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We construct canonical realizations of the (2+1)-dimensional Bondi-Metzner-Sachs (bms3) algebra as
symmetry algebras of a free Klein-Gordon (KG) field in 2þ 1 dimensions for both massive and massless
cases. We consider two types of realizations, one on shell, written in terms of the Fourier modes of the
scalar field, and the other off shell, with nonlocal transformations written in terms of the KG field and its
momenta. These realizations contain both supertranslations and superrotations, for which we construct the
corresponding Noether charges.
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I. INTRODUCTION

Recently, there has been renewed interest in the Bondi-
Metzner-Sachs (BMS) group [1]. The BMS invariance of
the gravitational scattering matrix was proved in [2] and, as
a consequence of this result, Weinberg’s soft graviton
theorems [3] can be understood as the Ward identities
of BMS supertranslations [4–7]. The relation between
supertranslations, gravitational memory, and soft graviton
theorems has also been studied [8]. There is a proposal that
the information paradox [9] could be understood in terms
of black hole soft hair associated with supertranslation
and superrotation charges [10,11]. On the other hand, the
BMS group could play a crucial role in understanding holo-
graphy in asymptotically flat space-times [12–15]. BMS
symmetry is an infinite conformal extension of the Carroll
symmetry [16], which was introduced in [17] as a limit of
the Poincaré algebra when the velocity of light is scaled
down to zero. A pedagogical overview of the role of BMS
symmetries in most of these topics is presented in [18].
In this paper we construct a canonical realization of

the bms3 algebra [19,20] with supertranslations and super-
rotations [15] associated with a free Klein-Gordon (KG)
field in 2þ 1 dimensions, for both massive and massless
fields. Following the procedure in [21], we consider, in the
massive case, the mass-shell hyperboloid representation of
the hyperbolic plane H2, and we compute the associated
Laplace-Beltrami operator. It turns out that the three-
dimensional momenta is an eigenfunction of the differential

operator with eigenvalue 2
m2, wherem is themass of the scalar

field and the 2 comes from the dimension of the hyperboloid.
This property suggests computing all of the eigenfunctions of
this operator corresponding to that eigenvalue with the same
asymptotic properties as the threemomenta. This allows us to
generalize the momenta to an infinite set of supermomenta.
These momenta yield an infinite-dimensional representation
of the 2þ 1 Lorentz group and lead to the definition of the
generators of the supertranslations in terms of the Fourier
modes of the KG field.
The mass-shell condition for a massless scalar field results

in a cone, for which a Laplace-Beltrami operator cannot be
constructed. To get around this, we consider the massless
limit of the Laplace-Beltrami operator on the hyperboloid
[22]. Once we have a suitable differential operator, the
construction goes in parallel with the massive case.
We also construct a generalization of the Lorentz

generators which corresponds to superrotations. In the
massless case, the algebra of supertranslations and super-
rotations is the bms3 algebra introduced in [23]. In the
massive case, the superrotation generators that we intro-
duce must be separated into two different sets which both
contain the Lorentz part, and each set corresponds to a
subalgebra of bms3. It should be noted that the differential
operators appearing in our construction represent one of the
two Casimirs of the 2þ 1 Lorentz group.
At the quantum level, the Hilbert space of one-particle

states supports a unitary irreducible representation of the
Poincaré group, and at the same time a unitary reducible
representation of the BMS3 group. In contrast to the
gravitational approach, our canonical realization of the
supertranslation symmetry is not spontaneously broken.
Unitary representations of BMS3 were also considered
in [24,25].
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We study the off-shell (Noether) supertranslation and
superrotation symmetries of the massless Klein-Gordon
action, and we compute the associated Noether charges.
These charges are expressed as nonlocal linear functionals
of fields and momenta. The same construction is carried out
for the supertranslations in the massive case.
The organization of the paper is as follows. In Sec. II we

construct the supertranslations and superrotations in terms
of the Fourier modes of the KG field. In Sec. III we
construct the transformations in terms of fields and
momenta. Section IV is devoted to conclusions and an
outlook. Appendix A presents explicit forms for some of the
functions that appear in the nonlocal transformations
obtained in Sec. III, andAppendix B discusses the geometry
of the mass-shell hyperboloid in 2þ 1 dimensions. We use
the Minkowski metric ð−þþÞ throughout the paper.

II. CANONICAL REALIZATION OF BMS3

A. Canonical realization of Poincaré symmetry
for a scalar field

The Lagrangian density for a real massive scalar field is
given by

L ¼ −
1

2
∂μϕ∂μϕ −

1

2
m2ϕ2: ð1Þ

The solution of the Klein-Gordon equation, in terms of
Fourier modes aðk⃗Þ, is

ϕðt; x⃗Þ ¼
Z

~dkðaðk⃗Þeikx þ āðk⃗Þe−ikxÞ; ð2Þ

where the phase space Fourier modes have the Poisson
bracket

faðk⃗Þ; āðq⃗Þg ¼ −iΩðk⃗Þδ2ðk⃗ − q⃗Þ: ð3Þ
The Lorentz invariant integration measure in the hyperbolic
plane H2 is

~dk ¼ d2k

Ωðk⃗Þ
;

Ωðk⃗Þ ¼ ð2πÞ22k0ðk⃗Þ ¼ ð2πÞ22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
: ð4Þ

Noether’s theorem allows us to write the expression for the
conserved charge under translations. By use of the solution
of the equations of motion (2), the charges on shell can be
written as

Pμ ¼
Z

~dk āðk⃗Þkμaðk⃗Þ; ð5Þ

and their action on the Fourier modes is given by

fPμ; aðk⃗Þg ¼ ikμaðk⃗Þ: ð6Þ

The analogous Lorentz charges on shell are

Mij ¼ −i
Z

~dk āðk⃗Þ
�
ki

∂
∂kj − kj

∂
∂ki
�
aðk⃗Þ ð7Þ

for rotations, and

M0j ¼ tPj − i
Z

~dk āðk⃗Þk0 ∂
∂kj aðk⃗Þ ð8Þ

for boosts. We define the truncated time-independent
Lorentz generators

M0ij ¼ Mij; M00j ¼ M0j − tPj ð9Þ

that satisfy the Poincaré algebra as well and have the
following Poisson brackets (we drop the prime and will
work with these generators henceforth unless otherwise
stated):

fPμ; Pνg ¼ 0; fMμν; Pρg ¼ Pμηνρ − Pνημρ; ð10Þ

fMμν;Mρσg¼MμσηνρþMνρημσ−Mμρηνσ−Mνσημρ: ð11Þ

The action of Lorentz generators on the Fourier modes is
given by

fMμν; aðk⃗Þg ¼ ημμ
0
ηνν

0
Dμ0ν0aðk⃗Þ; ð12Þ

where Dμν is a realization of the Lorentz group in terms of
the differential operators

D01 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗ 2 þm2

q
∂k1 ≡ iK1; ð13Þ

D02 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗ 2 þm2

q
∂k2 ≡ iK2; ð14Þ

D12 ¼ k1∂k2 − k2∂k1 ≡ iJ: ð15Þ

One can check that the generators J,K1, and K2 obey the
SOð1; 2Þ algebra

½K1;K2�¼−iJ; ½K1;J�¼−iK2; ½K2;J�¼ iK1: ð16Þ

B. Supertranslations

In order to construct a canonical realization of BMS3, we
follow the procedure of [21] to construct supertranslations.
The idea is to generalize the ordinary three-dimensional
momenta kμ to an infinite set of “supermomenta” and to
generalize the realization of the charge of the translations
on shell (5).
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1. Massive case

Consider the k0 > 0 sheet of the mass-shell hyperboloid
representation of the hyperbolic plane H2,

−k20 þ k21 þ k22 ¼ −m2; ð17Þ

in a space with the ambient Minkowski metric

ds2 ¼ −dk20 þ dk21 þ dk22: ð18Þ

The manifold H2 is invariant under the isometries of the
metric, that is, ISOð1; 2Þ. We can parametrize (17) for
k0 > 0 as

k0 ¼ mz; ð19Þ

k1 ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
cosϕ; ð20Þ

k2 ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
sinϕ; ð21Þ

with z ∈ ½1;þ∞Þ, ϕ ∈ ½0; 2πÞ. Notice that k1 and k2 vanish
at z ¼ 1. In these coordinates, the Lorentz generators (13),
(14), and (15) are given by

K1 ¼ −i
zffiffiffiffiffiffiffiffiffiffiffiffi

z2 − 1
p sinϕ

∂
∂ϕþ i

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
cosϕ

∂
∂z ; ð22Þ

K2 ¼ i
zffiffiffiffiffiffiffiffiffiffiffiffi

z2 − 1
p cosϕ

∂
∂ϕþ i

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
sinϕ

∂
∂z ; ð23Þ

J ¼ −i
∂
∂ϕ : ð24Þ

The metric induced on H2, which is a Euclidean AdS2
with an anti–de Sitter (AdS) radius equal to m, is given in
this parametrization by

ds2induced ¼ m2
1

z2 − 1
dz2 þm2ðz2 − 1Þdϕ2: ð25Þ

The boundary is located at z → ∞, and it is a sphere S1 with
radius m

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
and metric

ds2jboundary ¼ lim
z→∞

1

m2ðz2 − 1Þ ds
2
induced ¼ dϕ2:

The Laplace-Beltrami operator (Appendix B) is given by

∇2 ¼ 1

m2

�
ðz2 − 1Þ ∂2

∂z2 þ 2z
∂
∂zþ

1

z2 − 1

∂2

∂ϕ2

�
; ð26Þ

and it is proportional to a Casimir, the 2þ 1 Lorentz group

m2∇2 ¼ −J2 þ K2
1 þ K2

2: ð27Þ

It is immediate to check that the three-dimensional
momenta are eigenfunctions of this operator,

∇2kμ ¼
2

m2
kμ; μ ¼ 0; 1; 2: ð28Þ

The numerical constant 2 is the dimension of the hyper-
boloid. To generalize the momenta to infinite supermo-
menta, we look for general eigenvectors of the Laplacian
with the eigenvalue 2=m2,

�
−∇2 þ 2

m2

�
Φðz;ϕÞ ¼ 0: ð29Þ

We look for solutions of the form

Φðz;ϕÞ ¼ eilϕfðzÞ; ð30Þ

where eilϕ are the eigenfunctions of S1. The differential
equation for fðzÞ is

ð1 − z2Þf00 − 2zf0 þ
�
2 −

l2

1 − z2

�
f ¼ 0; ð31Þ

with the general solution

fðzÞ ¼ C1ðz − lÞ
�
zþ 1

z − 1

�l
2 þ C2ðzþ lÞ

�
z − 1

zþ 1

�l
2

: ð32Þ

The first solution does not behave well at z ¼ 1 for l > 0,
while the second one is not well behaved for l < 0, and one
of the solutions becomes the other one by changing
l ↔ −l. Since the two-dimensional momenta are regular
for z ¼ 1, we are interested in the general solution to (29)
that is regular at z ¼ 1, given by

wlðz;ϕÞ ¼ eilϕ
�
z − 1

zþ 1

�l
2ðzþ lÞ; l ≥ 0; ð33Þ

ŵlðz;ϕÞ ¼ eilϕ
�
zþ 1

z − 1

�l
2ðz − lÞ; l < 0; ð34Þ

which can also be written in a more compact form as

wlðz;ϕÞ ¼ eilϕ
�
z − 1

zþ 1

�jlj
2 ðzþ jljÞ; l ∈ Z: ð35Þ

The functions wlðz;ϕÞ are the infinite set of supermomenta
that we are looking for.
Notice that

wlðz;ϕÞ ¼ eilϕzþOð1=zÞ; ð36Þ
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and we can define wljboundaryðz;ϕÞ ¼ eilϕz. This means
that the generalized momenta have, for all l’s, the same
asymptotic behavior as the ordinary momenta.
Alternatively, one can use the set of real functions

ulðz;ϕÞ ¼ coslϕ
�
z − 1

zþ 1

�l
2ðzþ lÞ; l ≥ 0; ð37Þ

vlðz;ϕÞ ¼ sinlϕ
�
z − 1

zþ 1

�l
2ðzþ lÞ; l ≥ 0: ð38Þ

Notice that the three-dimensional momenta can be
written in terms of these functions as

u0ðz;ϕÞ ¼ z ¼ 1

m
k0; ð39Þ

u1ðz;ϕÞ ¼ðz2 − 1Þ12 cosϕ ¼ 1

m
k1; ð40Þ

v1ðz;ϕÞ ¼ðz2 − 1Þ12 sinϕ ¼ 1

m
k2: ð41Þ

In terms of the two-dimensional momenta, the functions
(35) can be written as

ωlðk1; k2Þ ¼
�

k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

p þ i
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 −m2
p �

l

·
�
k0 −m
k0 þm

�jlj=2�k0
m

þ jlj
�
: ð42Þ

This can be further simplified to yield

ωlðk1; k2Þ ¼ ðk1 þ ik2Þljk⃗j−l
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jk⃗j2

q
−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ jk⃗j2
q

þm

1
CA

jlj=2

·
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jk⃗j2=m2

q
þ jlj

�
; ð43Þ

or

ωlðk1; k2Þ ¼ ðk1 þ ik2Þl
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ jk⃗j2
q

þ sgnðlÞm
�l

·
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jk⃗j2=m2

q
þ jlj

�
: ð44Þ

One can check that the subspace of functions spanned by
u0, u1, v1, or, alternatively, by w0, w1, and w−1, is invariant
under the action of the 2þ 1 Lorentz group. In general, the
action of the Lorentz generators on the wl is given by

K1wl ¼ −
i
2
ðl − 1Þwlþ1 þ

i
2
ðlþ 1Þwl−1; ð45Þ

K2wl ¼ −
1

2
ðl − 1Þwlþ1 −

1

2
ðlþ 1Þwl−1; ð46Þ

Jwl ¼ lwl: ð47Þ

Defining K� ¼ K1 � iK2, one has

K�wl ¼ ið1 ∓ lÞwl�1; ð48Þ

and therefore K�wl are raising and lowering operators.
Since each function wl defines a (super)translation in the

phase space of a massless scalar particle, we define the
supertranslation generators as

Pl ¼
Z

~dkwlðk⃗Þāðk⃗Þaðk⃗Þ: ð49Þ

It is easy to check that these supertranslations commute,

fPl; Pl0g ¼ 0: ð50Þ

Their action on the Fourier modes is given by

fPl; aðk⃗Þg ¼ iwlaðk⃗Þ: ð51Þ

Let us see how Lorentz generators act on them. A
Lorentz generator O is represented by

O ¼
Z

~dk āðk⃗ÞOk⃗aðk⃗Þ; ð52Þ

with Ok⃗ being a first order differential operator in k⃗. For
instance, for the rotation J, one has

Ok⃗ ¼ −i
�
k1

∂
∂k2 − k2

∂
∂k1
�
;

while for the boost generators Ki,

Ok⃗ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þm2

q ∂
∂ki :

One can show that

fO; Plg ¼ −i
Z

~dkaðk⃗Þāðk⃗ÞOk⃗wlðk⃗Þ; ð53Þ

and hence it suffices to know the action of the generators on
the functions wl. Specifically, one gets

fJ; Plg ¼ −ilPl; ð54Þ

fK1; Plg ¼ 1

2
ð1 − lÞPlþ1 þ

1

2
ð1þ lÞPl−1; ð55Þ
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fK2; Plg ¼ −
i
2
ð1 − lÞPlþ1 þ

i
2
ð1þ lÞPl−1; ð56Þ

fK�; Plg ¼ð1 ∓ lÞPl�1: ð57Þ

This is the analog in 2þ 1 dimensions of the four-
dimensional BMS algebra [1,21]. The generalization of
the algebra to include superrotations will be discussed
after we consider the massless case.
Relations (50) and (54)–(57) imply, at the quantum level,

that the Hilbert space of one-particle states supports a
unitary irreducible representation of the Poincaré group,
and at the same time a unitary reducible representation of the
BMS3 group. In contrast to the gravitational approach, our
canonical realization of the supertranslations is unbroken.

2. Massless case

Now we want to construct the canonical realization of
BMS associated with a three-dimensional massless free
scalar field. In this case what previously was a hyperboloid
is now a cone,

−k20 þ k21 þ k22 ¼ 0; ð58Þ
that can be parametrized as

k0 ¼ r; ð59Þ

k1 ¼ r cosϕ; ð60Þ

k2 ¼ r sinϕ; ð61Þ

with r > 0 for k0 > 0 and ϕ ∈ ½0; 2πÞ. This can be obtained
from (19)–(21) by putting z ¼ r=m and lettingm → 0 [22].
However, a nondegenerate induced metric does not exist
and the standard construction of the Laplace operator fails.
Instead, we scale the operator in (29) by m2 and replace
z ¼ r=m,

D≡ −m2Δþ 2

¼ −
�n� r

m

�
2
− 1
o
m2∂2

r þ 2r∂r þ
1

ð rmÞ2 − 1
∂2
ϕ

�
þ 2:

ð62Þ
In the limit m → 0, one gets

Dmassless ¼ −r2∂2
r − 2r∂r þ 2; ð63Þ

which turns out to be independent of ϕ. As in the massive
case, we look for solutions of

DmasslessΦðr;ϕÞ ¼ 0 ð64Þ
of the form

Φðr;ϕÞ ¼ eilϕfðrÞ:

The function fðrÞ must obey

−r2f00 − 2rf0 þ 2f ¼ 0: ð65Þ

This equation has independent solutions f1ðrÞ ¼ r and
f2ðrÞ ¼ 1=r2, and hence the regular solution at r ¼ 0 is
fðrÞ ¼ r. The supermomenta that we are looking for are

wlðr;ϕÞ ¼ reilϕ; l ∈ Z; ð66Þ

up to a normalization constant. The expression in terms of
momenta is given by

ωlðq⃗Þ ¼
ðq1 þ iq2Þl

ððq1Þ2 þ ðq2Þ2Þl−12 : ð67Þ

Notice that, in the massless case, the dependence of r in the
boundary and in the bulk is the same; that is, there are no
corrections in 1=r like in the massive case.
The SOð1; 2Þ generators on the cone are given by

J ¼ −i
∂
∂ϕ ; ð68Þ

K1 ¼ ir cosϕ
∂
∂r − i sinϕ

∂
∂ϕ ; ð69Þ

K2 ¼ ir sinϕ
∂
∂rþ i cosϕ

∂
∂ϕ : ð70Þ

As in the massive case, it turns out that the purely
differential part of Dmassless is proportional (actually equal
in this case) to one of the two Casimirs of SOð2; 1Þ,

−r2
∂2

∂r2 − 2r
∂
∂r ¼ −J2 þ K2

1 þ K2
2: ð71Þ

Notice that these generators—or, more precisely, J,
K� ¼ K1 � iK2—can be written as particular cases
(n ¼ 0;�1) of the more general expression

Ln ¼ einϕ
�
−

∂
∂ϕþ inr

∂
∂r
�
: ð72Þ

The action of SOð1; 2Þ generators on the eigenfunctions wl
is exactly the same found for the massive case

Jwl ¼ lwl; ð73Þ

K1wl ¼ −
i
2
ðl − 1Þwlþ1 þ

i
2
ðlþ 1Þwl−1; ð74Þ

K2wl ¼ −
1

2
ðl − 1Þwlþ1 −

1

2
ðlþ 1Þwl−1; ð75Þ
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which, in particular, shows that the subspace spanned by
w0, w1, and w−1 is invariant under SOð1; 2Þ.
The supertranslations are still given by

Pl ¼
Z

~dkwlðk⃗Þāðk⃗Þaðk⃗Þ: ð76Þ

Together with the Lorentz generators, they constitute a
realization of the bms3 algebra. The action of super-
translations on the Fourier modes is analogous to the
massive case. Induced representations of BMS3 were
constructed in [24,25].

C. Superrotations

We will construct here infinite families of operators
generalizing the Lorentz algebra for both massless and
massive cases.

1. Massless case

In the massless case, one can generalize (72) for an
arbitrary n ∈ Z and write

Ln ¼ einϕ
�
−

∂
∂ϕþ inr

∂
∂r
�
; n ∈ Z: ð77Þ

One can check to see that these Ln’s also obey the Witt
algebra

½Ln; Lm� ¼ iðn −mÞLnþm; ð78Þ

and that

Lnwl ¼ iðn − lÞwnþl: ð79Þ

In terms of k⃗, the differential operators (77) can be
written as

Ln ¼ ðk21 þ k22Þ−n=2ðk1 þ ik2Þn

×

�
fink1 þ k2g

∂
∂k1 þ fink2 − k1g

∂
∂k2
�
; ð80Þ

and, analogously to the case of supertranslations, we define
the on-shell generators of superrotations as

Rn ¼
Z

~dk āðk⃗ÞLnaðk⃗Þ; ð81Þ

which, due to (78) and (79), realize the algebra

fRm;Rng ¼ −i
Z

~dk āðk⃗Þ½Lm; Ln�aðk⃗Þ

¼ ðm − nÞRmþn; ð82Þ

fRm; Png ¼ −i
Z

~dkaðk⃗Þāðk⃗ÞLmwnðk⃗Þ

¼ ðm − nÞPmþn; ð83Þ

fPn; Pmg ¼ 0: ð84Þ

This is the bms3 algebra introduced in [23].

2. Massive case

In the massive case, we do not have an initial guess for
the form of the superrotations. One may notice, however,
that Lorentz generators, once written in the form ξα∂α,
α ¼ z;ϕ, satisfy the following equations:

Dξz ¼ 0; ∇αξ
α ¼ 0; ð85Þ

where D ¼ −m2Δþ 2. Thus, one can try, in the massive
case, to generalize these operators by first solving Dξz ¼ 0

and then computing ξϕ from ∇zξ
z þ∇ϕξ

ϕ ¼ 0.
Clearly,

ξz ¼ einϕ
�
z − 1

zþ 1

�jnj=2
ðjnj þ zÞ; n ∈ Z ð86Þ

since this is the solution of the partial differential equa-
tion for massive supertranslations. From the divergence
equation, and using ∇zξ

z þ∇ϕξ
ϕ ¼ ∂zξ

z þ ∂ϕξ
ϕ (see

Appendix B), one can integrate the angular term to obtain

ξϕ ¼ −einϕ
�
z − 1

zþ 1

�jnj=2 ðjnjðjnj þ zÞ þ z2 − 1Þ
inðz2 − 1Þ

þ fðzÞ; ð87Þ

with fðzÞ being an arbitrary function that we set to zero.
Thus, one may try to define superrotation generators as

Tn ¼ einϕ
�
z − 1

zþ 1

�jnj=2�
−
jnjðjnj þ zÞ þ z2 − 1

z2 − 1

∂
∂ϕ

þ inðjnj þ zÞ ∂
∂z
�
; n ∈ Z; ð88Þ

where we have multiplied all terms by a factor in. However,
these operators do not form an algebra (this can be seen
when computing the commutator of Tn with opposed sign
indices, except in the case n ¼ �1). Instead, we can define
two infinite-dimensional set of generators, each containing
the Lorentz part, according to

Ln ¼ Tn; n ≥ −1; ð89Þ

Qn ¼ Tn; n ≤ 1: ð90Þ
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Both sets of differential operators satisfy the algebra

½Ln;Lm� ¼ iðn −mÞLnþm; n;m ≥ −1; ð91Þ

½Qn;Qm� ¼ iðn −mÞQnþm; n;m ≤ 1: ð92Þ

One has, for the lowest values of n,

Q0 ¼ L0 ¼ −iJ; L1 ¼Q1 ¼Kþ; L−1 ¼Q1 ¼ −K−:

ð93Þ

Furthermore, the functions wn associated with each set
provide a realization of the corresponding algebras,

Lnwm ¼ iðn −mÞwnþm; n;m ≥ −1; ð94Þ

Qnwm ¼ iðn −mÞwnþm; n;m ≤ 1: ð95Þ

Defining now the generators of superrotations as in (81) for
each set, one can construct realizations of two subalgebras
of the bms3 algebra. To sum up, it is possible to extend the
set of Lorentz generators to the right with the Ln and to
the left with the Qn, but, in contrast to what happens in the
massless case, it is not possible to merge both extensions
into a single algebra.
The first equation in (85), which we obtained by

generalizing the one satisfied by the Lorentz generators,
is clearly noncovariant, but we will show next that, due to
the geometry of the mass-shell manifold, it is, in fact, one of
the components of a geometrical equation.
The Lorentz generators are the only solutions of the

Killing equation

gμα∇αξ
ν þ gνα∇αξ

μ ¼ 0: ð96Þ

In order to generalize the generators of Lorentz trans-
formations, one could consider an equation of the form

gμα∇αξ
ν þ gνα∇αξ

μ ¼ Gμν; ð97Þ

with G being symmetric and covariantly divergenceless,

∇μGμν ¼ 0: ð98Þ

Condition (98) is instrumental for what we want to do.
Notice, however, that we are not assuming that G is
proportional to the metric, and hence (97) is different from
the conformal Killing equation.
We now take the covariant derivative ∇μ of (97). Using

that ∇αgμν ¼ 0 and (98), imposing ∇μξ
μ ¼ 0, and using

½∇μ;∇α�ξμ ¼ Rμ
βμαξ

β, one arrives at

gμα∇μ∇αξ
ν þ gναRμ

βμαξ
β ¼ 0: ð99Þ

Using the explicit form of the components of the Riemann
curvature tensor given in Appendix B, it turns out that

gναRμ
βμαξ

β ¼ −
1

m2
ξν; ð100Þ

and (99) boils down to [26]

gμα∇μ∇αξ
ν ¼ 1

m2
ξν: ð101Þ

Evaluating (101) for ν ¼ z;ϕ yields a pair of coupled
equations,

ΔSξ
z −

2z
m2

ð∂zξ
z þ ∂ϕξ

ϕÞ − 2

m2
ξz ¼ 0; ð102Þ

ΔSξ
ϕ þ 2z

m2

�
∂zξ

ϕ þ 1

ðz2 − 1Þ2 ∂ϕξ
z

�
¼ 0; ð103Þ

where ΔS is the scalar Beltrami-Laplace operator (26).
However, since

0 ¼ ∇zξ
z þ∇ϕξ

ϕ ¼ ∂zξ
z þ ∂ϕξ

ϕ; ð104Þ

equation (102) can be simplified to

ΔSξ
z −

2

m2
ξz ¼ 0: ð105Þ

Equations (105) and (104) were our starting point for
constructing the superrotation generators and now have
received a sound geometrical foundation, i.e., (99).
Furthermore, one can check that (103) is satisfied by the
∂ϕ parts of Ln and Qn.
Let us finally note that the 1-forms ln associated with Ln

(and likewise for Qn),

ln ¼ m2einϕ
�
z − 1

zþ 1

�
n=2
�
i
nðnþ zÞ
z2 − 1

dz

−ðnðnþ zÞ þ z2 − 1Þdϕ
�
; n ∈ Z: ð106Þ

turn out to be eigenvectors of the Hodge–Laplace–de Rham
operator ~Δ [28],

~Δln ¼ −
2

m2
ln: ð107Þ

This adds to the geometrical meaning of our construction,
and it could be useful for further generalizations.
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III. NONLOCAL BMS SYMMETRIES OF THE
KLEIN-GORDON LAGRANGIAN

In this section we will prove that the KG action is
invariant under supertranslations and superrotations, and
we will construct the corresponding Noether charges [29].
We will present explicit expressions only for the mass-
less case.

A. Noether charges of supertranslations

For the classical Klein-Gordon field, the Fourier modes
can be written in terms of the fields ϕ and π as

aðk⃗Þ ¼
Z

d2xe−ikxðk0ϕðt; x⃗Þ þ iπðt; x⃗ÞÞ; ð108Þ

āðk⃗Þ ¼
Z

d2xeikxðk0ϕðt; x⃗Þ − iπðt; x⃗ÞÞ; ð109Þ

where k0 ¼ jk⃗j.
When doing a supertranslation transformation on the

fields using Pl ¼ R ~dk āðk⃗Þaðk⃗Þωl as the generator, one
obtains

δSTϕ ¼ fϕ; ϵlPlg

¼
Z

~dkð−iÞεlωlðaðk⃗Þeikx − āðk⃗Þe−ikxÞ; ð110Þ

δSTπ ¼ fπ; εlPlg

¼
Z

~dkð−1Þk0εlωlðaðk⃗Þeikx þ āðk⃗Þe−ikxÞ; ð111Þ

which can be written in terms of the fields using (108) and
(109) as [32]

δSTϕ ¼ εl
Z

d2y½flðx⃗ − y⃗Þϕðt; y⃗Þ þ glðx⃗ − y⃗Þπðt; y⃗Þ�;

ð112Þ

δSTπ ¼ εl
Z

d2y½hlðx⃗ − y⃗Þϕðt; y⃗Þ þ flðx⃗ − y⃗Þπðt; y⃗Þ�;

ð113Þ

where

flðx⃗Þ ¼ 2

Z
~dkωlðk⃗Þk0 sinðk⃗ · x⃗Þ; ð114Þ

glðx⃗Þ ¼ 2

Z
~dkωlðk⃗Þ cosðk⃗ · x⃗Þ; ð115Þ

hlðx⃗Þ ¼ −2
Z

~dkωlðk⃗Þk02 cosðk⃗ · x⃗Þ: ð116Þ

Notice the symmetry properties flð−x⃗Þ ¼ −flðx⃗Þ,
glð−x⃗Þ ¼ glðx⃗Þ, and hlð−x⃗Þ ¼ hlðx⃗Þ, and also that
∇2glðx⃗Þ ¼ hlðx⃗Þ.
Another important aspect to notice here concerns the

values of fl, gl, and hl depending on the parity of l. One
can check that for l odd, gl ¼ hl ¼ 0 since their inte-
grands are odd functions, and, for l even, fl ¼ 0 for the
same reason. This observation implies that a particular
supertranslation will not simultaneously use information
from a field and its momentum, but instead from only one
of them. Thus, if l is even, δSTϕ will depend only on the
field momentum, whereas if l is odd, δSTϕ will need only
the value of the field itself.
Now we would like to see if we can extend the on-shell

symmetry to an off-shell Noether symmetry of the massless
KG Lagrangian. We consider the off-shell realization of
(112) and (113). The variation of the Lagrangian (1) with
m ¼ 0 under this transformation is

δL ¼
Z

d2xd2y½hðx⃗ − y⃗Þϕðt; y⃗Þ _ϕðt; x⃗Þ

þ fðx⃗ − y⃗Þπðt; y⃗Þ _ϕðt; x⃗Þ þ fðx⃗ − y⃗Þ _ϕðt; y⃗Þπðt; x⃗Þ
þ gðx⃗ − y⃗Þ _πðt; y⃗Þπðt; x⃗Þ − hðx⃗ − y⃗Þϕðt; y⃗Þπðt; x⃗Þ
− fðx⃗ − y⃗Þπðt; y⃗Þπðt; x⃗Þ
− ∇⃗xfðx⃗ − y⃗Þϕðt; y⃗Þ · ∇⃗ϕðt; x⃗Þ
− ∇⃗xgðx⃗ − y⃗Þπðt; y⃗Þ · ∇⃗ϕðt; x⃗Þ�: ð117Þ

The second and third terms cancel each other out due to
fð−x⃗Þ ¼ −fðx⃗Þ, while the sixth and seventh terms [the

latter upon using ∇⃗xfðx⃗ − y⃗Þ ¼ −∇⃗yfðx⃗ − y⃗Þ and integra-
tion by parts with respect to y] cancel each one out by
themselves. Finally, the eighth term can be made to cancel

the fifth one by integrating by parts ∇⃗ϕðt; x⃗Þ and imposing

∇2g ¼ h; and gðx⃗Þ ¼ gð−x⃗Þ ð118Þ

[which implies also that hðx⃗Þ ¼ hð−x⃗Þ]. One is left then
with

δL ¼
Z

d2xd2y½hðx⃗ − y⃗Þϕðt; y⃗Þ _ϕðt; x⃗Þ

þ gðx⃗ − y⃗Þ _πðt; y⃗Þπðt; x⃗Þ�
¼ _F; ð119Þ

with

F ¼ 1

2

Z
d2xd2y½hðx⃗ − y⃗Þϕðt; y⃗Þϕðt; x⃗Þ

þ gðx⃗ − y⃗Þπðt; y⃗Þπðt; x⃗Þ�; ð120Þ

and where gð−x⃗Þ ¼ gðx⃗Þ and hð−x⃗Þ ¼ hðx⃗Þ have also
been used. The conserved charge is given by
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Q ¼
Z

d2xπðt; x⃗Þδϕðt; x⃗Þ − F; ð121Þ

and one immediately gets

Q ¼
Z

d2xd2y

�
fðx⃗ − y⃗Þπðt; x⃗Þϕðt; y⃗Þ

þ 1

2
gðx⃗ − y⃗Þπðt; x⃗Þπðt; y⃗Þ − 1

2
hðx⃗ − y⃗Þϕðt; y⃗Þϕðt; x⃗Þ

�
;

ð122Þ
which has the form of the canonical generators Pl (49) (in
terms of ϕ and π) for the supertranslations.

B. Noether charges of superrotations

When acting over the Fourier modes, assuming they
vanish sufficiently quickly for high momentum (that is,
boundary terms can be ignored), one obtains the simple
transformation

fRn; aðq⃗Þg ¼ iLnaðq⃗Þ; ð123Þ
fRn; āðq⃗Þg ¼ iLnāðq⃗Þ: ð124Þ

Again, one can lift from on shell to off shell the variations
of the fields ϕ and π in the Hamiltonian formalism under a
superrotation

δSRϕ ¼
Z

~dkðδaðk⃗Þeikx þ δāðk⃗Þe−ikxÞ

¼
Z

d2yfϕðt; y⃗ÞFnðx⃗; y⃗Þ þ πðt; y⃗ÞGnðx⃗; y⃗Þg; ð125Þ

δSRπ ¼
Z

~dkð−ik0Þðδaðk⃗Þeikx − δāðk⃗Þe−ikxÞ

¼
Z

d2yfϕðt; y⃗Þ ~Hnðx⃗; y⃗Þ þ πðt; y⃗Þ~Inðx⃗; y⃗Þg; ð126Þ

where we have used the expressions of Fourier modes in
terms of the field and momentum (108) and (109) off shell,
where

Fnðx⃗; y⃗Þ ¼ − i
Z

~dk½eikxðLne−ikyk0Þ þ e−ikxðLneikyk0Þ�;

ð127Þ

Gnðx⃗; y⃗Þ ¼
Z

~dk½eikxLne−iky − e−ikxLneiky�; ð128Þ

~Hnðx⃗; y⃗Þ ¼ −
Z

~dkk0½eikxðLne−ikyk0Þ − e−ikxðLneikyk0Þ�

ð129Þ

~Inðx⃗; y⃗Þ ¼ −i
Z

~dkk0½eikxLne−iky þ e−ikxLneiky�: ð130Þ

In contrast to the supertranslation case, the functions
involved in the nonlocal transformation do not depend
solely on the difference y⃗ − x⃗ but on different combinations
of these variables. More explicitly,

Fnðx⃗; y⃗Þ ¼ −i
Z

~dk2ωnðk⃗Þ½in cosðk⃗ðy⃗ − x⃗ÞÞ

− ðiny⃗ · k⃗þ y⃗ × k⃗Þ sinðk⃗ðy⃗ − x⃗ÞÞ�; ð131Þ

Gnðx⃗; y⃗Þ ¼ i
Z

~dk2
ωnðk⃗Þ
k0

½ðiny⃗ · k⃗þ y⃗× k⃗Þ cosðk⃗ðy⃗− x⃗ÞÞ�;

ð132Þ

~Hnðx⃗; y⃗Þ ¼ i
Z

~dk2k0ωnðk⃗Þ½in sinðk⃗ðy⃗ − x⃗ÞÞ

þ ðiny⃗ · k⃗þ y⃗ × k⃗Þ cosðk⃗ðy⃗ − x⃗ÞÞ�; ð133Þ

~Inðx⃗; y⃗Þ ¼ i
Z

~dk2ωnðk⃗Þ½ðiny⃗ · k⃗þ y⃗ × k⃗Þ sinðk⃗ðy⃗ − x⃗ÞÞ�;

ð134Þ

where y⃗ × k⃗≡ y1k2 − y2k1. Here, there is an important
remark to make concerning the parity of jnj: if jnj is odd,
Fn ¼ ~In ¼ 0, and if jnj is even, Gn ¼ ~Hn ¼ 0. For the case
of rotations, L0 ¼ −iJ:

F0ðx⃗; y⃗Þ ¼ 2i
Z

~dkk0½y⃗ × k⃗� sinðk⃗ðy⃗ − x⃗ÞÞ; ð135Þ

G0ðx⃗; y⃗Þ ¼ 2i
Z

~dk½y⃗ × k⃗� cosðk⃗ðy⃗ − x⃗ÞÞ: ð136Þ

By symmetry properties, G0ðx⃗; y⃗Þ ¼ 0, and one can sub-
stitute F0 into (125) and show that the usual rotation is
recovered:

δSR0
ϕ ¼ iðx1∂x2ϕðt; x⃗Þ − x2∂x1ϕðt; x⃗ÞÞ: ð137Þ

Recall that when we defined superrotations in Sec. II C, we
used the truncated (time-independent) form of Lorentz
generators constructed in (9). Thus, when trying to recover
ordinary boosts, which involve time, we will need to
redefine superrotations to take this under consideration.
The final form for superrotations will be

δordinary SRn
ϕ ¼ −ntδSTn

ϕþ δSRn
ϕ; ð138Þ

which now accounts for time translations. With this
definition, one can see that, for n ¼ 1, a combination of
ordinary boosts is recovered,
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δordinary SR1
ϕ ¼ t∂x1ϕðt; x⃗Þ þ it∂x2ϕðt; x⃗Þ

− x1πðt; x⃗Þ − ix2πðt; x⃗Þ: ð139Þ

Hence, the true superrotation generators will be a combi-
nation of the already constructed ones plus a proportional
term depending on supertranslations. This can be written as
follows:

Gn ¼ −ntPn þRn: ð140Þ
The generators Rn can be written off shell as

Rn ¼
1

2

Z
d2yd2x½ϕðt; x⃗Þϕðt; y⃗Þð ~Hn þ i ~FnÞ

− iϕðt; x⃗Þπðt; y⃗Þð ~Gn − i~InÞ
− iπðt; x⃗Þϕðt; y⃗ÞðHn þ iFnÞ
þ πðt; x⃗Þπðt; y⃗ÞðGn − iInÞ�; ð141Þ

where ~Fn and ~Gn are as the functions Fn and Gn in (131)
and (132), respectively, but with an extra k0 factor under the
integral sign, while Hn and In are defined as the corre-
sponding functions, but with an additional 1=k0 factor.
The Gn given in (140) are constants of motion

dGn

dt
¼ ∂tGn þ fGn; Hg
¼ −nPn − ntfPn; P0g þ fRn; P0g
¼ −nPn þ nPn ¼ 0; ð142Þ

where we have used H ¼ P0. This was expected, since the
Lagrangian is invariant under Lorentz transformations.
The new field variations, δGn

ϕ ¼ −ntδSTϕþ δSRϕ, are
solutions on shell of the massless Klein-Gordon equation:

□δGn
ϕ ¼ −nt□δSTϕþ n∂tδSTϕþ□δSRϕ

¼ n∂tδSTϕþ□δSRϕ

¼ nϵn
Z

d2y½fnðx⃗ − y⃗Þ _ϕðt; y⃗Þ þ gnðx⃗ − y⃗Þ _πðt; y⃗Þ�

þ ϵn
Z

d2y½f∇2
x⃗Fnðx⃗; y⃗Þ −∇2

y⃗Fnðx⃗; y⃗Þgϕðt; y⃗Þ

þ f∇2
x⃗Gnðx⃗; y⃗Þ −∇2

y⃗Gnðx⃗; y⃗Þgπðt; y⃗Þ�: ð143Þ

Using now the on-shell condition _π ¼ ϕ̈ ¼ ∇2ϕ, integrat-
ing by parts and using symmetry properties of g in the first
integral, and expanding the second one, and then using
hn ¼ ∇2gn, we immediately see that □δGn

ϕ ¼ 0. The
algebra of the charges is

fGn;Gmg ¼ ðn −mÞGnþm: ð144Þ
Thus, we have found another realization of the super-
rotations, which now reduce to the true Lorentz generators
as defined in (8). Indeed,

G0 ¼ R0 ¼ −i
Z

~dk āðk⃗ÞJaðk⃗Þ ¼ M12; ð145Þ

G1 ¼ −tP1 þR1

¼ −t
Z

~dk āðk⃗Þðk1 þ ik2Þaðk⃗Þ þ
Z

~dk āðk⃗ÞKþaðk⃗Þ

¼ −M01 − iM02; ð146Þ

G−1 ¼ tP−1 þR−1

¼ −t
Z

~dk āðk⃗Þðk1 − ik2Þaðk⃗Þ −
Z

~dk āðk⃗ÞK−aðk⃗Þ

¼ −M01 þ iM02: ð147Þ

IV. CONCLUSIONS AND OUTLOOK

Using the canonical formalism for a real scalar field, a
realization of the BMS group in three dimensions has been
constructed in the space of Fourier modes for both massive
and massless cases. In the massless case, the superrotation
extension of this group can also be constructed by general-
izing the Lorentz group in a manner similar to that used for
supertranslations.
In the massive case, we have constructed in a heuristic

way a set of generators which generalize those of the
Lorentz group and reproduce the corresponding part of the
bms3 algebra. We have shown how our starting equations
arise in a geometrical setup, and we have also obtained an
equation for the 1-forms associated with the generators.
However, unlike what happens in the massless case, the

superrotation generators must be split into two different
extensions of the Lorentz algebra, each spanning a sub-
algebra of bms3.
At the quantum level, the Hilbert space of one-particle

states supports a unitary irreducible representation of the
Poincaré group, and at the same time a unitary reducible
representation of the BMS3 group. Both are realized in an
unbroken way.
The BMS3 transformations are realized as symmetries of

the KG action in terms of linear nonlocal functionals of the
field and the canonical momentum. The corresponding
conserved Noether charges have been computed.
In addition to obtaining a better understanding of the

extension of superrotations in the massive case, some
further questions are still open for future work.
There was the belief, in the gravitational approach, that

BMS was not present in higher dimensions. From the
viewpoint considered in this paper, there is no reason to
think so, and the method presented here could help to
investigate it. In fact, it can be proved that the canonical
realization of BMS in higher dimensions does exist [33].
One could also try to add a fermionic field to the present

model in order to get a field supersymmetric theory and to
see whether there are still conserved charges generated by
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the extended BMS transformations. In the gravitational
approach, this was studied in [34–37].
Finally, there is the question relating to the physical

interpretation of the BMS symmetries and charges in the
framework that we have used. A possible way to throw light
on this issue is to try to construct particle models exhibiting
these symmetries using the method of nonlinear realiza-
tions [38]. We also conjecture that the nonlocality of the
transformations is due to the fact that they are computed for
fields depending only on the standard space-time coordi-
nates, and that they would become local for fields depend-
ing also on the supercoordinates associated with the
supermomenta, i.e., the generators of supertranslations.
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APPENDIX A: BEHAVIOR OF fl, gl, AND hl

In this appendix we study in some detail the functions
which appear in the nonlocal transformations constructed
in Sect. III. We consider only the massless case, although
similar—but more complicated—expressions can be
obtained in the massive case using (43).
The functions flðx⃗Þ can be written as

flðx⃗Þ ¼
1

ð2πÞ2
Z

d2kωlðk⃗Þ sinðk⃗ · x⃗Þ;

where (in the massless case)

ωlðk⃗Þ ¼ jk⃗jeilϕk ;

with

cosϕk ¼
k1
jk⃗j

; sinϕk ¼
k2
jk⃗j

:

Notice that ω−lðk⃗Þ ¼ ω�
lðk⃗Þ.

The Fourier transform of fl is

f̂lðq⃗Þ ¼
Z

d2xflðx⃗Þe−iq⃗·x⃗ ¼
1

2i
ðωlðq⃗Þ − ωlð−q⃗ÞÞ:

Since ϕ−q ¼ ϕq þ π, one has

ωlð−q⃗Þ ¼ ωlðq⃗Þeilπ ¼ ð−1Þlωlðq⃗Þ ðA1Þ

and

f̂lðq⃗Þ ¼
�
0 if l is even;

−iωlðq⃗Þ if l is odd:
ðA2Þ

For a general value of l, one can write ωl as a function
of q1 and q2 as

ωlðq⃗Þ ¼
ðq1 þ iq2Þl

ððq1Þ2 þ ðq2Þ2Þl−12 : ðA3Þ

Hence, for an odd l, f̂lðq⃗Þ grows as jq⃗j, while
limjq⃗j→0f̂lðq⃗Þ ¼ 0.
Specifically, for l ¼ 1 one has f̂1ðq⃗Þ ¼ −iðq1 þ iq2Þ.

The physical components are

f̂1ðq⃗Þ þ f̂−1ðq⃗Þ
2

¼ −iq1;

f̂1ðq⃗Þ − f̂−1ðq⃗Þ
2i

¼ −iq2;

which correspond to ordinary translations along the coor-
dinate axes. For l ¼ 2mþ 1, m ≥ 1, one gets in the
denominator of ωl positive integer powers of q21 þ q22 ¼
jq⃗j2, which implies that the transformation is nonlocal. For
instance, for l ¼ 3,

f̂3ðq⃗Þ ¼ −i
q31 þ 3iq21q2 − 3q22q1 − iq32

q21 þ q22
:

Similarly, one can see that

ĝlðq⃗Þ ¼
� 1

jq⃗jωlðq⃗Þ; if l is even;

0; if l is odd:
ðA4Þ

For an even l, one has, explicitly,

ĝlðq⃗Þ ¼
ðq1 þ iq2Þl
ðq21 þ q22Þl=2

: ðA5Þ
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Specifically, for l ¼ 0, one gets ĝ0ðq⃗Þ ¼ 1, that is,
g0ðx⃗Þ ¼ δðx⃗Þ, which yields a local transformation, corre-
sponding to translations in time, while for l ≥ 2 the
transformations are nonlocal.
Finally, since hlðx⃗Þ ¼ ∇2glðx⃗Þ, one has ĥlðq⃗Þ ¼

−jq⃗j2ĝlðq⃗Þ and

ĥlðq⃗Þ ¼
�−jq⃗jωlðq⃗Þ; if l is even;

0; if l is odd:
ðA6Þ

For an even l, this is

ĥlðq⃗Þ ¼ −
ðq1 þ iq2Þl

ðq21 þ q22Þl=2−1
: ðA7Þ

This yields local transformations for l ¼ 0, 2 and is
nonlocal for l ≥ 4.

APPENDIX B: GEOMETRY OF THE MASS-
SHELL HYPERBOLOID IN (2 + 1) DIMENSIONS

We list here some results for the geometry of the mass-
shell hyperboloid of a massive particle in 2þ 1 dimensions
that are useful for the construction of supertranslations and
superrotations.
The metrics in ðz;ϕÞ coordinates (25) and its inverse are,

in matrix form,

g¼
 

m2

z2−1 0

0 m2ðz2−1Þ

!
; g−1¼

 
z2−1
m2 0

0 1
m2ðz2−1Þ

!
: ðB1Þ

The nonzero Christoffel symbols are

Γz
zz ¼−

z
z2−1

; Γz
ϕϕ ¼−zðz2−1Þ; Γϕ

zϕ ¼ Γϕ
ϕz ¼

z
z2−1

:

ðB2Þ

Given a vector field ξ on the manifold,

ξ ¼ ξz∂z þ ξϕ∂ϕ; ðB3Þ

we can construct an associated 1-form using g,

ωξ ¼
m2

z2 − 1
ξzdzþm2ðz2 − 1Þξϕdϕ: ðB4Þ

The divergence of a vector field is

∇zξ
z þ∇ϕξ

ϕ ¼ ∂zξ
z þ Γz

zαξ
α þ ∂ϕξ

ϕ þ Γϕ
ϕαξ

α

¼ ∂zξ
z −

z
z2 − 1

ξz þ ∂ϕξ
ϕ þ z

z2 − 1
ξz

¼ ∂zξ
z þ ∂ϕξ

ϕ; ðB5Þ

so it coincides with the flat divergence. The Beltrami-
Laplace operator acting on a function fðz;ϕÞ is

Δf ¼ 1ffiffiffiffiffijgjp ∂αð
ffiffiffiffiffi
jgj

p
gαβ∂βfÞ

¼ ∂αgαβ∂βf þ gαβ∂α∂βf

¼ 2z
m2

∂zf þ z2 − 1

m2
∂2
zf þ 1

m2ðz2 − 1Þ ∂
2
ϕf: ðB6Þ

If we denote this scalar Laplacian by ΔS, on vector fields
one has

gμα∇μ∇αξ
ν ¼ ΔSξ

ν þ gμα∇μðΓν
αβξ

βÞ: ðB7Þ

The nonzero components of the Riemann curvature
tensor are

Rz
ϕzϕ ¼ −ðz2 − 1Þ; Rz

ϕϕz ¼ z2 − 1;

Rϕ
zzϕ ¼ 1

z2 − 1
; Rϕ

zϕz ¼ −
1

z2 − 1
; ðB8Þ

and the Ricci scalar curvature is

R ¼ −
2

m2
: ðB9Þ
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