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We investigate particle production à la the Schwinger mechanism in an expanding, flat de Sitter patch
as is relevant for the inflationary epoch of our Universe. Defining states and particle content in curved
spacetime is certainly not a unique process. There being different prescriptions on how that can be done, we
have used the Schrödinger formalism to define instantaneous particle content of the state, etc. This allows
us to go past the adiabatic regime to which the effect has been restricted in the previous studies and bring
out its multifaceted nature in different settings. Each of these settings gives rise to contrasting features
and behavior as per the effect of the electric field and expansion rate on the instantaneous mean particle
number. We also quantify the degree of classicality of the process during its evolution using a “classicality
parameter” constructed out of parameters of the Wigner function to obtain information about the quantum
to classical transition in this case.
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I. INTRODUCTION

Strong electric fields can cause the “quantum” vacuum to
decay into charged pairs—an effect in quantum field theory
first predicted by Julian Schwinger [1] and aptly known
by his name. It is also a subject of hot pursuit for an
experimental verification [2]. Analogous to the effect of
electromagnetic fields, we also have gravitational particle
production in the study of quantum fields in curved
spacetimes [3–5]. A particularly important and specific
case of particle production due to time-dependent gravita-
tional background is during inflation or in de Sitter space
[6]. There is a general consensus that the large scale
structures and the anisotropies of the Cosmic Microwave
Background have their origin in the early inflationary phase
of the Universe [7]. We also observe large scale magnetic
fields in the Universe with coherent lengths extending from
a few kpc to Mpcs and strength varying between μG to nG
[8]. Some recent observations also suggest the presence of
these magnetic fields in voids [9]. The origin of these
magnetic fields is still an open question. One of the widely
accepted view [10] is that these were generated during
inflation possibly by breaking conformal invariance and
hence have a primordial origin. In light of this, gravitational
and the electromagnetic fields coexisting during inflation
will have a combined effect on the vacuum of any (test)
quantum field propagating on the background. This forms
precisely the setting for the Schwinger effect in de
Sitter space.
The effect was considered in connection with neutrali-

zation of the cosmological constant through membrane
creation [11] and then for computing spontaneous

nucleation rates [12] in inflation. There have also been
other investigations [13] with a take on anti-de Sitter space
as well. Some very recent works, however, have examined
the effect in the form more relevant to the inflationary
physics [14–16]. Our analysis has a similar perspective,
i.e., a connection with inflation but with a difference that
expands the existing results significantly. This calls for
some comments on the previous works and on the
framework adopted in this article.
To put things in perspective, first note that in a generic

curved background and particularly cosmological space-
times including the (quasi-)de Sitter phase of inflation,
there is an explicit time dependence in the metric and the
timelike killing vectors are nonexistent. We also do not
have the luxury to switch off the background effects; that is,
there is no flat spacetime limit asymptotically in time. As
such, the usual prescription of defining the in and out
vacuum states does not work, and the definition or notion of
a vacuum is not unique. Nonetheless, one can still define
and compute the time evolution of a quantum state without
much ambiguity. However, determining the particle content
of this state at any given time during the course of its
evolution can be done in different ways open to many
interpretations. At best, we can infer it using different
constructs that probe the physics in time-dependent back-
ground and develop an intuitive feel for the various
phenomenon.
In this regard, the literature cited above takes the

following route to infer the particle content: one starts
out with a vacuum state [17] in the asymptotic past, looks at
its quantum evolution in the Heisenberg picture with
canonical quantization, and computes the Bogoliubov
coefficients to determine particle excitations at late times.
The nonzero coefficient βk relating the modes in the past
and the future gives the particle content and the production
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rate. However, this interpretation is limited to and works
only in the “adiabatic” regime specified here by jeEj,
m2 ≫ H2 (strong electric field and/or heavy fields) where
the adiabatic out vacuum can be defined. Although con-
sidered due to technical reasons, in our view, this is a highly
restrictive analysis. For one, there is a wide nonadiabatic
domain where the effect can be much more significant and,
second, the above discourse only provides the late-time
particle content and gives no information about its evolu-
tion or its value at any given time. The Bogoliubov
coefficients can still be calculated in a time-dependent
way. We, however, adopt a different path described below
which brings out the effect in full colors (Fig. 1) and offers
an additional advantage for studying the quantum-to-
classical transition in the phenomenon as well.

II. SCHRÖDINGER FORMALISM

Instead of doing a canonical quantization, we proceed to
perform a Schrödinger quantization of the system which we
shall describe here briefly (see Refs. [18,19] for details).
This formalism has been employed for studying Schwinger
effect in flat spacetime [19,20] as well as particle creation in
cosmological spacetimes [19,21]. To begin with, we note
that, due to translation invariance (present in most cases),
the Fourier modes of the scalar field decouple to a set of
harmonic oscillators,

S ¼ 1

2

Z
d3kdtmkðtÞð _qk2 − ω2

kðtÞq2kÞ; ð1Þ

FIG. 1. Facets of Schwinger effect in de Sitter space. The color shading of the Schwinger-de Sitter cube gives the mean particle
number, hnki, as a function of the electric field strength, L; mass of the field, M; and x ¼ aH=k with x ¼ 1 (dashed line) is where the
modes exit the comoving Hubble radius. We have L ¼ 1 for theM − x plot, while the rest are according to the faces of the cube. We see
the particle creation is enhanced for x > 1, a weak electric field, and low mass of the scalar field.
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with both time-dependent mass and frequency that can be
treated independently. This reduces the field-theoretic
problem to one in the point-particle quantum mechanics
domain. To infer the quantum evolution of the system, we
just need to solve the time-dependent Schödinger equation
associated with the oscillators:

½−ð1=2mkÞ∂2
qk þmkω

2
kq

2
k=2 − i∂t�ψkðqk; tÞ ¼ 0: ð2Þ

The equation admits form invariant, Gaussian states
ψkðqk; tÞ ¼ Nk exp½−αkq2k� as it solutions. These are akin
to coherent states of a harmonic oscillator constrained only
by appropriate boundary conditions. Except for an overall
phase of Nk, all nontrivial aspects of evolution are solely
encoded in the variable αk. We can obtain the dynamical
equation for the same,

i _αk ¼ 2α2k=mk −mkω
2
k=2; ð3Þ

by substituting the Gaussian ansatz in Eq. (2). We introduce
two new (more intuitive) variables by defining

αk ≡ imkð _μk=2μkÞ ¼ ðmkωk=2Þ½ð1 − zkÞ=ð1þ zkÞ�:

The variable zk when nonzero measures the departure of αk
from its adiabatic value. It is also related to the particle
content of the state and hence termed as the excitation
parameter. The evolution of zk is given by a first-order,
nonlinear differential equation

_zk þ 2iωkzk þ ωkϵðz2k − 1Þ=2 ¼ 0; ð4Þ

where ϵ ¼ ð _ωk=ωk þ _mk=mkÞ=ωk is the adiabaticity
parameter. The dynamical equation for μk can also be
obtained and is easier to handle analytically being a linear
(though, second-order) differential equation:

μ̈k þ ð _mk=mkÞ_μk þ ω2
kμk ¼ 0: ð5Þ

Remarkably, this is the same as the classical equation for qk
that we would have obtained by varying the oscillator
action. The problem now comes down to solving these
dynamical equations under appropriate initial conditions
specifying the “vacuum” at some initial time and then
inferring the subsequent evolution of the wave function.
Since they are all related, we can solve for any one of the
variables and get the others from that. By virtue of the
initial condition, our state begins as a ground state with zero
particle content, but at any later time, it will be different
from the instantaneous ground state. The instantaneous
particle content of our state, over the course of its evolution,
is determined by considering its overlap with the adiabati-
cally evolved instantaneous eigenstates defined at each
moment. On computing this overlap, one finds that the
mean particle number is

hnki ¼ jzkj2=ð1 − jzkj2Þ ð6Þ

and the mean value of energy at any time given by the
expectation value of the Hamiltonian is

EkðtÞ ¼ ðhnki þ 1=2ÞωkðtÞ:

It is important to note, however, that this time-dependent
mean particle number may not be monotonic in general
and can have oscillatory behavior in certain regimes. In that
case, this construct should not be taken as “particle”
number in the classical sense. The system or, more so,
the state that we have constructed is away from classicality
and is accompanied by a certain quantum noise. It, there-
fore, needs to be tied up with some measure quantifying
the degree of classicality of the state (or system) for a
proper interpretation. The quantity to do that—termed the
“classicality parameter”—can be constructed using the
parameters of the Wigner function for our Gaussian state
which is given by

Wðqk; pkÞ ¼ ð1=πÞ exp½−q2k=σ2k − σ2kðpk − J kqkÞ2�;

where σ2k ¼ j1þ zkj2=½mkωkð1 − jzkj2Þ� and J k ¼
½2mkωkImðzkÞ�=j1þ zkj2. The classicality parameter is
then defined and computed to be

Ck ≡
hpkqkiWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2

kiWhq2kiW
p ¼ J kσ

2
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðJ kσ
2
kÞ2

p ; ð7Þ

where J kσ
2
k ¼ 2hpkqkiW specifies the phase space

correlation. By construction, we have Ck ∈ ½−1; 1�, which
vanishes for a pure quantum system such that the Wigner
function is an uncorrelated product of Gaussians and
jCkj ¼ 1 for a classical system with a high degree of
correlation in phase space. This construction is empirical
and has been shown [18,19,21] to work well for a number
of cases in tight correlation with the behavior of the mean
particle number defined above but is not without its
limitations. This concludes our review of the formalism
and the differences of our approach from the previous
studies which allow us to discuss issues like time-
dependent particle content and emergence of classicality
without any restrictions.

III. SCHWINGER AND DE SITTER
COLLABORATION

We consider a minimally coupled, massive charged
scalar field in the presence of a uniform electric field in
spatially flat, expanding de Sitter spacetime. The line
element is

ds2 ¼ a2ðηÞð−dη2 þ dx2Þ ð8Þ
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with aðηÞ ¼ −1=ðHηÞ, (constant) Hubble parameterH, and
conformal time −∞ < η < 0. The dynamics is dictated by
the action

S ¼ −ð1=2Þ
Z

d4x
ffiffiffiffiffiffi
−g

p ½ðDμϕÞ�Dμϕþm2jϕj2�; ð9Þ

where Dμ ≡ ∂μ þ ieAμ. Due to the translation invariance
of the background, the scalar field decouples to a set of
harmonic oscillators,

S ¼ ð1=2Þ
Z

d3kdηa2ðηÞðj _qkj2 − ω2
kjqkj2Þ; ð10Þ

with time-dependent mass a2ðηÞ and frequency ω2
k ¼

k2 þ e2A2
z þ 2ekzAz þm2a2. We work in the gauge where

Aμ ¼ ð0; 0; 0; AzÞ so that a constant electric field in the
z-direction defined by F2 ¼ −2E2 gives F0z ¼ Ea2 and
hence Az ¼ −E=H2η. We shall solve for the variable μk
introduced in the formalism to infer the quantum evolution.
Introducing a rescaling ~μk ≡ aμk and defining a set of new
variables,

τ ≡ 2ikη; κ ≡ −ikzL=k; L ¼ eE=H2;

M ≡m=H; ν ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − L2 −M2

q

transforms the dynamical equation of μk to a well-known
form:

~μ00k þ fð1=4 − ν2Þ=τ2 þ κ=τ − 1=4g ~μk ¼ 0 ð11Þ

(here, x0 ≡ dx=dτ), which has the Whittaker function
Wκ;νðτÞ and its complex conjugate as the solutions. We
now need to set the vacuum initial condition to determine
the correct solution. A handle on this and the nature of
subsequent evolution is provided by the adiabaticity
parameter:

ϵ ¼ ðða3H3ðL2 þM2Þ − a2H2kzLÞ þ aHω2
kÞ=ω3

k:

In the asymptotic past (a → 0 limit), we have ω2
k ≃ k2 and

ϵ → 0, and thus we can define a vacuum state in that limit.
This is equivalent to the condition _μk=μkjη→−∞ ≃ iωk

which fixes ~μk to be

~μkðτÞ ¼ ðeiπκ=2=
ffiffiffiffiffi
2k

p
ÞW�

κ;νðτÞ ð12Þ

akin to the Bunch-Davies vacuum condition. The adiabatic
behavior at late times is not guaranteed here, unlike in
the case of flat spacetime where ϵflatðτÞ ¼ τ=½ðk2⊥ þm2Þ=
ðeEÞ þ τ2�3=2 vanishes for τ → �∞ so that in and out
vacuum states can be defined at early and late times.
The late-time adiabatic regime exists only when
ðL2 þM2Þ ≫ 1; otherwise, the evolution is nonadiabatic

for various cases as depicted in Fig. 2. We also see certain
nontrivial features of high, intermediate nonadiabaticity
shown in Fig. 2(d). This occurs whenever ωk ≪ 1 and can
also be divergent when ωk ¼ 0, which being quadratic in a
can be solved to get

a� ¼ kzL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2z − k2ÞL2 − k2M2

q
=½ðL2 þM2ÞH�:

For kz ¼ k, this gives a� ¼ k=½HðL� iMÞ�, which is real
only in the massless case. The particle content shows a
spike at this value of the scale factor in the massless limit.
It is evident from the adiabaticity parameter that the
Schwinger effect in the de Sitter background is a rich
nonadiabatic domain for a weak electric field and light
fields, while the adiabatic vacuum exists at late times only
for massive field and strong electric field background. The
usual in-out prescription to obtain particle production rate
fails in the case of nonadiabatic evolution. This is particu-
larly the main emphasis of this work: to obtain a mean-
ingful description of the (particle creation) dynamics when
the quantum scalar field subsystem is away from an
adiabatic evolution.
Using μk, we can compute all the required quantities. For

instance, the excitation parameter zk is given by

zk ¼ f½kðωk þ kÞ − aHðkzLþ ikÞ�W−κ;νð2ik=aHÞ
þ iaHkW1−κ;νð2ik=aHÞg=f½kðωk − kÞ þ aHðkzL
þ ikÞ�W−κ;νð2ik=aHÞ − iaHkW1−κ;νð2ik=aHÞg:

This is, however, quite a complicated expression and does
not give much information as to how the evolution is
progressing. The exact expressions for the particle content
and the classicality parameter are even more complicated
and incomprehensible in their complete generality. We will
resort to understanding the evolution of these quantities
through numerical plots and explain the features analyti-
cally in tractable limits. The results are tabulated in Fig. 3,
which has plots showing the evolution of zk, hnki, and Ck.
The dashed and normal lines correspond to the sub-Hubble
(aH=k < 1) and super-Hubble (aH=k > 1) phases respec-
tively. Also, note that the evolution in the plots is shown
with respect to x ¼ aH=k rather than the scale factor.
Regime I: L,M ≪ 1 Fig. 3 (first row).—We have a weak

external electric field and light scalar field in this case. The
evolution of zk in its complex plane is similar to its
evolution of a massless scalar field in pure de Sitter
spacetime [21]. For a weak field, the evolution at late
times is highly nonadiabatic with zk close to unity that
shows up in the particle content which increases mono-
tonically. At late times, hnki ∝ ðaH=kÞ2ν with ν real and
finite giving straight lines in the logarithmic plot. The
classicality parameter starts from zero and grows to (−1) as
the modes exit the Hubble radius (aH=k > 1), that is, in
concordance with the emergence of classicality on the
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Hubble exit. Further, the differences in the plots due to
different k and kz values show up only in the super-Hubble
phase.
Regime II: L < 1 < M Fig. 3 (second row).—In this

case, we have a weak, external electric field but heavy
scalar field. The evolution of zk in its complex plane starts
off from the origin but gets subsequently locked on the
imaginary axes going around in circles. The regime is
mildly nonadiabatic and becomes adiabatic for large M.
The particle content is suppressed greatly and saturates in
the super-Hubble phase with slight oscillations. The clas-
sicality parameter also shows these slight oscillations on
the Hubble exit and saturates, but below the complete
classical limit of maximum correlation.
Regime III: M < 1 < L Fig. 3 (third row).—With the

strong field and low mass limit, the evolution actually
resembles that in the case of the flat spacetime background
[19]. The evolution of zk is close to that of a rotor in the
complex plane; that is, it circles around with a near-
constant magnitude. The particle number is negligible in
the sub-Hubble phase and then grows up sharply as the
modes make an exit, oscillates, and saturates at late times.
The classicality parameter grows to minus 1 and then

oscillates between its extremities and does not give a clear
idea of the degree of classicality in this case, although it
should be noted that the variance of Ck is finite and
nonzero.
Regime IV: L,M ≫ 1 Fig. 3 (fourth row).—With large L

and M, we can define the adiabatic vacuum at late times
since the adiabaticity parameter ϵ < 1. Also, the parameter
ν is purely imaginary in this case so that we can write it as
ν ¼ ijνj, that is, the arg ν ¼ π=2. The parameter zk is
concentrated on the imaginary axis with the real part being
close to negligible. The particle content in this adiabatic
regime can be computed exactly in the late-time limit which
turns out to be

hnki ¼
e2πjκj þ e−2πjνj

2jνj sinh 2πjνj þ Aeπjκjð9 cos ξ − 6jνj sin ξÞ;

where ξ ¼ 2θ − ϕþ ψ þ χ, ϕ ≡ argΓð1=2 − ijκj − ijνjÞ,
θ ≡ argΓð−2ijνjÞ, ψ ≡ argΓð1=2þ ijκj − ijνjÞ, χ ≡
2jνj logð2=xÞ, and A¼½coshπðjκjþjνjÞcoshπðjκj−jνjÞ�1=2=
ð4jνj2sinh2jνjÞ. The first term matches the result obtained
in Ref. [15] in the adiabatic limit. The second term, which is
the reason for the oscillations seen in Fig. 3, is, however,

(a) (b)

(c) (d)

FIG. 2. Evolution of adiabaticity parameter ϵ with the scale factor for different L and M specifying field strength and mass, taking
k ¼ kz ¼ 1. The system can have nonadiabatic evolution as in plots (a), (b), and (c) where the in-out prescription fails.
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absent in their analysis. The oscillations are a result of
using the adiabatically evolved instantaneous eigenstates
to compute the particle content. The classicality parameter
also presents a contrary feature. It shows an increase
initially going toward its extreme value but then decreases

and oscillates at a lower value. While the system is still
away from a “pure” quantum depiction in its later stages,
this type of behavior was not anticipated and is quite
intriguing. So, either the classicality parameter is amiss
and insufficient to provide the correct picture or we have

FIG. 3. Evolution of the excitation parameter, zk; the mean number density, hnki; and the classicality parameter, Ck. The evolution is
with respect to x ¼ aH=k such that x < 1 is a sub-Hubble (dotted lines) period and x ¼ 1 specifies the point at which modes exit the
comoving Hubble radius to become super-Hubble for x > 1 (regular lines).

RAMKISHOR SHARMA and SUPRIT SINGH PHYSICAL REVIEW D 96, 025012 (2017)

025012-6



something else interesting going on. This requires a further
analysis with some other constructs that specify the
quantum to classical transition such as the quantum
discord [22], etc.

IV. SUMMARY

We studied the Schwinger effect in de Sitter space in an
analysis that was expansive and unlike anything that has
been carried out before. We used the Schrödinger quanti-
zation formalism that allowed us to go beyond the adiabatic
regime and explore the effect in its full generality. Figures 1
and 3 form the main results of this paper showing the
evolution of state, its instantaneous particle content, and the
degree of classicality through the classicality parameter for
different cases. The deviation from the adiabaticity gives
rise to particle creation which is profound in the case of the
weak electric field and light scalar fields. This is contrary to
the expectation that particle production will be larger for a
strong electric field background. The mean particle number
for a given k-mode shows a monotonic increase only in the
nonadiabatic case and is suppressed in the other regimes.
The nonadiabatic domain of the Schwinger effect can,
thus, have significant consequences in the generation

mechanisms of primordial magnetic fields. The classicality
parameter shows a tight correlation with the mean particle
number and exhibits an oscillatory character when the latter
does, too. In the nonadiabatic regime, with a significantly
high particle number, the system reaches a classical
description specified by the classicality parameter going
to −1 as the modes exit the Hubble radius. In the other
regimes, the “emergence” of classicality for a mode does
seem to occur, but the situation is not completely clear due
to large oscillations at times. This points to the need of a
further analysis including a look at some other methods to
study the quantum to classical transition. Finally, we note
that the formalism and the subsequent trail of our study can
also find potential applications in the domain of analog
gravity where the experimental verifications of quantum
effects are underway [23].
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