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We construct canonical realizations of the (2+1)-dimensional Bondi-Metzner-Sachs (bmg;) algebra as
symmetry algebras of a free Klein-Gordon (KG) field in 2 4 1 dimensions for both massive and massless
cases. We consider two types of realizations, one on shell, written in terms of the Fourier modes of the
scalar field, and the other off shell, with nonlocal transformations written in terms of the KG field and its
momenta. These realizations contain both supertranslations and superrotations, for which we construct the

corresponding Noether charges.
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I. INTRODUCTION

Recently, there has been renewed interest in the Bondi-
Metzner-Sachs (BMS) group [1]. The BMS invariance of
the gravitational scattering matrix was proved in [2] and, as
a consequence of this result, Weinberg’s soft graviton
theorems [3] can be understood as the Ward identities
of BMS supertranslations [4-7]. The relation between
supertranslations, gravitational memory, and soft graviton
theorems has also been studied [8]. There is a proposal that
the information paradox [9] could be understood in terms
of black hole soft hair associated with supertranslation
and superrotation charges [10,11]. On the other hand, the
BMS group could play a crucial role in understanding holo-
graphy in asymptotically flat space-times [12—-15]. BMS
symmetry is an infinite conformal extension of the Carroll
symmetry [16], which was introduced in [17] as a limit of
the Poincaré algebra when the velocity of light is scaled
down to zero. A pedagogical overview of the role of BMS
symmetries in most of these topics is presented in [18].

In this paper we construct a canonical realization of
the bm3; algebra [19,20] with supertranslations and super-
rotations [15] associated with a free Klein-Gordon (KG)
field in 2 4+ 1 dimensions, for both massive and massless
fields. Following the procedure in [21], we consider, in the
massive case, the mass-shell hyperboloid representation of
the hyperbolic plane H,, and we compute the associated
Laplace-Beltrami operator. It turns out that the three-
dimensional momenta is an eigenfunction of the differential
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operator with eigenvalue ml where m is the mass of the scalar
field and the 2 comes from the dimension of the hyperboloid.
This property suggests computing all of the eigenfunctions of
this operator corresponding to that eigenvalue with the same
asymptotic properties as the three momenta. This allows us to
generalize the momenta to an infinite set of supermomenta.
These momenta yield an infinite-dimensional representation
of the 2 4+ 1 Lorentz group and lead to the definition of the
generators of the supertranslations in terms of the Fourier
modes of the KG field.

The mass-shell condition for a massless scalar field results
in a cone, for which a Laplace-Beltrami operator cannot be
constructed. To get around this, we consider the massless
limit of the Laplace-Beltrami operator on the hyperboloid
[22]. Once we have a suitable differential operator, the
construction goes in parallel with the massive case.

We also construct a generalization of the Lorentz
generators which corresponds to superrotations. In the
massless case, the algebra of supertranslations and super-
rotations is the bmg; algebra introduced in [23]. In the
massive case, the superrotation generators that we intro-
duce must be separated into two different sets which both
contain the Lorentz part, and each set corresponds to a
subalgebra of bmgs. It should be noted that the differential
operators appearing in our construction represent one of the
two Casimirs of the 2 4+ 1 Lorentz group.

At the quantum level, the Hilbert space of one-particle
states supports a unitary irreducible representation of the
Poincaré group, and at the same time a unitary reducible
representation of the BMS; group. In contrast to the
gravitational approach, our canonical realization of the
supertranslation symmetry is not spontaneously broken.
Unitary representations of BMS; were also considered
in [24,25].

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.025004
https://doi.org/10.1103/PhysRevD.96.025004
https://doi.org/10.1103/PhysRevD.96.025004
https://doi.org/10.1103/PhysRevD.96.025004

BATLLE, CAMPELLO, and GOMIS

We study the off-shell (Noether) supertranslation and
superrotation symmetries of the massless Klein-Gordon
action, and we compute the associated Noether charges.
These charges are expressed as nonlocal linear functionals
of fields and momenta. The same construction is carried out
for the supertranslations in the massive case.

The organization of the paper is as follows. In Sec. I we
construct the supertranslations and superrotations in terms
of the Fourier modes of the KG field. In Sec. III we
construct the transformations in terms of fields and
momenta. Section IV is devoted to conclusions and an
outlook. Appendix A presents explicit forms for some of the
functions that appear in the nonlocal transformations
obtained in Sec. I1I, and Appendix B discusses the geometry
of the mass-shell hyperboloid in 2 + 1 dimensions. We use
the Minkowski metric (—++) throughout the paper.

II. CANONICAL REALIZATION OF BMS;

A. Canonical realization of Poincaré symmetry
for a scalar field

The Lagrangian density for a real massive scalar field is
given by

1 1
L= =3 0,00 ) -5 m*. (1)

The solution of the Klein-Gordon equation, in terms of
Fourier modes a(k), is

$(1.7) = / dk(a(®)e™ +a@e ™), (2)

where the phase space Fourier modes have the Poisson
bracket

{a(k).a(q)} = —iQ(k)&*(k - G). 3)

The Lorentz invariant integration measure in the hyperbolic
plane H, is
d’k

=

Q)
Q(K) = (27)22k0(k) = (22)22\/ K + m?.  (4)

Noether’s theorem allows us to write the expression for the
conserved charge under translations. By use of the solution
of the equations of motion (2), the charges on shell can be
written as

pr— / dk a(®)ka(®), (5)
and their action on the Fourier modes is given by

(P, a(k)} = ik*a(K). (6)
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The analogous Lorentz charges on shell are
. R N AT .0 >

for rotations, and

MO — tpi — i/cika(l?)k"aakja(/z) (8)

for boosts. We define the truncated time-independent
Lorentz generators

M = M, M7 = MO — ¢pJ 9)
that satisfy the Poincaré algebra as well and have the
following Poisson brackets (we drop the prime and will
work with these generators henceforth unless otherwise
stated):

(PP} =0, {Mw P} =prpr—pge, (10)

{]‘4/41/7 M/)o’} — M;m'r]u/) + Mv/Jn/w' _ Mﬂ/)nv(r _ Mlmﬂ”p. (1 1)

The action of Lorentz generators on the Fourier modes is
given by

{M"”,a(l_é)} _ ”ﬂwny,/Dﬂ,y,a(lz), (12)

where D, is a realization of the Lorentz group in terms of
the differential operators

D02 = —\/ iéz + mzakz = iKz, (14)

D12 = klakz - kzakl =iJ. (15)

One can check that the generators J, K, and K, obey the
SO(1,2) algebra
[KviZ] - —lJ,

[K,.J]=—iK,., [Ky.J]=iK;. (16)

B. Supertranslations

In order to construct a canonical realization of BMS;, we
follow the procedure of [21] to construct supertranslations.
The idea is to generalize the ordinary three-dimensional
momenta k* to an infinite set of “supermomenta” and to
generalize the realization of the charge of the translations
on shell (5).
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1. Massive case

Consider the ky > 0 sheet of the mass-shell hyperboloid
representation of the hyperbolic plane H,,

—k§ + Kk} + k3 = —m?, (17)

in a space with the ambient Minkowski metric
ds? = —dk} + dk? + dk3. (18)
The manifold H, is invariant under the isometries of the

metric, that is, /SO(1,2). We can parametrize (17) for
ko > 0 as

ko = mz, (19)
ky = m\/z*> — 1 cos ¢, (20)
ky = mV/Z2 = 1sing, (21)

with z € [1,4+0), ¢ € [0, 27). Notice that k; and k, vanish
at z = 1. In these coordinates, the Lorentz generators (13),
(14), and (15) are given by

K, =-i \/Zz_smqb%—l—z\/ lcosqﬁ{%, (22)

Kzzi\/zzz_cosrb—(ﬁ—kz\/ lsin¢§z, (23)
0

J=ig, (24)

The metric induced on H,, which is a Euclidean AdS,
with an anti—de Sitter (AdS) radius equal to m, is given in
this parametrization by

ds? = m?

1
- ldz2+m2(z2—1)d¢2. (25)

induced —

The boundary is located at 7 — oo, and it is a sphere S ! with
radius mv/z2 — 1 and metric

1
2
ds |boundary Zlilg mz(zz _ 1) dsll’lduced d¢ .

The Laplace-Beltrami operator (Appendix B) is given by

1 o ) 1 &
v2 _ 2
©om? <(Z 1)8 3+ 2 dz 1a¢2> (26)

and it is proportional to a Casimir, the 2 4 1 Lorentz group

m?V? = —J> + K} + K3. (27)
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It is immediate to check that the three-dimensional
momenta are eigenfunctions of this operator,

p=01.2. (28)

uo

2
Vzkﬂ - —2k
m

The numerical constant 2 is the dimension of the hyper-
boloid. To generalize the momenta to infinite supermo-
menta, we look for general eigenvectors of the Laplacian
with the eigenvalue 2/m?,

(- +

We look for solutions of the form

) @lz.d) =0, (29

D(z.p) = I f(z). (30)

where ¢“? are the eigenfunctions of S'. The differential
equation for f(z) is

(1=22)f"=2zf" + <2— -

fZ
Jr=o. 6
with the general solution

z+1

Z_1> +C2(z+f)( +i> (32)

The first solution does not behave well at z = 1 for £ > 0,
while the second one is not well behaved for £ < 0, and one
of the solutions becomes the other one by changing
¢ < —¢. Since the two-dimensional momenta are regular
for z = 1, we are interested in the general solution to (29)
that is regular at z = 1, given by

ﬂ@zQ@—ﬂ(

wy(z, @) = e’ <%>7(Z +7), £>0, (33)

¢
¢t 11>2(z—f), £<0, (34)

Wz, ) = ei’? <

7 —

which can also be written in a more compact form as

l£l
wf(z,¢):eif¢(%>2(z+|f|), £ez. (35)

The functions w,(z, ¢) are the infinite set of supermomenta
that we are looking for.
Notice that

we(z, @) = P74+ 0(1/z), (36)
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and we can define we|poungury (2. ) = ¢/“?z. This means

that the generalized momenta have, for all #’s, the same

asymptotic behavior as the ordinary momenta.
Alternatively, one can use the set of real functions

ug(z,¢p) = cos ¢ (Z;Di(z +7), £>0, (37)

<

‘

0oz f) = sin (%)72 o).

<

£>0. (38)

Notice that the three-dimensional momenta can be
written in terms of these functions as

wo(ed) =2 = ko (39)
n(eh) =@~ Deosp=—ki, (40
n(eh) =@ - Dising="k (1)

In terms of the two-dimensional momenta, the functions
(35) can be written as

ki .k )f
w, ki, ky) = + i
f( 1 2) (\/k(z)—mz \/k% _m2

: (Z)’ ; Z) o <% + |f> . (42)

This can be further simplified to yield

\/m—m [£]/2
. (W* 7)), (43)

(ki ky) = (ky + ikz)f|]z|_f

or

wrlky ko) = (ky + ko) (/i + P + sen(em)’
. (\/1 + KR/ m? + |f|>. (44)

One can check that the subspace of functions spanned by
ugy, Uy, vy, or, alternatively, by wg, wy, and w_j, is invariant
under the action of the 2 + 1 Lorentz group. In general, the
action of the Lorentz generators on the w, is given by

i i
K]Wf:—i(bﬂ—l)wbmr] +§<I€+I>Wg_1, (45)
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1 1
Kow, = —E(f— Dwyiy —E(f+ Dwe_y,  (46)

Jwy = Ewy. (47)
Defining K, = K| + iK,, one has
Kiw, =i(l F €)wpsy, (48)
and therefore Kw, are raising and lowering operators.
Since each function w, defines a (super)translation in the

phase space of a massless scalar particle, we define the
supertranslation generators as

P, — / dlow, (R)a(R)a(R). (49)
It is easy to check that these supertranslations commute,
{Ps. Py} =0. (50)

Their action on the Fourier modes is given by
{P,a(k)} = iwea(k). (51)

Let us see how Lorentz generators act on them. A
Lorentz generator O is represented by

0= / dka(k)0za(k), (52)

with O; being a first order differential operator in k. For
instance, for the rotation J, one has

while for the boost generators K;,

) 0

One can show that

{O0.P,} =—i / dka(k)a(k)Opwe(k),  (53)

and hence it suffices to know the action of the generators on
the functions w,. Specifically, one gets

{J,P,} = —itPy, (54)

1

1
{K],Pf}zi(l—f)Pf+l+§(]+Lﬂ)Pf_1, (55)
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{KZ’PL”}:_E(I E(IJF?/”)Pf—l, (56)

{Ks, Pr} =(1 F £)Ppyy. (57)

= )Py +

This is the analog in 24 1 dimensions of the four-
dimensional BMS algebra [1,21]. The generalization of
the algebra to include superrotations will be discussed
after we consider the massless case.

Relations (50) and (54)—(57) imply, at the quantum level,
that the Hilbert space of one-particle states supports a
unitary irreducible representation of the Poincaré group,
and at the same time a unitary reducible representation of the
BMS; group. In contrast to the gravitational approach, our
canonical realization of the supertranslations is unbroken.

2. Massless case

Now we want to construct the canonical realization of
BMS associated with a three-dimensional massless free
scalar field. In this case what previously was a hyperboloid
1S now a cone,

R+ I+ =0, (58)

that can be parametrized as

ko =r, (59)
k; = rcos g, (60)
k, = rsing, (61)

with r > 0 for kg > 0 and ¢ € [0, 2). This can be obtained

from (19)—(21) by putting z = r/m and letting m — 0 [22].

However, a nondegenerate induced metric does not exist

and the standard construction of the Laplace operator fails.

Instead, we scale the operator in (29) by m? and replace
=r/m,

D=-m?A+2
:—({(1)2 } 282 4278, + ——5 82)
m (n )
(62)
In the limit m — 0, one gets
Dmassless = _,ﬂa% - 2rar +2, (63)

which turns out to be independent of ¢. As in the massive
case, we look for solutions of

Dmasslessq)(rv ¢) =0 (64)

of the form

D(r.¢) = eV f(r).
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The function f(r) must obey
—r2f" = 2rf' +2f = 0. (65)

This equation has independent solutions f(r) = r and
f2(r) = 1/r%, and hence the regular solution at r = 0 is
f(r) = r. The supermomenta that we are looking for are

we(r,¢) = re'?, rez, (66)

up to a normalization constant. The expression in terms of
momenta is given by

(@ +ig)
(@7 + (@27

Notice that, in the massless case, the dependence of r in the
boundary and in the bulk is the same; that is, there are no
corrections in 1/r like in the massive case.

The SO(1,2) generators on the cone are given by

Wf(‘?) =

(67)

.0
J:—l%, (68)
K 0 69
! 1rcos¢—r—zs1n¢ 99 (69)
K, = 1rsm¢ + zcosgb e (70)

As in the massive case, it turns out that the purely
differential part of D, ess 18 proportional (actually equal
in this case) to one of the two Casimirs of SO(2, 1),

» & 22 J*+ K2+ K3 (71)
s = 2r—=- .
or? or ! 2
Notice that these generators—or, more precisely, J,
K. =K; +iK,—can be written as particular cases
(n =0, £1) of the more general expression

L,= ei"¢< % + mr%) (72)

The action of SO(1, 2) generators on the eigenfunctions w,
is exactly the same found for the massive case

.]Wf = fo, (73)

i i
KIWf = —E(f— 1)Wf+] +§(pr+ I)Wf_l, (74)

1 1
Ksz = —E(f - I)Wer] —E(f+ I)Wf_l, (75)
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which, in particular, shows that the subspace spanned by
wo, Wi, and w_; is invariant under SO(1,2).
The supertranslations are still given by

-

P, = / dkw,(K)a(k)a (). (76)

Together with the Lorentz generators, they constitute a
realization of the bmg; algebra. The action of super-
translations on the Fourier modes is analogous to the
massive case. Induced representations of BMS; were
constructed in [24,25].

C. Superrotations

We will construct here infinite families of operators
generalizing the Lorentz algebra for both massless and
massive cases.

1. Massless case

In the massless case, one can generalize (72) for an
arbitrary n € Z and write

L, =e" (—% + inr%), nez. (77)

One can check to see that these L,’s also obey the Witt
algebra

[an Lm] = i(n - m)Ln+mv (78)
and that
Lw,=1i(n—=8)W,p. (79)

In terms of 75 the differential operators (77) can be
written as

Ly = (K 4+ k)2 (ky + iky)"

_ ) . 0
X ({mkl +k2}a—kl+{1nk2—k1}8—kz>v (80)

and, analogously to the case of supertranslations, we define
the on-shell generators of superrotations as

R, = / dka(k)L,a(k), (81)

which, due to (78) and (79), realize the algebra

- -

{Rvan} = _i/Jka(kﬂLvan}a(k)

- (m - n)Rm+nv (82)
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(R, P} = —i / dka(®)a(F)L,w, (%)
(= )Py (83)
{Pu: P} =0 (84)

This is the bmg; algebra introduced in [23].

2. Massive case

In the massive case, we do not have an initial guess for
the form of the superrotations. One may notice, however,
that Lorentz generators, once written in the form &£%0,,
a = z, ¢, satisfy the following equations:

DE=0, V& =0, (85)
where D = —m?A + 2. Thus, one can try, in the massive
case, to generalize these operators by first solving D& =
and then computing & from V& + V&7 = 0.

Clearly,

z ing z— 1\l
E=e o (In] + 2), nezZ (86)

since this is the solution of the partial differential equa-
tion for massive supertranslations. From the divergence
equation, and using V,& + V&0 = 0.& + 0,E7 (see
Appendix B), one can integrate the angular term to obtain

&b = _eind <Z - l)n/2 (In|(|n] +z) + 2> — 1)
B z+1 in(z2—1)
+f(2). (87)

with f(z) being an arbitrary function that we set to zero.
Thus, one may try to define superrotation generators as

T —eim,b -1 Inl/2 _|n‘(|n‘+2)+zz—li
" z+1 2-1 o¢

0
+in(|n| + z) 3_Z> nez, (88)

where we have multiplied all terms by a factor in. However,
these operators do not form an algebra (this can be seen
when computing the commutator of 7', with opposed sign
indices, except in the case n = +1). Instead, we can define
two infinite-dimensional set of generators, each containing
the Lorentz part, according to

‘cn:Tnﬁ nZ_], (89)

Q,=T, n<l. (90)
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Both sets of differential operators satisfy the algebra

L,. L, =iln—-mL,,,, nm>-=1, (91)
(0,, Q] =i(n—m)Q,1p, n.m< 1. (92)

One has, for the lowest values of n,
Q=Ly=—-1J, L= =K,, L =9 =-K_.
(93)

Furthermore, the functions w, associated with each set
provide a realization of the corresponding algebras,
(94)

'C'nwm = l(ﬂ - m)wn-i-mv n,m2 -1,

Ow, =iln—mw,,,, nm<l. (95)
Defining now the generators of superrotations as in (81) for
each set, one can construct realizations of two subalgebras
of the bmg; algebra. To sum up, it is possible to extend the
set of Lorentz generators to the right with the £, and to
the left with the Q,,, but, in contrast to what happens in the
massless case, it is not possible to merge both extensions
into a single algebra.

The first equation in (85), which we obtained by
generalizing the one satisfied by the Lorentz generators,
is clearly noncovariant, but we will show next that, due to
the geometry of the mass-shell manifold, it s, in fact, one of
the components of a geometrical equation.

The Lorentz generators are the only solutions of the
Killing equation

V& + g7V, 8 =0. (96)

In order to generalize the generators of Lorentz trans-

formations, one could consider an equation of the form

G NVE + gV =G, (97)

with G being symmetric and covariantly divergenceless,

V,G" = 0. (98)
Condition (98) is instrumental for what we want to do.
Notice, however, that we are not assuming that G is
proportional to the metric, and hence (97) is different from
the conformal Killing equation.

We now take the covariant derivative V,, of (97). Using
that V,g*” = 0 and (98), imposing V,& = 0, and using
(V.. V& = R¥p, &P, one arrives at

GV Vol + ¢ R el = 0. (99)
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Using the explicit form of the components of the Riemann
curvature tensor given in Appendix B, it turns out that

1
g Rﬂﬁﬂaéﬂ = _W§y9 (100)
and (99) boils down to [26]
a v l v
gV, V& :Wé . (101)

Evaluating (101) for v = z,¢ yields a pair of coupled
equations,

2 2
AsE =S (0.8 + 0,60 - S8 =0 (102)
N 2z " 1 2\

where Ag is the scalar Beltrami-Laplace operator (26).
However, since

0=V, + V¢§¢ =0, + 3¢§¢, (104)
equation (102) can be simplified to
Z 2 7 —

Agé _Wé =0. (105)

Equations (105) and (104) were our starting point for
constructing the superrotation generators and now have
received a sound geometrical foundation, i.e., (99).
Furthermore, one can check that (103) is satisfied by the
0, parts of £, and Q,,.

Let us finally note that the 1-forms /,, associated with £,
(and likewise for Q,,),

) -1 n/2
l” = mzel”‘/) Zi ln(;/lij—z)dz
z+1 77 —1
—(n(n+z2)+2> - 1)d¢), neZ. (106)

turn out to be eigenvectors of the Hodge—Laplace—de Rham
operator A [28],

2
Al, =-=51,. (107)
m

This adds to the geometrical meaning of our construction,
and it could be useful for further generalizations.
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III. NONLOCAL BMS SYMMETRIES OF THE
KLEIN-GORDON LAGRANGIAN

In this section we will prove that the KG action is
invariant under supertranslations and superrotations, and
we will construct the corresponding Noether charges [29].
We will present explicit expressions only for the mass-
less case.

A. Noether charges of supertranslations

For the classical Klein-Gordon field, the Fourier modes
can be written in terms of the fields ¢ and = as

a(k) = / Pxe- " (0P (1,7) + in(, %)), (108)

a(k) = / Pxe® (0p(1,7) — in(1,%)).  (109)

where k0 = [k|.
When doing a supemanslation transformation on the

fields using P, = [ dka( (k)a(K)w, as the generator, one
obtains

6ST¢ = {¢7 efPf}
/ dk(—=)e’ o, (a(k)e™ — a(k)e ), (110)
S = {n, e’ Py}

= / dk(-D) K w,(a(k)e™ + a(k)e~™),  (111)

which can be written in terms of the fields using (108) and
(109) as [32]

P / PyIfo(E = F)P(L.5) + g0 (F = (2. 7).
(112)

b7 = f / Pylhe(E - F)p(t.5) + £ - F)a(t.5)].

(113)
where
f(3) /kaf(lé)ko sin(k - %), (114)
gr(X) =2 / dkw, (k) cos(k - %), (115)
hy(%) = =2 / ko, (K cos(k- 7). (116)

PHYSICAL REVIEW D 96, 025004 (2017)

symmetry properties f,(—X) = —f (),
and hy(—X) = hy(X), and also that

Notice the
9r(=X) = g(%),
V29,(X) = h(3).

Another important aspect to notice here concerns the
values of f,, 9., and h, depending on the parity of Z. One
can check that for # odd, g, = h, = 0 since their inte-
grands are odd functions, and, for £ even, f, = O for the
same reason. This observation implies that a particular
supertranslation will not simultaneously use information
from a field and its momentum, but instead from only one
of them. Thus, if Z is even, d¢r¢p will depend only on the
field momentum, whereas if £ is odd, d57¢p will need only
the value of the field itself.

Now we would like to see if we can extend the on-shell
symmetry to an off-shell Noether symmetry of the massless
KG Lagrangian. We consider the off-shell realization of
(112) and (113). The variation of the Lagrangian (1) with
m = 0 under this transformation is

(117)

The second and third terms cancel each other out due to
f(=X) = —f(X), while the sixth and seventh terms [the

latter upon using Vx f(x-y)= —Vy f(X¥—7Y) and integra-
tion by parts with respect to y] cancel each one out by
themselves. Finally, the eighth term can be made to cancel

the fifth one by integrating by parts ﬁgb(t, X) and imposing
and  g(X) = g(—X)

[which implies also that 4(X) = h(—X)]. One is left then
with

Vg =h, (118)

oL = [ @xy{(E =50 7)(0.5)

+g(x = ¥)(t, y)n(t, X)]
=F, (119)

with
1 - - >
F =3 [ @ =)0 )00 5)

+9(X = y)x(t,y)a(t, X)),

and where g(—X) = g(X) and h(—X) = h(X) have also
been used. The conserved charge is given by

(120)
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0— / xn(t, )5 (1, F) — (121)

and one immediately gets

o- [ dzxdzy(f(f—ﬂn(r,f)aa(r,i)

3008 = 5)a(1D)5(1) = (= (1)) ),

(122)

which has the form of the canonical generators P, (49) (in
terms of ¢ and x) for the supertranslations.

B. Noether charges of superrotations

When acting over the Fourier modes, assuming they
vanish sufficiently quickly for high momentum (that is,
boundary terms can be ignored), one obtains the simple
transformation

{an 0(6)} = iLna(ZD’
{R,.a(q)} = iL,a(g).

Again, one can lift from on shell to off shell the variations
of the fields ¢ and = in the Hamiltonian formalism under a
superrotation

(123)
(124)

Ssrp = / dk(sa(R)e™ + sa(k)e*)
- / PH{P(1.5)Fy(R.5) + 7(1.5)G, (% 5}, (125)
Sspm = / dk(=ik0) (Sa(R)e — sa(k)eik)
_/dzy{(ﬁ(”y)ﬁ"(’?’?)+ﬂ<h§)7"(5&§)}, (126)

where we have used the expressions of Fourier modes in
terms of the field and momentum (108) and (109) off shell,
where

Fo(55) = —i / ke (L, e K0) 4 o=k (L, e k)],
(127)
G,(%.5) = / dk[e® L, e %y — e=ikx[, giky], (128)

I:In()?, i) /dkko[ zkx( —ikka) _ e—ikx(LneikykoH
(129)
jn()_é’ }_;) = —i/JkkO[eikane—iky + e—ikXLneiky]. (130)
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In contrast to the supertranslation case, the functions
involved in the nonlocal transformation do not depend
solely on the difference ¥ — X but on different combinations
of these variables. More explicitly,

F(%5) = —i / K2, () [in cos(K( = %)

— (in¥ - k+ ¥ x k) sin(k(y — ¥))]. (131)
G(5.3) = i [ s (o5 - E+ 5 x Dycos(E(T - D)
(132)

i35 = i / k2K, () [in sin(k(5 — )
+ (in¥ - k+§ x k) cos(k(F — %)) (133)

1,(37) =i / dk2w, (K)[(iny - k + § x k) sin(k(5 — ¥))].

(134)

where y x k= yik, — yok;. Here, there is an important
remark to make concerning the parity of |n|: if |n| is odd,
F, =1,=0,andif |n|is even, G, = H, = 0. For the case
of rotations, Ly = —iJ:

Fo(%.5) = 2i / JKkO5 x [ sin(R(F - %)), (135)

G, 5) = 2i / Q5 x foos(kF—%).  (136)

By symmetry properties, Go(X,y) = 0, and one can sub-
stitute Fy into (125) and show that the usual rotation is
recovered:

Ssr, @ = i(x10,,0(t. X) = x0,,¢(1.%)).  (137)
Recall that when we defined superrotations in Sec. I C, we
used the truncated (time-independent) form of Lorentz
generators constructed in (9). Thus, when trying to recover
ordinary boosts, which involve time, we will need to
redefine superrotations to take this under consideration.

The final form for superrotations will be

Oordinary SR, @ = —ntSsy ¢ + Osp, P, (138)
which now accounts for time translations. With this
definition, one can see that, for n = 1, a combination of
ordinary boosts is recovered,
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5ordinarySR|¢ = tax]‘ﬁ(t’ )_é) + it6x2¢(t’ )_C')

—x17(t,X) — ixy7(t, X).

(139)

Hence, the true superrotation generators will be a combi-
nation of the already constructed ones plus a proportional
term depending on supertranslations. This can be written as
follows:

G,=-ntP,+R,. (140)

The generators R,, can be written off shell as

R, =

N =

/ Pyd*x|p(t,%)p(1.5)(H, + iF,)

(141)

where F, and G, are as the functions F, and G, in (131)

and (132), respectively, but with an extra kY factor under the

integral sign, while H, and I, are defined as the corre-

sponding functions, but with an additional 1/k° factor.
The G, given in (140) are constants of motion

g,
= 0,G,+ {0, H)

= —I’ZP,, _nt{anPO} + {RmPO}
= —nP,+nP, =0,

(142)

where we have used H = P,. This was expected, since the

Lagrangian is invariant under Lorentz transformations.
The new field variations, 6g ¢ = —ntdsr¢ + Sgrep, are

solutions on shell of the massless Klein-Gordon equation:

Dégngl) = _ntD53T¢ + n8[55T¢ + D65R¢
= n0 857 + Losgp

— ner / Py(foE = F)B(F) + ga( = F)ie(t.5)]

L / PYIVEF,(R,5) = V2F, (£.5)} (1. 5)

+{ViG,(x.5) - ViG,(x.3)}x(t.5)].  (143)
Using now the on-shell condition 7 = ¢ = V?¢, integrat-
ing by parts and using symmetry properties of g in the first
integral, and expanding the second one, and then using
h, = V?g,, we immediately see that [15; ¢ = 0. The
algebra of the charges is

{gn’ gm} = (Vl - m)gn+m‘

Thus, we have found another realization of the super-
rotations, which now reduce to the true Lorentz generators
as defined in (8). Indeed,

(144)
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Go = Ry = —i / dka(®)Ja(F) =M™, (145)
g1 = —tP; + R,
=1 / dk a(k)(k; + iky)a(k) + / dka(k)K .a(Kk)
= —MO' — iM%, (146)
G =tP_ +R_,
=t / dk a(k)(k, — iky)a(k) — / dka(k)K_a(k)
=-M"" +iM*. (147)

IV. CONCLUSIONS AND OUTLOOK

Using the canonical formalism for a real scalar field, a
realization of the BMS group in three dimensions has been
constructed in the space of Fourier modes for both massive
and massless cases. In the massless case, the superrotation
extension of this group can also be constructed by general-
izing the Lorentz group in a manner similar to that used for
supertranslations.

In the massive case, we have constructed in a heuristic
way a set of generators which generalize those of the
Lorentz group and reproduce the corresponding part of the
bma3; algebra. We have shown how our starting equations
arise in a geometrical setup, and we have also obtained an
equation for the 1-forms associated with the generators.

However, unlike what happens in the massless case, the
superrotation generators must be split into two different
extensions of the Lorentz algebra, each spanning a sub-
algebra of bmsg;.

At the quantum level, the Hilbert space of one-particle
states supports a unitary irreducible representation of the
Poincaré group, and at the same time a unitary reducible
representation of the BMS; group. Both are realized in an
unbroken way.

The BMS; transformations are realized as symmetries of
the KG action in terms of linear nonlocal functionals of the
field and the canonical momentum. The corresponding
conserved Noether charges have been computed.

In addition to obtaining a better understanding of the
extension of superrotations in the massive case, some
further questions are still open for future work.

There was the belief, in the gravitational approach, that
BMS was not present in higher dimensions. From the
viewpoint considered in this paper, there is no reason to
think so, and the method presented here could help to
investigate it. In fact, it can be proved that the canonical
realization of BMS in higher dimensions does exist [33].

One could also try to add a fermionic field to the present
model in order to get a field supersymmetric theory and to
see whether there are still conserved charges generated by
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the extended BMS transformations. In the gravitational
approach, this was studied in [34-37].

Finally, there is the question relating to the physical
interpretation of the BMS symmetries and charges in the
framework that we have used. A possible way to throw light
on this issue is to try to construct particle models exhibiting
these symmetries using the method of nonlinear realiza-
tions [38]. We also conjecture that the nonlocality of the
transformations is due to the fact that they are computed for
fields depending only on the standard space-time coordi-
nates, and that they would become local for fields depend-
ing also on the supercoordinates associated with the
supermomenta, i.e., the generators of supertranslations.
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APPENDIX A: BEHAVIOR OF f,, g,, AND h,

In this appendix we study in some detail the functions
which appear in the nonlocal transformations constructed
in Sect. III. We consider only the massless case, although
similar—but more complicated—expressions can be
obtained in the massive case using (43).

The functions f,(X) can be written as

Fo(3) = / ko, (R) sin(F - ),

1
(2m)?

where (in the massless case)

wp (k) = [kle" ™,

PHYSICAL REVIEW D 96, 025004 (2017)
with

. k
sin ¢, =2,

K]

k
cos ¢y, :ﬁ,

-

Notice that w_,(k) = a)}(lz)
The Fourier transform of f, is

Fol@) = [ @xf @ = 1 @0l@) - 0,(-2).

Since ¢_, = ¢, + 7, one has

0, (=4) = 0,(§)e"" = (-1) 0,(§) (A1)
and
n o 0 if Z is even,
@={ o e (42)
—iwy(q) if £ is odd.

For a general value of #, one can write @, as a function
of ¢! and ¢* as

(¢' +iq*)”
((¢")% + (M=
Hence, for an odd 7, f,(g§) grows as |g|, while
limz_ofs(q) = 0. .

Specifically, for # = 1 one has f,(q) = —i(q; + ig,).
The physical components are

£1@) +F1@@)
2

f1(@) = f-1(9)
2

wf(zl) =

(A3)

= ~qy,

= —q>,

which correspond to ordinary translations along the coor-
dinate axes. For £ =2m+ 1, m > 1, one gets in the
denominator of w, positive integer powers of g3 + g3 =
|g|?, which implies that the transformation is nonlocal. For
instance, for £ = 3,

5o @y +3igiq —343q, — iq}
f3(CI) =l 2 2 :
q1 + 95

Similarly, one can see that

1 —_ . .
C o mw;(q), if £ is even,
ge(q) = A4
(@) {o, if ¢ is odd. (A4)
For an even ¢, one has, explicitly,
o (g tigy)”
6olG) = T 1D (AS)

(@)
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Specifically, for # =0, one gets §y(q) =1, that is,
go(X) = 6(X), which yields a local transformation, corre-
sponding to translations in time, while for Z > 2 the
transformations are nonlocal.

Finally, since h,(¥) = V2g,(¥), one has h,(§) =
~141*3,(q) and

. —|qlw.(q), if £ is even,
h = A6
/@) {0, ifrisodd, A9
For an even 7, this is
< q1 +iqy)”
(@) = -t 1) (A7)

(a1 +a3)"* "

This yields local transformations for £ =0, 2 and is
nonlocal for Z > 4.

APPENDIX B: GEOMETRY OF THE MASS-
SHELL HYPERBOLOID IN (2 +1) DIMENSIONS

We list here some results for the geometry of the mass-
shell hyperboloid of a massive particle in 2 4+ 1 dimensions
that are useful for the construction of supertranslations and
superrotations.

The metrics in (z, ¢p) coordinates (25) and its inverse are,

in matrix form,
0
. . (BI)
m*(z2=1)

2_
g= z;n—zl 0 g_1 _ Zm_21
0 m*(2-1) 0

The nonzero Christoffel symbols are

 ___Z z 2 b _¢ _ %
ngi_zz—f F¢¢*_Z(Z —-1), Fz‘bir’f’zizz—l'
(B2)
Given a vector field £ on the manifold,
E=&0,+ 5"’84,, (B3)
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we can construct an associated 1-form using g,

2

w; = sz_ 0 Edz +m?(2 — 1)E0dg. (B4)
The divergence of a vector field is
V. + V&t = 0,8 + T5,8% 4+ 0,80 + T4,
= 0F ~ T E O+ T E
= 0.8 + 0,87, (B5)

so it coincides with the flat divergence. The Beltrami-
Laplace operator acting on a function f(z, ¢) is

1
Af =—=0,(/]glg"0

= aagaﬁaﬂf + gaﬂaaaﬂf
2z -1 1

=—0 4 —_
m? of + m? Zf+m2(z2— 1)

If we denote this scalar Laplacian by Ag, on vector fields
one has

a3f.  (B6)

¢V, & = A& + ¢°V, (F(DI/}‘fﬁ)- (B7)

The nonzero components of the Riemann curvature
tensor are

RZ¢Z¢ = —(ZZ - 1), RZ(/J(/)Z = Z2 - 1,
1 1
R¢“‘/’:z2—1’ R¢””Z:_z2——1’ (B8)
and the Ricci scalar curvature is
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