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We study four-dimensional N ¼ 2 supersymmetric UðNÞ gauge theory with 2N fundamental hyper-
multiplets in the self-dual Ω-background. The partition function simplifies at special points of the
parameter space and is related to the partition function of two-dimensional Yang-Mills theory on S2. We
also consider the insertion of a Wilson loop operator in two-dimensional Yang-Mills theory and find the
corresponding operator in the four-dimensional N ¼ 2 gauge theory.
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I. INTRODUCTION

N ¼ 2 supersymmetry in four dimensions imposes
powerful constraints on the low energy behavior of super-
symmetric theories. All terms with at most two derivatives
and four fermions in the Wilsonian effective action are
expressed in terms of a single holomorphic quantity, the
prepotential F , whose quantum corrections are one-loop
exact in the perturbation theory, and generated nonpertur-
batively only by instantons. The exact form of the pre-
potential F was first determined for certain theories by
Seiberg and Witten indirectly based on several assumptions
on the strong coupling behavior of the theory [1,2]. It was
then extended to more generalN ¼ 2 theories (see [3] for a
recent review).
It is useful to deform the supersymmetric theories by

putting them on nontrivial supergravity backgrounds [4,5].
The prototypical example is the so-called Ω-background
[4], in which the theory is deformed by two parameters ϵ1, ϵ2
parametrizing an SOð4Þ rotation of R4. The Ω-deformation
provides an IR regularization that preserves a part of the
deformed supersymmetry. The calculation of the super-
symmetric partition function is dramatically simplified
and can be performed using equivariant localization tech-
niques. The dependence of the partition function on the
parameters ϵ1, ϵ2 contains profound physical information. In
particular, it gives the prepotential of the low energy effective
action of the undeformed theory on R4, as well as the
couplings of the theory to theN ¼ 2 supergravity multiplet.
Soon after the exact computation of the partition

function in the Ω-background was done, an interesting
relation between supersymmetric gauge theory and topo-
logical string theory was discovered [6,7]. On the gauge
theory side, we have the four-dimensional N ¼ 2 super-
symmetric UðNÞ gauge theory with 2N − 2 fundamental
hypermultiplets. Its partition function in the self-dual

Ω-background simplifies dramatically at a special point
of the parameter space and is identified with the discon-
nected partition function of A-type topological string
theory on S2. The higher Casimir operators in the four-
dimensional gauge theory map to gravitational descendants
of the Kähler form in the topological string theory. It was
later further generalized in [8] by adding g adjoint hyper-
multiplets in the four-dimensional gauge theory and
replacing S2 with a genus g Riemann surface.
Inspired by the previous results, we explore the possible

simplification of the partition function of the four-
dimensional N ¼ 2 supersymmetric UðNÞ gauge theory
with 2N fundamental hypermultiplets in this paper. We find
that the partition function in the self-dual Ω-background
at a special point of the parameter space can be related to
the partition function of two-dimensional Yang-Mills
theory on S2 [9,10]. The rank of the gauge group of the
two-dimensional theory has nothing to do with the four-
dimensional gauge group UðNÞ.
Once the correspondence is established, one may study

each side using the information of the other side. In this
paper, we consider the Wilson loop operator in the two-
dimensional Yang-Mills theory. The exact expectation
value of the Wilson loop operator has been known for a
long time. We show that inserting a Wilson loop operator in
the fundamental representation corresponds to adding a
nontrivial operator in the four-dimensional N ¼ 2 gauge
theory. The generalization to other representations is more
involved and will be discussed in the future.
The structure of this paper is as follows. In Sec. II, we

review the partition function of four-dimensional N ¼ 2
supersymmetric UðNÞ gauge theory with 2N fundamental
hypermultiplets in the Ω-background, and describe the
Y-observable that will turn out to be useful in our
discussion. We show that the partition function simplifies
at special points of the parameter space. In Sec. III, we
show that the simplified partition function can be related
to the partition function of two-dimensional Yang-Mills*zhangxinyuphysics@gmail.com
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theory on S2. We then study the effect of inserting a Wilson
loop operator in the two-dimensional Yang-Mills theory.
Finally, in Sec. IV, we provide some further discussions.

II. INSTANTON PARTITION FUNCTION OF
FOUR-DIMENSIONAL N = 2 GAUGE THEORY

In this paper, we are interested in the N ¼ 2 super-
symmetric UðNÞ gauge theory with 2N fundamental
hypermultiplets. The Lagrangian and the vacua are para-
metrized by the coupling constant q ¼ exp ð2πiτÞ; the
vacuum expectation value a ¼ diagða1;…; aNÞ of the
scalar field in the vector multiplet; and the complex masses
m ¼ diagðm1;…; m2NÞ of the matter hypermultiplets. We
refer to [11] for a detailed analysis and references for the
supersymmetric partition function of very general N ¼ 2
supersymmetric gauge theories in the Ω-background.

A. Partition function in the self-dual Ω-background

Let us first recall the partition function of the four-
dimensionalN ¼ 2 gauge theory in the Ω-background [4].
The Ω-background breaks the translational invariance
by deforming the theory in a rotationally covariant way,
with parameters ϵ1, ϵ2. In the following, we always set
ϵ1 ¼ −ℏ, ϵ2 ¼ ℏ.
The supersymmetric partition function of N ¼ 2 theory

consists of three parts: the classical, the one-loop, and the
instanton parts,

Zða;m; q;ℏÞ ¼ Zclassicalða; q;ℏÞZ1−loopða;m;ℏÞ
× Zinstantonða;m; q;ℏÞ: ð1Þ

The classical part is simply

Zclassicalða; q;ℏÞ ¼ q
1

2ℏ2

P
N
α¼1

a2α : ð2Þ
The one-loop part is given as a product of contributions
from the vector multiplet and the matter hypermultiplets
using the Barnes double gamma function. The one-loop
contribution of a vector multiplet is

Z1−loop
vector ða;ℏÞ ¼

Y
1≤i<j≤N

½Γ2ðai − aj þ ℏjℏ;−ℏÞ

× Γ2ðai − aj − ℏjℏ;−ℏÞ�−1; ð3Þ
while the one-loop contribution of fundamental hyper-
multiplets is

Z1−loop
fund ða; m;ℏÞ ¼

YN
i¼1

Y2N
f¼1

Γ2ðai −mfjℏ;−ℏÞ: ð4Þ

The instanton partition function is defined as an equivariant
integral over the instanton moduli space. Applying the
equivariant localization method, the integral can be reduced
to a sum over contributions of the fixed points of the moduli

space. There is a one-to-one correspondence between the
fixed points and colored partitionsΛ ¼ ðλðαÞÞNα¼1, with each
partition λðαÞ being a weakly decreasing sequence of non-
negative integers,

λðαÞ ¼ ðλðαÞ1 ≥ λðαÞ2 ≥ � � � ≥ λðαÞ
lðλðαÞÞ > λðαÞ

lðλðαÞÞþ1
¼ � � � ¼ 0Þ;

ð5Þ

whose size is denoted to be jλðαÞj ¼Piλ
ðαÞ
i . Accordingly

the instanton partition function becomes a statistical model
of random partitions [4],

Zinstantonða;m; q;ℏÞ ¼
X
Λ
qjΛjμΛða;m;ℏÞ; ð6Þ

where jΛj ¼PN
α¼1 jλðαÞj. The contribution to the measure

of a vector multiplet is given by

μΛvectorða;ℏÞ ¼
Y

ðα;iÞ≠ðβ;jÞ

aα − aβ þ ℏðλðαÞi − λðβÞj þ j − iÞ
aα − aβ þ ℏðj − iÞ ;

ð7Þ

and the contribution to the measure of fundamental hyper-
multiplets is

μΛfundða;m;ℏÞ ¼
YN
α¼1

Y2N
f¼1

Y
□∈λðαÞ

ðc□ −mfÞ

¼ ℏ2NjΛjYN
α¼1

Y2N
f¼1

Y
i

Γðaα−mf

ℏ þ 1þ λðαÞi − iÞ
Γðaα−mf

ℏ þ 1− iÞ ;

ð8Þ

where for each box □ ¼ ði; jÞ ∈ λðαÞ, we define its
content as

c□ ¼ aα þ ϵ1ði − 1Þ þ ϵ2ðj − 1Þ: ð9Þ

The contribution to the measure of an antifundamental
hypermultiplet with mass m is equal to the contribution to
the measure of a fundamental hypermultiplet with mass −m
in the self-dual Ω-background.
For the undeformed theory on R4, we can perturb the

theory by adding gauge-invariant chiral operators to the
ultraviolet prepotential, while keeping the ultraviolet anti-
prepotential unchanged,

F̄UV ¼ τ̄

2
TrΦ̄2: ð10Þ

For example, we can add single-trace operators,
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FUV →
τ

2
TrΦ2 þ

X∞
j¼2

τj
j
TrΦj; ð11Þ

which get deformed in the Ω-background. The localization
computation still works, and the partition function becomes

Zða;m; q; τ;ℏÞ ¼ Zclassicalða; q;ℏÞZ1−loopða;m;ℏÞ
×
X
Λ
qjΛjμΛða;m;ℏÞ

× exp

�
1

ℏ2

X∞
j¼2

τj
j
chjða;ΛÞ

�
: ð12Þ

Here chjða;ΛÞ ¼
P

N
α¼1 chjðaα; λðαÞÞ, with

chjða; λÞ ¼ aj þ
X∞
i¼1

ððaþ ℏðλi þ 1 − iÞÞj

− ðaþ ℏðλi − iÞÞj − ðaþ ℏð1 − iÞÞj
þ ða − ℏiÞjÞ: ð13Þ

For example,

ch2ða; λÞ ¼ a2 þ 2ℏ2jλj; ð14Þ

ch3ða; λÞ ¼ a3 þ 6ℏ2ajλj þ 3ℏ3
X
i

λiðλi þ 1 − 2iÞ: ð15Þ

Multitrace operators can also be added and can be
analyzed using the Hubbard-Stratonovich transformation.
The full set of gauge-invariant chiral operators can be
expressed as

FUV →
τ

2
TrΦ2 þ

X∞
k⃗

tk⃗
Y∞
j¼1

1

kj!

�
1

j
TrΦj

�
kj
;

k⃗ ¼ ðk1; k2;…Þ; ð16Þ

and the partition function is deformed to be

Zða;m; q; t;ℏÞ ¼ Zclassicalða; q;ℏÞZ1−loopða;m;ℏÞ
×
X
Λ
qjΛjμΛða;m;ℏÞ

× exp

�
1

ℏ2

X∞
k⃗

tk⃗
Y∞
j¼1

1

kj!

�
1

j
chjða; λÞ

�
kj
�
:

ð17Þ

B. Y-observable

With the identification of the instanton partition function
with a statistical model (6), we can compute the expectation
value of observables in the Ω-background as

hOi ¼
P

Λq
jΛjμΛO½Λ�P
Λq

jΛjμΛ
; ð18Þ

whereO½Λ� is the value ofO at the fixed point labeled byΛ.
An important observable in the analysis of nonperturba-

tive information of four-dimensional N ¼ 2 gauge theory
is the Y-observable, which is defined using the gauge-
invariant polynomials of the adjoint scalar field ϕ in the
vector multiplet, evaluated at the fixed point of the rota-
tional symmetry SOð4Þ,

YðxÞ ¼ xN exp

�
−
X∞
j¼1

1

jxj
Trðϕð0ÞÞj

�
: ð19Þ

Classically, it is given by

YðxÞclassical ¼ det ðx − ϕð0ÞÞ ¼
YN
α¼1

ðx − aαÞ: ð20Þ

However, there are quantum corrections due to instantons.
Denote the outer and the inner boundaries of the partition λ
as ∂þλ and ∂−λ, respectively. The value of YðxÞ in the self-
dual Ω-background at the fixed point labeled by Λ is [12]

YðxÞ½Λ� ¼
YN
α¼1

Q
⊞∈∂þλðαÞ ðx − c⊞ÞQ
⊟∈∂−λðαÞ ðx − c⊟Þ

¼
YN
α¼1

Y∞
i

x − aα − ℏðλðαÞi − iþ 1Þ
x − aα − ℏðλðαÞi − iÞ

: ð21Þ

Notice that the expression (21) is highly redundant, and
there can be many cancellations between the numerator and
the denominator. For example, the contribution from the

box ðnþ 1; λðαÞnþ1 þ 1Þ ∈ g∂þλðαÞ cancels the contribution

from the box ðn; λðαÞn Þ ∈ g∂−λ
ðαÞ for n > lðλðαÞÞ. Hence,

YðxÞ½Λ� does not change if we truncate the range of the
index i to 1 ≤ i ≤ n for an arbitrary integer n ≥ lðλðαÞÞ.

C. Simplification of partition function

Up to this point we assumed that the expectation values
a1, …; aN and masses m1, …; m2N are generic. Then the
partition function (6) contains an infinite sum over colored
partitions. For a special value of the masses, the partitionsΛ
that we sum over can be constrained. As a result, the
partition function (6) gets simplified.
It is easy to see that if aα ¼ mf for some α ∈

f1; 2;…; Ng and f ∈ f1; 2;…; 2Ng, then λðαÞ ¼ ∅; other-
wise (8) is zero. Therefore, if we choose a particular point
on the parameter space

aα ¼ m2α−1 ¼ m2α; α ¼ 1;…; N; ð22Þ
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the partitions λðαÞ ¼ ∅ for all α ¼ 1; 2;…; N, and the
instanton partition function is trivially 1. This simplifica-
tion of the instanton partition function has been known for a
long time. Physically, when one of the aα’s is equal to two
masses, two of the hypermultiplets become massless, and
can be Higgsed so that the UðNÞ theory with 2N flavors
is reduced to a UðN − 1Þ theory with 2N − 2 flavors.
However, the instanton partition function will not change
since it is a Coulomb-branch quantity which is independent
of the manipulation on the hypermultiplet side.
Now let us relax the condition (22) a little bit. We still fix

aα ¼ m2α−1 ¼ m2α; α ¼ 2;…; N; ð23Þ

so that the partitions λðαÞ ¼ ∅ for α ¼ 2;…; N. We effec-
tively reduce the UðNÞ gauge theory with 2N fundamental
hypermultiplets to the Uð1Þ theory with two fundamental
hypermultiplets. At the same time, we choose

a1 ¼ m1 þ nℏ ¼ m2 þ nℏ; ð24Þ

where n is a positive integer. We see from (8) that

if λð1Þnþ1 ≥ 1, then the contribution of the box □ ¼ ðnþ
1; 1Þ ∈ λð1Þ makes μΛfund vanish. Hence, the length of the
partition λð1Þ is at most n. We can set the length of the
partition λð1Þ to be n by adding zeros to the end of
the partition if its precise length is less than n. In this
case, the measure in the instanton partition function
simplifies.
The case n ¼ 1 is special, since now λð1Þ is no longer a

two-dimensional partition. The measure of the vector
multiplet completely cancels the measure of the funda-
mental hypermultiplets, and the instanton partition
function is

Zinstanton ¼
X∞
λð1Þ
1
¼0

qλ
ð1Þ
1 ¼ 1

1 − q
: ð25Þ

In the following, we always assume that n ≥ 2. In this case,
the measure of the vector multiplet (7) becomes

μΛvector ¼
 Y

i≠j

ℏðλð1Þi − λð1Þj þ j − iÞ
ℏðj − iÞ

! YN
β¼2

Y
i;j

a1 − aβ þ ℏðλð1Þi þ j − iÞ
a1 − aβ þ ℏðj − iÞ

!
2

¼
 Y

1≤i<j≤n

λð1Þi − λð1Þj þ j − i

j − i

!
2
 Yn

i¼1

Γðnþ 1 − iÞ
ℏλð1Þi Γðnþ 1þ λð1Þi − iÞ

!
2

×

 YN
β¼2

Yn
i¼1

Γða1−aβℏ − iþ 1Þ
ℏλð1Þi Γða1−aβℏ − iþ λð1Þi þ 1Þ

!
2

; ð26Þ

while the measure of the fundamental hypermultiplets (8) becomes

μΛfund ¼
Y2N
f¼1

Yn
i¼1

Γða1−mf

ℏ þ 1þ λð1Þi − iÞ
Γða1−mf

ℏ þ 1 − iÞ

¼ ℏ2Njλð1Þj
�Yn

i¼1

Γðnþ 1þ λð1Þi − iÞ
Γðnþ 1 − iÞ

�2YN
α¼2

�Yn
i¼1

Γða1−aαℏ þ 1þ λð1Þi − iÞ
Γða1−aαℏ þ 1 − iÞ

�2

: ð27Þ

After many cancellations between μΛvector and μΛfund, the remaining measure is

μΛ ¼ μΛvectorμΛfund ¼
� Y

1≤i<j≤n

λð1Þi − λð1Þj þ j − i

j − i

�2

: ð28Þ

In this case, the Y-observable (21) also simplifies,

YðxÞ½Λ� ¼
Qnþ1

i¼1 ðx − a1 − ℏðλð1Þi þ 1 − iÞÞQ
n
i¼1 ðx − a1 − ℏðλð1Þi − iÞÞ

¼ ðx − a1 þ nℏÞ
Yn
i¼1

ðx − a1 − ℏðλð1Þi þ 1 − iÞÞ
ðx − a1 − ℏðλð1Þi − iÞÞ

:

ð29Þ

As we see, at the point (23)–(24) of the parameter space,
the instanton partition function is independent of the gauge
group rank N, and the difference for different N values in
the full partition function is an overall constant which is
irrelevant to our discussion. Therefore, we shall concentrate
on the case N ¼ 1 in the following discussion and drop
some of the subscripts 1. Notice that the Uð1Þ gauge theory
with two fundamental hypermultiplets is nontrivial due to
the inexplicit noncommutative deformation.
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III. RELATION TO TWO-DIMENSIONAL
YANG-MILLS THEORY

In this section, we shall relate the partition function
discussed in Sec. II to the partition function of two-
dimensional Yang-Mills theory on S2.

A. Partition function of two-dimensional
Yang-Mills theory

Two-dimensional Yang-Mills theory is an exactly
solvable model and has been extensively studied from
many different points of view (see [10] for a review). Its
partition function on a Riemann surface Σ of genus g is
defined as

ZYM2
Σ ðε;AðΣÞ; GÞ

¼ 1

VolðGÞ
Z

DADϕ exp

�
i
Z
Σ
TrϕFA þ ε

2

Z
Σ
dμTrϕ2

�
;

ð30Þ

where ε is the coupling constant; AðΣÞ is the area of the
Riemann surface Σ; and Tr denotes the invariant, negative-
definite quadratic form on the Lie algebra g of the gauge
group G. The partition function (30) can be expressed as a
sum over all finite-dimensional irreducible representations
R of the gauge group G [9,13,14],

ZYM2
Σ ðϱ; GÞ ¼ e−βð2−2gÞ−γεAðΣÞX

R

ðdimRÞ2−2g

× exp

�
−
ϱ

2
C2ðRÞ

�
; ð31Þ

where the prefactor is the regularization-dependent ambi-
guity, dimR is the dimension of the representation R,
C2ðRÞ is the quadratic Casimir of the representation

R, and ϱ ¼ εAðΣÞ is the dimensionless coupling
constant.

B. Matching the parameters

We would like to find the precise relation between the
partition function (17) and the partition function of two-
dimensional Yang-Mills theory (31), both for the group
SUðnÞ and for the group UðnÞ.

1. SUðnÞ theory
For the group G ¼ SUðnÞ, the irreducible representa-

tions R are parametrized by the partition ðλ1 ≥ λ2 ≥ � � � ≥
λn−1 ≥ λn ¼ 0Þ. The dimension and the quadratic Casimir
of the representation R are

dimR ¼
Y

1≤i<j≤n

λi − λj þ j − i

j − i
; ð32Þ

C2ðRÞ ¼
Xn
i¼1

λiðλi − 2iþ 1Þ þ njλj − jλj2
n

: ð33Þ

We see that both the dimension and the quadratic
Casimir are independent of the overall shift of λ’s.
Therefore, the difference between the summation over
λ1 ≥ λ2 ≥ � � � ≥ λn−1 ≥ λn ≥ 0 and λ1 ≥ λ2 ≥ � � � ≥ λn−1 ≥
λn ¼ 0 in the partition function is merely an irrelevant
overall constant.
To identify the partition function of two-dimensional

SUðnÞ Yang-Mills theory on S2 with the partition function
of the four-dimensional N ¼ 2 Uð1Þ gauge theory with
two fundamental hypermultiplets at the degenerate point of
the parameter space, we need to set a ¼ 0 and turn on
operators with couplings t0;1, t0;2, and t0;0;1 in (17). The
partition function becomes

Zða ¼ 0; m1 ¼ m2 ¼ −nℏ; q; τ;ℏÞ

¼ Γ2ðnℏjℏ;−ℏÞ2
X
λ

qjλj
� Y

1≤i<j≤n

λi − λj þ j − i

j − i

�
2

ð34Þ

× exp

�
1

ℏ2

�
t0;1
2

ch2ð0; λÞ þ
t0;2
8

ðch2ð0; λÞÞ2 þ
t0;0;1
3

ch3ð0; λÞ
��

¼ Γ2ðnℏjℏ;−ℏÞ2
X
λ

qjλj
� Y

1≤i<j≤n

λi − λj þ j − i

j − i

�
2

× exp

��
t0;1jλj þ

t0;2ℏ2

2
jλj2 þ t0;0;1ℏ

X
i

λiðλi þ 1 − 2iÞ
��

: ð35Þ

Ignoring the unimportant prefactor coming from the one-loop contribution, the partition function is equal to the partition
function of two-dimensional Yang-Mills theory on S2 (31) with gauge group SUðnÞ when
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logðqÞjλj þ t0;1jλj þ
t0;2ℏ2

2
jλj2 þ t0;0;1ℏ

X
i

λiðλi þ 1 − 2iÞ

¼ −
ϱ

2

�Xn
i¼1

λiðλi − 2iþ 1Þ þ njλj − jλj2
n

�
; ð36Þ

which gives

t0;1 ¼ −
ϱn
2
− logðqÞ; t0;2 ¼

ϱ

nℏ2
; t0;0;1 ¼ −

ϱ

2ℏ
:

ð37Þ

2. UðnÞ theory
For the groupUðnÞ, the irreducible representationsR are

parametrized by n integers ðμ1 ≥ μ2 ≥ � � � ≥ μn−1 ≥ μnÞ
without positivity restriction. It is convenient to use the
decomposition of the representation R of UðnÞ in terms of
representation R of SUðnÞ and the Uð1Þ charge p,

μi ¼ λi þ r; i ¼ 1; 2;…; n − 1

μn ¼ r;

p ¼ jλj þ nr; r ∈ Z: ð38Þ

The dimension of representation R of group UðnÞ has the
same form (32) as the group SUðnÞ, while the quadratic
Casimir is given by

C2ðRÞ ¼ C2ðRÞ þ
p2

n
¼
Xn
i¼1

λiðλi − 2iþ 1Þ

þ ðnþ 2rÞjλj þ nr2: ð39Þ

To relate the four-dimensional theory to two-dimensional
Yang-Mills theory with gauge group UðnÞ, we no longer
need to turn on the double-trace operators. Instead, we turn
on operators with parameter τ2 and τ3 in (12),

Zða;m; q; τ;ℏÞ

¼ Γ2ðnℏjℏ;−ℏÞ2
X
λ

� Y
1≤i<j≤n

λi − λj þ j − i

j − i

�
2

× exp

�
ðτ2 þ logðqÞÞ

�
a2

2ℏ2
þ jλj

�
þ τ3

�
a3

3ℏ2
þ 2ajλj þ ℏ

X
i

λiðλi þ 1 − 2iÞ
��

: ð40Þ

We now set

a ¼ m1 þ nℏ ¼ m2 þ nℏ ¼ rℏ; ð41Þ
where r ∈ Z. Ignoring the irrelevant prefactor coming from the one-loop contribution, the partition function becomes

Zðrℏ; ðr − nÞℏ; q; τ;ℏÞ

¼
X
λ

� Y
1≤i<j≤n

λi − λj þ j − i

j − i

�
2

× exp

�
ðτ2 þ logðqÞÞ

�
r2

2
þ jλj

�
þ τ3ℏ

�
r3

3
þ 2rjλj þ

X
i

λiðλi þ 1 − 2iÞ
��

: ð42Þ

Now we consider the sum over r ∈ Z with a possible weight depending on r,X
r∈Z

exp ð−f2r2 − f3r3ÞZðrℏ; ðr − nÞℏ; q; τ;ℏÞ

¼
X
r∈Z

X
λ

� Y
1≤i<j≤n

λi − λj þ j − i

j − i

�
2

× exp

�
ðτ2 þ logðqÞÞ

�
r2

2
þ jλj

�
þ τ3ℏ

�
r3

3
þ 2rjλj þ

X
i

λiðλi þ 1 − 2iÞ
�
− f2r2 − f3r3

�
; ð43Þ

which is equal to the partition function of two-dimensional Yang-Mills theory on S2 (31) with gauge group UðnÞ when

τ3ℏ
X
i

λiðλi þ 1 − 2iÞ þ ðτ2 þ logðqÞÞjλj þ 2τ3ℏjλjrþ
�
τ2 þ logðqÞ

2
− f2

�
r2 þ

�
τ3ℏ
3

− f3

�
r3

¼ −
ϱ

2

�Xn
i¼1

λiðλi − 2iþ 1Þ þ njλj þ 2rjλj þ nr2
�
; ð44Þ
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which gives that

τ2 ¼ −
ϱn
2
− logðqÞ; τ3 ¼ −

ϱ

2ℏ
; f2 ¼

ϱn
4
; f3 ¼ −

ϱ

6ℏ
: ð45Þ

Therefore, we have the relation

X
r∈Z

exp

�
−
ϱn
4
r2 þ ϱ

6ℏ
r3
�
Z

�
rℏ; ðr − nÞℏ; q; τ2 ¼ −

ϱn
2
− logðqÞ; τ3 ¼ −

ϱ

2ℏ
;ℏ

�
¼ ZYM2

S2 ðϱ; UðnÞÞ: ð46Þ

C. Wilson loop operator in two-dimensional
Yang-Mills theory

The correspondence was hitherto at the level of the
partition functions. We would like to deepen it by studying
the Wilson loop operator in the two-dimensional Yang-
Mills theory.
Suppose that a loop Γ decomposes S2 into two disjoint

connected components Σ1 and Σ2. Associated to the curve

Γ we have a representation RΓ of the gauge group and we
define a Wilson loop operator

WðΓ; RΓÞ ¼ TrRΓ
P exp

I
Γ
A: ð47Þ

The expectation value of the Wilson loop operator
WðΓ; RΓÞ is given by

hWðΓ; RΓÞiYM2 ¼ ZYM2
S2 ðεAðΣ1∪Σ2ÞÞ−1

X
R1;R2

ðdimR1ÞðdimR2Þ

× exp

�
−
εAðΣ1Þ

2
C2ðR1Þ −

εAðΣ2Þ
2

C2ðR2Þ
�
NðR1 ⊗ RΓ; R2Þ; ð48Þ

whereNðR1 ⊗ RΓ; R2Þ is the fusion number defined by the
decomposition of a tensor product into irreducible repre-
sentations:

R1 ⊗ RΓ ¼ ⨁
R2

NðR1 ⊗ RΓ; R2ÞR2: ð49Þ

In this paper, we are interested in the simple case that RΓ is
the fundamental representation. The fusion number is 1 if
the Young diagram associated to R2 is obtained by adding a
box in the Young diagram associated to R1, and 0
otherwise. We can make an analogy with (18) and write

hWðΓ;□ÞiYM2 ¼ ZYM2
S2 ðεAðΣ1∪Σ2ÞÞ−1

X
R

ðdimRÞ2 exp
�
−
εAðΣ1∪Σ2Þ

2
C2ðRÞ

�
WðΓ;□Þ½R�: ð50Þ

Here WðΓ;□Þ½R� is the value of WðΓ;□Þ evaluated at the
representation R,

WðΓ;□Þ½R� ¼
X

Rþ¼R⊗□

dimRþ
dimR

× exp

�
−
εΔA
2

ðC2ðRþÞ − C2ðRÞÞ
�
; ð51Þ

where ΔA ¼ AðΣ2Þ −AðΣ1Þ.
First we consider the case when the gauge group is

SUðnÞ. Suppose that the Young diagram associated to the
representation R is ðλ1 ≥ λ2 ≥ � � � ≥ λn ≥ 0Þ and becomes
the Young diagram associated to the representation Rþ by

adding a box in the lth row. From (32) and (33), we obtain
that

dimRþ
dimR

¼
Y
i≠r

λi − ðλl þ 1Þ þ l − i
λi − λl þ l − i

; ð52Þ

C2ðRþÞ − C2ðRÞ ¼ 2ðλl − lþ 1Þ þ n2 − 1 − 2jλj
n

: ð53Þ

It is interesting to notice that

Res
x¼a1þℏðλð1Þl þ1−lÞ

�
xþ nℏ
YðxÞ½Λ�

�
¼ dimRþ

dimR
: ð54Þ
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The appearance of the Y-observable should not be surpris-
ing. Recall that the physical meaning of the Y-observable is
to add or remove a pointlike instanton. Hence, the four-
dimensional operator corresponding to WðΓ;□Þ½R� is

1

2πi

I
dx

xþ nℏ
YðxÞ½Λ� e

−εΔAx exp

�
−εΔA

�
n2 − 1

2n
−
1

n
q
∂
∂q
��

:

ð55Þ

For the case of UðnÞ, the equations (52) and (54) still
hold. The difference between the Casimirs now is simpler:

C2ðRþÞ − C2ðRÞ ¼ 2ðλl − lþ 1Þ þ nþ 2r: ð56Þ

Hence, the four-dimensional operator corresponding to
WðΓ;□Þ½R� is now

1

2πi

I
dx

xþ nℏ
YðxÞ½Λ� exp

�
−εΔA

�
xþ n

2

��
: ð57Þ

IV. DISCUSSIONS

In this paper, we study a generalization of the corre-
spondence between four-dimensional N ¼ 2 supersym-
metric UðNÞ gauge theory with 2N − 2 fundamental
hypermultiplets and A-type topological string theory on
S2. In our correspondence, the partition function of the
four-dimensional UðNÞ gauge theory with 2N fundamental
hypermultiplets at a suitable nongeneric point of the
parameter space is related to the partition function of
two-dimensional Yang-Mills theory on S2. We also study
the expectation value of a Wilson loop operator in the
fundamental representation in the two-dimensional Yang-
Mills theory. The corresponding operator in the four-
dimensional theory can be found for the fundamental
representation. It appears that the correspondence is more
complicated than the old correspondence in [6–8].
The relation between four-dimensional supersymmetric

gauge theory and two-dimensional Yang-Mills theory on S2

was discovered in many other places. For example, the
supersymmetric Wilson loops restricted to an S2 submani-
fold of four-dimensional space in N ¼ 4 supersymmetric
Yang-Mills theory [15,16] can be consistently truncated to
a two-dimensional Yang-Mills theory on S2. However, the

number of supersymmetry in four-dimensional gauge
theory and the way to identify the Wilson loop operator
in their work is quite different from our story. One other
similar relation is the identification of the superconformal
index of a class of four-dimensional N ¼ 2 theories with a
deformation of two-dimensional Yang-Mills theory on
punctured Riemann surfaces [17]. However, in their cor-
respondence, the four-dimensional gauge theory is a
complicated quiver theory, and there are necessarily a
number of punctures in the Riemann surface. Hence, all
these old relations are indeed different from ours.
So far, the correspondence discussed in this paper is only

a mathematical coincidence of two different partition
functions. It will be nice if one can embed our correspon-
dence into a string theory setup and provide a physical
interpretation of the results we have got. The procedure
(23) and (24) is similar to the approach to introduce surface
operators or vortices in the previous discussions of AGT
correspondence, and one may effectively describe the
surface operator as some two-dimensional gauge theory.
One may wonder whether the two-dimensional Yang-Mills
theory we discuss is somehow related to the gauge theory in
this construction. However, we would like to point out that
this is not the case. Notice that if we want to have a surface
operator in a UðNÞ gauge theory, we can consider a two-
dimensional gauge theory coupled to the UðNÞ gauge
theory, or we can start with a UðNÞ ×UðN0Þ theory and
tune the Coulomb moduli in the UðN0Þ part of the theory.
Furthermore, in this case, the two-dimensional gauge
theory lives inside the spacetime of the four-dimensional
gauge theory. Instead, we suggest that the proper physical
origin of our result should come from the compactification
of little string theory. The four-dimensional gauge theory
and the two-dimensional Yang-Mills theory live in the
perpendicular spaces. This is also the case for the old
correspondence between supersymmetric gauge theory and
topological string theory [6,7].
There are many open problems which remain to be

answered.
First, we only studied the Wilson loop operator which is

inserted in the two-dimensional Yang-Mills theory in the
fundamental representation. We can insert Wilson loop
operators in arbitrary representations of the gauge group
and define a quantity similar to (51),

WðΓ; RΓÞ½R� ¼
X
Rþ

dimRþ
dimR

exp

�
−
εΔA
2

ðC2ðRþÞ − C2ðRÞÞ
�
NðR ⊗ RΓ; RþÞ: ð58Þ

Now NðR ⊗ RΓ; RþÞ is more complicated. What are the corresponding four-dimensional operators?
Second, we only consider the first nontrivial simplification of the instanton partition function at a nongeneric point of the

parameter space in this paper. It is natural to extend our analysis to the cases

a1 ¼ m1 þ n1ℏ ¼ m2 þ n1ℏ; a2 ¼ m3 þ n2ℏ ¼ m4 þ n2ℏ; a3 ¼ m5 ¼ m6;…; aN ¼ m2N−1 ¼ m2N: ð59Þ
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Then the length of the partition λð1Þ is at most n1, the length of the partition λð2Þ is at most n2, while all the other partitions are
empty. Similar to the case discussed in the paper, there are many cancellations in the measure. The resulting measure is

μ ¼
� Y

1≤i<j≤n1

λð1Þi − λð1Þj þ j − i

j − i

�2� Y
1≤i<j≤n2

λð2Þi − λð2Þj þ j − i

j − i

�2

×

�Yn1
i¼1

Yn2
j¼1

a1 − a2 þ ℏðλð1Þi − λð2Þj þ j − iÞ
a1 − a2 þ ℏðj − iÞ

�2

×
�Yn1

i¼1

Γða1−a2ℏ þ n2 þ 1þ λð1Þi − iÞ
Γða1−a2ℏ þ n2 þ 1 − iÞ

�2�Yn2
i¼1

Γða2−a1ℏ þ n1 þ 1þ λð2Þi − iÞ
Γða2−a1ℏ þ n1 þ 1 − iÞ

�2

: ð60Þ

What is the physical interpretation of this a partition function?
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