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We revisit the scattering of quantum test particles on the conical (2þ 1)-dimensional spacetime and find
the scattering amplitude as a function of the boundary conditions imposed at the apex of the cone. We show
that the boundary condition is responsible for a purely analytical term in the scattering amplitude, in
addition to those coming from purely topological effects. Since it is possible to have nonequivalent physical
evolutions for the wave packet (each one corresponding to a different boundary condition), it seems crucial
to have an observable quantity specifying which evolution has been prescribed.
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I. INTRODUCTION

In classically singular spacetimes, the evolution of wave
packets may not be uniquely determined by the initial
conditions. It is possible to have an infinite number of
boundary conditions at the classical singular point, each
one giving a reasonable physical evolution. To predict
physical effects in such spacetimes, we need to know which
evolution has been prescribed. In this way, it is essential to
have an observable quantity depending on the possible
boundary conditions. This is the main goal of this paper.
We will show that the differential cross section of wave
scattering on the cone carries the information we need.
In globally hyperbolic spacetimes, the propagation of

particles and waves are uniquely determined. Given the
initial position and velocity of a particle, the classical
trajectory can be extended for all times. In a similar way,
given the initial wave packetΨð0Þ [and possibly _Ψð0Þ] on a
Cauchy surface, there is a well defined evolution ΨðtÞ.
However, in a singular spacetime, a classical trajectory
which reaches the singularity cannot be extended and the
future of the particle becomes unknown. In a similar way,
since no Cauchy surface exists, the evolution of waves may
be ambiguous.
In static singular spacetimes [1], a boundary condition

must be imposed at the singular point in order to find the
evolution of the wave packet. These boundary conditions
are the ones which turn into self-adjoint the spatial part of
the wave operator, giving rise to a sensible dynamics [2]. If
there is only one boundary condition, there is no ambiguity,
and we say that the spacetime is quantum mechanically
(QM) nonsingular [3] and that the singularity has been

“healed” by quantummechanics. On the other hand, if there
is an infinite number of possible boundary conditions, the
evolution is uncertain. Since there is no privileged evolu-
tion, we say that the spacetime in this case is QM singular
[3]. The (2þ 1)-dimensional cone is an example of a QM
singular spacetime and will be used as a toy model to show
that it is possible to find observational parameters related to
boundary conditions in nature.
It is well known that solutions of Einstein field equations

Rμν ¼ κ½Tμν − gμνTλ
λ� ð1Þ

in (2þ 1) dimensions are locally flat in the absence of
matter. This happens essentially because the Riemann
curvature tensor may be written as

Rαβγδ ¼ gαγRβδ − gαδRβγ − gβγRαδ þ gβδRαγ

−
1

2
ðgαγgβδ − gαδgβγÞR; ð2Þ

and Tμν ¼ 0 implies Rμν ¼ 0 through Einstein equa-
tions [4]. In addition to the (2þ 1)-dimensional
Minkowski solution, there is a solution with nontrivial
topology, which represents a massive point object and is
identified as the product of a timelike straight line and a
two-dimensional cone. It has the following metric [5]:

ds2 ¼ −dt2 þ dr2 þ α2r2dθ2; ð3Þ
with 0 < r < ∞, 0 ≤ θ ≤ 2π, and 0 < α < 1. The mass M
of the object located at r ¼ 0 is related to α by
M ¼ 2πð1 − αÞ=κ. The cone generated by the spatial part
of metric (3) has the opening angle given by φ ¼ 2 sin−1 α
and in three dimensions is parametrized by zðrÞ ¼
ðα−2 − 1Þ1=2r. It has its vertex at r ¼ 0 which is a classical
spacetime singularity.
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Following the definition of quantum singularities due to
Horowitz and Marolf [3] (see also [6]), it is known that the
cone is also quantum mechanically singular; i.e., there is an
infinite number of possible boundary conditions at the
apex of the cone with sensible dynamics. In Ref. [7], these
boundary conditions have been found. However, the
scattering of waves on the cone has only been studied
using a particular boundary condition [8], namely, the
Friedrichs boundary condition [9].
This gives rise to the following question: how is the

dynamics of a quantum test particle affected by the
singularity at the cone vertex if we consider an arbitrary
boundary condition? We attempt to answer this question by
analyzing the scattering behavior of a scalar field on the
cone. As wewill see, the contribution of a general boundary
condition to the differential cross section is purely ana-
lytical, in the sense that it is always present and is
independent of the angular deficit Δ ¼ 2πð1 − α2Þ. This
contribution also adds up to the purely topological con-
tribution which depends directly on α.
This paper is organized as follows: in Sec. II we give a

brief review on the theory describing the dynamics of
quantum test particles in classically singular spacetimes.
Then, in Sec. III, we present a solution for the Klein-
Gordon equation on the cone with the appropriate boundary
conditions at r ¼ 0. We revisit the scattering of a quantum
test particle on a conical spatial background in Sec. IV. In
Sec. V we conclude by discussing the differences between
our results and previous ones.

II. QUANTUM SINGULARITIES AND
SELF-ADJOINT OPERATORS

A classical singularity is indicated by incomplete geo-
desics or incomplete curves of bounded acceleration [10].
Accordingly, the evolution of classical particles following
these geodesics may not be defined for all values of its
affine parameter [11]. At the center of a spherically
symmetric black hole, for example, we have a very strong
singularity, with infinite tidal forces. However, it is also
possible to have milder singularities as solutions of Einstein
equations. This is the case of the cosmic string background
[12], given by the metric

ds2 ¼ −dt2 þ dr2 þ α2r2dθ2 þ dz2; ð4Þ

which is locally flat (each section z ¼ const is a cone).
In this way, there are geodesics which approach the
singularity at r ¼ 0 feeling zero tidal forces. This is an
example of a naked singularity.
In some cases, a naked singularity can be healed when

the spacetime is probed by waves. As an example, we have
the hydrogen atom, in which the position of the proton
(r ¼ 0) is a classical singularity. However, when solving
the Schrödinger equation, we must only impose square
integrability to find a complete set of orthonormal

solutions. In this way, the evolution ΨðtÞ of any wave
packet is uniquely determined by the initial conditionΨð0Þ.
Since there is no ambiguity in the solution of the wave
equation for the hydrogen atom, we say that it is QM
nonsingular. As the evolution of waves is unique in QM
nonsingular spacetimes, physical predictions are then
uniquely determined.
In a QM singular spacetime, since the evolution of waves

is no longer unique, the physical system does not give
unique physical predictions. Each physical evolution is
attached with a specific boundary condition at the singu-
larity. We present the general theory of QM singularities
due to Horowitz and Marolf [3] in what follows.
Let us restrict to static spacetimes with timelike Killing

vector ξμ, where t denotes its parameter. The Klein-Gordon
equation

ð∇μ∇μ − μ2Þψ ¼ 0 ð5Þ

can be rewritten as

∂2ψ

∂t2 ¼ −Aψ ; ð6Þ

where A≡ −VDiðVDiÞ þ μ2, V2 ¼ −ξμξμ, and Dj is the
spatial covariant derivative on a static slice of space Σ.
Since we do not know exactly what happens at the

singularity, consider the domain of operator A as being
C∞
0 ðΣÞ. Since the singular points are not part of Σ, the

singularity is not being considered. With this choice, it is
easy to see that the operator ðA;C∞

0 ðΣÞÞ is symmetric and
positive definite but not self-adjoint. However, it has at least
one self-adjoint extension (Friedrichs extension [9]).
A general solution for Eq. (6) has the form

ψEðtÞ ¼ ψð0Þ cosðA1=2
E tÞ þ _ψð0ÞA−1=2

E sinðA1=2
E tÞ; ð7Þ

where AE is a self-adjoint extension of the operator A. If this
extension is unique, AE represents a single operator (A is
essentially self-adjoint) and, since there is no ambiguity in
the evolution of a wave packet, the spacetime is said to be
QM nonsingular. If there is an infinite number of self-
adjoint extensions, E represents a parameter and the
spacetime is QM singular. To each self-adjoint extension,
there corresponds a boundary condition at the singularity.
In the next section, we give an example of this procedure
for the Klein-Gordon equation on the cone. Following
Ref. [7], we present each boundary condition which turns
into self-adjoint the spatial part of the wave operator.

III. KLEIN-GORDON EQUATION ON THE CONE

The Klein-Gordon equation on the conical (2þ 1)-
dimensional spacetime given by the metric (3) is written as
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∂2ϕðt; r; θÞ
∂t2 ¼

� ∂2

∂r2 þ
1

r
∂
∂rþ

1

α2r2
∂2

∂θ2 − μ2
�
ϕðt; r; θÞ

≡ ðΔ − μ2Þϕðt; r; θÞ: ð8Þ

Solutions may be separated as ϕðt; r⃗Þ ¼ e−iωtΨðr; θÞ, and
Eq. (8) reduces to

−ΔΨðr; θÞ ¼ ðω2 − μ2ÞΨðr; θÞ: ð9Þ

In Sec. II, we discussed the importance of having A as
essentially self-adjoint to ensure the uniqueness of the
solution. However, in the conical spacetime, this is not the
case. As discussed in [7], the operator −Δ on the domain
C∞
0 ðRþ × SÞ ⊂ L2ðRþ × S; rdrdθÞ has a family of self-

adjoint extensions −ΔR parametrized by one parameter
R ∈ ½0;∞Þ. If we consider another separation of variables
to the solution, namely Ψðr; θÞ ¼ P

mfmðrÞeimθ, our oper-
ator −Δ reduces to

−Δm ¼ −
∂2

∂r2 −
1

r
∂
∂rþ

m2

α2r2
: ð10Þ

These −Δm on the domain C∞
0 ðRþÞ ⊂ L2ðRþ; rdrÞ are

essentially self-adjoint for m ≠ 0. Nevertheless, for m ¼ 0,
−Δ0 has infinitely many self-adjoint extensions, f−ΔR

0 ;
R ∈ ½0;∞Þg. As previously presented, with every exten-
sion −ΔR

0 there must be an associated boundary condition
at the singularity (r ¼ 0), as follows [7]:

lim
r→0

�
ln

�
r
R

�
r
d
dr

− 1

�
f0ðrÞ ¼ 0; for R ∈ ð0;∞Þ; ð11Þ

lim
r→0

r
d
dr

f0ðrÞ ¼ 0; for R ¼ 0: ð12Þ

As one solves the eigenvalue problem −ΔmfmðrÞ ¼
λfmðrÞ with the appropriate boundary conditions, we find
that, for m ≠ 0 and m ¼ 0 with R ¼ 0, there is a complete
set of eigenfunctions with positive eigenvalues k2. For
m ¼ 0 and R ≠ 0, −ΔR

0 may be negative. If we redefine the
boundary condition parameter as

q ¼ 2e−γR−1ðγ ¼ Euler-Mascheroni constantÞ; ð13Þ

the operator −ΔR
0 þ μ2 has a negative eigenvalue −ω2

q ¼
−q2 þ μ2 as long as q > μ. In this case, it is possible to
have a solution of the form

Ψðt; rÞ ¼ K0ðωqrÞe�ωqt: ð14Þ

The positive exponential leads to an unstable configuration
if the wave equation appears as a linear perturbation of the
spacetime. Since physical predictions in unstable space-
times are meaningless, we will consider the case 0 ≤ q ≤ μ.

Then we have only positive eigenvalues for the operator
−ΔR

0 þ μ2, and the complete set of solutions of the Klein-
Gordon equation is given by

�
1ffiffiffiffiffiffi
2π

p J0ðkrÞ þ βðkÞN0ðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2ðkÞ

p
�

⋃
�
⋃
m≠0

1ffiffiffiffiffiffi
2π

p Jjmj
α
ðkrÞ

�
;

ð15Þ

where Jn is the nth order Bessel function, N0 is the 0th
order Neumann function and ω2

k ¼ k2 þ μ2, m ∈ Z − f0g,
and

βðkÞ ¼ π

2

�
ln

�
q
k

��
−1
: ð16Þ

Note that q ¼ 0 corresponds to β ¼ 0, so that in this case
only regular solutions at r ¼ 0 are considered (Friedrichs
boundary condition).
We point out that this development is completely

applicable to the nonrelativistic case by simply setting
k ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μωk
p

=α. It is now clear that solution (15) is not
unique, for it depends on the chosen boundary condition.
Therefore, the conical (2þ 1)-dimensional spacetime is
quantum mechanically singular when tested by a Klein-
Gordon field.

IV. QUANTUM SCATTERING REVISITED

In [8], Deser and Jackiw studied quantum scattering on
the cone. We revisit their work in a relativistic version,
considering now solution (15), which takes into account
the appropriate boundary conditions at the vertex. Bound
states are not relevant in scattering, so the spatial part is
considered as

Ψðr; θÞ ¼ a0ffiffiffiffiffiffi
2π

p J0ðkrÞ þ βðkÞN0ðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2ðkÞ

p
þ
X
m≠0

amffiffiffiffiffiffi
2π

p Jjmj
α
ðkrÞeimθ: ð17Þ

We follow the procedure in [8], so the total wave is

ψðr; θÞ ¼ ψ inðr; θÞ þ ψ scðr; θÞ; ð18Þ

where ψ in and ψ sc are the incident and the scattered
waves, respectively. Both satisfy the following asymptotic
behavior as r → ∞:

ψ inðr; θÞ ∼ eikr cos θ; ð19Þ

ψ scðr; θÞ ∼
ffiffiffi
i
r

r
fðθÞeikr: ð20Þ

In order to compare both asymptotic forms of Ψ and ψ , we
must use the following relation:

QUANTUM SCATTERING ON A CONE REVISITED PHYSICAL REVIEW D 96, 025006 (2017)

025006-3



eikr cos θ ¼
X∞

m¼−∞
eim

π
2JmðkrÞeimθ; ð21Þ

and the asymptotic forms of Bessel and Neumann functions

JmðkrÞ ∼
ffiffiffiffiffiffiffiffi
2

πkr

r
cos

�
kr −m

π

2
−
π

4

�
; ð22Þ

NmðkrÞ ∼
ffiffiffiffiffiffiffiffi
2

πkr

r
sin

�
kr −m

π

2
−
π

4

�
: ð23Þ

When comparing the asymptotic forms of Eqs. (17) and
(18), from incident modes e−ikr we have

a0 ¼
ffiffiffiffiffiffi
2π

p 1 − iβðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βðkÞ2

p ; ð24Þ

am ¼
ffiffiffiffiffiffi
2π

p
e−i

jmj
2
ðωc−πÞ: ð25Þ

From scattered modes eikr we get the scattering amplitude

fðθÞ ¼ 1ffiffiffiffiffiffiffiffi
2πk

p
�
−2βðkÞ½1 − iβðkÞ�

1þ βðkÞ2

−i
X∞

m¼−∞
ðe−ijmjωc − 1Þeimθ

�
; ð26Þ

where ωc ≡ πðα−1 − 1Þ is the angle between the projec-
tions of the asymptotic paths of a classical particle onto the
x-y plane (see [8]).
Now the total wave becomes

Ψðr; θÞ ¼ −βðkÞ½1 − iβðkÞ�
1þ βðkÞ2 fiJ0ðkrÞ − N0ðkrÞg

þ
X∞

m¼−∞
e−i

jmj
2
ðωc−πÞJjmj

α
ðkrÞeimθ: ð27Þ

Note the appeareance of β, which is related to the choice of
the boundary condition. It does not depend on α and adds
up to the purely topological terms. This term represents a
point interaction between the incoming wave and the apex
of the cone.
Equation (26) may be rewritten after a few regulariza-

tions as

ffiffiffiffiffiffiffiffi
2πk

p
fðθÞ ¼ −2βðkÞ½1 − iβðkÞ�

1þ βðkÞ2 þ sinωc

cosωc − cos θ

− iπ
X
n

ðδðθ þ ωc − 2πnÞ þ δðθ − ωc − 2πnÞ

− 2δðθ − 2πnÞÞ: ð28Þ

This scattering amplitude cannot satisfy the optical
theorem, since its delta functions and divergences at

θ ¼ �ωc invalidate integration over all angles between 0
and 2π. However, one can check that the Klein-Gordon
probability current remains divergenceless and, then, sol-
ution (27) holds probability conservation.
As proposed by Deser and Jackiw, the part of the

scattered wave that asymptotically gives rise to deltas in
fðθÞ may be replaced into the incoming wave. We separate
the total wave function ψ arbitrarily as

ψðr; θÞ ¼ ~ψ inðr; θÞ þ ~ψ scðr; θÞ; ð29Þ

with the following asymptotic conditions:

~ψ scðr; θÞ ∼
ffiffiffi
i
r

r
~fðθÞeikr; ð30Þ

~fðθÞ ¼ 1ffiffiffiffiffiffiffiffi
2πk

p
�
−2βðkÞ½1 − iβðkÞ�

1þ βðkÞ2 þ sinωc

cosωc − cos θ

�
:

ð31Þ

Now we must find a new incident wave resulting from
this redefinition. In [8], only the second term in Eq. (27)
corresponds to the total wave, and the authors find a
contour integral representation for it. To do so, they use
Schläfli’s representation for Bessel functions, given by

JνðxÞ ¼
1

2π

Z
Γ
dze−iðk sin z−νzÞ; ð32Þ

where Γ is a complex contour coming from−π þ i∞ to−π,
passing by the real axis to π, and then returning to π þ i∞.
Following this procedure, the sum in Eq. (27) becomes

X∞
m¼−∞

e−i
jmj
2
ðω−πÞJjmj

α
ðkrÞeimθ

¼ 1

4πi

Z
C
dz tan

�
z
2α

�
e−ikr cosðz−αθÞ ≡ 1

4πi
IC; ð33Þ

where C is the contour given in Fig. 1.

FIG. 1. Integration contour C for Eq. (33) separated in the other
three: C−∞, Cþ∞, and Cp. Contour Cp is a clockwise Cauchy
contour around the real poles of tanðz=2αÞ between αθ − π and
αθ þ π.
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Integration over Cþ∞ and C−∞ can be rewritten using the
function

χðr; ξÞ ¼
Z

∞

−∞
dyeikr cosh y tan

�
ξþ i

y
2α

�
: ð34Þ

Cauchy’s residue theorem allows us to express integration
over Cp as the sum of all residues of the integrated
function at the poles. Finally, integral IC can be separated
in three others over the contours presented in Fig. 1, as
follows:

IC ¼
�Z

Cþ∞

þ
Z
C−∞

þ
Z
Cp

�
dz tan

�
z
2α

�
e−ikr cosðz−αθÞ

¼ i

�
χ

�
r;
θ

2
þ π

2α

�
− χ

�
r;
θ

2
−

π

2α

��

þ 4πiα
X

n
αjθn j<π

e−ikr cosðαθnÞ; ð35Þ

where θn ≡ θ − ð2nþ 1Þπ.
We compared the asymptotic forms of (27) and (29), as

in [8], and by their asymptotic contributions identified our
new incoming and scattered waves

Ψðr; θÞ ¼ α
X

n
αjθn j<π

e−ikr cosðαθnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
~ψ inðr;θÞ

þ −βðkÞ½1 − iβðkÞ�
1þ βðkÞ2 fiJ0ðkrÞ − N0ðkrÞg þ

1

4π

�
χ

�
r;
θ

2
þ π

2α

�
− χ

�
r;
θ

2
−

π

2α

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~ψ scðr;θÞ

: ð36Þ

As a cone is not an asymptotically flat spacetime, topo-
logical scattering may produce those undesirable deltas at the
amplitude (28). All these delta functions had their contribu-
tions placed into the incident wave from Eq. (36). This new
incident wave can be seen as a composition of planewaves in
variate directions depending on the deficit angle α and
carrying the topological characteristics of space. We treat it
as a redefinition of plane waves on the cone, for the original
definition led to the appearance of deltas.
The incident wave we found in (36) is the same as Deser

and Jackiw found in [8], and this shows the prescription of a
boundary condition at the vertex affects only the scattered
wave. Furthermore, the topological scattering is responsible
for the second termof ~ψ sc in (36) andwas already found in [8].

We point out that the term in ~ψ sc results from a pointlike
interaction of thewave and the localizedmassive object at the
vertex.
In [8], the incident wave ~ψ in would be scattered by the

spacetime topology, generating part of our scattered wave.
In our picture, a spherically symmetric term appears at ~ψ sc
as the incident wave perceives the boundary condition at
r ¼ 0, showing it is a purely analytic interaction.
In Fig. 2 we show the behavior of j ~fðθÞj2, when β ¼ 0 and

there are only topological effects, and when β ≠ 0 and a
purely analytical term arises. There are divergences at the
classical scattering angle θ ¼ ωc, as well as at θ ¼ 2π − ωc.
These divergences appear due to topological effects as in
Ref [8] and are the signatures of the cone. Themain effect of a
non-null β appears at θ ¼ 0. By looking at the scattering at
this angle we can infer the choice of the boundary condition.

V. FINAL REMARKS

The (2þ 1)-dimensional cone was used as a toy model to
illustrate the effects of an arbitrary choice of boundary
conditions in QM singular spacetimes. Studying the scat-
tering of waves, we showed that the differential cross
section depends explicitly on the boundary condition, so
that, through the observation of scattered waves, it may be
possible to infer which evolution has been prescribed. If we
want to construct quantum field theory (QFT) in non-
globally hyperbolic spacetimes (see [13] for QFT in AdS
spacetime with general boundary conditions) and predict
physical observables, we need to know which evolution has
been preferred by nature. Our result gives us a hint of how
to solve this question. We also argue that this simple model
can be extended to more significant spacetimes, such as the
spacetime of a cosmic string and the spacetime of a global
monopole [14]. These spacetimes are QM singular (see

FIG. 2. Plot of j ~fðθÞj2 for β ¼ 0 (dashed line) and β ≠ 0 (filled
line). The parameters α, related to the deficit angle, and q, which
sets the boundary condition, are α ¼ 0.8 and q ¼ 10. The
frequency k is set equal to one. Dotted horizontal lines indicate
the divergence angles ωc ¼ π=4 and θ ¼ 2π − ωc ¼ 7π=4 for the
amplitude.
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Refs. [15,16]) so that physical observables will depend on
the boundary conditions.
To the best of our knowledge, for the first time an

observable has been related to the prescribed evolution. In
general, predictions in naked singular spacetimes are
meaningless, since there is always an unknown parameter
(the exact interaction between classical test particles and
the singularity) which are not predicted by general rela-
tivity. We showed that with the introduction of quantum
mechanics we are able to find the analytical interaction
between waves and the singularity by means of a single
observation. Now that we can find the prescribed evolution,
the next step would be the search for other observables (the
expectation value of the renormalized stress tensor, for
example [17]) to see how different are the predictions
compared to the usually chosen Friedrichs boundary
condition.

Since the perturbation of the spacetime leads to the wave
equation, it is also possible that the stability of QM singular
spacetimes depends on the physical prescription [see
discussion below Eq. (14)]. If perturbations with a wide
range of possible boundary conditions are present, the
spacetime will certainly be unstable. This can explain why
such spacetimes have never been observed.
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