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The present work is the second part of a series of computations for the self-mass-squared of the
conformally coupled (CC) scalar interacting with gravitons. This work includes the kinetic-kinetic and
kinetic-conformal parts, and thus completes the full scalar self-mass-squared at one loop order in de Sitter
background when combined with the conformal-conformal part previously evaluated. We use dimensional
regularization and renormalize the results by subtracting appropriate counterterms. The self-mass squared
is finally ready to quantum-correct the CC scalar field equation so that one can study the effect of
inflationary produced gravitons on the CC scalar and its observational consequences.
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I. INTRODUCTION

It has been fifty years since Leonard Parker’s break-
through discovery in the late 1960s that particles can be
created out of the vacuum in an expanding universe [1].
See Refs. [2,3] for the historical notes on the discovery.
Parker also pointed out that the particle production is
maximized if the expansion is exponential and the
particles are not conformally invariant [1]. The Poincaré
patch of de Sitter space we consider is such an exponen-
tially expanding background. The particle creation in an
exponentially expanding universe had not been empha-
sized much until the idea of inflation [4] was proposed in
the early 1980s [3]. However, the inflationary paradigm
drastically changed the situation and particle production
during inflation has been attracting a great deal of
attention since then [5-69]. The unique particles having
no conformal invariance are the massless, minimally
coupled (MMC) scalars and gravitons, and these particles
comprise the scalar [70] and tensor [71] perturbations
predicted by inflationary theories.

The pioneering computations on the scalar and tensor
perturbations were at tree order [70,71], and it is a natural
next step to include quantum loop corrections from MMC
scalars and gravitons. A number of computations regarding
quantum corrections in an inflationary background have
been carried out [5-69]. Besides the cause of inflation,
which still has no consensus, studying quantum loop effects
during inflation can be well estimated by taking the locally
de Sitter background as an inflationary universe. A generic
procedure to study loop effects is first to compute the one-
particle-irreducible (1PI) 2-point function, and second to
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use it to quantum-correct the field equation of the particle in
question. For the case of a scalar, the 1PI 2-point function is
called the self-mass-squared and denoted by —iM?(x;x').
In the present paper, we compute a part of —iM?(x;x’) for
the CC scalar, which is indeed the third and last part
followed by the first done in Ref. [14] and the second in
Ref. [16]. In a subsequent paper, we will use the full result
of —iM?(x;x') to quantum-correct the CC scalar field
equation

0,V 0, 0) = gRI0)~ [ M () =0
(n

and solve it to study how gravitons produced by inflation
affect the dynamics of the CC scalar.

The motivation why we consider the CC scalar in
particular is multifold. First, the tree order CC scalar mode
functions

o1, %) = ug(1, k)€,

[1 exp|—ik ’,ad—’;]
where M()(t, k) = ﬁ#, (2)

vanish as a(t) exponentially grows. Hence, any finite result
can be attributed to pure loop corrections. Second, we note
that the scalar is not differentiated in the conformal
coupling by recalling derivative interactions redshift away
during inflation. In fact, the authors previously studied the
interaction between MMC scalars and gravitons, which are
the two nonconformally invariant particles vastly produced
by inflation, and verified that both loop effects from
gravitons [14,15] and from MMC scalars [17,18] redshift
to zero. The reason for this is that their interactions are only
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through their kinetic energies, or in other words derivatives.
Another observation is that the nonconformal and con-
formal combination seems to have more interesting effects
than the combination of nonconformal particles. In MMC
scalar quantum electrodynamics, a MMC scalar loop leads
to photons having an increasing effective mass [6]. When a
MMC scalar is Yukawa-coupled to a massless fermion,
fermions acquire an effectively growing mass [8]. Graviton
loop corrections to a massless fermion cause the fermion
field strength to grow with time [10]. Graviton loops also
induce secular corrections to the electromagnetic field
[49-55]. If our case does induce a secular loop effect, it
will be added to this list of the nonconformal and conformal
combinations having a significant effect. Furthermore, it
might give an insight why this particular combination tends
to give significant loop corrections.

The rest of this paper is organized as follows: In Sec. II,
we recast the definitions and notations employed in our
previous paper [16]. We provide a formal expression for
the CC scalar self-mass-squared which consists of 4-point
and 3-point interactions at one-loop order. The 4-point
interaction is computed in Sec. III. The 3-point interaction
is further divided by the kinetic-kinetic, conformal-
conformal, and kinetic-conformal parts. The first two parts
were evaluated in Refs. [14] and [16], respectively and the
kinetic-conformal part is computed in Sec. IV. We also
compute the kinetic-kinetic part using the CC scalar
propagator in IV. The results are fully renormalized and
the unregulated limit is taken in Sec. V. We summarize and
discuss our results in Sec. VI.

II. THE SELF-MASS-SQUARED

We start with the Lagrangian describing pure gravity
plus the interaction between gravitons and the massless CC
scalar

1
L= _an¢ab¢g/w\/:§ -

1
+ 167G

D-2
SRV

(R— (D -2)A)y/=y. (3)
where G is Newton’s constant, R is the Ricci scalar and
A= (D-1)H? is the cosmological constant with the
|

Also the conformally rescaled Ricci scalar is
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Hubble constant H. We work in D spacetime dimensions
to facilitate dimensional regularization. Our background
geometry is the open conformal coordinate patch of de
Sitter space

ds® = g, dx'dx’ = a*(n)[—dn? + d% - dX.
1

where a(n) = “Hy (4)

with the coordinate ranges

-0 <x'=py<0, —00 < x' < 400,

i=1,2,...D—-1. (5)
The full metric is expressed as

9 (%) = a*[n,, + xhy,(x)],  where k> = 162G, (6)
where g, is the background metric and 4,,, the conformally
rescaled graviton field. The conformal coupling makes the
matter sector of the Lagrangian conformally invariant:

/wE'Q‘zgﬂw ¢E ¥§7) (7)
:>£Mat: u¢8u¢g \/—* ( )¢2R\/—

N O N A iy v.3 > S A

= 3 0,00.7V/ 5 8(D_1)¢Rﬁ.

(8)

We take Q = a and work with the conformally rescaled
metric

f),w = N + thw' (9)

The expansions of the inverse and the volume element of
the conformally rescaled metric g, are

g =g — kh" + th”ph”” + O(x?), (10)

1 1 1
V=g=1+ SKh+ §K2h2 - Zk2hf"’hpa + 0. (11)

. 3
R =«(=hj +h" )+« (—2h"”hmﬂ’l + W Ry, )+ B, + Zhﬂvﬁhﬂﬂ

1
+ " h, — h"”_”h,h/1 - Eh/"“,,{h’1

v g 2

1 1

1
h h”—fhh”+2hh”” >+O(K3). (12)

Using the perturbative expansion, we derive the self-mass-squared —iM?(x; x') at one loop order, which consists of the
following three Feynman diagrams corresponding to the analytic expressions (written next to the diagrams, respectively):
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ffv\,i (e = <¢65[¢’mz‘6s[¢’h]>o N

5p(x) ~ dop(')

’

(13)

i\ et — [ ;_028[$.h]
= —7,M42pt(£, 2) = <Zr§<1>(m)5¢(ac’)>0 +

x

————>¢— = counterterm .

x

Here the subscript O means that the expectation value is taken in the free theory.

The 3-point and 4-point interactions (terms proportional to (Eﬁzh and g;bzhz) can be read off from the expansion of the
matter part of the Lagrangian (8). The kinetic term of the Lagrangian is expanded as [14]

1~ ~. =
'C'K = _Eaﬂqﬁayqsgﬂy V =9
1.~ ~ 1 1 1 1
= - Eaﬂqﬁ@,,qﬁ{n"” + K(E wh - h””) + 12 (§ R = g = S h”/’h,,”) + O(K3)} (14)

and the conformal coupling term is expanded as [16]

D=2 - —
Loe= - §PR\/=G,
CC 8(D—1)¢
D-2 -, D-2 -
=k (~hl + W) = k2P 20Dy, W Ry, 4 R
8(D—1)K¢( " + ,;w) 8(D—1)K¢ < v + A + Y
S Y Ty Y oy S LY VO S Ny WL Y Y 15
+Z Altuy + NN u'tw _5 A D,ﬂ_Z M _5 M +§ N7 N ( )

In the following subsection we demonstrate the formal expressions of the 3-point and 4-point interactions for the self-
mass-squared and drop tilde for notational simplicity. However, we reemphasize here that our metric, the scalar field ¢ and
graviton field £, are conformally rescaled ones:

éyv =N + Kh/u/v &5 = ¢ (16)

A. Formal expressions for the one loop self-mass-squared

We first recast the 4-point and 3-point contributions from Refs. [14] and [16] and derive the kinetic-conformal cross part
of the 3-point interaction.

1. 4-point contributions

The 4-point contribution from the kinetic term (14) is similar to [14] where the background metric for this case is flat.
Therefore the expression becomes

) ). Sk
~ M) = <’5¢<x'>5¢<x>>o’

= éz@&”[i[“QApp](x;x’)@MéD (x=x)] = i 2O [i[% A ] (3 X7) 0,67 (x — )]
- ikzﬁl’[i[“aN’"] (x;x)0,67 (x = x')] + ir? O [i[ s A7°] (x; ') 0,6 (x — x')], (17)
where the expression

i 806 x') = (R (x)hy (X))o, (18)
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is the graviton propagator which will be given in the next subsection. The 4-point contribution from the conformal coupling
term (15) was calculated in [16].

2. 3-point contributions

The first Feynman diagram that appears in (13) can be read off as two 3-point interaction vertices connected by a graviton
propagator and a conformally coupled scalar propagator. There are two, conformal and kinetic, types of 3-point interactions
for a scalar coupled to gravity conformally as one can see from (3).

First, we label the 3-point interactions from the conformal coupling term (15) as

D-2 -
Ly = —mkﬁbz(—h}xﬂ + R ) = RGP (=il + 1) = Lag + Ly, (19)
where we defined x = 8(%—‘_21) x k. This leads to the conformal-conformal part of the 3-point interaction [16]

—iM2 (x.x/) _ <l 6S3a i 5S3u +i 6S3u i 6S3h +i 5S3b i 6S3a +i 6S3h i 5S3h >
e op(x) op(x')  op(x) Sp(x')  Sp(x) Sp(x')  Sp(x) Sp(x)/ ¢
= RPN (13 7) — [0,0,0 + OO, A] (1)) + 0,0,0L0, % AP)(x ¥}, (20)

This contribution was calculated in a previous work [16].
Second, we label the 3-point interactions from the kinetic term of the Lagrangian (14) as

1 1
Lyap = _Ekaﬂ¢al/¢ <—h’w + E’Y’“'h> = Lxse + L3a- (21)

Taking ¢ and d at each vertex point we obtain the kinetic-kinetic part of 3-point interaction of the self-mass-squared

;05k3c ; OSkse | OSkac . OSksa | .OSksa ; OSkac i5SK3di55K3d>
op(x) op(x') ~ op(x) op(x') ~ Sp(x) Sp(x) ~ Sp(x) Sp(x) /¢

1
=2 {5 0,0" [i["ﬂA/’p] (x:x")040,iA (x: X")] = 0,0, [i[* AP (x; x') 05051 A (x; )]

_iM%ptK(X;xl) = <

—iaﬂa’”[i[wmx;x/)aﬂa,cmcxx;x’)]+;a”a;[i[w'ﬂ<x;x’>aua;mcf<x;x/>1}. (22)

Note that this part can be read off from the 3-point contribution of Ref. [14] by replacing the minimally conformally coupled
propagator term iA,(x;x') by the conformal propagator iA(x;x') = (p(x)p(x')) = (aa’)>"'F(y) and dividing by
(aa')P2 (extracting (aa’)?~" from each vertex point). Although the structure of the kinetic part of our calculation is similar
to Ref. [14] the powers of the scale factor gives quite a different form, and thus one has to redo all of the calculation using
new identities.

Finally, the cross terms, which we name as kinetic-conformal part can be obtained by taking one kinetic term at one
vertex and one conformal term at the other vertex:

m + m _ _i]\/[??ptcross(l‘; ZE,)

b d b d

cc KC KC cc
_ [ 055 08Ksc . 6Ssa OSksa | 8Sw 0Skse . 0Sm Sk (23)
5o(x) 00(x') " 36(x) s0(a) | 0o(x) do(x) " 09(x) d(a’)

i 053¢ i5SK3a w 0534 Z.5SK3a w 053, i5SK3b " 0534 Z.(SSKSb
5p(a’) o¢(x) (') g(x) — oo(x') dg(x)  dp(a’) d(z) [

Taking the variation of each term with respect to the scalar,
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s = s [ AN R0),2H0)) = =290, 03], (24)
;f(s;) = - (ljx) / a2y [P (3)0,0, % (¥)] = —R[26h(x)D,0, " (x)], (25)
s =Rt [ 3300000008 0) | = 50,000 ) (6)
g;gj,d) =% ¢fx,) / dPy [—iaﬂas(y)am(y)nﬂ%(y)] = §8,2 (0" p(x' ()], (27)

and plugging these into (23) leads to

M (53 ) = {20, [0, (3 )0, AT, ) (530)] = O, [0 Ay ()9, i, A7,
—20,[0,iAc(x;x')0, 0,4 AP°] (x; x')] + 0, [0 i (x5 )0, 0y [* (A7) (x5 X)

x;x')]

]
420,10, iA (x; )DL AT, (3 X)) = 0,01 g (x5 X ) DLDPH [ A7, ] (33 8')]
= 20,[0, 18t (x: X' )LD, i AP) (x5 x7)] + 0, [0iAcg (x5 x7) D[, A7) (x5 27)] . (28)

B. Propagators

To express the propagators in the same notation as that of
the previous work, we recall the three notational conven-
tions employed in Refs. [14,16]. First the background
metric is denoted with a hat,

Guw = M accordingly R=0. (29)

Second, the spatial parts of the Lorentz metric and the
Kronecker delta are defined with a bar,

M =M, +808) and & =68 -8 (30
Third, we define the de Sitter length function y(x; x’) which

is related to the de Sitter invariant length #(x; x") from x* to
X" as

1
y(x;x') = 4sin? <§Hf(x;x’)>
= ad H*{||X =X |* = (In—n'| = i6)*},  (31)
where a = a(n) and a' = a(yy).

The propagator for a massless conformally coupled
scalar for the flat background is [72],

A (x;x') = @ (i)%—l

(4r)7 \Ax?
= (ad')%! Z:Z r (g B 1) (;1) oo
= (aa')>"'F(y). (32)

|
Here we defined F(y) above, in order to work with de Sitter
invariant functions.

To obtain the graviton propagator, we add the gauge
fixing term (first derived in Ref. [73]) to the Lagrangian,

1
EGF = — EGD_zi’]m/FﬂF,,,
1
Fﬂ = ;1/)6 <hﬂ/),o' - Eh[m’” -+ (D - 2)Hahw,52> . (33)

We partially integrate the quadratic part of the gauge fixed
Lagrangian to extract the kinetic operator D,,,” as follows

1
Eh’”’D#,/"’hpU, (34)
where
D=5 0501, o L sossnse L
w o = Ey v _Zn,upn _myboo A

lp o 1/D-2
+ 5?ﬂ5§‘)’50>03 +3 <D—_3> 080555Dc,  (35)

and the three scalar differential operators are

DA = aﬂ( V —@Q’“’au), (36)
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The graviton propagator obeys the defining equation,
D, X i,y A%)(x;x') = 680 iP (x — '), (39)

and inverting the kinetic operator leads to the graviton
propagator in the gauge of (33) being a sum of constant
tensor factors times scalar propagators,

A )(ix) = | T [T )i (). (40)

Here each of the scalar propagators obeys
D; x iAj(x;x') = i6P(x —x') for I=A,B,C, (41)
and the tensor factors are

2

[ﬂyT}?{,—] = Zﬁ”(pﬁa)l/ - D—_:S’_?’uyﬁpg9 (42)
[ﬂ”T,fa] = _45?ﬂ’7ll/)<p62)’ (43)
2
7€C1=— = [(D=3)§"
[/411 Po'] (D_3)(D—2) [( ) nv
+ ’_7/41/] [(D - 3)5259; + 1_1/),,]. (44)

The A-type propagator is the same as the MMC scalar
propagator, which consists of the de Sitter invariant and
breaking parts [74,75].

iA(x;x") = A(y) + kIn(ad), (45)
HP-2 T(D-1)

(4m)P2 T(B)
has the following solution [75],

=B ()

st )

1 Tn+2+1) G) n—%+2] } (46)

=242 T(n+2)

where k = and the de Sitter invariant part A(y)

0|

[]s

+

Il
-

n

The B-type and C-type propagators are de Sitter invariant
and have the following solutions

HP? & {F(n +D=2) (X) n

(4r)f = T(n+2) \4

iAg(x;x") = iAg(x; X)) —

PHYSICAL REVIEW D 96, 025001 (2017)

IAc(x;x') = iAg(x; x)

e ()

n=0

(=3 s 6 )
(48)

The infinite sums vanish in D =4 and each term is a
positive power of y, therefore we only need to retain a small
number of terms when multiplied by a potentially divergent
quantity.

III. COMPUTATION OF THE
4-POINT INTERACTIONS

In this section we evaluate the contribution from the
kinetic 4-point interactions (17) and bring the conformal
4-point contribution from our previous work [16]. First
note that in the coincidence limit the three scalar propa-
gators become [14]

HP2T(D-1 D
limiA,(x;x') = —Q¥ |:—77,'COt (%) +21n(a)] ;
2

Y ox (4r)2 T'(3)
(49)
NI i - | I S
) = e T®) D2 T e
(50)
o » _HD‘QF(D—I)X 1 . H?
A= ®) X D=2)(D-3) "
(1)

This leads the four contractions of the coincident limit
graviton propagator in (17) to

. D—1)\. H?
i[*a A7) (x:x") > —4 (D 3> AL (x;x") i

(D-1)(D*-3D-2) o, H?
(D=3) lAA()C,X)—Q,

[ Agg) (3x") —
2

1672
- H?

) S%iAL(x;x') — 63553,@.

(52)

4
i[* A7) (x5 x) = —miAA (xx") + [28065 + 777

D?*-3D-2

e e

Next, substituting these relations into the expression (17),
we obtain
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HP=2T(D - 1) zD 1
—iM2 x') = iK? e f (i -D(D—-1)-D|0*9,6°(x — x'
M) = BT ()L 1) s ts—)
L H 1 D N Lo /
— ik ZD(D —1) =D |0"[In(a)0,]6" (x — x') +Z(905 (x=x)p +0O(D—-4). (53)
T2
To evaluate the action of derivatives on the Dirac delta function in (53), we note the following identities,
9,0/ (x —x') = [-05 + V?]6P (x — '),
D / 1 N2 (D — 2) / NT2 | sD /
0"[In(a)0,|6” (x = x') = —|Had, + Eln(aa )arO + In(ad’)Hady — In(aa")V=| 6" (x — x). (54)
The covariant d’ Alembertian operator in our background is
1 1 (D-2)H 1
= —a0tv = - 2 _—— -y 2
D_\/__ga,,(\/ 370,) = - 9+ V2 (55)
The following properties of the differential operators are also useful.
0, = -0, V2 =V?, 0* = -0+ V. (56)
By plugging (54), (55), and (56) into the expression (53), we obtain
HP=T(D - 1) zD\ 1 1 D
—iM? ;X)) = ix? — t{ — |-D(D-5)—-1 " H*a2
iMigq (x; ) = ix @l T {[ﬂco ( > )4 ( ) 1 n(aa)] a2
nD 11
+ |:ﬂ' cot (7) (D - 2) - 5 - Eln(aa/)} H3a%_180
zD\ 1 1 N 2oz L sp /
~ | meot{ - ZD(D—5)+§ln(aa) H*V* 36 (x —x') + O(D - 4). (57)

This coincidence limit expression (57) will be used in
Sec. V.

IV. COMPUTATION OF THE 3-POINT
INTERACTIONS

In this section we evaluate the contributions from the
3-point kinetic and cross (kinetic-conformal) interactions.
Let us remember the form of all the propagators in terms of
the de Sitter invariant function y(x;x’) in (31),

. L TE-1) 4N\
iAg(x;x) = (4217)% (E)

— (ad o HPZ2 LD ()

=) <4n>%r<2 1) <y>

= (ad' )T 'F(y), (58)
iAgpc(x;x') =A(y), B(y), C(y)- (59)

Following the organization of [14], we will split the 3-point
interactions into three parts:

025001

I
(1) Local contributions including the delta function;

0,018 (x; %) = 8060 —— 6P (x — x')
a
+A"(y)0,y0,y + A'(y)0,0,y.

(60)

(i1) logarithm contributions originated from the factor of
kin(ad’) in the A-type propagator
K20;0}[iAs (x:x') 001D (x; X)) (61)
(iii) normal contributions not having either delta func-
tion or In(aa’).
At this point, it should be noted that the 3-point

conformal interactions (that we evaluated in Ref. [16])
do not contain the local and logarithm contributions.

A. 3-point Kinetic interactions

Contracting the tensor indices in the graviton propagator,
the contribution from the kinetic 3-point interaction vertices
(22) becomes

-7
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M () = KD, i (5 )0 i ()] + Caohlida (5 )0 ()]

 0,0hi8\0 ()0, (1)) — oo ()0 g ()] + Doy li )0, iy )]

+ 0,0)iAg (x5 X") 0 0}iA ¢ (x; X')] + 00} [iAp (x5 X')0;00i At (x3 X')] + 0;0;[i A (x; x") 0 Opi At (x5 x7)]

— CeOuhlite (5 X0 (s D)) (©2)

Here the coefficients C4 and C are

D—-1 D 2
=|— =2

We will break up (62) into the three (local, logarithm, and normal) parts and examine each of them in the next three
subsections.

1. Local contributions for 3-point kinetic part

The local contributions in (62) come from the second, eighth, and ninth terms. We apply the relation (60) to these terms.
The second term becomes

K2C 10000 iA A (x5 x") DO At (x; ') ( 1) Ol (3 x) 00y (ad")?'F(y)].

= (53 ) Quhfia ) @udl(aa ) F )

+ 00 [ifa (x: ') (T (ad )T ) (BoF (¥))]
+ 000y lida (x: ) (8 (a7 ) (OGF ()] + Do [(aa') T i g (o) (Do F (9))]}
2

)9
( ){aoa {;AA x;x @ 1) Hz(aa’)%F(y)}
(a

+ 0,0, [zAA (x:x') (- - 1> a8 a9y + a(%}F(y)]

+ DoBp[(ad )2 iA 5 (x; XDy F ()] }

X {Hzalz‘)lj +(D=2) [H%z%_lao - WH%%] - szz}éD(x )

+0(D - 4). (64)

Here we used the coincidence limit of the A-type propagator (49) and covariant d’ Alembertian (55).
The eighth term becomes

K 0,0][i8 5 (x:x')DoBhi et (3 x')] = =PV [iA s (x:) 800 (aa' ) F (y),
=~k {V2[iAp(x:x') (998 (aa) TV F (v)] + V2[idg(x:.x') (G (aa' )7 ) (B F ()]
+ V2[idg(xx') (9p(aa') ™) (OF ()] + V2[(aa' ) il g (x: ') (B0 F ()]}

HZ
i V=) 0D - 4) (65)

— ix?
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The ninth term becomes
. . D=2 ) D
—k>C 090y [iAc(x;x") 0o 0 it (x;x)] = —K72 <D——3> {000p[iAc(x:x") (000 (ad')>" ) F (y)]

+ 80D [iAc(x:) (9 (aa' )™ ) (Do F (7))] + D0 i (x:x') (Do (aa') T~ ) (F4F (v))]
+ 809 [(aa' ) ib (i x) (Do F ()]}

= (g__§> {aoa' [zAc(x x) ( >2H2(aa’>%F (y)]
+ 840, [iAC(x;x’) @ - 1) H(aa 3" [a'dy + aag]F(y)}
03 (ad)Ninc ()04

- ix?

2
: Z o (~4H 0= 8Ha0, + $H6* +4V)5*(x—x) + O(D=4).  (66)

Summing the three local contributions leads to

—iM%lpnch(x; x') = —ik? %F(?(;é)l){ {n cot (?) <g—:;> + 2} H?a0)
+ {ﬂcot(ﬂzl)> (g ;) (D-2)+ 4] H3a519, — [ﬂcot<”2D> <g — ;) (D-2) (3D4_ 8 4 4l 1t

- {n cot (?) (%) + %} H2V2}5D (x=x)+O(D -4). (67)

2. Logarithm contributions for 3-point kinetic part

SIS

The logarithm contributions come from the first to fourth terms in (62), which contain the kIn(aa’) term in the A-type
propagator (45). Because all the logarithm contributions are finite we can take the limit D = 4.
The first term is

—Kk20;0[i A4 (x:x)D;8}i Dot (x:x)] = =20, [kIn(ad')D; 0 (aa )T~ F(y)] = —*kIn(ad') (ad' )T VA F (y),
2

= —Kz%ln(aa’)(aa’)V“F(y) +0O(D—-4). (68)

k= H2 TO-) 1

Here the D = 4 limit was taken for U0 T -

The second term becomes
. . D-1 D
CCa000 i (x:x) i (x:)] — i (D—_3) 9oy kIn(aa)Bdh(ad’ )5 F (y)
D-1 b D
=« <ﬁ> {000k In(aa")(De0p(aa’ )7~ ) F(y)] + do0p[kIn(aa’) (0 (aa’)=~") (DF ()]

+ 90y kIn(aa') (@ (aa'):") (O, F ()] + 0oy [(aa')*~" kIn(aa’) D0 F (v)]}

=2 3—2{H2608/ [In(ad’)(ad')*F(y)] + HOy0)[In(ad')(ad’)[a' Oy + ady|F (y) + 0yIp[In(aa’)is* (x — x')|} + O(D — 4),

2

gf { [24 + 151n(ad’)|H*(ad')*F(y) + {6 —I—gln(aa’)} H?*(ad')*V?I|F) (y)}

+ ix? gln(aa’){&lzlj +6Hady —6H?*a*> —3V?}6*(x —x') + O(D - 4). (69)

025001-9



BORAN, KAHYA, and PARK

The third term gives

PHYSICAL REVIEW D 96, 025001 (2017)

— 20,0 [iA 4 (x;x')0;0)iA s (x; X)) = —&20,0 [k In(ad')d;0)(ad' )T F(y)]

D

= —*{kIn(aa')0,0,[0,0)(ad)*~ F(y)] + (9:ik In(ad’)) 35[0,y (aa' )= F(y)] + (9pk In(aa’))9;[0,0h(aa’)~" F(y)]}.

H? H?
= Kzg {[1 = 21In(ad)][H*(ad")a"*V? + H(ad")a' 0y} F(y) + ikzﬁln(aa’)vzé“(x —x)+O(D-4). (70)

Similarly, the fourth term gives

— K20y [iA A (x; X)) Dy Dli At (x: X)] = =20, [k In(ad) Dy, (ad' )2 F(y)]
= —x*{kn(ad')8o8}[800}(ad' )™ F(y)] + (Dok In(aa')) 3 (00 (ad' )T~ F(y)] + (9ik In(ad’))o (000} (ad' )~ F(y)]}

H2
5 {

2
=12 —{[l = 2In(ad)|[H*(aa')a*V?* + H(aa')ady|} F(y) + iKQ%ln(aa’)Vzé“(x —xX)+O(D -4). (71)

8

Collecting all the four logarithm contributions, we have

H? 8
—iM3 (X)) =K {—15 [—+ ln(aa’)} H*(ad' )3 F(y) —I—g

log 8”2 5

[g‘f' ln(aa/)} H?(ad")*V2I[F|(y)

— [—%—I— ln(aa’)} H?*(ad' )*V?[6F(y) +4yF'(y)] — [—% + ln(aa’)} H?*(ad')(a? + a?)V*[2F (y) +2yF'(y)]

; [—;m(aa/)} (ad)V*IF](3) - In(ad)(aa') V*F(y)

+In(ad’)[3a’0 + 6Had, — 6H*a*> — V?]is*(x — x’)} +0O(D-4). (72)

Here we used the following identities derived in
Refs. [14,16]
V2
(@00 +adylf (y) ==(D=1)Had f(y) +51[f](v).  (73)
[ado + d'Oplf (v) = H(a + a')*yf'(y)
V2
+ (D= DHad f(y) = 3 11110).
(74)

The terms not multiplied by the delta function in Eq. (72)
(namely, the nonlocal logarithm contributions) are sum-
marized in Table . Later this will be added to Table VI. In
the tables, we write the function F(y) defined in Eq. (58) in
terms of x, i.e., by rescaling x = § and take the D = 4 limit:

H? 1
F ——. 75
0) = e (75)
The last term multiplied by the delta function will give
finite local terms after renormalization.

3. Normal contributions for 3-point kinetic part

The remaining terms in the 3-point kinetic part (62)
are normal contributions: The terms having the A-type
propagator are

— K20;0iiA4(x; %) 0;0%i A (x; X))
= —«*(ad')?19,0,[AD,0,F), (76)

2 CaB00hli A (x: ') DgDhiAcy (3]

_ K2CA{ (lz) - 1) 12000, (ad)RIAF]

D

+ <§ - I)Haoa(’)[(aa’)g_l [A(d' Oy + ad}) F]]|

+ 000y faa 40,04 . ™)
TABLE I. Nonlocal logarithm contributions from the relation
(72) with x = 7.
External operators Coef. of E“:H;
(ad")*H* —% - ln(aa’)%
(aa')*H*V? 121n(x) =2+ In(ad’)[91In(x) + 2
(ad")(a* + d?)H?V? —g + In(ad’) 1)72
(aa")V* —In(x) + In(ad’)[2In(x) — 3]
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QUANTUM GRAVITY .... II. KINETIC CONFORMAL ...

PHYSICAL REVIEW D 96, 025001 (2017)

— {0,010 (5300 (53 )] + D[ (2 D Ao (')}

= —KZ{ @ -~ 1) a?"'HO,0)[Ad'30,F] + 0,0}[(ad')3 "' AD, 0} F)

D D D D
+ (5 - 1) a'%VHO0,[Ad?F) + 8,00 |(ad )3 AD D, F| } (78)

The terms including the B-type propagator are

k2090 [iAg (x; x')0;0Mi A (x; X)] = —K28086[(aa/)§"Ba%F], (79)

K*{0:05 1A p (x; x') 00 0;i At (3 X')] + 0o [iAp (x3 )00 ibes (x: x')] }

= KZ{a,-ag [(aa’)lzj_l (12) - 1)HaB@§F} + 0,0h[(ad')F' B9y, F]

D D D
+ 0,0, {(aa’)T1 (E - 1>Ha’BaéF} + 8280[(61(1/)?_13868,-F]}, (80)

120,01 A (x; X ) Do iA s (x; X)) = —k20?[BOD) ((ad' )2~ F)). (81)

Finally the terms containing the C-type propagator are

2
K2C 00O iAc(x;x") 0y 0piAc (x;x)] = —KZCC{ (%— 1> H20y0,[(ad')2[CF]]

+(5-1)Hou l(ad - [C(an + adh) P+ an0h (e [COLFIL . (52

To reduce these normal contributions we will apply the following identity

Ou(aa' "] = (aa {3 o+ VLD = 1o 420" 43 @2+ )T + H2

+ [nz -(D-1) [n —DT_ZHHZaa'f+% {n —DT_z]VZI[f] —sz}. (83)

Keeping in mind that the self-mass-squared will even-
tually be integrated in the quantum-corrected field equa-
tion (1), our goal is to make the integral finite by pulling the
derivatives outside the integral. The strategy is to convert
primed derivatives into unprimed ones so that we can freely
pull them outside the integral. Once this procedure is
completed, the self-mass-squared becomes in the form of
eleven unprimed external operators acting on the functions
of y. Extracting derivatives involves indefinite integrations
and we denote this operation by

y
1) = [ avse), (84
The following example demonstrates the operation [14]:
dy Oy Py
" 2y /
f(y){A (y) 8xﬂ ax/o- +A (y) axpax/o'
2

Oy
OxP Ox'®

= 0,0,I*[fA")(y) + 1[fA(y). (85)

|

The terms in the left-hand side are converted to the desired
form of derivatives acting on a function of y plus an extra
term as a function of y in the right-hand side. Similar
identities were also derived in Refs. [14,16]

F)V2A(y) = V2P[fA")(y) +2(D — 1)H?ad'I[f'A'](y),

(86)
FO)OA(Y) = ORPIFA"I() + (I A (),
(87)
FOIDDRAW) = HOPLA(v) + Ha L[ A) (),
(88)
FOIDTA() = DD LIFA"(y) + 2H2ad n [ A) ().
(89)

Using these identities, all the remaining terms in (62) can
be converted to functions of y which are acted upon by one
of the following eleven external (unprimed) operators
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a=(ad )P, (90) 5= (ad)5(a® + a?)V20, (96)
B = (ad)THO, (91) €, = (ad')TH?V?, (97)
By = (ad)3(a® + a?)H2D), (92) e, = (ad)T™ ' (a® + d*)H*V?, (98)
71 = (ad )T HY, (93) s = ()M at PV =2ei + e (99)
72 = (ad)¥(a® + a?)HY, (94) ¢ = (aa) IV (100)
= (@)fat @PH =2t (95)  (uhich io the shupies) in 62 ives

—0,0[iA4(x; X)0,0,iA s (x;¥)] = —(aa')77'0,8/[A8,0,F] = —(aa')?"'V2[AV2F],
—(ad )T 'V V2I2[AF") 4+ 2(D — 1)H?ad I[A'F']],
—(ad)?! [VAP[AF"] + 2(D — 1)H?aa'V?I[A'F]],
—(CP[AF") 4+ 2(D = 1)e I[A'F')). (101)
To convert the fifth term (which is the most complicated) in (62) we use the identity (83),
K200 [iA g (x; x) 0,01 A (x; X')] = —k2DyDp(aa’)?~' BV2F],
= —k20y0p[(ad' )T (V2IP[BF") + 2(D — 1)H?ad' I[B'F'))]
= —K2V2806’0[(aa’)§"IZ[BF”]] — k22(D = 1)H?0y0}[(ad')> I[B’F’]]

= _K2{%e3[(0 — 1)yI[BF"] + y*[BF"]| + % [6I[BF"] + e,y1[BF"]] + (g - 1)26112 [BF"]

— CPBF'] + (D = Dy [(D = Dy [B'F] + Y[BFY) + (D = VBIBF) + yy[BFY)
1

+5 (D =1)(D* = 4D + )y I[B'F| + (D = ey P[B'F) = 2(D ~ 1)511[B'F']}. (102)

The result is simply written as

_iM%ptK(x; 'xl) - _Kz{afa<y) + ﬁ2fﬂ2 (y) + ylf}'l (y) + }/nyz <y> + }/3fy3 (y)
+8f5(y) teife, (V) +exfe,(y) +esfe,(y) +Cfe(v)} (103)

where we give the functions f; (on which the external operators are acting) in Tables XI through XX.

B. 3-point cross interactions

By contracting the tensor indices in (28), the contribution from the 3-point cross interactions (namely kinetic-conformal
terms of the self-mass-squared) becomes

N2
_1M3ptcross(

x;X') =k C,0;[0;i At (x:X) (V2iA 4 () + V2iA 4 (x5x7))] = C10;0;i Ay (%35 ) (Fi A 4 (x5 ) + OFiA 4 (x3x7))]
+00[00i At (x:X) V(= Caidg (x:x') + C3i(x:X'))]
+ 050 i (x34) V2 (= Caih g (x:0') + C3i A (x5') )]
+ C400[0pi At (x:3) 0 (i 4 (x5%) = iA(x3x"))] + Ca0p [0 iAcr (x3x) O (i 4 (x50) = iAc (x3x') )]
+C100[0;i At (x3x") 0, 0)iAg (x;x)] + C 104 0}i At (x;x7) 0;00i A (x5x)]
+C10;[00i At (x3x") 0, 0pi A g (x;x")] + C1 05 [0hi At (x;x) 0;0pi A (x5x)]
= C10,[0iA (x:x") 00 iA L (x3x")] = C10}[0iA ¢ (x;x7)0;0iA 4 (x3x7)] }. (104)
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Here the coefficients are

D-2 4 D-1
=4 =4 —— = =4 ——=). 1
a=4 a=i(p53) a=gpty G=4(p5) (105)

In the following subsections we split this 3-point cross part into the local, logarithm, and normal contributions as we have
done for the 3-point kinetic part.

1. Local contributions for 3-point cross part

The fifth and sixth terms of (104) produce the local contributions. We will again apply Eq. (60). The fifth term becomes
R CLO0OniA (1) 0B 12 (5 = i ()] = 4 (1= ) ufo () FO3)R 185 ) = ()
=453 ) ulon(aa ) FO)T 0)] = . (106

The sixth term becomes
K2C40p[0hi At (x;x")DZ(iA 4 (x3x") —iA(x;x"))] =0. (107)
That is, the local contribution coming from the 3-point cross part is zero.

—iM5y s (x5 X7) = 0. (108)
loc

2. Logarithm contributions for 3-point cross part

The logarithm contributions come from the second, fifth, and sixth terms in (104). Since all the logarithm contributions
are finite, we again take the limit D = 4. The second term is

R0 0y [01i (x: X ) (SR (v:) + Oy (x:X))] = —R24;[0;(aa)+ F(y) (9FkIn(ad’) + Ok In(ad'))]
— —R4(ad ) KO(0,F ())[DoHa + OhHa']],

H2
— —k2W4H2(a2 +ad?)(ad \V?F(y). (109)
T
The fifth term is
K2 C400[0gil et (x; ") O (184 (X3 X') = iAc (x5 X))

I (ﬁ )80[30(6“1 Y (3)OR (18 (x:) — i)

:,}24<D )80H<D 1>Ha(aa’)lz)‘1F(y)+(aa’)lz)_l(?oF(y)}862(kln(aa’))],

D -3 2
23H? a3 2H340, 2.2
=i b 2H*(ad')’ 4 2(ad')*H’ady + (ad' ) H*a*]F(y). (110)

Here note that only iA 4 (x; x') has the logarithm piece, thus we can take only iA, (x; x'). Similarly, the sixth term becomes

3H

K2C40h0piA et (x; X )O3 (i A4 (x;X) — iAc(x; X)) = &2 b

[2H*(ad')? +2(ad' )*H?*d' 0y + (ad' )H?a*|F(y).  (111)

Summing these three logarithm contributions results in
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H2
zM%,lm,c(x X) =k 8—{24H4(aa) [5F(y) 4+ 2yF'(y)]

+24H*(ad)*(a® + a*)yF'(y)
— 12H%(ad')*V2I[F](y)
—4H?*(ad')(a® + a?)V?F(y)}. (112)

Note that this result includes only nonlocal (not having
delta function) logarithm pieces. Table II summarizes the
result and the nonlocal logarithm contributions will be

added to Table X later. |

PHYSICAL REVIEW D 96, 025001 (2017)

TABLE II. Nonlocal logarithm contributions from the relation
(112) with x ==
R2HY

External operators Coef. of ﬁ
(aa/)3H4 _ 144
(ad')*(a® + a”)H* -
(aa')*H*V? —241n(x)

2\ 17272 8
(ad")(a* + a?)H?V -

3. Normal contributions for 3-point cross part

Every term in the 3-point cross part in (28) generates normal contributions. The first term in (28) is

8
(D=3)
8

2K20,,[00iA s (x3x7)0, 0P i AT | (x;x7)] = K { -

U0 (63 )Pil g (x:')] +

8

m%[36iAcf(x;X')32iAc(x;X')]

t o 0H i A (XX ) DA e (3 X)) } ,

(D-3)(D-2)

~2{(D8 3) Oi[0%iA s (x;x )80lAA(x ¥))-

(Dg_3)a;-[a:mcfoc;x')vzz'AA(x;x/)]

- (DS_ 2) ‘%[‘%mcf(X;X’)a(z)iAc(x;x’)] + D=2 66[a6iAcf(X;x/)vziAC(X;x/)]
~ B3 p =g B i)
*m@ (D18 (653 V2 (1) } (113)

The second term in (28) is
- “28;, (01 (x:x")0,001 " AT, ](x;x")]

_@ {4 (%) [ (x: )i 4 ()] — 4 (D

- (MS(_)) Bites (x5 2)Pi ()] + ((,)_3)8(_)) O i) Pidc(ri )]

+4(g 3>8’[6’1Acf(xx)8 iA, (x:x')] - 4<D

8

+ (m) [0y (x; X' ) Ri A (x5 x') (

)8 [0hi A (x5 X )OFiAC(x; x')] + <

8
B ((D— 3)(D-2)

D-3

D-3

D3(D2

)8’ [0hi A (x5 X)) 0% A 4 (x5 X7)]

)8/ [0LiA (6 X )V2iA, (x5 x7)]

)8’ [0hi At (x; X' )V2iA 4 (x; x7)]

) 81 [8;'iAcf(x; xl)vziAc(x; x’)]

>ag[a’OiAcf(x;x’))VziAc(x; x’)}}. (114)
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The third term in (28) is

—2K%0,,[0)i A (x; X)0,0,i[ A) (x5 x')]

Al - N\V2; o/
+ (D _ 3) ai[ailAcf(xax )v lAA(x,x )]
o+ 4000 Ber (3.3') 000,18 (43 )] + 404 [0 Bcr (33 3') Do, 8 (x; )]
! i[04 1 x)02i "—;//- . N\YT2; .
~5=3 0i10iiA ¢ (x; x')OGiAc (x; X)) D-3)D-2) A[0iAt (x; 8 ) V2iA(x; X))

/ / 4 / / 2
—4< >6 [00i A (x; X )D3iA (x5 x')] — D= 2)8 0100 A (x5 X ) VA C(x; x)}} (115)

The fourth term in (28) is

K20, [0 iA (x5 x')0,0,i [ AP (x; X))

4 4
~2 / / - R 2. R / / 2. R
=K { D=3 QOLA (x5 x )AL (x; x)] + D= 3>3 0 [00i A (x5 X )VZiA L (x; x7)]

T D= 3)(p = 2) MOHBa (X ) Vb x)]
— ma{)[a&Acfoﬁ x’)VziAc(x;x’)] — ﬁ%[a{)lAcf(X, x’)a(z)iAc(x;x’)]}_ (1 16)

4 [+ A2 .
+ mai[ﬁilAcf(x,x )8OZAc(X,X )}

The fifth term in (28) is,

2’?28M[8uiAcf(x§xl>a;;3/pi[”"Ay},](x;x’)]
Kz{(D 8_ 3) Oi[0iiAcs (x: X) O id A (x;.x')] = D 8_ 3) 0;10;iA; (x; X )V'?iA 4 (x5 X))

8
- m@g[ﬁomcf(x; X)OFiAC(x; X)) +

mai (018t (x: x) G iAC(x: x')] +

m 0o0il et (x; X' ) V2iA (2 x')]

8 : . 12 .
mai[ailAcf(x,x )V lAC(x,x )]} (117)
The sixth term in (28) is
- ~26/4 [0"iAp(x; ") 0,071, A7, ] (x; x7)]

- D—-1 . D -1 .
= ;8{—4 <D 3>8 [0ii A (x5 X)) OFiA 4 (x; X)) —|—4< 3)8 [0;iA(x; X )V'2iA, (x; X))
D —
—|—4<D — )80[801Acf(x x)OFiAL(x;x) < ) [O0iAcs(x

+ (W’(Qa [0,iA (x: ) O2iAC(x:X') <

- (W)%[%mm X)ORide(x;x)] + (

X )V'2iA, (x; )]
)ai[aimcfu;x'>v'2mc<x;x'>1

)80[801'Acf(x; K )V'2iAc(x; x’)]}. (118)
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The seventh term in (28) is

—2K%0,[0,i(x; X') 0,0, i A7) (x; x')]

= 1?2{—4& [0;iA(x; X") D10 1A L (x; X')] + ﬁ@i[aiiAcf(x;x’)V’ziAA (x;x)]

+ 40,[00i Aot (x5 x") 040 iA R (x5 X )] + 400[0;i Act (x; x7) 04 0}i A g (x5 X')]

_4 C N2 L 4 L \\T25 c oy

(D—Z) at[azlACf(x’x)aO lAC(.X',)C)] (D 3)(1) 2) al[alZACf(x"x)v ZAC()C,X)]
D-3 . 4 . .
—4( )80[801Acf(x xXNOFiAc(x; x')] — Do — 0, [801Acf(x;x’)V’zzAc(x;x’)]}. (119)
Finally, the eighth term in (28) is
7(2@, [0"i A (x; X7)0,04i[* A7) (x5 X')]
4

—z2) _ A N\N\7/2; - : . N\NT/2 R
=K { D-3) 0;[0:iA¢(x; X )V ZiA L (x5 X)) + D-3) 0o[00i At (x; X" )V'ZIA 4 (x;x7)]

+ @—Jﬁ 0;[0ii At (x; X' )V2iA (1)) + (;%2) 01011 A (23 X ) ORiA (3, X))
- m% [Doi At (23 X' ) Vi A (23 x')] = ﬁ@o[&)lﬁcf@c;x/)(%ziAC(x; )] } (120)

We aim at putting these normal contributions in the form of unprimed derivatives acting on the functions of y. In our
computation three derivatives, spatial and temporal, acting on functions A(y), B(y), C(y) arise, which requires an additional
identity as follows,

83
F(y)0,0,0,A(y) = 0,0,0,{ P[FA"|(y)} + W’iaﬂ {I1[F'A'](y) + P[F'A"](y)}
dy 0%y dy %y
Ox® Ox'P Ox'e X' 9x'%) Hx*

){I[F’A”](y)}- (121)

Applying this identity to the first term of (104), which is the simplest because all of the derivatives are spatial, i.e., in the
form of F(y)9;V"*A(y),

2C1R20,[0;i et (03X ) V2il g (x: )] = 2C1R20;[0,(ad' )T F(y) V2A(Y)]
= 8 (ad )T (Q:0,[F () V2A(Y)] = O[F ()0, V2A(Y))). (122)

Next, applying the identity (121) to the second term of the last expression (122) gives

Py
F(y)a,»V’ZA(y) = aiv/Z{p [FA"](y)} _|_ ERpwira {I[F'A")(y) + I? [F'A"](y)}
oy 0%y dy 0%
12 - — | {I[F'A" . 123
<3x’ O0x"0x" * Ox'V 9x')) Ox UIFAT(3)} (123)
Further using the following derivatives of y with respect to x' or x'/,
Ay Oy Py Py
5 = 2H?ad Ax;, o = —2H?ad Ax;, o 2H?aad'n;;, e = —2H?aa'n;;
Py Dy Fy Py oy

(124)

=2H?ad (D - 1),

Ox'Oxt — Ox'1OxT DX O OXT  OxOXIONT X oxOIoxT
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leads Eq. (123) to

F(y)O,V2A(y) = 0,V {P[FA"|(y)} + (4H*(ad')*Ax;(D — 1) + 8H"(aa')* Ax;n;;) {I[F'A"] () }.

PHYSICAL REVIEW D 96, 025001 (2017)

(125)

Next, plugging the identity (86) and the expression (125) into Eq. (122) gives

8520, [0:(ad' )~ F(y) VPA(y)) = 8% (aa')* (9,0,[V>P[FA")(y) + 2(D = 1) H>ad'I[F'A') (»)]
= 0i(ON{PFA")(v)} + (4H(ad)?Axi(D = 1) + 8H (ad')* Axjnij) {I[F'A"](v)})).
= 8% (ad) (VA IP[FA"](y) + 2(D — 1)H?aa' V2 I[F'A')(y)] — VAP [FA™](y)

We use the following identity

ad HIATIP () = =5 (D = DIAI0)

to obtain

8€20,(0;(ad')5 F(y)V2A()] = 88 (aa)5 (VPIFA")(y) + 2(D — 1) H2ad' V[F A)(y)]

~4(D = 1)(D -+ DH(ad PIIFA)(y) = 8(D + A (ad FIATRIFA"))). (126
- R, (127
— V*B[FA"|(y) = 2(D + 1)H?ad' V> P[F'A")(y)). (128)

= —{e;16((D + 1) IP[F'A")(y) -

The results including this pure spatial derivative, and
also the pure temporal and temporal spatial mixed deriv-
atives in Eq. (104) are tabulated in Tables VII, VIII, IX, X,
in the form of the eleven operators (90)-(100) acting on
functions of y. Finally, by adding all the 3-point cross
contributions coming from A(y), B(y), and C(y) in (104),
we have

_iM%ptcross(X;x/) = —iHaf,(y) +Bifs (v) + oS5, (y)
+r1ify, ) Fr2f, () + 73S0, ()
+8f5(y) +eife,(v) +erfe,(y)
tefe,(v) +EF ()}

Here we give the functions f; (on which the eleven external
operators are acting) in Tables XXI through XXXI in
Appendix B.

(130)

V. RENORMALIZATION

In this section we absorb the divergences occurred in the
primitive diagrams [the first two terms in Eq. (13)] by
counterterms [the third term in Eq. (13)] and obtain a finite
result for the scalar self-mass-squared. First we recall the
appropriate counterterms for our Lagrangian (3), which we
constructed by applying the theorem of Bogoliubov,
Parasiuk, Hepp, and Zimmermann (BPHZ) [76] in our

(D = DI[F'A')(y)) + E8(PP[FA"](y) = P[FA"](y))}.
(129)

previous work [16]. Since these BPHZ counterterm vertices
are local (in the form of d-function), the next task is to
segregate all the divergent terms into a o-function. The
localized divergences can then be subtracted by the local
counterterms. We perform this procedure of renormaliza-
tion in the following subsections.

A. Allowed counterterms and the
associated vertices

First of all, the structure of our Lagrangian (3) guides us
to identify three de Sitter invariant counterterms at one loop
order as

A‘Cl — %C1K2D¢D¢a2, A[:z = —%czszzﬁﬂqﬁa"qb,

1
AE;} = §C3K2H4¢202. (131)
See Ref. [16] for the detailed derivation of these counter-
terms. The associated vertices for the counterterms are
obtained by taking the same variation performed for the
primitive terms:

iSAS,

W o = iC1K2[612D2 + (D - 2)H2612D

+2(D - 2)Had,OJ6” (x — x'), (132)
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5 (X)5P() | 4o = ic,k*H*a*O6° (x — X'), (133)
LAy |
Sp(x)3(x')| 5y icsk*Ha*6" (x — x'). (134)

In the first vertex (132) we correct the mistake in Eq. (94)
of Ref. [16] (also in Eq. (130) of Ref. [14]), where the last
two terms are missing. This mistake did not affect our
previous results because the divergences in the forms of
a’%6” (x — x') and Hady15” (x — x') did not occur in the
cases of Refs. [14,16]. These two forms of divergences only
arise in the 3-point kinetic-conformal interactions, which is
the main computation of the present paper. Moreover, as will
be shown in the next subsection, these two divergences
exactly match the relative coefficients of the first and third
terms of Eq. (132) and thus get cancelled simultaneously,
which serves as a nontrivial check for the correctness of our
computation.

On the other hand, our gauge fixing Lagrangian (33)
breaks the spatial special conformal symmetry among the
full de Sitter symmetries and leads to one noninvariant
counterterm [16]

AL, = _%K2H2v¢ V. (135)

It should be noted that this noninvariant counterterm still
respects the residual de Sitter symmetries (homogeneity,
isotropy, and dilation symmetry) and it also becomes
Poincaré invariant in flat space [16]. These conditions
indeed highly restrict the form of counterterms and leave
only one possibility given in Eq. (135). The associated
vertex to this noninvariant counterterm is

i6AS,
5ep(x)o¢p(x") $=0

= icyK?H?V2SP (x — ). (136)

These four counterterms are the only possible ones for
the CC scalar self-mass-squared at one loop order allowed
by the symmetries of the bare Lagrangian for a scalar
conformally coupled to gravity (3) and the gauge-fixing
term (33). In fact, all the terms in the self-mass-squared
must respect the same symmetries, which implies that any
divergent term can be cancelled by one of these four
counterterms. In other words, any divergence that cannot be
cancelled by these counterterms means an error in our
computation. Indeed this has served us as a crucial error-
detecting method in this heavy calculation.

B. Localization of divergences

We now localize the divergent terms so as to put them in
the form of the counterterm vertices. Keeping in mind that

PHYSICAL REVIEW D 96, 025001 (2017)

the terms in the self-mass-squared will eventually be
integrated in the effective field equation (1), the first step
is to make the powers of y,

G G e

integrable in D =4 dimensions. This can be done by
extracting d’ Alembertian operators using the following
identity,

Of(y) = H*[(4y = y*)f"(y) + D2 = y)f ()]
47P2H>D

TE-1) V=g

+ Res[y?2f] 8P (x —x').
(138)
Here Res[F| means the residue of F(y). By applying this

identity (138) and rearranging the terms, we can write these
powers of y as

DO

) e ) 55 0)"

(139)

(140)

(141)

Note that extracting d’ Alembertians subsequently transfers
a quartically divergent power 1/y” into a quadratically
divergent 1/yP~!, a logarithmically divergent 1/y”~? and
finally into an integrable power of 1/y?~3. A new problem
is that its coefficient has a divergent factor 1/(D — 4). To
take care of this divergent factor, we apply the identity
(138) to the power of 1/yP/>~! which leads to an
expression of zero:

_O/4\*' D(D 4\ 7!
0—?@ ‘5(5‘%)

4 D/ZH—D .
—7( z) L5D(x—x’).

re-1) o (142)

We add this particular form of zero to (141) and segregate
the divergent factor into the o-function,
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() wmsw-s {2 [0 -0 )

)
) _i%(f”ﬁm% (D-2) %

B} ()~ () 000

For the rest of computations we take the powers of 1/y instead of 4/y:

1\>2 iHPn? P =)
0) oo e
BRG] G eon o

Subsequently replacing 1/y”=2 in (140) by (145) makes the quadratically divergent power 1/y”~! become

G) - (D— 4)ig)_i7;%)r(§)4% {D éi 2% - 8} 5%;—7/) - 4%% {%m <zy_¢> }
B3 O)HO) )

and replacing 1/yP~! in (139) by (146) makes the quartically divergent power 1/y” become

—~

146)

<1>D_ iHPn? { 4 [ g}éD(x—X’)
v/ (D-4)(D-3)rR4: (D-2)(D-1)DH* (D-1)DH*|
1

BT DO e R O RO RTC) R

|

TABLE IV. Contributions to 3-point kinetic counterterms. All

terms are multiplied by %%@,_3).

TABLE III.  Contributions to 3-point kinetic counterterms. All

. D
terms are multiplied by %%.

s External Coef. of Coef. of
D /
External operators Coef. of H*a?6P (x — x') operators a*P6P (x — x') H?a’6P (x — &)
a __ D}(D-2) a ___D D(D-4)
16(D—1) D?>-3D+2 2(D-1)
B D®—9D>+16D*+36D>~72D2+16D+32 by D D5—6D*+5D3+34D%—12D+8
16(D>*-3D+2) D?>-3D+2 4(D-2)(D-1)?
5 4 3 2
71 15D°~104D*4284D* ~320D*>~32D+160 D’ 14D-8
16(D—1) n 4(D-2)(D-1)
. 4 3_ 2
72 4D*+22D 14 1D?-90D+108 7a -1
Total —15D%+130D5-406D*+434D*+372D?~1112D+608 Total 0 D’—=3D*—14D3+82D%—60D+24
8(D>-3D+2) 4(D=2)(D-1)?

025001-19



BORAN, KAHYA, and PARK PHYSICAL REVIEW D 96, 025001 (2017)

. . D
TABLE V. Contributions to 3-point kinetic counterterms. All terms are multiplied by %%.

External Coef. of Coef. of Coef. of Coef. of
operators H>V?6P (x — x') Hady[6® (x — &) v2OsP (x — x') Ha™'V29,6" (x — x')
D 2
“ D-1) ~on
D(D>-2D+4) 2D
P W ab12) (0-1)
S D(D*-2D-4) - D D?
4(D*>-3D+2) D?>-3D+2 D>-3D+2
4(D*~1D+4 D D?
€1 - (4(0——1)+> D>-3D+2 ~D-3D2
€ =)
Total D(D3-14D*+28D-20) 0 0 0
T 4(D*-3D+2)

Here we note that the d’ Alembertian operator [ acts on both a” and 6" (x — x’) while it directly acts on 6” (x — x') in the
counterterm vertices. The following identities allow us to move the factors of a to the left of derivative operators:

Oa"s? (x — xX') = (a"0O = [n* + n(D — 1)|H?*a" — 2nHa"~'9,)8° (x — '), (148)

D%a"6P (x — x') = ("% — 2n[3n + (D — 1)|H?*a"0 — 4nHa"' 9,0 + 4n*H?a"~' 0,
+dn(n = 1) H2a"2V2 + n2{n + (D — 1) H*a")oP (x — ), (149)

Da"0y6 (x —x') = a* (O = n[n + (D = 1)|H?> = 2nHa='9y)0y6" (x — x'). (150)

C. Regularization

1. For 4-point part and 3-point kinetic part

To illustrate the process of putting the divergences exactly in the forms of the counterterms, we take the term with the
external operator a in Eq. (90) coming from the 3-point kinetic interactions as an example:

a{_DHZD_“F(% _ 1)2 (1) D—Z} _ _DHQD_4F(§ _ 1)2 (aa/)nglDZ <1> D—2,

64(D- 1)z \y 64(D — 1)z° y
— - DZI;;E(%;le (D- 4)ig)_iif>r(%)4% - 116(p - 2)gase Y
2
(5D ()2 (Y n(2) 5 (4) <o),
= lg:; D —1;)((%; =3) {_ D? - 13)1) ReT %H%ZD
- %Ha@olj + (DD_ 5 H?V? - %H%@O - H4a2}5D(X - )
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TABLE VI. All finite nonlocal 3-point kinetic contributions
with x = 3, where y(x;x’) is defined in Eq. (31).

External operators Coef. of ?:H)i
(aa/)3D3/H2 131_;
(aa')3D2 _3lnx
2x

(a0 HD sy
(aa/)3H4 _44)1[11)(_276_111(”61/)@
(aa/)Z(az + a/Z)D3/H2 _hg_;c
(aa/)2(a2 + a/Z)DZ 7énx _ 1

X 6x
(aa/)Z(aZ +a/2)H2|:| lg_/;t_’_%
(aa/)Z(a2+a/2)H4 4l;1x 277
(aa")?H?*V? 4nx 14 4 In(ad’)[91n(x) + 2
(aa/)ZVZD Bér;x_i_%
(aa/)2H2v2D2 ll31_xx
(ad")(a* + d?)H*V? —2231;”‘ - 277( + In(ad’) 1)72
(aa/)(az Jra/z)vzlj _ll3l)r(1x+%
(aa")V* —1In(x) + 8+ In(ad’)[2In(x) - 2]

Note that all the divergent pieces are exactly in the form of
the counterterm vertices (132)—(134) and (136). Follow-
ing the same process, the terms with the remaining ten
external operators (90)—(100) can be localized into the
desired form of external operators acting on 6 (x — x’). We
tabulate the results from Table III to Table V.

As we realized in Sec. VA the total coefficients for the
contributions coming from the terms V29,6 (x — x’) and
V2[06P (x — x') to 3-point kinetic counterterms add up to
zero as tabulated in Table V. This is a very important check
for the correctness of our calculation.

The terms in the last line of Eq. (151) are nonlocal and
finite for D = 4 dimension. For notational simplicity, we

PHYSICAL REVIEW D 96, 025001 (2017)
TABLE VIIL

terms are multiplied by

Contributions to 3-point cross counterterms. All
g T}

(47)P72 (D-4)(D-3)

External Coef. of Coef. of
operators a’*6P (x — x') H?a’06° (x — ')
32
b gc=y
B __8 __2D3-6D?>-36D+96
(D-2) (D-2)
4(D*4+3D+1)

71 —- o
2(D*+4D+2)

72 b
4(D*+4D-10)

73 ~oy

8 3_ep2_
Total o W

TABLE IX. Contributions to 3-point cross counterterms. All

.. =2 D re
terms are multiplied by 7% G)

(47)P7? (D—-4)(D-3)
External Coef. of Coef. of
operators H?V?5P (x — x') HadyOs" (x — x')
8D(D-2)432 —
P> Ry 16
€1 —4(D - 6)
2D(D-8)
@ ~ -
€ _ 4(D3-3D*422D-16)
’ (D-3)(D-1)
Total _ (D=2)(9D*~71D3+256D*~400D+184) —-16
2(D-3)(D—1)

TABLE X. All finite nonlocal 3-point cross contributions with
x =7, where y(x;x’) is defined in Eq. (31).

External operators Coef. of ©£H!

(4n)*

define the function y(x; x’) as x = J and take the D = 4 limit  (4a/)3)3/H? 2
for these finite nonlocal pieces. Again, applying the same  (ad')3[? — 2l
(aa’)3H2|:| _378me_%
I . (aa’)3H4 6081Inx __ 436
TABLE VII. Contributions to 3-point cross counterterms. All x x
=2 1 rD— D n
terms are multiplied by %%_ (ad")*(a® + a?)O/ H? ins
(ad'(a* +a”)O —28lnx 4 1
External operators Coef. of H*a?6P (x — x')
p 8D(D - 1) (a')(a’ + *)H°D PR
I - a N2(A2 o 2\ g4 252Inx _ 66
P _ D5-6D*+2D3+16D*+8D (ad')*(a® + a”*)H - =R
2(D—2
. (ad' ) H>V? ~241n(x) — 142Inx 4 508
71 —(D*+6D3 — 58D — 173D + 344) o DR
/ n
72 D3 —4D*4+10D3-254D?+764D—616 (ad')*V°0O T
2(b= N(2 1 2\ 202 24Inx | 58
73 D3>+24D*-253D3+752D*~852D+324 (aa )(a +a )H \ =+
o (ad)(a? +a?)V20) 20y, 4
Total 20D*~187D3 +69fD2—1 180D+704 (aa)V* s

X
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procedure to the terms with the remaining ten external (i) the local 4-point contributions given in Eq. (57),

operators (90)—(100), we obtain nonlocal finite terms. We (ii) the local 3-point kinetic contributions arising from

add these newly found finite terms to the finite terms tabulated Tables III-V, and from Eqgs. (67) and (72) (there are

in Tables XI-XX and give the summation of the two (i.e., all also the local 3-point kinetic contributions from our

the finite terms from the 3-point kinetic interactions) in previous work, but they vanish),

Table VL (iii) the nonlocal terms from the 3-point kinetic inter-
In summary, the regulated self-mass-squared from the actions listed in Table VI.

kinetic interactions consists of three finite parts: That is, we finally write it as

V? 0
—iMZ (x:x') = iK*a® <d1 0? + d,H*’0O + dsH* + d,H? P d5H07D> 8P (x —x') + Table VI

1 11 11 V2
+ izczwa2 (—ln(aa’)H2|:| +—In(ad')H? % _ 6In(ad’)H* — %ln(aa’)H2 ?> S(x—x)+0O(D-4),

4 2 a
(152)
where the coefficients d; are
d, =0, (153)
4 _ HPH { r® [(D5+3D4— 14D3 +82D2—6OD+24)}
> (4n)t L(D-4)(D-3) 22(D-2)(D—-1)3
r(D-1) 1 D-1 D
— |24 |-D(D-5)- |=—— t{— ]| ¢,
i 2 o9 (553) [ (F)]}
HP=* (4D% — 64D7 4 396D° — 1239D5 4 2111D* — 1886D3 + 742D* + 44D — 72 205
_ { + ks e i —4+—7+O(D—4)},
(47)% 2(D-4)(D=3)(D - 1) 18
(154)
J _ HP r® (=15D% + 130D3 — 406D* 4 434D3 + 372D — 1112D + 608)
T 4n)? (D-4)(D-3) 2’(D-2)(D-1)
ro-1n[ 9 Tl D-1 7D
— L |-Z4 |- (D=-2)3D-8) —— =
i o090 (555 ()]}
HP=* (9D° — 150D° + 914D* — 2774D? + 4596D? — 3960D — 1376 98
= —-94+y+0O(D—-4)5s, 155
(477)%{ X D-4)D-3)(D-1) 37+ O )} (155)
J _ HP roe D(D? —14D? + 28D - 20)
YT 4n)? (D -4)(D-3) 22(D-2)(D-1)
ro-1)[5 [1 D-1 D
—~ 7\ Z_|=D(D-5)- | —— _
i b e (553 (7) ]}
HP~* (—-4D% + 56D° — 281D* + 638D — 608D? 4 108D + 96 65
- { T 2o R +5——y+(9(D—4)}, (156)
(47)? 22(D—4)(D-3)(D-1) 3

Here y is the Euler’s constant which arises from the expansion of the Gamma function.

2. For 3-point cross part

To illustrate how we put the divergences in the forms of the counterterms, we take the term with the external operator 3,
in Eq. (91) coming from the 3-point kinetic-conformal cross interactions as an example:
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(S )

__(DoDHPITG - 1) (ad)**'H’O) <1>D B — (ad’ )D+‘D3H4 (1)
y

27

{16(D — 1)) H?a*0) + 4D(D — 2)(D — 1)H*a + 16(D — 2)(D — 1)H?ady}6” (x — x')

T @ (D-4)(D-3)

4 In(x 2In(x) 3
+ (57)4 {24(aa’)3|]2 % - 24(ad')*H?0O) (% + ;) } (158)

Similarly, the terms with the remaining ten external operators can be localized into the desired form of external operators
acting on 6” (x — x’). We give the results in Table VII, Table VIII and Table IX. The terms in the last line of Eq. (158) are
nonlocal and finite for D = 4 dimension. We denote the function y(x; x") by x = § and take the D = 4 limit for the finite
nonlocal pieces. Applying the same procedure to the terms with the remaining ten external operators, we obtain the rest of
nonlocal finite terms. We add these newly found finite terms to the finite terms in Tables XXI-XXXI and report the
summation of the two (i.e., all the finite terms from the 3-point cross interactions) in Table X.

The regulated self-mass-squared from the kinetic-conformal cross interactions consists of two finite parts:

(i) the local 3-point cross contributions from Tables VII-IX and the Egs. (108) and (112),

(ii) the nonlocal contributions from the 3-point cross interactions in Table X,
and we can write it as

V2 0
_iM%egcross(x; xl) = iK’a ( 1D2 + d2H2D + d3H4 + d4H2_ + dS 0D>

8P (x — x') + Table X + O(D —4). (159)

Here k = 8(% 21) x is taken. The multiplier (%) is inserted in the coefficients d;. Thus the coefficients d; become
g H r(®) (D-2)
" anf\0-4(D=-3) 2(D-12] )
HP (D 2)? 1 }
= f7+0O(D-4 160
(4ﬂ)z{ YD -3)(D-1)? 727 (D=4 (160)
g HP re (D —2)(D?—4D?* - 24D + 84)
T 4nf (D=9 (D 3) 25(D —1)? ’
HP=* (D =2)%(D?—4D>-24D +84) 1
= —y+O(D=-4)}, 161
(4;;)%{ XD-HD-3)D-1)7 " ( )} (161)
g HP—# r®) (D —2)(20D* — 187D3 + 696D* — 1180D + 704)
T (4,;)% (D - 4) (D 3) 20(D —1)2 ’
HP—* 2(20D* — 187D3 + 696D — 1180D + 704) 17
_H d + 69 180D +704) 17 op—al, (162)
(47)? 2(D-4)(D-3)(D-1) 9
g _H { [ (D —2)3(9D* - 71D3 + 256D* — 400D + 184)] }
Y an)? -3) 27(D —1)2 ’
HP— 9D4 71D3 +256D* — 400D + 184) 55
_ =y +OD-4), 163
e CEoicesie: it HO0-4) 16y
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“- Zi;{m 55?) )[_221();—212)2]}’

_HP- { (D—-2)3
(4n)% 23(D-4)(D-3)(D-1)

2+%y+O(D 4)} (164)

D. Renormalization

Finally, we sum the contributions from kinetic and cross interactions:

—iM?eg(x;x’) = —iMfegK(x‘x’) + —iM?egcmgg(x‘x’)

\Y ) 8(D—1)\2
=ix’a <d1|j2+d2H2|]+dgH4+d4H2—+d5 °D> D (x —x’)+TableVI—|—< <D 2)> Table X

1 11 V2
+ ilczwa2 (Zln(aa’)HZD +71n(aa’)H3 % —6In(ad’ ) H* - %ln(aa’)H2?> SF(x—=x)+0(D-4).

(165)
The resulting total coefficients d; are
L T®) (D-2)
a0 -4(D=-3) [ 2(D-17)
HP (D —2)? 1
= - O(D —4) }, 166
(4;;)%{ Yo-ao-3m-1p 7’ T )} (166)
g HP r'®) D — D’ +28D* 4 56D° + 60D* 4 288D — 144
> (4n)t L(D-4)(D-3) 25(D-2)(D—-1)
r(p-1) 1 D-1 zD
—— |24+ |=-D(D-5) - |~ t(—= )| ¢,
S 2 o9 (55) (D))
HP=* (D% — D> 4 28D* 4 56D + 60D? + 288D — 144 823
— -4+ OD -4 167
(4;;)%{ 2(D-4)(D-3)(D-1) 727 O >} (167)
g HP- r®) 100D7 — 853D° + 2230D° + 1040D* — 17136D3 + 35824D% — 31648D + 10496
Pt U (0-#)(D-3) 2(D-2)(D-1)

L0503+ oo 8= (D))

HP— { 100D7 — 853D° 4 2230D° + 1040D* — 17136D3 + 35824D% — 31648D + 10496

T (4n) Y(D-4)(D-3)(D-1)?
1159
—94+——y+0O(D-4)s, (168)
36
g HP-4 r® —9D3 +143D7 — 1040D° + 4408 D> — 11464D* + 19056D> — 19776D? + 11648D — 2944
YT 4P LD -4)(D-3) 2(D-2)(D-1)?

10 o 09 (32 ()]}

B HDP—4 (—9D8 +143D7 — 1040D° + 4408D° — 11464D* 4+ 19056D% — 19776D? + 11648D — 2944
 (4n)® 2%(D-4)(D=3)(D-1)?

2285
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ds

D—4 —7)3
-~ e\ TOa T O o
Now we choose the coefficients of the counterterm vertices (132)—(134) and (136) as
¢;=—d;+Ac; fori=1,3,4and5, (171)
¢y =—dy+ (D —-2)d; + Acy, (172)

where Ac; is the arbitrary finite terms which remain after the cancellation of the divergent parts. Note that the
coefficients d; and ds have the relation

ds =2(D - 2)d,. (173)

which makes them simultaneously cancelled by subtracting the counterterm vertex (132). We finally
obtain the final renormalized self-mass-squared from kinetic and kinetic-conformal cross parts at one loop

order as

V2
—iM2, (x;x') = ix*a (Ac O + Ac,H’O + AcsH* + Ac,H? — e +4Ac\H 0D>64(x—x’)

1 11 11
k> ——a*( —In(ad’)H?
+ ik (4,,)261 (4 n(aa’) D+2

8(D—1)\2
+ Table VI + <<D2)> Table X + O(D —4).

VI. DISCUSSION

We have evaluated the kinetic and kinetic-conformal
cross parts of the CC scalar self-mass-squared at one
loop order in the cosmological patch of de Sitter
space. The CC scalar has the technical advantage that
its propagator with the conformally rescaled metric
looks the same as the MMC scalar propagator in flat
space,

re-1) 1

P Aflat
A= A

(175)

where Ax? is the Poincaré length function defined as

AP = X=X = (In—n'| -i8)>.  (176)
We have first dimensionally regulated the divergences,
renormalized the result by subtracting the four possible
BPHZ counterterms and then taken the unregulated

limit of D =4. The final result is given in Eq. (174)

0

a

3 v?
n(aa'\H> 22 — 6In(ad ) H* — Eln(aa’)H2 2) x—x)
a

(174)

[

with the finite nonlocal contributions in Table VI
and Table X. Adding our previous result from the
conformal-conformal part, Eq. (129) of Ref. [16] to
Eq. (174) completes the full renormalized CC scalar
self-mass-squared at one loop order.

The point of this computation is to examine the
effects of inflationary produced gravitons on the CC
scalar mode functions. In a subsequent paper [77] we
will solve the quantum corrected CC scalar field
equation (1) (with the full self-mass-squared) to obtain
one loop corrections to the CC scalar mode functions. It
is worthwhile at this point commenting that the
Schwinger-Keldysh formalism [78-85] is necessary
when studying quantum responses in a time-dependent
background such as de Sitter. Applying the formalism
amounts to replacing the in-out self-mass-squared by
the ones from the Schwinger-Keldysh formalism,

/ d’?/d3 M2, (x; ')

a'0p(x) - —R¢

+ M?_(x;x') }p(x/ (177)

025001-25



BORAN, KAHYA, and PARK

At one loop order, —iM?% (x;x’) agrees with the
in-out self-mass-squared —iM?(x;x'). The +— self-
mass-squared —iM?%_(x;x’) can be obtained by replac-
ing y(x;x’) everywhere with

Y5 ¥) = yo—(6x) = alnaty ) H2I1E - T2
- (n—n"+is)?. (178)

It should be noted that the CC scalar field interacts
with gravitons both through a kinetic term and the
conformal coupling term. The case with a kinetic term
only, also known as minimal coupling, was investigated
in a previous work [14,15]. When the conformal
coupling is added, the 4-point interaction part simply
adds the contributions from the kinetic and conformal
coupling terms. However, for the 3-point interaction
part which has two vertices, there are three possibil-
ities: (1) both vertices are kinetic, (ii) both vertices are
conformal (iii) one vertex is kinetic and the other
vertex is conformal. The case (ii) was studied in a
previous paper [16] and the cases (i) and (iii) were
investigated in the present paper. The difference
between the computations of the case (i) in
Ref. [14] and in this paper is that in the former, the
MMC scalar propagator was used (since there was no
conformal coupling term); and in the latter we have
used the CC scalar propagator.

We also would like to comment on a way to check
the accuracy of our computation. We note that the most
singular part of the graviton propagator in de Sitter
background agrees with the conformally coupled scalar
propagator and it can be compared with the graviton
propagator in flat space

2
- mn/wnpa
re-1 1
47[D/2 AxDP-2’

iLwAS;t] (X; x/) = 2’7/4(/7’70)1/

(179)

Here note that the scalar propagator multiplying the
tensor factor is the flat space scalar propagator (175).
As the counterterm analysis in Eq. (132) shows, the
coefficients of the divergent terms d, of a*[(1?6” (x — x)
and ds of Hady[15P(x — x') should obey the relation
ds =2(D —2)d;. And that is exactly what we get in
Egs. (166) and (170), so these divergent terms can be
removed by the relevant counterterms. Also, as can be
seen in Table V, the total coefficients for the contri-
butions coming from the terms V29,6°(x —x') and
V206P (x — x') to 3-point kinetic counterterms add up
to zero. There is no other reason why these relations
are satisfied, but they turn out to satiate (through

PHYSICAL REVIEW D 96, 025001 (2017)

explicit computations) the conditions so that our
counterterms respect the symmetries that are not broken
by the gauge fixing term (33).

Finally, the CC scalar self-mass-squared is ready to
be employed in the CC scalar effective field equation
so that one can study how the inflationary produced
gravitons affect the CC scalar mode functions. In a
subsequent paper [77] we will examine whether the
mode functions get a secular growth effect in late times
or not. If it does, it might leave an observational
signature such as a correction to the scalar power
spectrum. We will soon report whether this is the case
or not.
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APPENDIX A: TABLES FOR THE COEFFICIENT
FUNCTIONS OF EXTERNAL OPERATORS
FOR 3-POINT KINETIC PART

TABLE XI. For a = (ad')7"'[? type terms.

fa¥) = Cafan)(y) + Ccfac) (),

Faa)(y) 2I7[AF”]
fato)(y) 2I[CF"]
Total for f,(y)
% (L2,
TABLE XIL. For f3, = (ad')?(a® + ’*)H*[] type terms.
F5,(0) = CafpyayV) + f,0)(¥) + Cefp0)(9)s
DI -(3-DZAF]+(3-1)3(D - DIAF]
+I[A'F'| = 5(D - 1)I?[A'F]
fﬂg(B)(Y) —(D=1I[B'F']
I ~(3=1DRI[CF|+ (3 -1)3(D - 1)I[CF|

+I[C'F| - 1(D - 1)*[C'F']
Total for fy, (v)

(D=2)*DH* 27 PT(8-1)* /1\p_1
64(D—1) (7)

(D=2)(D(D—4)—4)H*P =7~ PT(8—-1)* /1\p_2
- 512 (3) :
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TABLE XIII.  For y; = (ad')7t'H* type terms.

Frn ) =Cafyuny) + Fru3) () + Cefyyi0) ()
Frn®) ~(3=1)(3)(D* - 4D + 4)[AF] + (3= 1)(D = 1)(D*> - 4D + 4)I[A'F]
+(B=-1?=1)2=y)=2(D=I)AF|+ E-1)(D - D)PAF]+ (D - 1)yl[A'F]
—(D—-1)1(D>-4D + 4)PP[A'F]

Frn () ~(D=1);(D*~4D + 4)I[B'F']

Fro) ~(5-=1)(5)(D*=4D +4)[CF] + (5= 1)(D = 1)(D> = 4D + 4)I[C'F]|
+H(E-12=1)2~y)=2(D=ICF+(5=1)(D = )P[CF]+ (D - 1)yI[C'F]
—(D=1)1(D*—4D +4)PP[C'F']

Total forf, (v)

(D=4~ 7 PT(3-1)* 1\ p-1
8(D-1) (T)

(D-2)(D>-9D*+16D3+84D?—136D+32) H*’~*z~PT'(5-1)? (1)D_2 3H4 1
¥

1024(D—1) 12877 y*

TABLE XIV. For 7, = (ad’)P?(a® + a’*)H* type terms.

Fn () = CafruyV) + fra () + Cef o) ()

Frw () -G =-D®YAF] + (B -1)(D—-1)5y[A'F]

—39((4y = y)[A'F) + D2 = y)[AF']) + (2= y) 5y[A'F] = (D = 1)yI[A'F']
Frm () —(D = 1)y[B'F]
Fro)) -G =1DEWICF + (B -1)(D - 1)31y[C'F]

=33((4y =)[CFT + D2 =y)[C'F]) + (2= y) 33[C'F'] = (D = 1)yI[C'F]

Total for f,,(y)

_ (D-2)’DH* 27 PT(8-1) (1)0—1
32 y

_ (312 (D*-1TD+12)H*P 42~ Pr(§-1) ( )D 2 301
64 256x* ;

TABLE XV. For y; = (ad')?(a + a')*H* type terms.

Frn(0) = Cafyuny(¥) + fry)(¥) + Ccfyui0) ()
Frm () —B=-1E)((D=1)y[AF] + y*AF]") + (B = 1)(D = 1) 5 (D = 1)y[A'F] + y*[A'F]') = 2y[A'F']
(2-y)3((D=1)YA'F]+ Y [AF)) = (D = 1)5((D = 1)yI[A'F'] + y*[A'F'])
Frm () —=(D=1)((D=1)y[B'F'| + y*[B'F']')

(
Fre®) —(g—1)(%)((0—l)y[CF]’+y2[CF]”)+(——1)(D D3((D = 1)y[C'F] +y*[C'F]') = 2y[C'F']
+2=y)3((D=1Y[CF]+ Y [C'FT) = (D= 1)5((D = 1YI[C'F] + y*[C'F)

Total for f, (y)

(D=2)2(D+2)H*P~47~PT(5=1)2 1\ p—]
64 (7)

_ (3-1)’(2D*-8D*+9D+14)H*P 2~ PT (B~1)? (I)D 24 3H
64 ) 256" y*
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TABLE XVI. For 6 = (aa')7(a* + a”)V?[] type terms.

f5() = Cafsay(y) + foy)(¥) + Ccfsc) (),

Fsa) () (2 - 1)1 P[AF] - PAF") + 1 B[A'F'] + C7'IP[AF"]
Fom () ~LP[BF"| - P[BF"]
fae) () (8 = 1)3P[CF] = P[CF") +  P[C'F']

Total for f5(y)

DH?P~4zPT(2—] 4
(B-1 (DD 2y m1

1
128(D—-1) 96z y

TABLE XVIL For ¢; = (ad')?H?V? type terms.
fe, (V) = Cafe,y(¥) + fe
Faw®) —C'2D = DIAF] - (3~ 1)2(
]+

€ ( )+CCf61 ( )
I[AF] - [AF])
(

+(Z-1)§(D* —4D + 4)I?[AF g 1)(D-1)3IP[A'F] - I[A'F))
(317 = 1= 3= 1) SPAF] - 3PAF| + 2P AF] + (22U + PHAFY))
—(D-)GPAF] - PAF]) - ¢} ((% - (D= DIAF] + (D - HPIA'F])
fow) ~(3 - 12P[BF"| =2(D = 1) P[B'F'| = I[B'F"]) + (3 = 1)I[BF]
+HRPBF] - (3 - )[BFHZ( ~ DI[B'F]
fao)() -(3-1)2GICF] - [CF])
+(B = 1)g(D* 4D + 4)P[CF| + (8 = 1)(D = 1) G *[C'F] = I[C'F))
(-1 -1-B-1)iP[CF]|-3P[yCF|+2P[C'F |+ (-2I[C'F] + P[y[C'F])

-(D-1{ 13[C'F/] [C'F")
Total for f,, (y)

(D=2)’DH*P 2T (B-1)* 11\ p—1
- 32(D-1) ()

(D-2)(D*~16D+16)H*P~*7~PT(8—1)2 (L)D—2 H 1
256(D—1) 192z% y*

TABLE XVIIL.  For ¢, = (ad')7"" (a + a’*)H2V? type terms.
fez (y) = CAfez(A) (y) + fez(B) (y) + CCfez(C) (y)’

feaw®) (B = DyIAF]+ 3 PAF] = CX'(3)((3 - DIAF] + PIA'FT)
feam ) —3VI[BF"] = (I[BF'| + I[yBF"]) + (3)P[B'F'| — 5 ((4y — y*)[BF"] + D(2 = y)[BF']) — 3 y[BF]
feo)) (3= D) YI[CF] + 3 P[CF]

Total for f,,(y)

_ (D=2)(D2D-T)+4)H*" 42 PT(8~1)* (L)D—2 _H
¥

_HY 1
128(D-1) 9677 y*
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TABLE XIX. For ¢; = (ad')*'(a + a')2H*V? type terms.
fe;(¥) = Cafeya)(v) + fes3)(¥) + Cefesio) ()
fes () (5= D3 G(D=1yIAF]+ 3y [AF']) +5(3(D = DyI[A'F'] + 3 1[A'F'))
=Ci' (B = Dy[AF] + yI[A'F'))
fesm)(¥) =5 ((D = 1)yI[BF"] + y*[BF"]) = (8 = 1)({[BF'] + I[yBF"]) = y[BF'| = y*[BF"] + yI[B'F']
—3((D=1)y[BF'] + y*[BF"))
feao () (5= 1)3G(D = 1YIAF] +5*[AF]) +5 (3 (D = DyI[A'F'] +3y*[[A'F))

Total for f,, (y)

_ (D_2>2H2D—4ﬂ—[)l—~(%_ 1 )2
64

O

_ SH' 1
384n" y"

TABLE XX. For ¢ = (ad')?"'V* type terms.

fe) = Cafenyy) + fem () + Cefee)(9)s

P[AF]) + PAF"] -1 B[A'F + (3 - 1)} P[AF]

_%13[B/F/]) + IZ[BF"]
~LF[CF]+ (3= 1) PCF]

few(O) —Ci'PIAF"]+ (3= 1); GP[AF] -
+C3 (-2PP[AF"] + L P[A'F])
few(y) PBF") — (2~ 1)L P[BF'] + (2I*[BF"]
feo)() (5= 1); GP[CF] = P[CF]) + [CF"]
Total for f:(y)
_H 1
487 y

APPENDIX B: TABLES FOR THE COEFFICIENT FUNCTIONS OF EXTERNAL OPERATORS
FOR 3-POINT CROSS PART

TABLE XXI. For a = (ad’)7H'[}* type terms.

o) = Cafa@a)(y) = Cafaac) ()

Sa(aa) )
S a(4C) ()

213 [FAP)| = 2I2[FAWY)]
2P[FCP)] = 2I2[FC®)]
Total for f,(y)

0.

TABLE XXII. For §; = (ad’)7"'H*[] type terms.

5, (0) = Cafpaa)(Y) = Cafp,a0)(¥),

fﬂ1(4A) ()
fﬁ1(4c) ()

2(D =2)(D = 1)(P[FA®] = [FA®)]) + 8I[F'A]
2(D =2)(D = 1)(P[FC®)] = P[FC?)]) + 8I[F'C"]
Total for fy4 (v)

3

(D-1)H*P~47~PT(8-1)2
2

D-2 _3H'1
27ty
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TABLE XXIII. For f, = (ad')?(a® + a’®)H*[] type terms.

F5,0) = =Cof p,3a)(¥) + Caf pya0)(Y) + C3f p,30) () = Caf pyac) ()

T4 () —2(D = )I[F'A']
Thaan () —(D =2X(P[FAP)] = P[FAP)) = 21[F'A'| - 5 (D - 2)*[FA]
S5,30) () =2(D - DIF'C]
Frao)() ~(D =2)(P[FCP)] = P[FC®]) = 21[F'C'| = 5 (D = 2)*[FC]

Total for fj,(y)

_ (D_2)2H2[)—4”701—~(g_] )2 (l) D—1
y

8

(-DE(D-1)H* 2" Pr(§-1) -
_G73 - LIRSS (%)D 2—|—0§.

TABLE XXIV. For y, = (aa')7"'H* type terms.

Fn(0) = =Cif,,00) () = Cafy,3a) (V) + Cafy aa) () + Cify,8) () + Cafy,30) (V) = Cafyya0) ()

Frean®) —16(D — 1)(YI[F'A"]) — 48(D — 1)I?[F'A"] + 16(D — 1)I[yF'A"]
Frnon) —(D—=4)(D = 1)2I[F'A]+2(D - 1)(2D = 17)I’[F'A"] + (D = 2)(D — 1)*I*[F"A’]
—2(D —1)(D +5)(yI[F'A"]) + 8D(D — 1)I[F'A"]
Frian ) —2(D=2)[(4y = Y})FA" + D(2 = y)FA'] + 2(D = 2)(D — 1)[FA] = 2 (D = 2)2(D - 1)I[F'A]
+1(D =2)(D = 1)[(4y = y*)FA" + D(2 - y)FA'] =} (D — 22(y[FA') + yI[FA" — F"A])
—1(D=2)3(D - 1)([FA] + I’[FA" — F"A]) + (D — 2)(D —1)2I[F'A)
+1(D=2)(D = D)I[(4y = y*)F'A" + D(2 = y)F'A'| = L (D = 2)* (y[FA]' — yI[FA" — F"A])
~3(D=27°(D = D(FA] = PIFA" ~F'A]) + (D 272 = IFA] - (D - 27(D — ) P[FA
+6(D —2)(D — )I?[F'A"] + (D - 2)(D )212[F”A ]
—(D - 2)3(1) — 1)(P[FA®)] = P[FAP]) 4+ 2(D = 2)2(yI*[FA®)] = yI[FA®]) — 2(D — 1)(P[F'A"] — I’[F'A"])

+8(VI[F'A"] = y[F'A']) = 2(D — 1)(1 = y)(PP[F'A"] = I[F'A']) + (4y* — 16y?)[F'A) + D(4y — 8)(y[F'A"])
+2(D =2)(D = 1)(yI[F'A"]) = 2(D = 2)(D — )I?[F'A’'] = 6(D = 2)(D — )I[F'A’] +2(D — 1)(D + 3)P[F'A"]
—24(% + )I[F'A") = 8(D — DII[F'A"]] + 8(*[F'A"]) = 2(D = 1*(y2[F'A"]) - (14D — 86) (yI[F'A"))
+(D = 1)(12D = 80)I*[F'A"] + 24(D — 1)(yI[F'A"]) — 24(D — l)I[F’A”] —24(D — 1)I*[F'A"]

S ) —60(D — 1)PP[F'B"] = 4(D — 1)(yI[F'B"] + 4(D — 1)I[yF'B"]
—(D=1)(D(D = 1) =4I[F'B] +2(D—1)(2D = 23)I?[F'B"] + (D — 2)(D — 1)*I*[F"B]
+2(D? = 1)(yI[F'B")) + 8D(D — 1)I[F'B"] +2(D = 2)(D — 1)I[F'B/]

frneoy) —(D=4)(D=1)2I[F'C"] +2(D - 1)(2D = 17)I*[F'C"] + (D = 2)(D = 1)*I*[F"C']
—2(D - 1)(D +5)(yI[F'C"]) + 8D(D — 1 )I[F’C”]

Frao () -5(D=2)[(4y =y )FC" + D2~ y)FC'| + 5 (D - 2)2(D 1)[FC| =% (D -2)*(D - DI[F'C]
+3(D=2)(D~1)[(4y = y*)FC" + D(2 - y)FC’] —3(D=2)*(y[FC'] + YI[FC" = F"'C))
—3(D=23(D - 1)([FC]+ P[FC" - F'C]) + (D — 2)(D 1)2I[F'C
+3(D=2)(D - 1)I[(4y —y*)F'C" + D(2 = y)F'C'| =1 (D = 2)*(y[FC]' — yI[FC" — F"(])
—1(D=2)3(D-1)([FC] - P[FC" = F'C]) + (D = 2)*(2 = y)I[F'C'] = (D = 2)*(D — 1)I?[F'C]
+6(D =2)(D - )P[F'C"] + (D =2)(D = 1)?I*[F'C"]

—(D =2)*(D = 1)(P[FCP] = P[FCP]) +2(D = 2)*(yI?[FC®)] = yI[FC?]) = 2(D — 1)(P[F'C"] = I’[F'C"])
+8(VI[F'C"] = y[F'C')) = 2(D = 1)(1 = y)(IF[F'C"] = I[[F'C']) + (4y* = 16y)[F'C']' + D(4y - 8) (y[F'C'])
+2(D =2)(D = 1)(YI[F'C"])) = 2(D = 2)(D = )I*[F'C'| = 6(D = 2)(D — NI[F'C'| +2(D — 1)(D + 3)P[F'C"]
=24(y* + DI[F'C") = 8(D — VIYI[F'C"]] + 8(y*[F'C"]) = 2(D — 1)2(yI*[F'C"]) — (14D — 86)(yI[F'C"])
+(D = 1)(12D — 80)I*[F'C"] + 24(D — 1)(yI[F'C"]) = 24(D — 1)I[F'C"] — 24(D — 1)I*[F'C"|

Total for f, (v)

_ (D*43D+1) (312 HP 4 Pr(8-1) (1)0—1
2 y

_ (D-2)(D*+5D3-57D>~162D+348) >’z "I (8~1)* /| ( ) D=2 | 3H* 1
64 3270y
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TABLE XXV. For y, = (ad)?(a® + a’®)H* type terms.

Frn () ==Cif o0 (¥) = Cof 1,3a) (¥) + Cafpoan) (V) + Csf 300 (9) = Caf pyac) (V)
Frea(¥) —8(D — 1)yI[F'A"] +8(D — 1)I’[F'A"] +8(D — 1)I[yF'A"]
Froa () —6(D — 1)yI[F'A"] + 8(D — 1)I*[F'A"] + 1 (D* = 2)(D — 1)I[F'A’]
Fran () 2(D=2)(D = DI[F'A'] = (D = 2)*y[FA]' + 4(y1[F'A"] - y[F'A"))
—14(yI[F'A")) + 16(D — 1)I?[F'A"] + 4(y*[F'A"]) +4(D — 1)(yI[F'A"))
Freo () —6(D = 1)yI[F'C"| +8(D = YP[F'C"] +3(D* = 2)(D = DI[F'C]
Frae)(y) 2(D=2)(D = DIF'C] = (D =2)y[FC]' + 4(yI[F'C"] = y[F'C"])
—14(yI[F'C"]) + 16(D — 1) I2[F'C"]
+4(y*[F'C"]) + 4(D = 1) (yI[F'C"))
Total for f,,(y)
(D2+GD—2)(§—1>;H2D_4”_Dr(lz—)—1)2 (l‘)D—l
+ (D—2)(D4—3D3+4D2—21225]_(:—304)H2”*47r*”1"(§—1)2 ( % ) D-2.
TABLE XXVI. For 73 = (ad')?(a + a')*H* type terms.

Fr () = =Caof 1,3 (9) + Caf yan)(¥) + Cif ) (V) + Csfyu30) (9) = Caf pya0) (V)

fy;(3A) ()

S (4A) ()

fh(B) (y)
Freo®)

fy3 (40) (y)

—(D = 4)(D = 1)(yI[F'A']) + (D = 2)(D — 1)(I[F'A"] + I[yF"A"))

=2(D = 1)(yI[F'A"] + y*I[F'A"]) + 4(D — 1)I[yF'A"]

—5(D=2)*(y?[FA)" + y*[FA" = F"A]) = (D = 3)*(y[FA]' + yI[FA" — F"A]) + (D = 2)(D — 1)(y[F'A"])
+3(D-2)*(D - 1)(y1 [FA" — F"A] = y[FA]') + (D — 2)( - DI[(yF')'A']

~D(D — 22 (P[FAD)] - yI[FA®)]) - (D — 2)2( (PIIFA®)] = 2(FAR))

—2(yI[F'A"] = y[F'A"]) = 2(D = 1)(y[F'A"]) + 4(D — 1)I [yF’A”] — 12(y[F'A"]) +2(y*[F'A"])

4(D = 1)(y[F'B"])

~(D=4)(D = N)(3I[F'C) + (D = 2)(D = ))(I[F'C'] + I[yF"C))

=2(D = V)(YI[F'C"] + y*I[F'C"]) + 4(D — )I[yF'C"]

—3(D=2)*(*[FC)" +y*[FC" = F"C]) = 1 (D = 3)*(y[FC]' + yI[FC" = F"C]) + (D = 2)(D = 1) (y[F'C"])

+3(D=2*(D = H)(YI[FC" = F'C] = y[FC)') + (D = 2)(D = DI[(yF')'C']

—D(D - 2)*(yP[FC®)] = yI[FCA)]) — (D - 2)(*I[FC¥)] - y*[FC?)])

—2(y1[F'C"] = y[F'C']) = 2(D = 1)(y[F'C']) + 4(D = DI[yF'C"] = 12(y[F'C"]) + 2(3*[F'C"])

Total for f,,(y)

(D*+4D—10)(5-1)2H*P~* 7~ PT(8-1)? (l)D_l
8 y

n (D-2)(D*+25D3-204D>+372D-192) H*P~*7z~PT'(8-1)? (l ) D—2
256 Y )
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TABLE XXVIL For 6 = (ad')*(a® + a’*)H*V*[] type terms.

F5(3) = =Cifs0a)(y) = Caf534)(¥) + Cafsan)(v) + Cif sy (¥) + Cafs3c)(¥) = Cafsac)(¥)s

Foa(y)
f&(aA)()’)
f5(4A)()’)
SsB) ()
f5<3c) ()
f5<4c) )

PIFAB®)] - P[FAWY)]
P[FAB®)] - IP[FAW)]
2(P[FAP)] - IP[FA®)
2(P[FB®)] - I’[FB®
P[FCO] - P[FC?]
2(P[FCP] - P[FCP))
Total for f5(y)

H* 1

T ety

)

]
)

TABLE XXVIIIL.

For ¢, = (aa')?H*V? type terms.

fe, () = Cif 1)) = Cafey2a) (V) + Cofe,3a)(¥) + Cafe,an)(y) = Cif e, (74)()
FCife)(Y) + Csfe,30)(¥) = Cafe,ac) ()

fel(lA)(y)
fel(ZA)(y)

f€1(3A)(y)

feyaay(y)

fel(7A)(y)
fem(y)

feo)(y)
fe](4C) )

4(D = 1)I[F'A') = 4(D + 1)I*[F'A"]

4(yI[F'A']) 4+ 2(D — ) I2[F'A') = 4I[F'A"] = 8I*[yF'A"] — 4(D = 5)IP[F'A"] + 4I*[F'A"]

+(D =2)(D - 1)(P[FA®)] - *[FAP))

E-1)(D-1)P[FA") +3(D-4)(D-1)P[FA]+1(D(D-17)+26)P[FA"| -1 (D-2)(D - 1)P[F"A’]

+4(D = DI[F'A'] + (D = DWIP[yF'A"] —=4(D = )I?[F'A"] + (D = 2)(D — 1)(P[FA®)] = I*[FA®)])
—2(D=2)*P[FA] - (D = 2)I[(4y — y*)[FA"] + D(2 — y)[FA']] + (D — 2)*I[FA] 4 (D — 2)*[FA]
+1(D-2)(D- 1)(12[ FA"] - PIF'A']) -1(D - 2)12[(4y y)F'A" + D(2 — y)F'A’]
-1(D=-1)?P[FA+1(D-2)(D-5)P [F/A”] 1(D=2)(D-1)P[F'A]

+4(D — 1)I[yFA" — yl[ FA"]] — (D = 2)I[y’FA" — 21[ FA"]] = 2D(D = 2)(P[FA®)] — I*[FAP))
+D(D = 2)I[yI*[FAP)] — yI[FAP]] +2(D - 2)(2D - 3)(PP[FA®)] — I?[FA®)])

+3(D =3 (I*[FAV] = P[FA®)) — II[F'A") = y[F'A]] + (P[F'A"] = P[F'A]) = (D = 2)P[yF'A'
+3(D = 2)P[F'A") + 4I[F'A") = 2I*[F'A") + TP [F'A"] + 212 [y’ F'A"] + (D — 1) I*[yI[F'A"])
—12(D = 3)P[F'A"] + IP[yF'A"] = 12I*[yF'A"] + 12I*[F'A"]
4][F’ /] ( )IZ[F/AN]

$(D=2)(D - 1)12 [FB”] +32[F'B) = 4(D —7)P[F'B") = 2I*[yF'B"] + 4I*[F'B"
1D=1)(D+2)P[FB]+%(2(D-2)(D-5)+64)P[F'B"| =4(D-2)(D—-1)P[F'B
+(D = 1)I’[yF'B"] — 4(D — 1)12 [F'B"] + (D - 2)I*[F'B']
+4(yI*[FB®)] = yI[FB?)]) +2(D - 2)(D — 1)(P’[FB®)] — I’[FB®)])
E-1)(D-1)PFC"+3(D-4)(D-1)P[FC+4(D(D=T7)+26)P[F'C" -1(D-2)(D-1)P[F'C]
+4(D = DI[F'C'| + (D = 1) P[yF'C"] = 4(D = 1)I’[F'C"] + (D = 2)(D = 1)(P[FC®)] - P[FC?)])
=2)’P[FC'] =3 (D = 2)I[(4y = y*)[FC"] + D(2 = y)[FC']] + ; (D = 2)*I[FC] + (D = 2)’[FC]

(D
+3(D=2)(D = (P[FC"] = FIF'CY) - 3(D = 2)P[(4y = y*)F'C" + D(2 = y)F'C]
S(D-1)?2PFC14+5(D-2)(D-5P[FC"|-1(D-2)(D-1)P[F'C']
+4(D = D)I[yFC" = yI[FC"]] = (D = 2)I[y*FC" = y*I[FC"]] = 2D(D — 2)(P[FC®¥)] - ’[FC?)])
2

+D(D = 2)I[yI*[FC®)] = yI[FC?)]] + 2(D — 2)(2D = 3)(P[FC®)] - I’[FC?)])
+1(D =33 (I*[FCB)) = B[FC?]) — I[yI[F'A"] = y[F'C']] + (P[F'C"] - P[F'C')) = (D = 2)I*[yF'C]
+3(D = 2)[F'C') 4+ 4I[F'C'| = 2I*[F'C"] + TP[F'C"] 4 2I*[y*F'C"] + (D — ) I*[yI[F'C"]|
—12(D =3)B[F'C"| + PyF'C"| = 12I2[yF'C"] + 12I?[F'C"
Total for f, (y)

(D=2)(D—6)H**~4z~PT(3=1)2 '|\p_»
- 16 (5) )
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TABLE XXIX. For ¢, = (ad')*!(a? + a’®)H?V? type terms.

fe, ) = =Cife2a) () = Cofe,34) (V) + Cafeyan) (V) + Cifey8)(¥) + Cafe,30) (V) = Caferiac) ()

fen)(y) 2(yI[F'A')) = 2I[F'A’) — 63 [F'A"] — 4I*[yF'A"

fean () 83— DP(FA - 6P (FA]

fean(©y) 2(D - 2)P[FA"] = 2(P[F'A"] - P[F'A")) + 2P [yF'A" + yF"A'| = AI[F'A'] — 10P2[F'A"] = 21 [yF'A")
feam ) 4(yI*[FB®)] — yI[FB?))

feio () 2B - DPFC"] - 6P[F'C"]

feyac)(y) D(D-2)P[FC"] = 2(P[F'C"] - P[F'C']) + 2I*[yF'C" + yF"C'] - 4I[F'C'] - 10I*[F'C"] = 2I*[yF'C"]

Total for f,,(y)

D(D-8)(D-2)H*P~*27PT(2-1)* | 3HA 1
- 64(D—1) (y)D 2+ 41; ¥

TABLE XXX. For e3 = (aa')?™'(a + a')2H?V? type terms.

e, ¥) = =Cife;00) (V) = Cafe;30)(¥) + Cif ey (V) + Csfey30)(¥) = Caf ey acy ()

Fesom () (D =2)(yP[FAP)] = yI[FAP)])
Fesm() &= DOIFA") + (5= 1) =2)P[yF'A"] + (D = 2)(yI*[FA®)] - yI[FA®)])
fesan () 3(D =2)(yI[FA")) +3(D = 2)P[yF'A"]| +2(D = 2)(yI*[FAP)] = yI[FAP)]) - 2P°[yF'A"]

feae)() DOIFCT) + (8= 1) =2)PF'C" + (D = 2)yP[FCP)] = yI[FCP)))

%
(D
Je® () 2(y2I[FB®)] — y2[FB@)) +2(D - 2)(yI2[FB®)] — yI[FB?)])
( (3~
feuo) () D =2)(yI[FC")) +1(D = 2)P[yF'C"] + 2(D = 2) (yI*[FCP¥)] = yI[FC?)]) = 22 [yF'C"]

Total for f,,(y)

_ (D—z)(D3—3DZ+220—16)H20-4;:-DF(%_’—1)2( )D 2 om! 9H* 1
64(D-3)(D—-1) y 82y

TABLE XXXI. For ¢ = (aad’)?"'V* type terms.

Fe(0) = Cifeany)(y) = Cifeea)(9) = Cafcaay (V) + Caf san) (0) = Cif caay(v) + Cif sy ()
+C3fr30) () = Cafgiacy ()

Feaay(y) —2(P[FA®)] - I[FAQ))
feeay () —PF A+ 2 [F'A") = 1(D = 2)(I*[FA®)] = P[FA®))) = 2(P[FA®)] — P[FA®))
Feaay(y) —L(D = 2)(I*[F'A"] + P[FA"]) + *[F'A"] = 1(D - 2)(I*[FAP)] — P[FA®)]) - 2(P[FAP)] — P[FA®)))
Fean ) (D = 2)(I*[FA®] = P[FA®))) = 2(P[FAP] = P[FA®))) + 31*[FA"] = (D = 2)(I*[F'A") + P[FA"))
Fean () ~2(P[FAY] - P[FAP)))
fem () - (D-2)P[FB"| - P[F'B) + 2I*[F'B") = (D = 2)I*[F'B"] = L ’[F'B'| + I*[F'B"]

—(D =2)(I*[FBY)] - 13 [FB@)]) — 4(I’[FB 3>] I?[FB?)))
feao) ) —L(D=2)(I*[F'C"] + P[FC"]) + *[F'C"] = (D = 2)(I*[FC®)] - P[FC?)]) = 2(P[FC®)] - P[FC?))
feae)(y) —(D =2)(I*[FC®)] = B[FC?]) = 2(P[FC®] = P[FC?)]) + 3I*[F'C"] = 1 (D = 2)(I*[F'C"] + P[FC"])

Total for f:(y)

H 1
6

167 y*
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