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We show that the correction to the gravitational binding energy for binary black holes due to the tail
effect resembles the Lamb shift in the Hydrogen atom. In both cases a conservative effect arises from
interactions with radiation modes, and moreover an explicit cancelation between near and far zone
divergences is at work. In addition, regularization scheme-dependence may introduce “ambiguity
parameters.” This is remediated—within an effective field theory approach—by the implementation of
the zero-bin subtraction. We illustrate the procedure explicitly for the Lamb shift, by performing an
ambiguity-free derivation within the framework of nonrelativistic electrodynamics. We also derive the
renormalization group equations from which we reproduce Bethe logarithm (at order α5e log αe), and
likewise the contribution to the gravitational potential from the tail effect (proportional to v8 log v).
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I. INTRODUCTION

Binary coalescences are posed to become standard
sources for present and future gravitational wave (GW)
observatories [1–3]. GW astronomy will map the contents
of the universe to an unprecedented level [4,5], addressing
fundamental problems in astrophysics and cosmology. The
searches demand state-of-the-art numerical and analytical
modeling, to enable the most precise parameter estimation
[6–8]. Motivated by the construction of an accurate
template bank, the effective field theory (EFT) framework
was introduced to solve for the gravitational dynamics of
inspiraling binary systems to high level of precision [9–16].
The EFT approach was originally coined nonrelativistic
general relativity (NRGR) [9], following similarities with
the techniques used for the strong interaction (NRQCD), as
well as electrodynamics (NRQED). NRGR has enabled
the computation of all the ingredients for the GW phase
for spinning compact binary systems up to third post-
Newtonian (3PN) order [16–25]. In addition, significant
progress has been achieved towards 4PN accuracy in the
EFT approach, both for nonspinning [26–28] and rotating
bodies [29,30]. Some of these results have been obtained
using other (more traditional) methods, see e.g. [6,7] for
references.
The gravitational binding potential for binary systems

has been recently computed in the Arnowitt, Deser and
Misner (ADM) and “Fokker-action” approaches up to 4PN
order for nonspinning bodies [31–37]. Despite the remark-
able feat, the derivation could not be completed at first,
because of regularization ambiguities. Hence, the final
expression was obtained after comparison with gravita-
tional self-force calculations [33,36], see also [38]. In a
companion paper [39] we describe the procedure which
yields the gravitational potential, in NRGR, without the
need of “ambiguity parameters.” The purpose of the present

paper is to demonstrate that the issue at hand is actually
more common than it might seem, since similar consid-
erations apply in electrodynamics, and in particular in the
derivation of the Lamb shift [40–44]. As we shall see, by
performing the calculation within the EFT approach
NRQED, both infrared (IR) and ultraviolet (UV) divergen-
ces are present, as in the gravitational case. We perform the
zero-bin subtraction [45] and arrive at an ambiguity-
free result. We also derive the renormalization group
equation for the binding potential, and readily obtain the
Bethe logarithm. We then show how the manipulations in
electrodynamics closely resemble the computations in
gravity. In particular, the renormalization group evolution
and logarithmic contributions to the binding energy may be
obtained in both cases without worrying about the subtle-
ties of the matching conditions [28]. Throughout this paper
we work in c ¼ ℏ ¼ 1 units, unless otherwise noted.

II. THE (QUANTUM) BINDING ENERGY
IN ELECTRODYNAMICS

Quantum effects in QED contribute to the binding
energy of the Hydrogen atom. A celebrated example is
the Lamb shift [40–44], which involves a one-loop vertex
correction, see Fig. 1. Here we perform the computation

FIG. 1. One loop vertex correction in electrodynamics.
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using an EFT approach, highlighting the similarities
with the binary inspiral case. We show the existence of
IR/UV divergences, discuss the zero-bin subtraction
and lack of ambiguities, and the renormalization group
structure.

A. Form factors

The full QED vertex (including wave-function
renormalization) can be expressed in terms of two form
factors,

−ieūðp1Þ
�
F1ðq2Þγμ þ

i
2me

F2ðq2Þσμνqν
�
uðp2Þ; ð2:1Þ

with q ¼ p1 − p2, γμ the Dirac matrices, σμν ≡ i
2
½γμ; γν�,

and uðpÞ a Dirac spinor. The expressions for F1, F2 are
divergent, and in dimensional regularization (dim. reg.) are
given by, e.g. [46],

F1ðq2Þ ¼ 1 −
αeðμÞ
π

q2

m2
e

�
1

3ϵIR
þ 1

8
−
1

6
log

m2
e

μ̄2

�
þOðq4Þ;

ð2:2Þ

F2ðq2Þ ¼
αeðμÞ
2π

�
1þ q2

6m2
e

�
þOðq4Þ; ð2:3Þ

where αe ≡ e2ðμÞ=4π is the fine-structure constant, me
the mass of the electron, and we have expanded to order
q2=m2

e the resulting integrals. The factor of μ̄2 ≡ 4πe−γEμ2,
with γE the Euler constant, appear in dim. reg. as the
“subtraction scale.”1

We will encounter both IR as well as UV divergences,
which in dim. reg. emerge as poles in ϵIR=UV≡ðd−4ÞIR=UV,
as we approach d ¼ 4 dimensions. While intermedia UV
divergences are present, the final expressions for the form
factors are UV finite, featuring instead an IR pole (often
regularized with a photon mass).2

From (2.2) and (2.3) we can derive for instance the
one-loop correction to the scattering amplitude in QED,
and the Lamb shift. However, in order to draw parallels
with computations in gravity, in what follows we will
perform the calculation within the framework of non-
relativistic QED (NRQED).

B. The EFT framework: NRQED

In addition to the electron’s mass, we have two other
relevant scales in the bound state problem. There is Bohr’s
radius,

rB ≃ 1=ðmevÞ; ð2:4Þ

with v the relative velocity, and the typical frequency scale
given by the Rydberg energy

E≃mev2; ð2:5Þ

which determines the split between levels. In a bound state
the virial theorem implies

αe=rB ∼mev2 → αe ∼ v: ð2:6Þ

After one eliminates the heavy scale in the theory, me,
as in the heavy quark effective theory (HQET), we are
left with three relevant regions [48–50]: potential modes
scaling as

ðp0
pot; ppotÞ ∼ ðmev2; mevÞ ∼ ðv=rB; 1=rBÞ; ð2:7Þ

soft modes,

ðp0
S; pSÞ ∼ ðmev;mevÞ ∼ ð1=rB; 1=rBÞ; ð2:8Þ

and ultra-soft ones,

ðp0
US; pUSÞ ∼ ðmev2; mev2Þ ∼ ðv=rB; v=rBÞ: ð2:9Þ

Notice these power counting rules are similar to the ones in
NRGR, for potential and radiation fields.3 The effective
Lagrangian density for NRQED takes the form (ignoring
spin interactions for simplicity) [46,50,51]

LNRQED ¼ −
1

4
FμνFμν þ ψv†

e

�
iD0 þ

D2

2me
þ D4

8m3
e

þ e
cV
8m2

e
∇ · Eþ � � �

�
ψv
e þ iψ†

pD0ψp þ � � � ;

ð2:10Þ

where Dμ is the covariant derivative, ψv
e is given by

ψv
e ¼ eimetψe, as in HQET, and we have kept only the

terms which are relevant for our purposes. We have also
added the contribution from the proton, ψp, which we treat
as a static source, up to Oðme=mpÞ corrections. The
matching coefficient, cV , is given by [46]

1In the expressions below we omitted the bar in the log μ̄’s, for
convenience. The distinction is irrelevant for our purposes.

2The form factor in (2.2) also enters in the scattering
amplitude, and the IR pole is ultimately removed from the
cross section by including IR divergences from (ultra-)soft
photon emission [47]. However, as we shall see, for the binding
energy the low-energy modes contribute a UV divergence
instead. This is reminiscent to the gravitational scenario, where
the IR divergences in the radiative multipoles turn into UV
poles in the computation of the gravitational potential [28]
(see below).

3The (on-shell) soft modes are not present in classical
computations, since they kick the massive particle (e.g. the
electron) off of the mass shell, E ∼mev2.
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cV ¼ F1ð0Þ þ 2F2ð0Þ þ 8m2
e

d
dq2

F1ð0Þ; ð2:11Þ

with the form factors in (2.2) and (2.3). In dim. reg. the
expression for cV reads

cV ¼ 1þ 8

3

αeðμÞ
π

�
−

1

ϵIR
þ logme=μ

�
: ð2:12Þ

Notice we have kept the IR pole explicitly, and will be
carried over until the end of the calculation. We will
discuss later on in section (2.4) how to properly handle
this divergence prior to computing the Lamb shift. As
we shall demonstrate, this IR pole will be linked to a
UV singularity arising from the ultra-soft sector. (This
will be intimately related to cancelation of factors
of log μ.)
The next step is to integrate out the potential and soft

modes. This procedure matches NRQED into an effective
theory with ultra-soft degrees of freedom only, called
“potential” NRQED or pNRQED for short [52]. The
binding energy now becomes a matching coefficient.

Therefore, we have a Coulomb-type potential of the
form [52],4

Z
dt

Z
d3x1d3x2ψ

†
pðt; x1Þψpðt; x1Þ

�
αe

jx1 − x2j
�

× ψ†
eðt; x2Þψeðt; x2Þ: ð2:13Þ

For the term proportional to cV we may use Gauss’ law,
obtaining [52]

− cV
e2

8m2
e

Z
dt

Z
d3x1dx2ψ

†
pðt; x1Þψpðt; x1Þψ†

eðt; x2Þ

× ψeðt; x2Þδ3ðx1 − x2Þ: ð2:14Þ

Since the typical size of the bound state is given by
rB ≪ 1=E, the ultra-soft photon field is multipole expanded
in powers of ErB ∼ v ∼ αe. This is reminiscent of the
construction of the radiation theory in NRGR, in terms of a
series of multipole moments [24]. At the end of the day, the
relevant pieces in the pNRQED Lagrangian are5 [46,52]

LpNRQED ¼
Z

d3xψ†ðt; xÞ
�
i∂0 − eA0

USðt; 0Þ þ exi∇iA0
USðt; 0Þ þ

∇2

2me
− VðxÞ

−ie
AUSðt; 0Þ · ∇

me
− cV

e2

8me
δ3ðxÞ

�
ψðt; xÞ − 1

4

Z
d3xFμν

USFUSμν; ð2:15Þ

where Ve ¼ −αe=jxj. We dropped the tag on the field,
which now represents the wave-function of an electron in
the background of a static Coulomb-like source with typical
energy/momenta of order mev2. Notice the contribution
from cV may be thought of as a local renormalization of the
potential,

δVeðxÞ ¼ cV
e2

8me
δ3ðxÞ: ð2:16Þ

C. The Lamb shift

The calculation of the Lamb shift can be found in
different textbooks, e.g. [54]. Here we derive it following

the framework of the EFT approach NRQED. (The use of
dim. reg. to regularize the divergences in the computation
of the Lamb shift was also advocated in [54–56].)
The ultra-soft contribution to the En level of the

Hydrogen atom is represented in Fig. 2, and is given by
a self-energy type diagram. The computation entails the
two-point function

Gðt; xÞ≡ −ih0jTðψð0Þψðt; xÞÞj0i; ð2:17Þ

which it is convenient to transform into Fourier space

~Gðx; EÞ ¼
Z

dteiEtGðt; xÞ: ð2:18Þ

FIG. 2. The one-loop correction in (2.22). The double line
represents the bound state, and the dots are the dipole-type
coupling from (2.15). A similar diagram—albeit at the classical
level—appears in NRGR (see below).

5The coupling to ultra-soft photons can be rewritten in a
manifestly gauge invariant manner in terms of the electric field,
EUS ¼ −∂0AUS − ∇iA0

US, leading to a traditional dipole-type
interaction: ex · EUS. However, the expression in [52] leads to
a more transparent derivation of the Lamb shift in Coulomb
gauge, since the A0

US is a (nonpropagating) constrained variable
in this gauge.

4We may construct first an EFT at the scale mev, integrating
out the potential modes. In that case the interaction becomes
nonlocal in space, but local in time [53].
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At leading order, introducing a complete set of states,
we have

~G0ðx; EÞ ¼
X
n;l

ψn;lð0Þψ†
n;lðxÞ

E − En þ iϵ
; ð2:19Þ

where En is the unperturbed energy level, with wave
functions ψn;l ≡ h0jψ jn;li, obeying

Ĥ0ψn;l ¼ Enψn;l; ð2:20Þ

with

H0 ¼
p2

2me
þ Ve; ð2:21Þ

the unperturbed nonrelativistic Hamiltonian. The loop
correction in Fig. 2 contributes to the self energy,
ΣðEÞ, of the electron moving in a Coulomb back-
ground [57]. The one-loop diagram can be resumed
as a Dyson series, leading to a correction to the Green’s
function,

�
E −

p2

2me
− Ve − ΣðEÞ

�
Gðx; EÞ ¼ 1; ð2:22Þ

and subsequently to the energy levels. Here pi is the
momentum operator: pi ¼ −i∇i.
The self-energy diagram can be computed in

dim. reg. using the Feynman rules from [52], and it
reads6

ΣðEÞ ¼ −i
e2

m2
e

Z
ddk
ð2πÞd

�
δij −

kikj

k2

�
1

k20 − k2 þ iϵ
pi

1

H0 − E − k0 þ iϵ
pj: ð2:24Þ

Using (see footnote 1)

Z
ddk
ð2πÞd

1

k20 − k2 þ iϵ

�
δij −

kikj

k2

�
1

ω − k0 þ iϵ
¼ i

ω

6π2
δij

�
1

ϵUV
þ 5

6
− log

2ω

μ

�
; ð2:25Þ

we obtain,

ΣðEÞ ¼ 2αe
3π

pi

me
ðH0 − EÞ

�
1

ϵUV
þ 5

6
− log

2ðH0 − EÞ
μ

�
pi

me
: ð2:26Þ

Taking the limit E → En, we find for the energy shift:

ðδEn;lÞUS ¼
2αe
3π

�
e2
�

1

ϵUV
þ 5

6

� jψn;lðx ¼ 0Þj2
2m2

e

−
X
m≠n;l

�
n;l

���� p
me

����m;l
�

2

ðEm − EnÞ log
2jEn − Emj

μ

�
ð2:27Þ

where we used [54]

piðH0 − EnÞpi ¼
1

2
∇2Ve ¼

e2

2
δ3ðxÞ: ð2:28Þ

To complete the relevant part of the calculation we need to add the (local) contribution from the short-distance modes in
(2.16), proportional to the Wilson coefficient cV in (2.12), which yields

ðδEn;lÞcV ¼ hn;ljδVejn;li ¼
e2

8m2
e
cV jψn;lðx ¼ 0Þj2 ¼ 4α2e

3m2
e

�
−

1

ϵIR
þ log

me

μ

�
jψn;lðx ¼ 0Þj2: ð2:29Þ

6The (ultra-soft) photon propagator in Coulomb gauge is given by

Dij
USðk0; kÞ ¼

i
k20 − k2 þ iϵ

�
δij −

kikj

k2

�
; D00

USðk0; kÞ ¼
i
k2

: ð2:23Þ

The nonpropagating component contributes a (tadpole) scaleless integral ðR dk0
k0
Þ that can be set to zero in dim. reg.
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Therefore, combining the two terms together we have

δEn;l ¼ ðδEn;lÞUS þ ðδEn;lÞcV þ � � �

¼ 2αe
3π

�
5

6
e2

jψn;lðx ¼ 0Þj2
2m2

e
−

X
m≠n;l

�
n;l

���� p
me

����m;l
�

2

ðEm − EnÞ log
2jEn − Emj

me

�
þ � � �

þ 4α2e
3m2

e

�
1

ϵUV
−

1

ϵIR

�
jψn;lðx ¼ 0Þj2: ð2:30Þ

Notice the anticipated link between IR and UV divergen-
ces. Provided we identify the IR/UV poles, these two
singular terms drop out of the computation, as the factors of
log μ do. The relevant scale in the logarithm is replaced by
me. In the next subsection we will describe how to properly
implement the cancelation. The remaining terms are the
celebrated correction in the Lamb shift at leading order,
including Bethe logarithm and the numerical factor
of 5=6 [41–44]. By power counting the (enhanced) loga-
rithmic contribution, we find it scales as (recall αe ∼ v)7

δEn;l ≃ αev2mev2 logðmev2=meÞ ∼meα
5
e log αe: ð2:31Þ

Notice that, if one treats the local contribution from δVe in
(2.16) independently, we would be misguided to remove
the IR pole in (2.2) first, in order to arrive to a finite result.
This, in turn, would introduce scheme-dependent ambigu-
ities, since we could subtract from (2.2) either 1=ϵIR or
1=ϵIR þ C, with C some unspecified dimensionless con-
stant. Hence, after removing the UV divergence from the
ultra-soft loop with an (independent) counter term, we
would need additional information to fix an undetermined
contribution [54]

δVðCÞ
e ¼ C

4α2e
3m2

e
δ3ðxÞ; ð2:32Þ

similarly to what occurs in the methodology in [31–37]. We
discuss in what follows the steps which enable us to obtain
an unambiguous result for the Lamb shift, regardless of the
regularization scheme.

D. The zero-bin subtraction

We must implement a procedure in which modes other
than the ultra-soft never leave the realm pertinent to the
bound state, henceforth avoiding IR divergences. This is
known as the zero-bin subtraction [45]. As an example, let
us consider any one-loop graph in NRQED with contri-
butions from different regions. Let us concentrate only on

the propagating degrees of freedom, namely soft and ultra-
soft modes. The soft part of the graph may have UVand IR
divergences,

IS ¼
AS

ϵUV
þ BS

ϵIR
þ fSðq; μÞ; ð2:33Þ

with q ∼mev. The UV divergence is removed by a counter-
term as usual, therefore, without loss of generality, we set
AS ¼ 0. On the other hand, for the ultra-soft part,

IUS ¼
AUS

ϵUV
þ BUS

ϵIR
þ fUSðE; μÞ; ð2:34Þ

with E ∼mev2. The IR divergences in the ultra-soft
calculation would match into the IR singularities of the
full theory, if any, in the quantity at hand. Let us assume the
observable is IR safe in QED, and therefore BUS ¼ 0. Since
the method of regions is designed to reproduce the full
theory computation in terms of relevant zones, we must
have [48,53]

Ifull ¼ IS þ IUS þ Ihard; ð2:35Þ

where the “hard” part corresponds to modes with k ∼me.
This is the contribution which matches into Wilson
coefficients, as a series of local terms.8

In general, we will find BS ¼ −AUS, which will be
ultimately related to the cancelation of spurious divergen-
ces due to the splitting into regions. Therefore, adding the
soft and ultra-soft contributions together,

IS þ IUS ¼ fSðq; μÞ þ fUSðE; μÞ þ BS

�
1

ϵIR
−

1

ϵUV

�
:

ð2:36Þ

The role of the zero-bin subtraction is to remove from IS the
IR singularity. In other words, we replace

IS → IS − Izero‐bin; ð2:37Þ
7One can actually think of two contributions, from logðErBÞ

and (minus) logðmerBÞ, both scaling as log v. In gravity, on the
other hand, we only find a logarithm of the ratio between
radiation and potential scales, at the desired order. Nevertheless,
the basic steps are essentially the same in both cases.

8The method of regions and dim. reg. go hand-by-hand,
enforcing that contributions from momenta k ≫ me can be
ignored, since they turn into a scaleless integral.
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where Izero−bin corresponds to an asymptotic expansion
of the soft integral around the region responsible for the
IR poles. This procedure removes the double-counting
induced by the overlap between the IR sensitive part of
the IS integral and the contribution from IUS.
The zero-bin part may involve a scaleless integral,

which in dim. reg. are usually set to zero. That is the
case because they entail a cancelation between IR and
UV poles. However, when IR divergences are present,
scaleless integral require some extra care [53]. In dim.
reg., the zero bin will often take the form,

Izero-bin ¼ BS

�
1

ϵIR
−

1

ϵUV

�
þ finite; ð2:38Þ

such that

IS − Izero-bin þ IUS ¼ fSðq; μÞ þ fUSðE; μÞ; ð2:39Þ

See [45] for more details.
Returning to the case at hand, there are a few

subtleties regarding the IR divergence in (2.2). In
principle, the IR pole entered in the matching into
NRQED.9 However, an effective theory is constructed
such that all the long-distance physics from the full
theory is recovered. Hence, the IR divergence in (2.2),
which trickled into cV in (2.12), should be matched to a
similar IR singularity in the effective theory [53]. The
IR pole in the EFT side, however, is subtle, since it
arises from scaleless integrals which are often ignored
[46].10 At the end of the day, this procedure (keeping
scaleless integrals in the long-distance theory) is entirely
equivalent to performing a zero-bin subtraction from
Ihard, removing unwanted soft(er) modes prior to per-
forming the matching. The advantage of implementing
the zero-bin prescription is that it enables us to set to
zero other scaleless integrals (for example the contri-
bution from A0

US in the calculation of the Lamb shift,
see footnote 6), since all quantities are then IR safe.
(Moreover, the zero-bin subtraction is independent of
the regularization scheme.)
Let us return to the form factor in (2.2). If we denote as

ðp; p − qÞ the incoming and outgoing momenta respec-
tively, the vertex correction entails

Ivertex ¼ −ie2p · ðp − qÞ
Z

ddk
ð2πÞd

1

k2 þ iϵ

×
1

ðp − kÞ2 −m2
e þ iϵ

1

ðp − q − kÞ2 −m2
e þ iϵ

:

ð2:40Þ

The part of the integral with k ∼mev is reproduced by the
soft modes in NRQED, and likewise for the ultra-soft
modes. On the other hand, the contribution from the hard
region, which matches into Wilson coefficients, is given by
modes with k ∼me. At leading order in q2=m2

e we have,

Ihard ¼ −ie2m2
e

Z
ddk
ð2πÞd

1

k2 þ iϵ

�
1

k2 − p · kþ iϵ

�
2

þOðq2=m2
eÞ: ð2:41Þ

This integral clearly has an IR divergence, and the result
reads

Ihard ¼
e2

8π2

�
1

ϵIR
þ log μ=me

�
þOðq2=m2

eÞ: ð2:42Þ

The IR pole, however, appears from the region, k ≪ me,
which does not belong to Ihard. Therefore, we need to
perform the (zero-bin) subtraction

Izero-bin ¼ −ie2
Z

ddk
ð2πÞd

1

k2 þ iϵ

�
1

v · kþ iϵ

�
2

; ð2:43Þ

where we used pμ ¼ mevμ, and p2 ¼ m2
e. This integral is

easy to calculate in the rest frame, with vμ ¼ ð1; 0; 0; 0Þ,
yielding

Izero-bin ¼
e2

8π2

�
1

ϵIR
−

1

ϵUV

�
; ð2:44Þ

such that

Ihard − Izero-bin ¼
e2

8π2

�
1

ϵUV
þ log μ=me

�
: ð2:45Þ

Iterating this procedure in all the IR sensitive terms trans-
forms the IR pole in (2.12) into a UV singularity,

cV⟶
zero-bin

1þ 8

3

αeðμÞ
π

�
−

1

ϵUV
þ logme=μ

�
: ð2:46Þ

Following our computation of the Lamb shift, this UV pole
now readily cancels against the UV divergence arising in
the ultra-soft loop correction, see (2.30), unfolding the
ambiguity-free final result. The same would have happened
had we used any other regularization scheme.

9Technically speaking, QED is first matched into HQET
by integrating out me. The same happens in the gravitational
case, with the finite size scale identified with the hard
modes.

10Notice that, while adding a scaleless integral from the
EFT side may cancel the IR poles on both sides of the
matching condition, it also leaves behind a UV divergent
term, as in the zero-bin prescription. The latter would
likewise cancel out against the UV divergence in the ultra-
soft loop.
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E. The renormalization group

In the previous calculation within NRQED we ended up
without divergences, but also the factors of μ are gone after
using (2.46). However, we could have approached the
problem differently—from the bottom up—by computing
directly in the ultra-soft effective theory. While the match-
ing condition determines the value of the parameters in the
effective theory (at a matching scale), the from of the
effective Lagrangian can be constructed using the low-
energy symmetries and degrees of freedom [51]. There is
(at least for our purposes) only one Wilson coefficient, cV ,
in the long-distance theory. The computation of the shift in
the energy levels follows from the ultra-soft loop, which is

UV divergent. From the point of view of the ultra-soft
theory we can then use a counter term to renormalize the
divergence. Hence, the UV pole may be removed via

cc:t:V ¼ −
8αe
3π

1

ϵUV
; ð2:47Þ

or in terms of the local potential [see (2.16)]

δVc:t:
e ¼ −

4α2e
3m2

e

1

ϵUV
δ3ðxÞ: ð2:48Þ

Putting the pieces together, we find

δEn;l ¼
�	

2αe
3π

�
5

6
þ log

μ

me

�
þ crenV ðμÞ

4



e2

jψn;lðx ¼ 0Þj2
2m2

e

−
2αe
3π

X
m≠n;l

�
n;l

���� p
me

����m;l
�

2

ðEm − EnÞ log
2jEn − Emj

me

�
þ � � � : ð2:49Þ

Notice two important differences. First of all, the appear-
ance of a renormalized parameter, crenV ðμÞ, and the log μ.
The binding energy is obviously μ-independent, and there-
fore one can obtain a renormalization group equation,

μ
d
dμ

δEn;l ¼ 0 → μ
d
dμ

crenV ðμÞ ¼ −
8αeðμÞ
3π

; ð2:50Þ

or, in other words,

μ
d
dμ

δVren
e ðx; μÞ ¼ −

4α2e
3m2

e
δ3ðxÞ: ð2:51Þ

By solving this equation we find,11

crenV ðμÞ ¼ crenV ðmeÞ −
8αe
3π

log
μ

me
; ð2:52Þ

and likewise (in momentum space)

δVren
e ðp; μÞ ¼ δVren

e ðp; meÞ −
4α2e
3m2

e
log

μ

me
: ð2:53Þ

The utility of this expression is clear. First of all, let us
re-write (2.49) as

δEn;l ¼ hn;ljδVren
e ðx; μÞjn;li

−
2αe
3π

X
m≠n;l

�
n;l

���� p
me

����m;l
�

2

ðEm − EnÞ

× log
2jEn − Emj

μ
þ � � � : ð2:54Þ

If we now take μ ∼mev2, the second term in (2.54)
becomes subdominant (since ΔE=ðmev2Þ ∼ 1). Hence,
we directly obtain the logarithmic Lamb shift from the
renormalization group equation (recall αe ∼ v)

δEn;l ¼ hn;ljδVren
e ðx; μ ¼ mev2Þjn; li þ � � �

¼ −
4α2e
3m2

e
jψn;lðx ¼ 0Þj2 log v2 þ � � �

¼ −
8

3π

δl0
n3

meα
5
e logαe þ � � � ; ð2:55Þ

where (only the l ¼ 0 states have support at x ¼ 0)

jψn;lðx ¼ 0Þj2 ¼ α3em3
e

πn3
δl0; ð2:56Þ

for the Hydrogen atom. In this manner we unambiguously
obtain Bethe logarithm directly from the long-distance
effective theory. This is similar to what we find in the
gravitational case, which we discuss next.

III. THE (CLASSICAL) BINDING
ENERGY IN GRAVITY

The two-body problem in gravity, needless to say, is
classical in nature, whereas the Lamb shift in QED is rooted

11To be consistent we should match pNRQED into NRQED at
μ0 ∼mev. However, since the zero-bin subtraction removes the
double counting, we can pull up the matching condition to
μ0 ∼me. (See Fig. 1 in [45], also [58–60] for the implementation
of the “velocity renormalization group” in “vNRQED,” which is
better suited to handle the log v’s to all orders in αe [and αs] in
one go, from me to mev2.)
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in quantum effects. Moreover, gravity is in spirit more
closely related to the strong interaction, and NRQCD,
where the potential and ultra-soft gauge fields can couple
not only to fermions but also to each other [53].
Nonetheless, similarities arise between the two EFT
approaches. In NRGR, as in NRQED, the IR divergence
in the near region is also linked to a UV pole in the far zone.
The latter follows from a conservative radiative effect,
namely the tail contribution to the radiation-reaction force
[28]. Moreover, akin to the implementation in electrody-
namics, the IR divergences can be removed using the zero-
bin subtraction, paving the way to ambiguity-free results
[39]. To complete the analogy, in what follows we rederive
the logarithmic correction to the binding potential for
binary black holes, which bears a close resemblance with
our derivation of Bethe logarithm for the Hydrogen atom.

A. The EFT framework: NRGR

The relevant scales for the binary inspiral problem are,
the size of the compact object, rs, the separation, r, and the

typical wavelength of the emitted radiation, λrad ∼ r=v. For
a bound state we also have rs=r ∼ v2, and therefore

rs ≪ r ≪ λrad; ð3:1Þ

in the PN regime, v ≪ 1. Therefore, after the hard scale, rs,
is integrated out we encounter two relevant regions for the
binary problem (recall soft modes are not present in classical
computations). Namely, the—off-shell—potential,

ðp0
pot; ppotÞ ∼ ðv=r; 1=rÞ; ð3:2Þ

and—on-shell—radiation (or ultra-soft) modes,

ðp0
rad; pradÞ ∼ ðv=r; v=rÞ: ð3:3Þ

The NRGR action takes the form (L ¼ ii…il)
12

SNRGR½xðpÞcm ðτÞ; hμν� ¼
X
p

Z
dτp

�
−MðpÞðτÞ −

1

2
ωμabSabðpÞðτÞuμðτÞ

þ
X
l¼2

�
1

l!
ILsrcðpÞðτÞ∇L−2Eil−1il −

2l
ð2lþ 1Þ! J

L
srcðpÞðτÞ∇L−2Bil−1il

��
; ð3:4Þ

where xðpÞcm ðτÞ is the center-of-mass worldline of the bodies,
ωμab are the Ricci coefficients, and Eij, Bij are the electric
and magnetic components of the Weyl tensor. The metric
perturbation, hμν ¼ gμν − ημν, has support on modes longer
than the hard scale, and it includes both potential and
radiation modes. The monopole, M, represents the mass,
Sab is the spin tensor, and the ILsrc; JLsrc are the permanent
mass- and current-type source multipole moments, of the
compact objects [16].13

The EFT for at the radiation scale is constructed similarly
to pNRQED (although at the nonlinear level the structure
resembles pNRQCD instead), by integrating out the poten-
tial modes [16]. Unlike QED, all the calculations remain at

the classical level, involving a series of iterations of Green’s
functions convoluted with external sources. Because of the
symmetries of the long-distance theory, i.e. general rela-
tivity, the effective action in the radiation sector is exactly
the same as in (3.4), but only radiation fields are present.
The bodies are replaced by a single worldline at the center-
of-mass of the binary, and the Wilson coefficients are now
associated with the two-body system. For example,M is the
(Bondi) binding energy of the bound state, and ðILsrc; JLsrcÞ
are the corresponding source multipole moments. In
principle, the power loss is obtained in terms of their time
derivatives, using the equations of motion which follow
from the gravitational binding potential [16]. See Fig. 3 for
a schematic representation of the relevant scales in NRGR.
There is yet one other important contribution to be
considered, namely the tail effect, or the scattering of
the outgoing radiation off of the Newtonian potential
produced by the whole binary. This is responsible for
the rich structure of the radiation theory [24,28,63].

B. The tail effect

The interaction of the binary’s gravitational potential
with the outgoing radiation modifies the total emitted
power. In practice, the source moments, ILsrc, which enter
in the effective action in (3.4), turn into radiative

12As in electrodynamics, the expression in (3.4) applies more
generally to the dynamics of an extended objects in a long-
wavelength background, prior to considering a two-body bound
state [16].

13For instance, for a spinning body Iijsrc¼ 1
2
CES2S

ikSjk [10,16–19].
We must also incorporate response terms, e.g. to the background
field induced by the companion, IijR ¼ CEEij þ � � �, and likewise
for the magnetic components. The CE;B coefficients are known as
Love numbers, encoding the information regarding the internal
degrees of freedom of the compact bodies. (Surprisingly, all the
Love numbers vanish for black holes in d ¼ 4, which opens up a
unique opportunity to test the shape of spacetime in the forth-
coming era of precision gravity [13,61,62].)
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multipoles, ILrad, in the computation of the radiated power
[6]. For example, the radiative quadrupole is obtained by
computing the Feynman graph in Fig. 4, which follows
from the interaction between the quadrupole, Iijsrc, and the
monopole, M. The calculation is straightforward, and one
obtains a correction of the form [24,64–66],

IijradðωÞ ¼ IijsrcðωÞ
�
1þGMω

�
signðωÞπ

þ i

�
2

ϵIR
þ logω2=μ2 þ finite

���
; ð3:5Þ

which features an IR divergence. It is easy to see all the IR
poles cancel out in the radiated power, since they add up to
an overall phase [24]. (This type of IR divergence is thus
intimately related to the soft factors in QED [47].)
However, similarly to what occurred for the Lamb shift,
the contribution from the tail effect to radiation-reaction,

and in particular its conservative part, features instead a UV
divergence, see Fig. 5,14

Z
dtV tailðμÞ ¼

G2
NM
5

Z
dω
2π

ω6Iijsrcð−ωÞIijsrcðωÞ

×

�
1

ϵUV
þ log

ω2

μ2
þ finite

�
: ð3:6Þ

(We drop the “src” label below since all the multipole
moments in what follows refer to the source.) The term in
(3.6) is the equivalent to (2.27) in the derivation of the
Lamb shift. By the same token, the IR divergence in the
NRGR potential from the near region (which enters as a
local term in the radiation theory) is the analogous to the
one in (2.16), through (2.12). All we need is to show that
the coefficients of the poles (and the log μ2) match, as they
do in NRQED.
While the computation of the 4PN gravitational potential

within the EFT approach is still undergoing [26,27], we
expect to find the following structure in the near region
[28,39]

Z
dtVpotðμÞ ¼ −

G2
NM
5

Z
dω
2π

ω6Iijð−ωÞIijðωÞ

×

�
1

ϵIR
− 2 logðμrÞ

�
þ local=finite: ð3:7Þ

Hence, adding both contributions together, and restricting
to a circular orbit (for which ω≃ 2v=r), we would get [28]
(see Fig. 6)

Vfull ¼ Vpot þ V tail ¼
2G2

NM
5

Iijð3ÞðtÞIijð3ÞðtÞ

×

�
log vþ 1

2

�
1

ϵUV
−

1

ϵIR

��
þ finite: ð3:8Þ

The upper script (n) represents the n-th time derivative.
In [39] we elaborate on the zero-bin prescription to deal

FIG. 5. The tail contribution to radiation reaction. The ðþ;−Þ
labels are associated to the “in-in” formalism, required to
properly compute retardation effects. The wavy line is a radiation
mode pμ ∼ λ−1rad, whereas the dashed line corresponds to a
potential mode with q ∼ λ−1rad. See [28] for more details.

FIG. 3. The EFT approach to the binary inspiral problem. See
[16] for a thorough review.

FIG. 4. The tail contribution to the radiative quadrupole mo-
ment. Only the lines with an arrow propagate. The double-line
represents the two-body system, treated as an external non-
propagating source.

14There is also a iπsignðωÞ in the computation which accounts
for the radiative part of the tail contribution, see [28].
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with the divergences in (3.8), which are the source of
ambiguities in the regularization schemes implemented in
[31–37]. The logarithmic correction, on the other hand, is
universal [28]. The latter may be obtained unambiguously
without the need of any matching condition, as we
show next.

C. The renormalization group

As we did for the Lamb shift, let us proceed from the
bottom up, where the gravitational potential from the near
zone becomes a matching coefficient in the far zone.
Therefore, as before [see e.g. (2.48)], we split the local
contribution from the near region into a renormalized part
and a counter term. The latter is chosen to renormalize
the—conservative—contribution from the tail effect [28]

Vc:t: ¼ −
G2

NM
5

Iijð3ÞðtÞIijð3ÞðtÞ 1

ϵUV
; ð3:9Þ

so that we end up with a full gravitational potential of
the form

Vfull ¼ VrenðμÞ þ
G2

NM
5

Z
dω
2π

ω6Iijð−ωÞIijðωÞ

×
�
log

ω2

μ2
þ finite

�
: ð3:10Þ

This expression is similar to (2.54). Hence, by demanding
the μ independence of the (physical) gravitational potential
[28] we find,

μ
d
dμ

Vfull ¼ 0 → μ
d
dμ

VrenðμÞ ¼
2G2

NM
5

Iijð3ÞðtÞIijð3ÞðtÞ;

ð3:11Þ

which is the equivalent of (2.51). Once again, considering a
circular orbit and choosing μ ∼ v=r, the renormalization
group equation carries the information about the logarith-
mic contribution,

V log
full ¼

2G2
NM
5

Iijð3ÞðtÞIijð3ÞðtÞ log v; ð3:12Þ

reproducing (3.8). From here, following the step described
in [28], we derived the logarithm entering in the (con-
served) binding energy at 4PN order,

Elog ¼ −2G2
NMhIijð3ÞðtÞIijð3ÞðtÞi log v; ð3:13Þ

which agrees with the result in [67].

IV. CONCLUDING REMARKS

In this paper we studied the Lamb shift using NRQED,
illustrating an ambiguity-free derivation of the binding
energy within an EFT framework. The parallel with the
gravitational case was already emphasized in [31,32],
quote: “It is worth pointing out that also the Lamb shift
calculation of Ref. [54] shows up an undefined constant in
the IR sector, which gets fixed by some dimensional
matching.”15 Indeed, an IR singularity appears in the near
zone calculations in NRQED, resembling the situation in
gravity. Likewise, a UV pole arises from an ultra-soft
loop in the far region, echoing the calculation of the
(conservative part of) the tail effect in NRGR [28]. Yet,
as we showed, the IR/UV divergences in the Lamb shift
can be removed without the need to introduce ambiguities.
The procedure is implemented for NRGR in [39]. We also
rederived the renormalization group equations from
which we reproduce both logarithmic contributions, to
the—quantum—shift in the energy levels of the Hydrogen
atom and the—classical—gravitational binding potential
for binary black holes.
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