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We continue a previous study about the infrared loop effects in the D-dimensional de Sitter space
for a real scalar ϕ4 theory from the complementary series whose bare mass belongs to the

interval
ffiffi
3

p
4
ðD − 1Þ < m ≤ D−1

2
, in units of the Hubble scale. The lower bound comes from the

appearance of discrete states in the mass spectrum of the theory when that bound is violated, causing
large IR loop effects in the vertices. We derive an equation which allows us to perform a self-consistent
resummation of the leading IR contributions from all loops to the two-point correlation functions in an
expanding Poincaré patch of the de Sitter manifold. The resummation can be done for density
perturbations of the Bunch-Davies state which violate the de Sitter isometry. There exist solutions
having a singular (exploding) behavior, and therefore the backreaction can change the de Sitter
geometry.
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I. INTRODUCTION

Quantum effects in de Sitter (dS) spacetime have
received considerable attention in recent years [1–68].
These effects are rather different from those in flat or
anti-de Sitter space [69]. As is shown in [58,59,64–66,68],
the peculiar infrared (IR) behavior of interacting non-
conformal fields in dS space is that there are large IR loop
corrections or divergences even for very massive fields for
any initial state (see [67] for a review). The quantum
corrections eventually become of the same order or even
dominate the tree-level contributions, and the situation is
similar to the one encountered in nonstationary condensed
matter theory [70,71] (see also [72,73] for the secular loop
effects in strong electric fields in QED and [74] for the
secular growth of loop corrections to the Hawking
radiation).
In this paper we consider a real, massive, minimally

coupled scalar field theory:

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
1

2
gαβ∂αϕ∂βϕþ 1

2
m2ϕ2 þ λ

4!
ϕ4

�
: ð1Þ

The theory in question is restricted to the expanding
Poincaré patch (EPP) of dS space:

ds2 ¼ 1

η2
½−dη2 þ dx⃗2�; η ¼ e−t; ð2Þ

where the conformal time ranges from η ¼ þ∞ at past
infinity (t ¼ −∞) to η ¼ 0 at future infinity (t ¼ þ∞).

Throughout this paper we set the radius of the dS spacetime
to one. Our goal is to check whether the assumption of
negligible backreaction is self-consistent or not for various
initial conditions.
The EPP coordinate system has a well-known peculiar-

ity: Due to the presence of the conformal factor 1=η2

multiplying the spatial part of the metric, every wave
experiences an IR shift towards future infinity; i.e., future
infinity of the EPP corresponds to the IR limit of the
physical momentum, while past infinity corresponds to
the UV limit. Correspondingly, a generic free scalar mode
in the EPP has the following properties [75,76]: First,
due to spatial flatness of the EPP, a scalar mode may be
factorized in terms of plane waves as follows: ϕpðη; x⃗Þ ¼
ηðD−1Þ=2hðpηÞe−ip⃗ x⃗, where hðpηÞ is a solution of the Bessel
equation of order ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1

2
Þ2 −m2

q
. Second, any Bessel

function of this order behaves as follows:

hðpηÞ ¼
�
A eipηffiffiffiffi

pη
p þ B e−ipηffiffiffiffi

pη
p pη ≫ jνj

CðpηÞν þDðpηÞ−ν pη ≪ jνj:
ð3Þ

Here A, B, C, D are complex constants which are fixed by
the canonical commutation relations and some other addi-
tional criterion. Due to the symmetries of the EPP, one
cannot disentangle the comoving momentum p and con-
formal time η; all physical quantities depend on the
combination pη which is referred to as the physical
momentum. Near past infinity of the chosen EPP, the
physical momentum pη tends to infinity and every mode
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behaves asymptotically as a plain wave in flat spacetime.
This is because high energy modes are not sensitive to the
comparatively small curvature of the background. One can
actually introduce, in that region, a notion of particle with
positive energy because the free Hamiltonian can be
diagonalized there. Thus, at past infinity of the EPP, the
background gravitational field is effectively switched off.
Equivalently, for a given mode function, ϕp behaves as a
plain wave in flat space when pη ≫ jνj. On the other hand,
for low physical momenta the behavior of the modes [see
Eq. (3)] is very different from the one in flat space. It is
exactly the latter region of physical momenta pη ≪ jνj that
generates large IR corrections to correlation functions.
This is, roughly speaking, the origin of the strong IR

effects in dS space that are discussed in the present paper.
As one can see from (3), the character of the behavior of

the mode functions (and, hence, of the IR effects [66])
depends on whether m is greater or smaller than ðD − 1Þ=2
in units of the dS radius. Scalar fields with m > ðD − 1Þ=2
are associated with the principal series of representations of
the dS group. In this case ν is purely imaginary and the
mode functions (3) oscillate at small physical momenta.
The IR physics in this case has been extensively studied in
[58,59,64–68].
Here we want to explore the case of light scalars

(the complementary series). Masses of such fields obey
0 < m ≤ ðD − 1Þ=2 in units of the dS radius. Now ν is real,
and the mode functions (3) do not oscillate at future infinity
of the EPP.

A. Schwinger-Keldysh formalism

The action (1) defines a field theory in a nonstationary
background (2). Therefore, a perturbative expansion of the
correlation functions should be constructed in terms of
three propagators [70] (see also [67,71,77]). Two of them
are the standard retarded and advanced propagators, which
are purely algebraic, i.e., they do not depend on the chosen
Fock space realization of the (free or tree-level) theory,

D
R
A
0ðη1; x⃗1; η2; x⃗2Þ ¼ �θð∓ Δη12Þh½ϕðη1; x⃗1Þ;ϕðη2; x⃗2Þ�i;

Δη12 ¼ η1 − η2; ð4Þ

where ½·; ·� is the commutator. The Keldysh propagator is
the “vacuum” expectation value of the anticommutator:

DK
0 ðη1; x⃗1; η2; x⃗2Þ ¼

1

2
hfϕðη1; x⃗1Þ;ϕðη2; x⃗2Þgi: ð5Þ

The Keldysh propagator does depend on the Fock space
realization of the theory.
The EPP is invariant under space translations x⃗ → x⃗þ a⃗.

We will only consider quantizations where space trans-
lations are unbroken. This means, in particular, that we
assume that all the propagators depend on the difference

vectors x⃗2 − x⃗1. It is therefore advantageous to Fourier
transform all the quantities w.r.t. the above difference
vectors1:

DK;R;A
0 ðpjη1; η2Þ≡

Z
dD−1xe−ip⃗ x⃗DK;R;A

0 ðη1; x⃗; η2; 0Þ: ð6Þ

A partial Fourier transformation is also helpful to keep
track of the behavior of each mode separately with a given
physical momentum. Here we give the Fourier-transformed
tree-level retarded and advanced propagators [77]:

D
R
A
0ðpjη1; η2Þ ¼ �θð∓ Δη12Þ2ðη1η2ÞD−1

2 Im½hðpη1Þh�ðpη2Þ�:
ð7Þ

If the initial state jΨi respects the spatial translational
invariance, the (tree-level) Keldysh propagator can be
written as follows:

DK
0 ðpjη1; η2Þ

¼ ðη1η2ÞD−1
2

��
1

2
þ hΨ; aþp⃗ ap⃗Ψi

�
hðpη1Þh�ðpη2Þ

þ hΨ; ap⃗a−p⃗Ψihðpη1Þhðpη2Þ þ H:c:

�
: ð8Þ

In a ground state ap⃗jΨi ¼ 0, the latter expression reduces
to

DK
0 ðpjη1; η2Þ ¼ ðη1η2ÞD−1

2 Re½hðpη1Þh�ðpη2Þ�: ð9Þ

When the mass is nonzero there is a one-parameter family
of dS invariant quantizations known as the α-vacua (see
[78–80]). In all these cases the Keldysh propagator
DK

0 ð1; 2Þ depends only on the invariant geodesic distance
between the two points (while this happens for tree-level
DR;A

0 for any given state jΨi).

II. DIFFERENT TYPES OF SECULAR EFFECTS.
RESULTS OF THIS PAPER

There are different sorts of secularly growing contribu-
tions in nonstationary situations, in general, and in dS
space, in particular. To begin, there is a secular growth
which is specific to dS space and is already present at
tree level (see e.g. [31,81–83]). It exists for all mini-
mally coupled scalar tachyons, a family of fields whose
squared mass is negative or zero—it includes the massless

1Note that due to the expansion of the EPP, every spatially
inhomogeneous perturbation fades away at future infinity. Thus,
the IR effects under study, appearing from the future infinity
region of the EPP, are not very sensitive to such inhomogeneous
perturbations. Hence, our methods are also applicable in the
presence of such perturbations.
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scalar field. In these cases canonical quantization gives
rise to two-point functions that do not depend only on
the geodesic distance, and there exists no Fock space
representation where the representation of the dS group
is unitary [see [82,83]; for masses equal to m2 ¼
−nðnþ d − 1Þ with n a non-negative integer, there exists,
however, a construction similar to the Gupta-Bleuler
quantization of the free photon field].
By subtracting the UV divergence, one finds that the

correlation functions grow with time; for instance, for
the massless scalar field one has D0ðt; x⃗Þ ∝ j log ηj ∼ t for
the coincident points. Furthermore, taking into account loops
e.g. for a λϕ4 self-interaction, the secular growth is
ΔnDðt;x⃗Þ∝tðλt2Þn where n grows with the number of loops.
Such a secular growth results in a breakdown of

perturbation theory. In fact, for every λ, however small,
after a time t long enough, λt2 ∼ 1 and quantum corrections
become of the same order of the tree-level amplitude.
A resummation of (at least) the leading contributions from
loops is therefore mandatory for a meaningful perturbation
calculation in dS space-time.
One possible scheme to perform the resummation has

been proposed in [84]. It makes use of the stochastic
approach to quantum field theory and allows, in a certain
limit, the resummation of the secular corrections to the
Bunch-Davies (BD) vacuum (or its analog for the massless
scalar) in the EPP [31]. After the resummation the dS
invariance of the correlation functions in the massless
scalar field theory is restored. The approach of [84] allows
us to control various sorts of secular contributions (without
disentangling them) for scalar fields with any non-negative
mass belonging to the complementary series. But it does
this only in very special situations, and the determination of
the exact limits of validity of this approach is an important,
separate issue. In particular, for obvious reasons, this
method cannot be applied to global dS space or to the
contracting Poincaré patch. Also, it is not applicable in
the EPP for strong enough initial density perturbations of
the BD state—when there are strong nonlinear correlations,
even if they are spatially homogeneous. The point is that
the approach described in [84] exploits a stochastic differ-
ential equation with a linear random source in a nonlinear
(self-interacting) theory. It is not applicable for the case
when one has strong enough nonlinearities. We will come
back to this point below.
Another well-known example of a secular IR loop

correction in dS space is the following:

ΔnDðpjη1; η2Þ ∝ ðη1η2ÞðD−1Þ=2½λ2 log ðη1=η2Þ�n
¼ e−

D−1
2
ðt2þt1Þλ2njt1 − t2jn ð10Þ

in the scalar λϕ4 theory, when jt2 − t1j → ∞.
Such secular growth is quite universal and is present

even for positive mass [47–49,85]. Usually, such growth is

caused by some imaginary contributions to the self-energy;
it is also present in Minkowski space-time, e.g. if one
chooses an initial density matrix other than Planckian and
describes the instability of quasiparticles (in the latter case,
however, the dS volume factor e−

D−1
2
ðt2þt1Þ is not present).

This secular effect is present in all the propagators,
including the retarded and advanced ones, and can be seen
in their partially Fourier transforms. It may also be present
in the vertices.
Some further comments are in order here for under-

standing the physical origin and the differences between
various types of secular effects. In flat space-time, in the
standard nonstationary situation, the Fourier transform of a
propagator D0ðpjt1; t2Þ is proportional to eiωðpÞðt2−t1Þ,
where ωðpÞ is the dispersion relation of the model under
consideration. The secular corrections to the self-energy are
absorbed by the coefficient in front of the exponential at
every loop order. They also depend on t2 − t1. After the
resummation the growth in question at the leading order
can be eliminated by a shift of the dispersion relation
ωðpÞ → ωðpÞ þ iΓðpÞ or by a mass renormalization, when
the contribution to the self-energy is real. This growth
cannot be attributed just to the IR effects in a proper sense
because it also appears in the UV domain.
Yet another secular effect at loop level is of the form

ΔnDKðpjη1; η2Þ ∝ ðη1η2ÞðD−1Þ=2
�
λ2 log

�
1

η1η2

��
n

¼ e−
D−1
2
ðt2þt1Þ½λ2ðt1 þ t2Þ�n ð11Þ

which at leading order in λ is present only in the Keldysh
propagator when t2 þ t1 → ∞ and t2 − t1 ¼ const (in the
conformal coordinates of the EPP in dS space the above
condition is as follows: p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0, with η1=η2 ¼ const).

In this limit both points of the propagator are sent to future
infinity of the EPP while their coordinate time distance is
held fixed. Such growth is also universal to practically any
nonstationary situation, including the flat space nonsta-
tionary initial density matrix, strong electric fields in QED
[72,73], and Hawking radiation [74]. Moreover, it is also
present for massless scalars in dS space but is mixed with
the other contributions described above.
The origin of the λ2ðt1 þ t2Þ growth can be understood

from the Keldysh propagator shown in Eq. (8). In the
interaction picture, which we use here, ap⃗ and aþp⃗ are time
independent in the Gaussian approximation. In this
approximation all the time dependence is in the modes
ϕp. This means that in the Gaussian theory hΨ; aþp⃗ ap⃗Ψi and
hΨ; ap⃗a−p⃗Ψi remain constant. In particular, if they were
chosen to be zero, they always remain zero.
But if one turns on self-interactions, the above quantities,

namely the population numbers and the anomalous quan-
tum averages for the exact modes, start to depend on t1 and
t2, and they receive the leading λ2ðt2 þ t1Þ corrections in

INFRARED DYNAMICS OF MASSIVE SCALARS FROM … PHYSICAL REVIEW D 96, 025002 (2017)

025002-3



the limit under consideration.2 This is generally true for any
nonstationary situation. Because of the different functional
dependence, this secular growth cannot be reabsorbed in a
change of the dispersion relation ωðpÞ → ωðpÞ þ iΓðpÞ or
by a mass renormalization: λ2ðt2 þ t1ÞeiωðpÞðt2−t1Þ ≠
eiðωðpÞþδωÞðt2−t1Þ. In this paper we focus on secular effects
of the latter type. These effects can strongly affect the
commonly accepted picture of the strength of stress-energy
fluxes. In fact, the common wisdom is that quantum loop
corrections lead only to UV renormalization, while IR
secular effects can just lead to mass renormalization or to a
mode decay rate. Hence, according to common wisdom
quantum, corrections do not contribute to the stress-energy
tensor,3 and one can safely apply the Gaussian approxi-
mation. In this approximation, one sees only the amplifi-
cation of the zero-point fluctuations.
Indeed, if loop corrections are irrelevant, one can use

tree-level correlation functions such as in (9) to calculate
the stress-energy tensor or the electric current: namely, in
this way, one can find Schwinger’s current in strong electric
fields, the Hawking energy flux in the gravitational
collapse, and the Bunch-Davies expectation value of the
stress-energy tensor in dS space. However, the time
dependence of the level populations and the anomalous
quantum averages for the exact modes, which we have just
described, may drastically change the energy-momentum
tensor (see [67,72–74] for a number of examples). In fact,
in this case, to calculate the stress-energy tensor, one has to
use an analog of (8), with time-dependent haþp api and
hapa−pi which are attributed to the comoving volume.

A. Complementary series

For masses m < ðD − 1Þ=2 (the complementary series)
generic modes behave as real powers of the conformal time
[as opposed to oscillating imaginary powers, see Eq. (3)].
As a result, the dominant term in hðpη1Þh�ðpη2Þ is
proportional to η2η1 ¼ e−jνjðt1þt2Þ. Hence, for light scalars
the aforementioned universal secular effects, which are
present even for massive fields, can be mixed up in the
linear approximation to the Dyson-Schwinger equation.
Moreover, because the modes do not oscillate, the imagi-
nary contributions to the self-energy may lead to a mass

renormalization rather than to a decay rate in the same
approximation. This fact makes it difficult to disentangle
the different secular effects from each other, while it is
necessary to disentangle them to understand quantum field
theory in dS space, as we have explained in the previous
paragraph. But this distinction is out of reach of the
methods of [31,84].
The situation regarding the fields of the complementary

series has been explored in e.g. [52–57]. The resummation
of the secularly growing loops in the BD state has been
attempted there by using different methods, including the
solution of the Dyson-Schwinger equation in the large N
limit and the exact renormalization group equation for
the IR cutoff. Their results agree with those of [84] and
extend them to the case of noncoincident points of the
two-point correlation functions. An interesting solution of
the Dyson-Schwinger equations for the retarded, advanced
and Keldysh propagators has been found. The approach
adopted in [52,55,57] allows us to simultaneously resum all
the aforementioned different sorts of IR effects in the large
N limit without disentangling them.
However, in our opinion there remain certain unsatis-

factory features which make the study of the dS light scalar
field dynamics not yet complete. The point is that the
resummation is done in [52–57] only for the BD state
and for the cases when the dS isometry is respected at every
step of the quantization. It is quite understandable that
in this case, at the leading order quantum effects just lead
to the renormalization of the cosmological constant and
the mass of the field. But the following question remains:
what happens if one considers density perturbations of the
BD state which (necessarily) violate the dS isometry?
Nevertheless, it is natural to consider perturbations of a
highly symmetric state and trace their destiny: one should
check whether they grow or fade away as the time goes by.
That is what we propose to do in the present paper.
For massive scalars with an exact BD initial state at the

lightlike boundary of the EPP, one can respect the dS isometry
at every loop order [59] (see e.g. also [67]). Moreover, as we
explain in Sec. VII, in this case the system of Dyson-
Schwinger equations, which allows us to resum leading loop
corrections, reduces to a single linear integro-differential
equation. For the complementary series a similar equation
was obtained in [52,55,57]. The difference of the situation in
the latter references with respect to our case is that their
equationwas obtained in the largeN limit and resums leading
diagrams and IR effects that are a bit different, some of which
are subleading in our approximation.
The situation with slight violations of the dS isometry is

quite different. One cannot just put an initial comoving
number density n0p for the exact modes at past infinity (i.e.
the lightlike boundary) of the EPP because then the
physical density would become infinite. Due to the sym-
metries of the EPP, the appropriate way of approaching the
problem is as follows. As we have explained above, every

2In general nonstationary situations, correlation functions
depend on each of their arguments separately, Dðt1; t2Þ ¼
D̄ðt1 þ t2; t1 − t2Þ, rather than the distance between them,
Dðt2 − t1Þ; e.g. there are contributions to the propagator of the
form ΔDðt1; t2Þ ∝ npðt1þt2

2
Þe−iωðpÞðt1−t2Þ for some npðtÞ.

3Note that in the strong background fields, we calculate
correlation functions and avoid using the notion of particles,
unless it is appropriate for the interpretation of the energy-
momentum flux [67]. The latter one can be found from the
correlation functions. Namely, one can encounter situations in
which there is a nontrivial energy flux, but there is no any suitable
separation of it into particles—into something that obeys the
energy composition principle.
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physical quantity in the EPP is a function of the physical
momentum, P ¼ pη. Hence, one has to put an initial
Cauchy condition for a given physical momentum, i.e.
n0ðPÞ ¼ nðP0Þ, rather than just for initial conformal time
η0. A somewhat similar approach was adopted in [31,84].
The initial density perturbation violates the dS isometry.
The main difference with respect to the standard approach
[84] is that here, in general, we obtain a nonlinear integro-
differential equation. For a very small initial density
perturbation, when the initial comoving number density
nðP0Þ is much smaller than 1, this equation can be reduced
to a linear one, which is similar to the equation considered
in [52,55,57]. However, if the initial perturbation is of order
one, the full nonlinear equation has explosive solutions.
Finally, let us remark that in dS space there can be

secular IR effects in the vertices. They are very important
for the resummation. The point is that to do the resumma-
tion, one has to solve the system of Dyson-Schwinger
equations for all propagators and vertices. As we explain in
the main body of the text, for lower masses, higher and
higher point functions become relevant in the IR limit.4

This makes the problem under consideration practically
impossible to solve, unless one can drop the equations for
the vertices and invent some suitable ansatz for the two-
point functions only. This is possible only if the leading
secular growth is present in propagators and is absent in the
vertices.

In our paper, we check the presence of the secular effects
for the vertices and explain their physical origin. They
appear due to the presence of bound states in the spectrum
of the theory and signal that higher point correlations
become relevant. We find the situation when these bound
states and related secular effects in the vertices are absent.
Then we perform the self-consistent resummation of the
leading effects from all loops only when there are no
secular effects in the vertices. We do that for arbitrary, not
necessary isometry respecting, density perturbations of the
BD state. We derive an equation which provides the
resummation, find its solutions, and discuss their physical
meaning.

III. GENERAL DISCUSSION OF THE LOOP
CORRECTIONS TO THE PROPAGATORS

Let us start by discussing the loop corrections to the
Keldysh propagator DKðpjη1; η2Þ having chosen an initial
dS invariant state at past infinity of the EPP. It is not difficult
to show that the massive λϕ4 theory does not possess any
secularly growing contributions (of the last sort, which is
described in the Introduction) to any propagator at the first-
loop “bubble” diagram order (∼λ). However, at the second-
loop order (∼λ2) there is a large IR contribution toDK which
is of interest for us. Two-loop diagrams that contain large IR
corrections are of the “sunset” type:

Δ2DKðpjη1; η2Þ ¼
λ2

6

Z
dD−1q⃗1
ð2πÞD−1

dD−1q⃗2
ð2πÞD−1

ZZ
0

þ∞

dη3dη4
ðη3η4ÞD

×

�
3DK

0 ðpjη1; η3ÞDK
0 ðq1jη3; η4ÞDK

0 ðq2jη3; η4ÞDA
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
1

4
DK

0 ðpjη1; η3ÞDA
0 ðq1jη3; η4ÞDA

0 ðq2jη3; η4ÞDA
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
3

4
DR

0 ðpjη1; η3ÞDK
0 ðq1jη3; η4ÞDA

0 ðq2jη3; η4ÞDA
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ
þDR

0 ðpjη1; η3ÞDK
0 ðq1jη3; η4ÞDK

0 ðq2jη3; η4ÞDK
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
3

4
DR

0 ðpjη1; η3ÞDK
0 ðq1jη3; η4ÞDR

0 ðq2jη3; η4ÞDR
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
1

4
DR

0 ðpjη1; η3ÞDR
0 ðq1jη3; η4ÞDR

0 ðq2jη3; η4ÞDR
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDK

0 ðpjη4; η2Þ

þ 3DR
0 ðpjη1; η3ÞDR

0 ðq1jη3; η4ÞDK
0 ðq2jη3; η4ÞDK

0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDK
0 ðpjη4; η2Þ

�
: ð12Þ

Below we do not consider UV divergences but assume some kind of UV renormalization, i.e. that masses of the fields and
coupling constants have been set equal to their physical renormalized values. It is probably worth stressing here that mixed
expressions, where the partial Fourier transformation has been taken w.r.t. the spatial coordinates, are not sensitive to the
UV divergences. In fact, to reveal the latter, one needs an extra integration in the vertices: namely, it is necessary to

4As we explain below, these secular effects in the vertices are present only for the fields whose mass is lower than a certain bound,
m <

ffiffi
3

p
4
ðD − 1Þ. And as one lowers the mass, higher and higher point correlation functions start to grow in the IR limit.
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transform back to the spacetime variables ðη; x⃗Þ. The leading IR contributions to Δ2DKðpjη1; η2Þ are hidden within the
following expression [67]:

Δ2DKðpjη1; η2Þ ≈ ðη1η2ÞD−1
2 ½hðpη1Þh�ðpη2Þn2ðpηÞ þ hðpη1Þhðpη2Þκ2ðpηÞ þ c:c:�; ð13Þ

where η ¼ e−t ¼ ffiffiffiffiffiffiffiffiffi
η1η2

p ¼ e−
t1þt2

2 is the average conformal time and

n2ðpηÞ ¼
λ2

3

Zη
∞

Zη
∞

dη3dη4hðpη3Þh�ðpη4ÞFðp; η3; η4Þ;

κ2ðpηÞ ¼ −
2λ2

3

Zη
∞

Zη3
∞

dη3dη4h�ðpη3Þh�ðpη4ÞFðp; η3; η4Þ;

Fðp; η3; η4Þ ¼
Z

dD−1q1
ð2πÞD−1

dD−1q2
ð2πÞD−1 ðη3η4ÞD−2

× hðq1η4Þh�ðq1η3Þhðq2η4Þh�ðq2η3Þhðjp⃗ − q⃗1 − q⃗2jη4Þh�ðjp⃗ − q⃗1 − q⃗2jη3Þ; ð14Þ

where the subscript 2 in n2 and κ2 denotes the second loop contribution.
In deriving the above representation for Δ2DK from (7), (9) and (12) in the limit p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 with η1=η2 ¼ const, we

neglected the difference between η1 and η2 and replaced both of them by the average conformal time η in the arguments of
the Heaviside θ functions inside DR;A (see [67] for more details).
In the following we will estimate (13) and see that for generic modes h these quantities grow as pη → 0 even when zero

values of n0 and κ0 are chosen at past infinity (see the tree-level expressions for DK).
The character of the two-loop corrections to the retarded and advanced propagators depends neither on the choice of the

mode functions h nor on the mass of the field. It is the same as in the case of the principal series [67,85] (see also [71] for a
more general discussion). In fact, the two-loop contribution to DR is as follows:

Δ2DRðpjη1; η2Þ ¼
λ2

6

Z
dD−1q⃗1
ð2πÞD−1

Z
dD−1q⃗2
ð2πÞD−1

ZZ
0

þ∞

dη3dη4
ðη3η4ÞD

×

�
3DR

0 ðpjη1; η3ÞDR
0 ðq1jη3; η4ÞDK

0 ðq2jη3; η4ÞDK
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDR

0 ðpjη4; η2Þ

−
1

4
DR

0 ðpjη1; η3ÞDR
0 ðq1jη3; η4ÞDR

0 ðq2jη3; η4ÞDR
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDR

0 ðpjη4; η2Þ
�
: ð15Þ

Due to the presence of DR inside the loop and in the
external legs, the limits of integration over η3;4 are such that
η1 > η3 > η4 > η2. As a result, the integral (15) does not
contain growing corrections when η1=η2 is held fixed. The
situation with the advanced propagator is the same.
We will discuss loop corrections to the vertices below for

specific choices of h separately.

IV. BUNCH-DAVIES FIELDS

In this section we examine the BD fields of the
complementary series. The BD modes are proportional

to the Hankel functions: hðxÞ ∝ Hð1Þ
ν ðxÞ ¼ JνðxÞ þ iYνðxÞ;

h� is just the complex conjugate of h [76]. When pη → ∞
they behave as hðpηÞ ∼ eipηffiffiffiffi

pη
p and represent pure waves at

past infinity of the EPP or in-modes. These modes

diagonalize the free Hamiltonian at past infinity. On the
other hand, when pη → 0 they behave as hðpηÞ ≈
A−ðpηÞ−ν þ iAþðpηÞν þ BðpηÞ−νþ2 where A� and B are
real constants. In this paper we consider fields from the
complementary series; i.e. ν is real and 0 < ν < ðD − 1Þ=2.
We keep the Bx−νþ2 term because this term will dominate
over Aþxν, as x → 0, if ν > 1, and the presence of Aþ is
important as we will see below. The results in our paper are
valid for ν ≤ 1, but our discussion can be straightforwardly
extended to the case of 1 < ν < ðD − 1Þ=2 (for D > 3), if
we take into account the B term in h.

A. Corrections to the Keldysh propagator

Unlike the case of the principal series [67], the function
Fðp; η3; η4Þ in (13) may contain large contributions as
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p → 0. In order to estimate this function let us divide the
area of integration over dD−1q1;2 into four regions: a region
where jq⃗1;2j≲ jp⃗j, another where jq⃗1;2j≳ jp⃗j and two other
regions where jq⃗1j≲ jp⃗j≲ jq⃗2j or jq⃗2j≲ jp⃗j≲ jq⃗1j. Here
we present only vague estimates; in the next section we
discuss the origin of these complications more rigorously
and explain their physical meaning.

To estimate the contribution to Fðp; η3; η4Þ from the first
region, we can approximate jq⃗1;2 − p⃗j ≈ p and take into
account that, in the IR limit in question, we have that
p → 0. Hence, we can Taylor expand around zero all the
mode functions in the expression for Fðp; η3; η4Þ. Then, the
contribution to Fðp; η3; η4Þ from the first region,
jq⃗1;2j≲ jp⃗j, is

Fð1Þðp; η3; η4Þ ¼
Z

jq1j;jq2j<jpj

dD−1q1
ð2πÞD−1

dD−1q2
ð2πÞD−1 ðη3η4ÞD−2hðq1η4Þh�ðq1η3Þhðq2η4Þh�ðq2η3Þhðpη4Þh�ðpη3Þ

∼
Z

jq1j;jq2j<jpj

dD−1q1dD−1q2q−2ν1 q−2ν2 p−2νðη3η4ÞD−2−3ν ∼ ðη3η4ÞD−2−3νp2ðD−1−3νÞ: ð16Þ

In the second region (where q1;2 ≥ p) the largest IR contribution to Fðp; η3; η4Þ comes from q1;2 ≫ p. Again we can Taylor
expand all mode functions to obtain

Fð2Þðp; η3; η4Þ ∼
Z

jq1j;jq2j>jpj

dD−1q1dD−1q2q−2ν1 q−2ν2 ðjq⃗1 þ q⃗2jÞ−2νðη3η4ÞD−2−3ν:

Finally, the estimates in the remaining two regions give the same result:

Fð3Þðp; η3; η4Þ ∼
Z

jq⃗1j<jp⃗j

dD−1q⃗1

Z
jp⃗j<jq⃗2j

dD−1q⃗2q−2ν1 q−4ν2 ðη3η4ÞD−2−3ν ∼ Fð4Þðp; η3; η4Þ: ð17Þ

Therefore, whenD − 1 − 3ν < 0 there is a large IR contribution to Fðp; η3; η4Þ coming from the regions where either q1 or
q2 or both are smaller than p.
Consequently, in this case n and κ receive large IR contributions from the integral over q1;2 in the region p < q1;2 and the

region q1;2 < p. This is one difference between the case of the complementary series and the principal series which gets
large IR contributions only from the region jq⃗1;2j ≫ jp⃗j [66,67].
Note however that whenD − 1 − 3ν > 0, Fðp; η3; η4Þ is well behaved and n2 and κ2 in (13) receive large IR contributions

only from jp⃗j < jq⃗1;2j. In other words, in this case the situation is similar to the principal series [67]. There is however a
difference: in the principal series n2, κ2 receive logarithmic IR corrections [67] while here loop contributions are powerlike:

n2ðpηÞ ≈
λ2

3
jA−j2ðpηÞ−2ν

Z
dD−1q1
ð2πÞD−1

dD−1q2
ð2πÞD−1

Z1
∞

Z1
∞

dη3dη4ðη3η4ÞD−2−ν

× hðq1η4Þh�ðq1η3Þhðq2η4Þh�ðq2η3Þhðjq⃗1 þ q⃗2jη4Þh�ðjq⃗1 þ q⃗2jη3Þ;

κ2ðpηÞ ≈ −
2λ2

3
λ2ðA�

−Þ2ðpηÞ−2ν
Z

dD−1q1
ð2πÞD−1

dD−1q2
ð2πÞD−1

Z1
∞

Z1
∞

dη3dη4ðη3η4ÞD−2−ν

× hðq1η4Þh�ðq1η3Þhðq2η4Þh�ðq2η3Þhðjq⃗1 þ q⃗2jη4Þh�ðjq⃗1 þ q⃗2jη3Þ: ð18Þ

These expressions are obtained from (13) via the change of
variablesq → qη, η3;4 → η3;4=η, neglectingp in comparison
with q1;2 and expanding hðpη3;4Þ to the leading order in the
limitpη3;4 → 0. But, after substitutingEq. (18) intoΔ2DK in
(13) and expanding hðpη1;2Þ around zero, these leading
expressions cancel out.Moreover, the large IR contributions
coming from the term Bx−νþ2 in the expansion of hðxÞ also
disappear from the final expression for Δ2DK.
The largest IR correction to Δ2DK comes from the

subleading contributions to n and κ. To obtain this

correction, one has to express all the modes in Eq. (13)
using the Bessel functions Jν and Yν. Then, in one of the
four h’s ½hðpη1;2Þ and hðpη3;4Þ�, we have to single out
Jν ∼ xν, as x → 0, while in the other three, Yν ∼ x−ν, as
x → 0. The corresponding expressions do not cancel out
but provide the leading IR contribution to Δ2DK .
To calculate approximately the resulting leading con-

tribution, we neglect p in comparison with q1;2 under the
integrals in (13). There is however a change in the lower
limits of integration over η3 and η4 which are set to ν=p.

INFRARED DYNAMICS OF MASSIVE SCALARS FROM … PHYSICAL REVIEW D 96, 025002 (2017)

025002-7



In doing this approximation we just neglect the contribu-
tions to Δ2DK from the high physical momenta pη3;4 ≫ ν,
where the physics is practically the same as in flat space.
After changing the integration variables u ¼ p

ffiffiffiffiffiffiffiffiffi
η3η4

p

and v ¼
ffiffiffiffi
η3
η4

q
, we can harmlessly extend the integration

over v from infinity to zero. The integrals remain finite, and
the prefactors of the expressions that we will find below are
just slightly changed by the contributions from the high
physical momenta.
Finally, we expand hðpη3;4Þ around zero, perform the

integration over u from ν to pη, and keep only the terms that
are divergent or leading in the expression for Δ2DK, as
pη → 0:

Δ2DKðpjη1; η2Þ

≈
8A3

−Aþ
3ð2πÞ2ðD−1Þ

λ2 logðpη=νÞηD−1

ðpηÞ2ν

×

�Z∞
1

dvv−DGðvÞ
�
−

1

2ν
v2ν þ 1

v2ν

�

−
Z1
0

dvv−DGðvÞ
�
1

2ν
v−2ν þ v2ν

��
; ð19Þ

where

GðvÞ ¼
ZZ

dD−1q1
ð2πÞD−1

dD−1q2
ð2πÞD−1 hðq1v2Þh�ðq1Þhðq2v2Þh�

× ðq2Þhðjq⃗1 þ q⃗2jv2Þh�ðjq⃗1 þ q⃗2jÞ: ð20Þ

Although λ is small, the loop correction becomes compa-
rable to the tree-level contribution. In fact, as pη → 0, the
sum of the tree-level and the second loop correction to the
Keldysh propagator is as follows:

DK
0 þ Δ2DK ≈ ηD−1=ðpηÞ2ν

�
aþ bλ2 log

pη
ν

�
; ð21Þ

where the constants a and b are computed from the
expressions above.
As a side remark, ifD − 1 − 3ν < 0, the IR contributions

to n2 and κ2 have the following form:

n2ðpηÞ ∝ λ2ðpηÞD−1−6ν; κ2ðpηÞ ∝ λ2ðpηÞD−1−6ν: ð22Þ

We do not present here the full expressions for n2, κ2 and
Δ2DK because in this case we will not do the resummation
of the leading IR contributions from all loops. Again, after
substituting the above leading expressions (22) into Δ2DK ,
they cancel out. What survives in Δ2DK is coming from
subleading contributions to n2, κ2 and κ�2. Corrections to
Δ2DK are always logarithmic as in (19) and (21), but the
coefficients in front of them are different depending on
whether D − 1 − 3ν is greater or lower than zero.

B. Correction to the vertices

For the vertices it is more convenient to use the non-
stationary diagrammatic technique before the Keldysh
rotation (see e.g. [67] for the explanation and notations).
Then, the one-loop correction from the ð−−Þ “fish”
diagrams to the vertices is as follows:

λ−−ðη1; η2; p1; p2; p3; p4Þ ¼ ð−iλÞ2ðη1η2ÞD−1δðD−1Þðp⃗1 þ p⃗2 þ p⃗3 þ p⃗4Þ
Z

dD−1q
ð2πÞD−1

× fθðη1 − η2Þhðjq⃗ − p⃗1jη1Þh�ðjq⃗ − p⃗1jη2Þ þ θðη2 − η1Þhðjq⃗ − p⃗1jη2Þh�ðjq⃗ − p⃗1jη1Þg
× fθðη2 − η1Þhðjp⃗2 þ q⃗jη2Þh�ðjp⃗2 þ q⃗jη1Þ þ θðη1 − η2Þhðjp⃗2 þ q⃗jη1Þh�ðjp⃗2 þ q⃗jη2Þg: ð23Þ

Here the indices “þ” and “−” are attributed to the two
internal vertices in the one-loop diagram describing cor-
rection to the tree-level vertex. The situation with the other
vertices, λþ−, λ−þ and λþþ, is very similar. We would like
to check if (23) contains large corrections in the limit
piη1;2 → 0, i ¼ 1, 2, 3, 4.
As in the case of the Keldysh propagator, we divide the

domain of integration over the internal momentum q⃗ into
regions. One region is where q ≥ ðp1p2p3p4Þ14. To estimate
λ−− in this domainwe observe that the largest contribution to
the vertices comes from q ∼ ðp1p2p3p4Þ1=4 → 0. (In the
next sectionwe presentmore rigorous observations.) Hence,
Taylor expanding all mode functions around zero, we obtain
the contribution to the vertex from the first region as follows:

Δ1λ
−−ðη1; η2; p1; p2; p3; p4Þ
∼ ð−iλÞ2ðη1η2ÞD−1−2νδðD−1Þðp⃗1 þ p⃗2 þ p⃗3 þ p⃗4Þ

×
Z

jqj> ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3p4

4
p

dD−1qq−4ν: ð24Þ

If D − 1 − 4ν < 0, this expression is large. In the opposite
case, when D − 1 − 4ν > 0, the integral in (24) is conver-
gent in the IR limit under consideration.
To estimate the vertex contribution in the domain of

integration where q ≤ ðp1p2p3p4Þ14, we can neglect q in
comparison with pi. Then
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Δ2λ
−−ðη1; η2; p1; p2; p3; p4Þ
∼ ð−iλÞ2ðη1η2ÞD−1−2νðp1p2Þ−2νδðD−1Þðp⃗1 þ p⃗2

þ p⃗3 þ p⃗4Þ
Z

jqj< ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3p4

4
p

dD−1q: ð25Þ

Again, if D − 1 − 4ν > 0, this expression does not contain
large contributions. If, however, D − 1 − 4ν < 0, there are
large IR corrections, which are similar to (24). In the next
subsection we discuss more rigorously the physical origin
and the meaning of these problems with the vertex
corrections.

V. PHYSICAL ROOTS OF THE SECULAR
EFFECTS IN THE VERTICES AND

SELF-ENERGIES

When

ν >
D − 1

4
ð26Þ

[i.e. when m <
ffiffi
3

p
4
ðD − 1Þ] there are potentially dangerous

IR corrections to the vertices, as piηi → 0. Furthermore,
when

ν >
D − 1

3
ð27Þ

[i.e. when m <
ffiffi
5

p
6
ðD − 1Þ] there are also potentially

dangerous IR contributions to the Keldysh propagator
(self-energy). Such contributions can complicate the prob-
lem of the summation of the leading IR corrections in all
loops because the IR limit of the entire system of the Dyson-
Schwinger equations has to be solved for propagators and
vertices simultaneously. This is to be compared to the case of
the principal series, where the problem may be reduced to
the solution of only one Dyson-Schwinger equation for the
Keldysh propagator [67].
To better understand what is going on, recall that the

spectrum of a theory of a neutral scalar meson in flat space
is made of the mass shell p2 ¼ m2 plus a continuum
including all two-particle states, the three-particle states,
etc., which starts at p2 ¼ 4m2. The very existence of the
complementary series of fields in dS space makes the
situation rather different. The situation becomes clearer
when we express, say, the BD two-point functions by using
the coordinate-independent plane-wave representation
introduced in [86,87].
To this aim, in this section we look at either the real or the

complex dS manifold as submanifolds of the complex
Minkowski manifold with one spacelike dimension more:

dSD ¼ fx ∈ MDþ1∶x · x ¼ −R2 ¼ −1g and

dSðcÞD ¼ fz ∈ MðcÞ
Dþ1∶z · z ¼ −R2 ¼ −1g; ð28Þ

where x · y ¼ x0y0 − x⃗ · y⃗. The dS metric is obtained by
restriction of the ambient space-time interval to dSD. In
particular, for the EPP we get

xðt;xÞ ¼

8>><
>>:

x0 ¼ sh tþ et
2
jxj2

xi ¼ etxi

xD ¼ ch t − et
2
jxj2;

ð29Þ

ds2¼ðdx20−dx21−…dx2DÞjdSD ¼dt2−expð2tÞdx2: ð30Þ

There exists a remarkable set of solutions of the dS Klein-
Gordon equation which may be interpreted as dS plane
waves [86–89]. For a complex dS event z, a given nonzero
lightlike vector ξ ∈ Cþ and a complex number λ ∈ C, the
homogeneous function

z ↦ ðξ · zÞλ ð31Þ

satisfies the massive (complex) Klein-Gordon equation:

ð□z þm2
λÞðξ · zÞλ ¼ 0: ð32Þ

The above plane waves are holomorphic in the future and
past dS tuboids T � (which are related to the spectral
condition of dS QFT [86,87,90]) obtained as the inter-
sections of the ambient tubes [91] with the complex dS
manifold:

T � ¼ fx� iy ∈ dSðcÞd ∶y2 ¼ y · y > 0; y0 > 0g: ð33Þ

The parameter λ is unrestricted here; i.e. we may consider
complex squared masses m2

λ ¼ −λðλþD − 1Þ. The sym-
metry λ → ð−λ −Dþ 1Þ also implies that

ð□z þm2
λÞðξ · zÞ−λ−Dþ1 ¼ 0: ð34Þ

The two boundary values of the complex waves (one from
each tuboid) are homogeneous distributions of degree λ and
are solutions of the dS Klein-Gordon equation on the real
dS manifold:

ð□x þm2
λÞðξ · xÞλ� ¼ 0; ð□x þm2

λÞðξ · xÞ1−D−λ
� ¼ 0:

ð35Þ

The waves depend, in a C∞ way, on ξ and are entire
functions of λ.
We may now introduce a class of maximally analytic

vacua (the BD vacua—one for each complex squared mass)
by specifying their two-point functions. In the following
plane-wave expansion we take the first point z in the
backward tuboid T −, the second point z0 in the forward
tuboid T þ, and λ is not a pole of Γð−λÞΓðλþD − 1Þ:
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Wλðz; z0Þ ¼ wλðz · z0Þ

¼ Γð−λÞΓðλþD − 1Þe−iπðλþD−1
2
Þ

2Dþ1πD

×
Z
S0

ðξ · zÞ1−D−λðξ · z0Þλdξ: ð36Þ

The integral is performed on the spherical basis S0 of the
future cone: S0 ¼ fξ∶ξ2 ¼ 0; ξ0 ¼ 1g; dξ denotes the
spherical invariant measure. One gets that the above
Fourier-like representation may be evaluated in terms of
Legendre functions of the first kind:

wλðz · z0Þ ¼
Γð−λÞΓðλþD − 1Þ

2ð2πÞD=2 ðζ2 − 1Þ−D−2
4 P

−D−2
2

λþD−2
2

ðζÞ;

ζ ¼ z · z0: ð37Þ

It is clear from (37) that ζ ↦ wλðζÞ ¼ w−λ−Dþ1ðζÞ is
holomorphic in Cnð−∞;−1�, i.e. everywhere except on
the locality cut (maximal analyticity property).
When we specialize the above construction to fields

having real and positive squared masses, we immediately
understand that there are two types of waves. The first is the
principal series λ ¼ − D−1

2
þ iν with ν ∈ R; in this case,

waves have an oscillatory character:

ϕðxÞ ¼ ðξ · xÞ−D−1
2
þiν

� ; m2 ¼
�
D − 1

2

�
2

þ ν2: ð38Þ

The second type is the complementary series λ ¼ − D−1
2

þ ν
with jνj < ðD − 1Þ=2. Here waves do not oscillate but
decay more slowly at infinity:

ϕðxÞ ¼ ðξ · xÞ−D−1
2
þν

� ; m2 ¼
�
D − 1

2

�
2

− ν2: ð39Þ

Although redundant, let us write explicitly the above
Fourier-like representation of the BD vacua in the two
cases of interest: for ν ∈ R, theories of the principal series
have the following two-point functions:

Wiνðz; z0Þ ¼ wiνðζÞ

¼ ΓðD−1
2

þ iνÞΓðD−1
2

− iνÞ
2Dþ1πDe−πν

×
Z
S0

ðξ · zÞ−D−1
2
−iνðξ · z0Þ−D−1

2
þiνdξ: ð40Þ

For ν ∈ R and jνj < ðD − 1Þ=2, theories of the comple-
mentary series have the following two-point functions:

Wνðz; z0Þ ¼ wνðζÞ

¼ Γðd−1
2
þ νÞΓðD−1

2
− νÞ

2Dþ1πDeiπν

×
Z
S0

ðξ · zÞ−D−1
2
−νðξ · z0Þ−D−1

2
þνdξ: ð41Þ

Now let us come back to our main line of thought. When
studying the corrections to the propagators and to the
vertices, we are led to consider the distributions W2ðx; x0Þ
and W3ðx; x0Þ. Let us focus on the Wick-square W2ðx; x0Þ
of the two-point function and consider a theory of
the principal series. The asymptotic behavior can be
crudely estimated by looking at the square of a plane

wave: ðξ · xÞ−ðD−1Þþ2iν
� . At infinity, this function behaves

better than a wave of the principal series; sinceW2
iνðx; x0Þ is

a positive-definite distribution, it should be possible to
write an expansion of it just in terms of two-point functions
of the principal series as follows:

W2
iνðζÞ ¼

Z
κρiνðiκÞWiκðζÞdκ: ð42Þ

This property should also remain true for fields of the
complementary series as long as

−ðD − 1Þ þ 2jνj ≤ −
D − 1

2
ð43Þ

i.e. as long as jνj ≤ D−1
4
. To understand what happens when

this bound is violated, we need to examine the above
Källén-Lehmann representation more closely. The problem
of finding the weight ρ has been solved in [92] in a more
general case, namely, for the product of two distributions
wiνðζÞ and wiλðζÞ belonging to the principal series (40); the
following integral representation holds:

wiνðζÞwiλðζÞ ¼
Z
R
κρiν;iλðiκÞwiκðζÞdκ; ð44Þ

where the Källén-Lehmann weight has the following
remarkable explicit expression:

κρiν;iλðiκÞ¼
1

25π
Dþ5
2 ΓðD−1

2
Þ

×
κshπκ

Q
ϵ;ϵ0;ϵ00¼�1ΓðD−1

4
þ iϵκþiϵ0νþiϵ00λ

2
Þ

ΓðD−1
2
þ iκÞΓðD−1

2
− iκÞ : ð45Þ

By using such an explicit result, we may perform analytic
continuation in the mass parameters to obtain the Källén-
Lehmann representation for the product wαðζÞwβðζÞ
belonging to the complementary series and violating the
bound αþ β < D−1

2
(see [92] for more details). The result is

as follows: if N is a non-negative integer such that

D − 1

4
þ N <

1

2
ðαþ βÞ < D − 1

4
þ N þ 1 ð46Þ
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provided

N <
D − 1

4
; ð47Þ

the Källén-Lehmann representation of the product wαðζÞwβðζÞ incudes N þ 1 discrete terms:

wαðζÞwβðζÞ ¼
Z
R
κρα;βðiκÞwiκðζÞdκ þ

XN
n¼0

Anðα; βÞwD−1−2α−2β
2

þ2nðζÞ;

where

Anðα; βÞ ¼
Γðα − nÞΓðβ − nÞΓðαþ β − nÞΓðD−1

2
− αþ nÞΓðD−1

2
− β þ nÞΓðD−1

2
þ nÞ

4n!π
Dþ1
2 ΓðD−1

2
ÞΓð− D−1

2
− 2nþ αþ βÞΓð−2nþ αþ βÞΓðD − 1þ 2n − α − βÞ

×
ð−1ÞnΓðnþ D−1

2
− α − βÞ

Γð2nþ D−1
2

− α − βÞ ð48Þ

provided neither α nor β is an integer (if αþ β < D−1
2
, the

formula holds without the An terms as for the principal
series). It is easy to check that κρα;βðκÞ ≥ 0. Furthermore,
all the factors in Anðα; βÞ—except the last fraction—are
positive since the arguments of the Gamma functions are
positive. The last fraction is of the form

ð−1ÞnΓðnþ xÞ
Γð2nþ xÞ ¼ ð−1Þn

Y2n−1
q

ðqþ xÞ−1: ð49Þ

The last product contains n negative factors, and the result
is positive.
The conclusion that can be drawn from the above

analysis may be surprising. Let us consider fixing the idea
of a dS space-time dimension D ¼ 4 and consider free
fields of the complementary series violating the bound (43),
i.e. fields such that ν > 3=4 for the complementary series.
From the above analysis it follows that the two-particle
subspace of the Fock space relative to such a field contains
a discrete component of parameter 2ν − 3=2. In other
words, a free field theory of mass

m2 ¼ 9

4
− ν2 <

27

16
ð50Þ

contains, in the two-particle states, discrete terms (“bound
states") of mass

M2 ¼ ð3 − 2νÞ2ν < 9

4
: ð51Þ

Similarly, when considering the three-particle subspace of a
light free field, one sees that the behavior at infinity is not
worse than that of the principal series provided

−
3

2
ðD − 1Þ þ 3ν ≤ −

D − 1

2
: ð52Þ

On the other hand, a more laborious calculation shows that
when ν > D−1

3
, as before, “bound states" appear in the three-

particle subspace of the theory.

VI. REMARKS ON LOOP CORRECTIONS
FOR THE OUT-MODES

To complete the discussion we also have to consider loop
corrections for other α-modes. In fact, here we have an
interacting theory, and we take it in the IR limit. Then,
modes different from the BD modes may play an important
role: for instance, for the principal series, due to inter-
actions, the in-ground state is transformed in the out-
ground state in future infinity [67]; hence, the loop
resummation has to be done with the use of out-modes.
On the other hand, it is not hard to see that the structure of
the loop corrections for generic α-modes is very similar to
the BD case. The only exceptions are the out-modes, in a
sense that we explain now.
For the out-modes, hðxÞ ∝ JνðxÞ while h�ðxÞ ∝ iYνðxÞ.

These modes are related to the BD-modes via a Bogoliubov
rotation. The main difference in comparison with the BD
modes is that for x → 0 the behavior of the modes is hðxÞ ≈
Bþxν and h�ðxÞ ≈ B−x−ν, as x → 0; here Bþ is some real
constant, while B− is purely imaginary; h� is not the
complex conjugate of h.5 Thus, for the out-modes the IR
behavior of h� is different from that of h, contrary to what
happens for BD modes and even for generic α-modes.

5Note that in the case of the principal series, when m >
ðD − 1Þ=2, ν is imaginary. Hence, in our previous papers we
were able to choose Jν and its complex conjugate as the basis of
mode functions. However, when ν is real, then Jν is also real. As a
result, we have to choose Jν and iYν as the basis. This way we
obtain the proper commutation relations for the creation and
annihilation operators. One encounters a similar situation in flat
space if the Bogoliubov rotation goes from e�iωt modes to cosðωtÞ
and i sinðωtÞ.
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Note, however, that in the UV limit the out-modes behave
as hðpηÞ ∼ cosðpη−νπ=2−π=4Þffiffiffiffi

pη
p and h�ðpηÞ ∼ sinðpη−νπ=2−π=4Þffiffiffiffi

pη
p .

These mixtures of the positive and negative energy modes
e�ipη spoil the UV behavior of the corresponding propa-
gators. This is the characteristic feature of a generic
α-mode, the only exception being the BD modes, which
exhibit the standard UV behavior. Note, however, that
although out-modes have an incorrect UV behavior, they
can be relevant in the IR limit in the presence of an
interaction (the prototypical example is the Cooper pairing

that is incorrect in the UV limit but provides a correct
description of the IR physics).
For the out-modes the two-loop large IR correction to

the Keldysh propagator is also contained in the expres-
sions of Eq. (13). It is not hard to show that for any mass
parameter ν the function Fðp; η3; η4Þ contains no large IR
contribution. The calculation of n2, κ2 and κ�2 proceeds
along the same lines as for the principal series in the BD
case [67]. The final answer for n2, κ2 and κ�2 is the
following:

n2ðpηÞ ≈
2λ2BþB−

3
log

�
ν

pη

�Z
dD−1l1
ð2πÞD−1

dD−1l2
ð2πÞD−1

Z
∞

0

dvv2D−2ν−3hðl1v2Þh�ðl1Þhðl2v2Þh�ðl2Þhðjl⃗1 þ l⃗2jv2Þh�ðjl⃗1 þ l⃗2jÞ;

κ2ðpηÞ ≈ −
2λ2B2

−

3ν
ðpηÞ−2ν

Z
dD−1l1
ð2πÞD−1

dD−1l2
ð2πÞD−1

Z
1

0

dvv2D−2ν−3hðl1v2Þh�ðl1Þhðl2v2Þh�ðl2Þhðjl⃗1 þ l⃗2jv2Þh�ðjl⃗1 þ l⃗2jÞ;

κ�2ðpηÞ ≈ −
2λ2B2þ
3ν

ðpηÞ2ν
Z

dD−1l1
ð2πÞD−1

dD−1l2
ð2πÞD−1

Z
1

0

dvv2D−2ν−3hðl1v2Þh�ðl1Þhðl2v2Þh�ðl2Þhðjl⃗1 þ l⃗2jv2Þh�ðjl⃗1 þ l⃗2jÞ:

ð53Þ

Taking into account the behavior of hðpη1;2Þ and h�ðpη1;2Þ
at future infinity, we find that the leading IR correction to
the Keldysh propagator comes from n alone and is
logarithmic:

Δ2DKðp; η1; η2Þ ¼ ηD−1BþB−

��
η1
η2

�
ν

þ
�
η2
η1

�
ν
�
n2ðpηÞ:

ð54Þ
It seems that out-modesmay allow the loop resummation for
light fields D − 1 − 4ν < 0 as is the case for the principal
series [67]. The point is that the resummation can be done by
solving the system of Dyson-Schwinger equations, but this
system is covariant under the simultaneous Bogoliubov
transformation of the modes and n, κ and κ�. Moreover, it is
straightforward to show that for the out-modes the vertices
do not receive any large corrections in the limit piη1;2 → 0,
i ¼ 1, 2, 3, 4. This is true because of the peculiar relation
between the IR behavior of h and h� for the out-modes.
Thus, it seems convenient to try and solve the system of

Dyson-Schwinger equations with the use of out-modes.
However, unlike the case of the principal series [67], any
small excitation of κ and κ� on top of the out-ground state
leads to growing rather than damping effects. This can be
seen in the Dyson-Schwinger system of equations at linear
order in κ and κ� (see [67] for the details and methods).

VII. RESUMMATION: PRELIMINARY
DISCUSSION

Thus, for all the α-modes, loop effects [∼λ2 logðpηÞ] can
become large as pη → 0 even when λ2 is very small. The
important point is that loop corrections are not suppressed

in comparison with classical tree-level contributions to
propagators and vertices. Hence, to understand the physics
in dS space, one has to sum unsuppressed IR corrections
from all loops.
In the EPP there is also the distinct problem of summing

the dS-invariant IR corrections to the correlation functions
of the exact BD state (see e.g. [52–57,68,93]). Only in this
case do loop corrections respect the dS isometry (in the
EPP) [59] (see also [10,67,68]). Here, however, we con-
sider an initial nonsymmetric density perturbation on top of
the BD state at past infinity of the EPP. We would like to
trace the destiny of such a perturbation and to understand
the effect of the large IR contributions, as the system
progresses towards future infinity.
As we have explained in the Introduction, we cannot just

put initial comoving density n0p at past infinity of the EPP
because then the physical density will be infinite. One has to
put the initial value n0p at an initial Cauchy surface
þ∞ > η0 > 0. Moreover, due to the UV divergences the
comoving momentum should also be cut off at the UV scale
p0. But, as was explained above, nðpηÞ and κðpηÞ are
attributed to the comoving volume and, hence, do not change
before pη ∼ ν. Their behavior for pη > ν is not much
different from that in flat space-time. Thus, cutting simulta-
neously comoving momentum and conformal time integrals
effectively amounts to cutting the physical momentum
integrals at ν. On the other hand, due to the symmetries of
the EPP (or isometries of the dS space) we can put an initial
comoving density at an initial value of the physical momen-
tum P0 ≡ ðpηÞ0 ∼ ν and cut off all the integrals over the
physical momentum at this value. This is what was proposed
in the Introduction.
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To sum loop contributions we should solve the
Dyson-Schwinger system of equations for the propagators,
self-energies and vertices. We would like to sum only
powers of the leading contribution λ2 logðpηÞ and neglect
subdominant terms, such as powers of λ4 logðpηÞ or
λ2 logðη1=η2Þ etc.
As we have seen above, the retarded and advanced

propagators do not receive large IR contributions from
the first and second loops, but only from higher loops
which may be produced from the lower loop corrections to
the Keldysh propagator. This means that such contributions
toDR;A are suppressed by higher powers of λ. Sincewewant
to sum only the leading corrections, we may use the tree-
level expressions for DR;A everywhere (renormalized with
the leadingUVcorrections), which iswhatwewill do below.
However, at variance with the principal series case [67],

we saw that in the complementary case, large IR contri-
butions to the vertices may also arise. This happens for
generic α-modes. To avoid that difficulty, here we restrict
our consideration to fields with m sufficiently large

(D − 1 − 4ν > 0) m >
ffiffi
3

p
4
ðD − 1Þ.

When the resummation is done for the exact BD state in the
EPP, the leading contributions come from the summation of
the sunset bubbles. In fact, if one puts the above two-loop
logarithmic correction to the Keldysh propagator into the
internal legsof the sunset diagram, thecorrection is suppressed

as λ4 logðpηÞ (because of its logarithmic behavior and of the
integrationover the complete rangeof thephysicalmomentum
inside the loops). The situation is very similar to the standard
UV renormalization: if one again puts loop-corrected expres-
sions inside the loops, they lead to subleading corrections,
while the leading corrections come from the multiplication of
the bubbles. This is exactly the reason why in the Dyson-
Schwinger equation one can put the exact Keldysh propagator
only into one of the external legs. This fact was used in part in
[52,55,57]. As a result, in this case the Dyson-Schwinger
equation reduces to a linear integro-differential equation.
However, if we cut the integration over the physical momen-
tum at P0 and put an initial value nðP0Þ, for the comoving
density of the exact modes, the situation becomes very
different. Now the internal legs also bring leading corrections
of the type jλ2 logðpηÞjn. Then one also has to put the exact
Keldysh propagators in the internal legs inside the loops, and a
nonlinear integro-differential equation follows.The latter has a
much farther-reaching realm of solutions.

VIII. IR SOLUTION OF THE
DYSON-SCHWINGER EQUATIONS

In the previous section we justified why for BD modes
and for D − 1 − 4ν > 0 the Dyson-Schwinger system of
equations reduces to the equation for the Keldysh propa-
gator alone:

DKðpjη1; η2Þ ≈DK
0 ðpjη1; η2Þ þ

λ2

6

Z
dD−1q⃗1
ð2πÞD−1

dD−1q⃗2
ð2πÞD−1

ZZ
0

þ∞

dη3dη4
ðη3η4ÞD

×

�
3DK

0 ðpjη1; η3ÞDKðq1jη3; η4ÞDKðq2jη3; η4ÞDA
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
1

4
DK

0 ðpjη1; η3ÞDA
0 ðq1jη3; η4ÞDA

0 ðq2jη3; η4ÞDA
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
3

4
DR

0 ðpjη1; η3ÞDKðq1jη3; η4ÞDA
0 ðq2jη3; η4ÞDA

0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA
0 ðpjη4; η2Þ

þDR
0 ðpjη1; η3ÞDKðq1jη3; η4ÞDKðq2jη3; η4ÞDKðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA

0 ðpjη4; η2Þ

−
3

4
DR

0 ðpjη1; η3ÞDKðq1jη3; η4ÞDR
0 ðq2jη3; η4ÞDR

0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDA
0 ðpjη4; η2Þ

−
1

4
DR

0 ðpjη1; η3ÞDR
0 ðq1jη3; η4ÞDR

0 ðq2jη3; η4ÞDR
0 ðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDKðpjη4; η2Þ

þ 3DR
0 ðpjη1; η3ÞDR

0 ðq1jη3; η4ÞDKðq2jη3; η4ÞDKðjp⃗ − q⃗1 − q⃗2jjη3; η4ÞDKðpjη4; η2Þ
�
: ð55Þ

This equation is formally the same as Eq. (12). The difference is that the exact propagatorDK and tree-level propagatorsDR
0

andDA
0 appear on the rhs wherever appropriate. Again, Eq. (55) is invariant under simultaneous Bogoliubov rotations of the

modes and consequently of n, κ and κ�.
We want to solve this equation in the infrared limit pη≲ ν where modes behave as hðpηÞ ¼ A−ðpηÞ−ν þ iAþðpηÞν. For

the reasons mentioned at the beginning of Sec. III, we restrict our attention to the case ν ≤ 1. For D ≤ 5 this includes the
above restriction on ν. In the IR limit under consideration, we obtain

D
R
A
0ðpjη1; η2Þ ¼∓ θð∓ Δη12Þ2A−Aþðη1η2ÞD−1

2

��
η1
η2

�
ν

−
�
η2
η1

�
ν
�
; pη1;2 → 0: ð56Þ
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We use the same ansatz for the Keldysh propagator that was introduced in a previous paper for the principal series [67]:

DKðpjη1; η2Þ ≈ ηD−1
�
hðpη1Þh�ðpη2Þ

�
1

2
þ neðpηÞ

�
þ hðpη1Þhðpη2ÞκeðpηÞ

�
þ c:c:; η ¼ ffiffiffiffiffiffiffiffiffi

η1η2
p

; ð57Þ

where the subscript e of n, κ and κ� designates the exact
(resummed) contribution. Unlike the case of the principal
series, this ansatz solves (55) only in the regions when all
physical momenta in the above expressions are less than ν.
Hence, we substitute the asymptotic approximate expres-
sions for all mode functions for the small values of their
arguments. In fact, this region brings the leading IR
contributions to the integrals in (55).
Thus, keeping only the leading contributions, we obtain

from (57) the following expression for the Keldysh
propagator:

DKðpjη1; η2Þ ≈ A2
−η

D−1NðpηÞ
ðpηÞ2ν ; ð58Þ

where NðpηÞ ¼ 1þ 2neðpηÞ þ κeðpηÞ þ κ�eðpηÞ in terms
of the original ne, κe and κ�e. We assume that the initial
condition for this quantity does not contain κ and κ�, but it
can contain n. As we have explained in the Introduction, we
put this condition at some initial value of the physical

momentum, n0ðpηÞ ¼ nðP0Þ. This is the initial density
perturbation on top of the BD state.
There are two points which are worth stressing at this

moment. First, for generic values of NðpηÞ, the propagator
DKðpjη1; η2Þ is not a functionof thegeodesic distance. This is
true although the combination pη respects part of the dS
isometry—e.g. the simultaneous rescalings p → σp and
η → η=σ. Thus, any initial value for NðpηÞ different from
1 violates the dS isometry. Second, substituting the tree-level
valueNðpηÞ ¼ 1 on the rhs of (55) would reproduce the two-
loop contribution to DK obtained above in the case when all
modes are approximated by their values at q1;2η3;4 ≪ ν.
Now we can substitute expressions (56) and (58) on the

rhs of (55). The leading contributions will be given by the
first two and last two terms of (55). The other terms give
rise to expressions which are suppressed by higher powers
of pη → 0. Also, it is convenient to make a change of

variables u ¼ p
ffiffiffiffiffiffiffiffiffi
η1η2

p
, v ¼

ffiffiffiffi
η3
η4

q
, and l⃗i ¼ p⃗i

ffiffiffiffiffiffiffiffiffi
η3η4

p
.

Finally, we get

NðpηÞ ≈ NðP0Þ −
λ2

3
A6
−A2þ

Zpη
ν

du
u
½NðuÞ þ NðP0Þ�

Zν
1
ν

dv
v

Zpη<jl⃗1;2j<ν
dD−1l⃗1
ð2πÞD−1

dD−1 l⃗2
ð2πÞD−1

×

�
θðv − 1Þ 1

v2ν
− θð1 − vÞv2ν

��
3A2

−
Nðl1Þ
l2ν1

Nðl2Þ
l2ν2

�
v2ν −

1

v2ν

�
− A2þ

�
v2ν −

1

v2ν

�
3
�
; ð59Þ

where NðP0Þ is the initial value of NðpηÞ and P0 ∼ ν ≫ pη. In (59) we neglected p in comparison with qi; this is made
possible by the condition D − 1 − 4ν > 0. This equation can be recast in the following form:

NðpηÞ − NðP0Þ ≈ −
Zpη
ν

du
u
½NðuÞ þ NðP0Þ�

�
Γ1

�Zν
pη

dllD−2−2νNðlÞ
�2

− Γ2

�
; ð60Þ

where

Γ1 ¼
λ2A8

−A2þS2D−2

ð2πÞ2ðD−1Þ

Zν
1
ν

dv
v

�
θðv − 1Þ 1

v2ν
− θð1 − vÞv2ν

��
v2ν −

1

v2ν

�
> 0;

and Γ2 ¼
λ2A6

−A4þS2D−2

3ð2πÞ2ðD−1Þ

Zν
1
ν

dv
v
½θðv − 1Þv−2ν − θð1 − vÞv2ν�½v2ν − v−2ν�3 > 0: ð61Þ

Here SD−2 is the area of the (D − 2)-dimensional sphere.6 The above equation can be transformed into an integro-
differential equation by differentiating both sides w.r.t. logðpηÞ:

6First, the same equation is obtained for κ�ðpηÞ instead of NðpηÞ, by using the out-modes instead of the BD modes in (55).
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∂NðpηÞ
∂ logðpην Þ

≈ −½NðpηÞ þ NðP0Þ�
�
Γ1

�Zν
pη

dllD−2−2νNðlÞ
�2

− Γ2

�

þ 2Γ1NðpηÞðpηÞD−1−2ν
Zpη
ν

du
u
½NðuÞ þ NðP0Þ�

Zν
pη

dllD−2−2νNðlÞ: ð62Þ

Unlike the case of principal series [67], this equation has no
clear kinetic or particle interpretation. This is because, in
this case, the modes do not oscillate at future infinity.
Hence, we cannot neglect the time dependence of N in
comparison with that of the modes: here NðpηÞ is not a
slow function. However, solving the equation for the given
initial conditions provides the resummation of the leading
corrections from all loops (for the considered initial
conditions).
In the limit pη ≪ ν let us consider

NðpηÞ ¼ CðpηÞα ð63Þ
where C is a constant of integration which depends on the
initial conditions. Since pη ≪ P0 ∼ ν for α > 0 we have
NðpηÞ ≪ NðP0Þ, and it can be easily seen that (63) cannot
solve (60). But when α < 0 then NðpηÞ ≫ NðP0Þ. Hence,
substituting into (60) and neglecting NðP0Þ in comparison
with N, we obtain

α ≈ −Γ1C2

�
νðD−1−2νþαÞ − ðpηÞðD−1−2νþαÞ

D − 1 − 2νþ α

�
2

þ Γ2: ð64Þ

If D − 1 − 2νþ α > 0 and pη ≪ ν, on the rhs of this
equation we can neglect the pη dependence, and α is a
constant, as it should be. This solution is valid only for

CνðD−1−2νþαÞ

D − 1 − 2νþ α
>

ffiffiffiffiffi
Γ2

Γ1

s
ð65Þ

(because otherwise α > 0).
For the solution under consideration we have that

DKðpjη1; η2Þ ≈ A2
−C2

pD−1 ðpηÞD−1−2νþα. The Keldysh propaga-

tor blows up only if D − 1 − 2νþ α < 0, but this cannot
happen for the solution in question. Thus, all solutions of
the type under consideration describe smooth behavior of
the correlation functions, even if they violate dS isometry.
Such solutions are realized by a mild initial perturbation
over the BD state. Note that such a solution is very similar
to the one obtained in [52–57], if one keeps in the latter
only the leading term as pη → 0 (and we do keep only the
leading contributions in the limit in question). Furthermore,
here we have an obvious stationary solution, α ¼ 0,

NðpηÞ ¼ NðP0Þ ¼ C ¼
ffiffiffiffi
Γ2

Γ1

q
D−1−2ν
νD−1−2ν .

It is tempting to compare the solutions (63) and (64) to
the one considered in [52,57]. There are certain differences.

Namely, our solution is valid for generic dS-violating initial
conditions. As a result, the parameter α in (63) depends on
the parameter C, which defines the initial value of NðpηÞ.
The situation should reduce to the one considered in
[52,57], when one takes the BD state exactly. In terms
of (63) this corresponds to NðνÞ ¼ 1. In this case, as
follows from (64), α ∼ λ2

m4, if m2 ≪ 1 (this is the approxi-
mation in which one can compare the two results under
discussion). This answer coincides parametrically with the
one found in [52,57]. The coefficients, however, are
different. The reason for this is due to the difference
between the sort of approximations made and the sort of
leading diagrams that are resummed in [52,57] and in
our paper.
However, apart from the stable solutions, Eq. (60) also

has a singular (exploding) one. Consider indeed

NðpηÞ ¼ C
ðpη − pη�Þα

; ð66Þ

where C, 0 < η� < η and α > 0 are some real constants,
which may depend on the initial conditions. We assume
that such a behavior of NðpηÞ is valid in the limit when η is
very close to η�. After the substitution of this solution into
(60) and neglecting the suppressed terms, we obtain the
following relation between the constants C, η� and α:

1

ðpη − pη�Þα
≈

Γ1C2ðpη�ÞD−1−2ν

ðα − 1Þðpη − pη�Þ3ðα−1Þ
: ð67Þ

This equation establishes α ¼ 3=2 and a relation betweenC
and η�. In this case the Keldysh propagator blows up at a
finite proper time.7 Then, the expectation value of the
stress-energy tensor also blows up (which would appear on
the rhs of the Einstein equations due to the quantum
fluctuations). This means that the backreaction is not
negligible. One possibility is that the cosmological constant
is secularly screened because the expectation value of the
stress-energy tensor under discussion does not respect the
dS isometry. This is the subject of a separate study. Here we
do not consider the backreaction issue.

7It is probably worth stressing at this point that here we are
talking about superhorizon modes; hence, even for very short
periods of time, the intuition gained from the flat space-time
physics is not applicable here.
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IX. CONCLUSIONS

Equation (19) shows that there are secularly growing
corrections to the Keldysh propagator starting from two-
loop order—i.e. from the sunset diagrams. As explained in

Sec. IVA this equation is valid for
ffiffi
5

p
6
ðD − 1Þ < m < D−1

2
.

Moreover, as explained in Sec. IV B, for m <
ffiffi
3

p
4
ðD − 1Þ

there are large IR contributions to the vertices. The physical
origin of these complications is explained in Sec. V.
Since the quantum corrections to the propagator become

of the same order as tree-level contributions, when
jλ2 logðpηÞj ∼ 1 they have to be resummed. We perform
a self-consistent resummation, by resumming only the
leading corrections in λ2 logðpηÞ and dropping all the
subleading ones—those which are suppressed by higher
powers of λ or do not contain logðpηÞ, as pη → 0.
The resummation amounts to solving the relevant

Dyson-Schwinger equation. For the Keldysh propagator
we make the ansatz (58) with unknown NðpηÞ, and we take
tree-level (perhaps UV renormalized) expressions for the
retarded propagators, the advanced propagators and the
vertices because they do not receive large IR contributions
at leading order for the mass range under consideration.
Equation (60) follows from the Dyson-Schwinger equa-

tion. Its solution allows us to perform the resummation of
leading secular IR corrections from all loops. Note that
NðpηÞ is a quantity attributed to the comoving volume; its
physical meaning is, however, less clear than in the
principal series case. However, we can solve (60) and find
the behavior of the Keldysh propagator at future infinity.

The solutions (63) and (64) describe the smooth behavior
of the Keldysh propagator and correspond to a mass
renormalization. This situation is very similar to the one
encountered in [52–57].
However, the self-consistent resummation (60) produces

a nonlinear equation. As a result, it also has the exploding
solution (66). Which one of the solutions is realized
depends on the initial conditions NðP0Þ. The blow up
happens at finite proper time and cannot be washed away
by the EPP expansion because NðpηÞ is attributed to the
comoving volume.
In conclusion, in dS space the backreaction on

quantum effects can also be strong for massive fields
(see also [67]).
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