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We initiate a study of the bootstrap program for field theories with Bondi-Metzner-Sachs (BMS)
symmetry. Specifically, we look at two-dimensional field theories with BMS3 symmetry, and using the
highest weight representations we construct the BMS bootstrap equation by formulating the notion of
crossing symmetry in the four-point functions of these field theories. In the limit of large central charge, we
find analytic expressions for the BMS blocks that are the basic ingredients for the solution of the bootstrap
equation. This constitutes, to the best of our knowledge, the first example of the formulation and significant
steps toward the solution of a bootstrap equation in a theory which is not a relativistic conformal field
theory.

DOI: 10.1103/PhysRevD.96.025007

I. INTRODUCTION

Bootstrapping is a process that is self-generating or self-
sustaining. Historically, it meant an absurd or impossible
action, but it has come to be used in a much more positive
light in the modern world. Much of physics is the study of
symmetry and symmetry principles. A particularly useful
symmetry, which has found very wide ranging applications
starting from the study of phase transitions in statistical
mechanics to the use of world-sheet techniques in string
theory, is conformal symmetry [1]. Field theories with
conformal symmetry, or conformal field theories (CFTs),
enjoy more symmetry than the usual relativistic field
theories. In any general dimensions, the relativistic con-
formal group consists of the Poincaré group (rotations,
boosts and translations) along with scalings and special
conformal transformations. By repeated use of conformal
invariance, it is possible to constrain the form of correlation
functions, the observables of a CFT, completely. This
nonperturbative method of constraining and hence solving
CFTs is known as the conformal bootstrap program [2,3].
InD ¼ 2, the above mentioned finite conformal group is

enhanced to two copies of the infinite dimensional Virasoro
algebra [4] given by

½Ln;Lm� ¼ ðn −mÞLnþm þ c
12

δnþm;0ðn3 − nÞ ð1Þ

and a second copy L̄n that commutes with Ln. The power
of the infinite algebra in two-dimensional (2D) was used
to find a class of exact solutions called the minimal
models. One of the main ideas behind this was the
conformal bootstrap [4]. It was assumed that there exists
an associative operator algebra, and this led to a powerful

set of constraints on the observables of the theory. This
technique helped solve the models of the minimal series,
which included the Ising model, as well as the Liouville
theory [5]. The power of infinite symmetry, specific to
D ¼ 2, was useful in all of this, and the developments of
conformal bootstrap techniques remained confined to
D ¼ 2 for quite a while. Recently, following [6,7] and
aided by numerical studies, there has been an explosion in
activity in generalizing the conformal bootstrap program
to dimensions higher than two. The interested reader is
referred to [8,9] for a review of the current status in
the field.

II. BMS SYMMETRY

It is obviously of interest to ask whether one can extend
the methods of bootstrap to field theories with symmetry
structures other than conformal symmetry. In this paper, we
initiate a program of what we call the Bondi-Metzner-Sachs
(BMS) bootstrap. We will consider field theories invariant
under the BMS group and, drawing inspiration from
techniques in CFTs, use symmetry to constrain such
theories. In a gravitational theory, the asymptotic symmetry
group (ASG) formally captures the symmetries of the theory
at infinity. The states of the theory form representations of
the ASG which also dictates the symmetry structure of any
putative holographically dual field theory living on the
boundary of the gravitational theory. The BMS group arises
as the ASG of asymptotically flat spacetimes at their null
boundary [10,11]. For three-dimensional (3D) Minkowski
spacetimes, the ASG is the BMS3 group, the associated
algebra of which is given by [12,13]

½Ln; Lm� ¼ ðn −mÞLnþm þ cLδnþm;0ðn3 − nÞ;
½Ln;Mm� ¼ ðn −mÞMnþm þ cMδnþm;0ðn3 − nÞ;
½Mn;Mm� ¼ 0: ð2Þ
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Here Ln’s are diffeomorphisms of the circle at null infinity
called superrotations, while Mn’s are angle dependent
translations of the null direction known as supertranslations.
Equation (2) is also the symmetry algebra of any putative
dual 2d field theory which lives on the null boundary of 3d
flat space [14]. Constructing the notion of holography for 3d
flat spacetimes using the BMS group has been pursued
recently with some successes [15–21]. The reader is referred
to [22] that contains a summary of current research in this
direction.
Our goal in the present paper would be to consider 2d

field theories invariant under (2) and constrain their
properties using self-consistency requirements mimicking
the conformal bootstrap program mentioned previously.
Interestingly, field theories with these symmetries arise in
many different contexts, e.g. in nonrelativistic conformal
systems [23,24], on the world sheet of tensionless string
theory [25,26]. Especially in the nonrelativistic context,
these field theories, also known as Galilean conformal field
theories (GCFTs), are expected to play the same role as
CFTs and are expected to govern the physics of the fixed
points in the renormalization group flows in Galilean field
theories. So the methods and results of this work would
have far reaching consequences in many diverse fields. We
would also like to emphasize that, to the best of our
knowledge, this is the first construction of a bootstrap
program outside the ambit of relativistic conformal field
theories.

III. OPERATOR PRODUCT EXPANSION
AND RECURSION RELATION

We will concentrate on 2d field theories with (2) as their
symmetry algebra. We would also be primarily working in
what we call the “plane” representation. In a field theory
with a noncompact spatial direction x and time direction t,
the vector fields which generate (2) in this representation
are given by

Ln ¼ −xnþ1∂x − ðnþ 1Þxnt∂t; Mn ¼ xnþ1∂t: ð3Þ
We will consider the highest weight representations of
the algebra (2). This means that the states of the theory
[here for the BMS invariant field theory we assume a state-
operator correspondence: ϕð0; 0Þj0i ¼ jϕi] are labeled by
[24,27]

L0jΔ; ξi ¼ ΔjΔ; ξi; M0jΔ; ξi ¼ ξjΔ; ξi: ð4Þ

We construct the BMS modules by acting with raising
operators L−n,M−n on BMS primary states that are defined
as

LnjΔ; ξi ¼ MnjΔ; ξi ¼ 0 ∀ n > 0: ð5Þ
For primary operators, the coordinate dependence of the
2- and 3-point functions is completely fixed by invariance

under the 3d Poincaré subgroup (which by abuse of
language, we will call the global subgroup) of the BMS3
group generated by L0;�1;M0;�1 [28],

hϕ1ðx1; t1Þϕ2ðx2; t2Þi
¼ C12x

−2Δ1

12 e2ξ1
t12
x12δΔ1;Δ2

δξ1;ξ2 ;

hϕ1ðx1; t1Þϕ2ðx2; t2Þϕ3ðx3; t3Þi
¼ C123x

Δ123

12 xΔ231

23 xΔ312

31 e−ξ123
t12
x12e−ξ312

t31
x31e−ξ231

t23
x23 : ð6Þ

Here C12 is a normalization which is taken to be δ12.
Δijk ¼ −ðΔi þ Δj − ΔkÞ, and ξijk is defined similarly. C123

is an arbitrary constant called the structure constant. This is
not fixed by symmetry and depends on the details of the
field theory under consideration.
All information about correlation functions are contained

in the operator algebra, which gives the operator product
expansion (OPE) of two primary fields as a summation over
all primaries and their descendants. So, in order to know
how correlation functions are constrained by BMS sym-
metries it is enough to study constraints on the OPE. We
make the following ansatz for the OPE of two primary
fields with weights ðΔ1; ξ1Þ and ðΔ2; ξ2Þ:

ϕ1ðx1; t1Þϕ2ðx2; t2Þ ¼
X
p;k⃗;q⃗

XKþQ

α¼0

x
Δ12p

12 e−ξ12p
t12
x12

× Cpfk⃗;q⃗g;α
12 xKþQ−α

12 tα12ϕ
fk⃗;q⃗g
p ðx2; t2Þ:

ð7Þ

Here, for vectors k⃗ ¼ ðk1;…; krÞ and q⃗ ¼ ðq1;…; qsÞ, we
use the following notation for the descendants of the
primary field ϕp:

ϕfk⃗;q⃗g
p ðx; tÞ ¼ ðLk1

−1L
k2
−2…Lkr

−rM
q1
−1M

q2
−2…Mqs

−sϕpÞðx; tÞ
≡ ðLk⃗Mq⃗ϕpÞðx; tÞ; ð8Þ

K ¼ P
iiki, and Q ¼ P

l
l
ql. The form of the factor

xΔ12pe−ξ12p
t
x is fixed by requiring that the OPE

gives the correct 2-pt function, and the termPKþQ
α¼0 Cpfk⃗;q⃗g;α

12 xKþQ−αtα is to ensure that both sides of
the OPE transforms the same way under the action of L0.
Using the OPE to find the 3-pt functions and comparing it

with (6), we find Cpf0;0g;0
12 ≡ Cp

12 ¼ Cp12. So, we will
rewrite

Cpfk⃗;q⃗g;α
12 ¼ Cp

12β
pfk⃗;q⃗g;α
12 ; ð9Þ

where by convention βpf0;0g;012 ¼ 1. The coefficients

βpfk⃗;q⃗g;α12 are calculated by demanding that both sides of
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(7) transform in the same way under Lm and Mn. For
simplicity, we take Δ1 ¼ Δ2 ¼ Δ, ξ1 ¼ ξ2 ¼ ξ. We apply
both sides of (7) on the vacuum and take ðx1; t1; x2; t2Þ ¼
ðx; t; 0; 0Þ to obtain

ϕðx; tÞjΔ; ξi ¼
X
p

x−2ΔþΔpeð2ξ−ξpÞtx
X
N≥α

Cp
12x

N−αtαjN; αi;

ð10Þ

where the state

jN; αi ¼
X

KþQ¼N;α≤N
fk⃗;q⃗g;

βpfk⃗;q⃗g;α12 Lk⃗Mq⃗jΔp; ξpi

is a descendant state at level N in the BMS module,

L0jN; αi ¼ ðΔp þ NÞjN; αi: ð11Þ

Operating Ln on both sides of (10) and equating coeffi-
cients of x−2ΔþΔpeð2ξ−ξpÞtxxKþn−αtα, we get

LnjN þ n; αi ¼ ðN þ nα − Δþ nΔþ ΔpÞjN; αi
þ ðnξ − n2ξ − nξpÞjN; α − 1i: ð12Þ

Similarly, we get two other recursion relations

M0jN; αi ¼ ξpjN; αi − ðαþ 1ÞjN; αþ 1i; ð13Þ

MnjN þ n;αi ¼ ððn− 1Þξþ ξpÞjN;αi− ðαþ 1ÞjN;αþ 1i:
ð14Þ

We can use the above equations to recursively find all

βpfk⃗;q⃗g;α12 . In Table I, we display the coefficients calculated
for level 1 using these recursion relations. A more detailed
discussion of the higher order coefficients is now available
in [29]. So, apart from the structure constants and the
spectrum of the primary fields, the form of the OPE is
completely fixed by symmetry. Hence given the structure
constants, the spectrum of primaries in the theory, and the
central charges, we can completely solve the theory, just as
in the case of the usual CFTs. These dynamical inputs are
the only external inputs needed to completely specify a
given BMS-invariant field theory. However, any random
sets of these dynamical inputs do not constitute a consistent
field theory; they have to satisfy a constraint equation given
by the bootstrap equation that arises as a condition for the
associativity of the operator algebra.

IV. BMS BLOCKS, CROSSING SYMMETRY,
AND BOOTSTRAP

Just as in CFTs, the coordinate dependence of 4-pt
functions of primaries in a BMS invariant theory is not
completely determined by invariance under the Poincaré
subgroup fL0;�1;M0;�1g. They depend on arbitrary func-
tions GBMSðx; tÞ of the BMS analogous of the cross ratios x
and t given by

x ¼ x12x34
x13x24

;
t
x
¼ t12

x12
þ t34
x34

−
t13
x13

−
t24
x24

: ð15Þ

These cross ratios [and consequently GBMSðx; tÞ] are
invariant under the Poincaré subgroup. So, the 4-pt function
has the form

�Y4
i¼1

ϕiðxi; tiÞ
�

¼ PðfΔi; ξi; xij; tijgÞGBMSðx; tÞ; ð16Þ

where

PðfΔi; ξi; xij; tijgÞ ¼
Y
i;j

x
P

4

k¼1
Δijk=3

ij e
−

tij
xij

P
4

k¼1
ξijk=3:

We can now do a coordinate transformation such that

fðxi; tiÞg → fð∞; 0Þ; ð1; 0Þ; ðx; tÞ; ð0; 0Þg; ð17Þ
where i ¼ 1;…; 4. This is the BMS analogue of the CFT
statement that one can fix four points fzig → f∞; 1; z; 0g
by conformal symmetry. Correspondingly, we define

G21
34ðx; tÞ≡ lim

x1→∞;t1→0
x2Δ1e−

2ξ1t1
x1

× hϕ1ðx1; t1Þϕ2ð1; 0Þϕ3ðx; tÞϕ4ð0; 0Þi; ð18Þ
which can be expressed in terms of the in and out states,

G21
34ðx; tÞ ¼ hΔ1; ξ1jϕ2ð1; 0Þϕ3ðx; tÞjΔ4; ξ4i: ð19Þ

Then 4-pt functions in terms of G21
34ðx; tÞ are given by

�Y4
i¼1

ϕiðxi; tiÞ
�

¼ PðfΔi; ξi; xij; tijgÞfðx; tÞ−1G21
34ðx; tÞ;

ð20Þ
where

fðx; tÞ ¼ ð1 − xÞ13ðΔ231þΔ234Þx1
3
ðΔ341þΔ342Þ

× e
t

3ð1−xÞðξ231þξ234Þe−
t
3xðξ341þξ342Þ:

The ordering of operators inside the correlator does not
matter except for fermions which would introduce a sign
change. So we can move the operators around inside the
correlators. So, apart from G21

34ðx; tÞ we may also define

TABLE I. Coefficients of OPE at level N ¼ 1.

βpf1;0g;012 ¼ 1
2

βpf0;1g;012 ¼ 0

βpf1;0g;112 ¼ 0 βpf0;1g;112 ¼ − 1
2
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G41
32ðx; tÞ ¼ hΔ1; ξ1jϕ4ð1; 0Þϕ3ðx; tÞjΔ2; ξ2i: ð21Þ

It can easily be seen from their definition that the functions
Gkl

ij4ðx; tÞ are related by the crossing symmetry

G21
34ðx; tÞ ¼ G41

32ð1 − x;−tÞ: ð22Þ

If we use the OPE between the fields ϕ3 and ϕ4 inG21
34ðx; tÞ,

we can express them in terms of three-point functions of
primary fields and their descendant. More precisely, using
the OPE, the function G21

34ðx; tÞ can be decomposed as

G21
34ðx; tÞ ¼

X
p

Cp
34C

p
12A

21
34ðpjx; tÞ; ð23Þ

where the four-point BMS block A21
34ðpjx; tÞ is the sum of

all contributions coming from the primary fields ϕp and its
descendant. It is given by

A21
34ðpjx; tÞ ¼ ðCp

12Þ−1x−Δ3−Δ4þΔpeðξ3þξ4−ξpÞtx

×
X
N≥α

xN−αtαhΔ1; ξ1jϕ2ð1; 0ÞjN; αi

¼ xΔ34pe−ξ34p
t
x

X
fk⃗;q⃗g

�XKþQ

α¼0

βpfk⃗;q⃗g;α34 xKþQ−αtα
�

×
hΔ1; ξ1jϕ2ð1; 0ÞLk⃗Mq⃗jΔp; ξpi

hΔ1; ξ1jϕ2ð1; 0ÞjΔp; ξpi
: ð24Þ

We have already shown that the coefficients βpfk⃗;q⃗g;α12 can be
calculated recursively using BMS symmetry. So, the closed
form expression of these blocks are completely determined
by symmetry. For the function G41

32ðx; tÞ we may use the
OPE between the fields ϕ2 and ϕ3 giving us the expansion
in terms of another BMS block A41

32ðqjx; tÞ

G41
32ðx; tÞ ¼

X
q

Cq
32C

q
41A

41
32ðqjx; tÞ: ð25Þ

The OPE has to be consistent in the sense that (22) has to be
satisfied after using the OPE to expand both sides in terms
of the blocks. This give us the BMS bootstrap equation

X
p

Cp
34C

p
12A

21
34ðpjx; tÞ ¼

X
q

Cq
32C

q
41A

41
32ðqj1− x;−tÞ: ð26Þ

For any consistent BMS invariant field theory, the structure
constants and the spectrum of primary operators have to
satisfy (26). Knowing the closed form expressions of the
blocks we can solve (26) to find all the possible consistent
BMS invariant theories. However, even though the BMS
blocks are completely fixed by symmetry, we will only be
able to solve them in a simplifying limit which we now go
on to discuss.

V. BMS BLOCKS FORLARGECENTRALCHARGE

For even dimensional CFTs with d ≥ 4, a closed form
expression for conformal blocks was obtained for scalar
operators in [6]. For 2d CFT, their method gives the global
conformal blocks, which is the large central charge limit of
the Virasoro conformal blocks. We employ an analogue of
this method to obtain what we will call the BMS global
blocks gklijðpjx; tÞ.
If we take the asymptotic limit cL; cM → ∞ in (7) [30],

the leading terms are given by the descendant fields
generated by L−1 and M−1

ϕ3ðx3; t3Þϕ4ðx4; t4Þ

¼
X

p;fk;qg

XN¼kþq

α¼0

x
Δ34p

34 e−ξ34p
t34
x34

× Cp
34β

pfk;qg;α
34 xkþq−α

34 tα34ðL−1ÞkðM−1Þqϕpðx4; t4Þ

þO
�
1

cL
;
1

cM

�
þ � � � : ð27Þ

So, the function G21
34ðx; tÞ has an expansion of the form

G21
34ðx; tÞ ¼

X
p

Cp
12C

p
34g

21
34ðpjx; tÞ þO

�
1

cL
;
1

cM

�
þ � � � ;

where the global BMS blocks g2134ðpjt; xÞ are the large
central charge limit of A21

34ðpjx; tÞ given by

g2134ðpjx;tÞ¼xΔ34pe−ξ34p
t
x

X
fk;qg

XN¼kþq

α¼0

βpfk;qg;α34 xN−αtα

×
hΔ1;ξ1jϕ2ð1;0ÞðL−1ÞkðM−1ÞqjΔp;ξpi

hΔ1;ξ1jϕ2ð1;0ÞjΔp;ξpi
: ð28Þ

It is possible to find a differential equation for g2134ðpjx; tÞ by
using the requirement that both sides of the OPE transforms
the same way under the quadratic Casimirs

C1 ¼ M2
0 −M1M−1;

C2 ¼ 4L0M0 − L−1M1 − L1M−1 −M1L−1 −M−1L1

of the global subgroup of BMS group. For simplicity, we
choose Δi¼1;2;3;4 ¼ Δ; ξi¼1;2;3;4 ¼ ξ and denote the blocks
for this special case as gΔp;ξpðx; tÞ. Defining

hðpjx; tÞ ¼ x2Δe−
2ξt
x gΔ;ξðpjx; tÞ; ð29Þ

we find two differential equations corresponding to the two
Casimirs
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�
∂2
t þ

ξ2p
x2ðx − 1Þ

�
hðpjx; tÞ ¼ 0; ð30Þ

�
x2∂t −

�
1 −

3

2
x

�
xt∂2

t þ ðx − 1Þx2∂x∂t

�
hðpjx; tÞ

¼ ðΔp − 1Þξphðpjx; tÞ: ð31Þ

Solving (30) and (31) using boundary conditions from (28),
for jxj < 1, we get

gΔ;ξðpjx; tÞ ¼ 22Δp−2ð1 − xÞ−1=2 exp
�

−ξpt
x

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p þ 2ξ
t
x

�

× xΔp−2Δð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
Þ2−2Δp : ð32Þ

The above equation thus gives an explicit closed-form
expression for a global BMS block and is one of the central
results of this paper.

VI. CONCLUSIONS

In this paper, we have initiated the BMS bootstrap
program, which is a systematic procedure to constrain
field theories with BMS symmetry. We have focused
entirely on 2d field theories with (2) as their symmetry
algebra and have been inspired by constructions in 2dCFTs
in order to set up the BMS bootstrap equation based on the
crossing symmetry of 4-pt functions of BMS primary
operators. We have then looked at the large central charge
limit to obtain closed-form expressions of what we named
the global BMS block. As stressed before, to the best of our
knowledge, this is the first example of the construction and
significant steps toward the solution of a bootstrap equation
in a field theory which has symmetries other than relativ-
istic conformal symmetry. Our program will help us
constrain field theories putatively dual to Minkowski
spacetimes.
Through the so-called BMS/GCA correspondence [14],

our analysis and results in this paper also would be

applicable for 2d Galilean conformal field theories and
hence would help systematically analyze all Galilean
invariant field theories in 2d. In particular, it would be
very interesting to investigate whether a set of minimal
models exist for 2d GCFTs using bootstrap techniques
developed here.
The algebra (2) can be obtained as a contraction of two

copies of the Virasoro algebra (1). It should be possible to
obtain all the above results as limits of the corresponding
analyses in 2d CFTs. This has recently been investigated in
[29] and provides an independent check of the validity of
our analysis in this paper.
There also exists a particularly interesting limit of the

algebra (2) where the central term cM ¼ 0. It is possible to
show through an analysis of null vectors that this leads to a
consistent truncation of the theory to a chiral CFT [24].
This has been used in formulating a holographically dual
theory called flatspace chiral gravity [18]. It is of interest to
check the validity of the chiral truncation in terms of the
bootstrap program, and it has been reported recently
in [29].
Among the numerous other future directions, the con-

struction of the holographic side of the BMS conformal
blocks with the flat-space analogues of geodesic Witten
diagrams [31] is a very important and interesting project,
which we wish to investigate immediately.
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