¼ −0.57435, the vacuum energy as well as the vacuum
condensate are complex and the PT -symmetry has been sponta-
neously broken, which resembles a Yang-Lee edge singularity.
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agrees well with the Yang-Lee theory for magnetic systems
regarding the existence of zeros of the partition function
at imaginary magnetic field values. In 0þ 1 space-time
dimensions the critical exponent δ is known [28], and one
can extract it from the effective field calculation. However,
for this case, the effective coupling g

M
5
2

blows up at the

critical point, and the theory is highly nonperturbative.
Accordingly, the one-loop calculations cannot lead to an
accurate calculation of the critical exponent. This type of
calculation needs higher-order calculations followed by a
resummation technique (Borel for instance), which is our
aim in another work.
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